Categories
Academic Freedom Alchemical Baseload is History Be Prepared Big Number Big Picture Big Society British Biogas Change Management Climate Change Dead End Demoticratica Dreamworld Economics Efficiency is King Electrificandum Energy Autonomy Energy Change Energy Insecurity Energy Revival Engineering Marvel Fossilised Fuels Green Gas Green Investment Green Power Hydrocarbon Hegemony Methane Management National Energy National Power Natural Gas Nuclear Nuisance Nuclear Shambles Optimistic Generation Paradigm Shapeshifter Policy Warfare Political Nightmare Realistic Models Regulatory Ultimatum Renewable Gas Solution City Technofix The Data The Power of Intention The Right Chemistry

Renewable Gas : A Presentation #1

Last week, on the invitation of Dr Paul Elsner at Birkbeck, University of London, I gave a brief address of my research so far into Renewable Gas to this year’s Energy and Climate Change class, and asked and answered lots of questions before demolishing the mythical expert/student hierarchy paradigm – another incarnation of the “information deficit model”, perhaps – and proposed everyone work in breakout groups on how a transition from fossil fuel gas to Renewable Gas could be done.

A presentation of information was important before discussing strategies, as we had to cover ground from very disparate disciplines such as chemical process engineering, the petroleum industry, energy statistics, and energy technologies, to make sure everybody had a foundational framework. I tried to condense the engineering into just a few slides, following the general concept of UML – Unified Modelling Language – keeping everything really simple – especially as processing, or work flow (workflow) concepts can be hard to describe in words, so diagrams can really help get round the inevitable terminology confusions.

But before I dropped the class right into chemical engineering, I thought a good place to start would be in numbers, and in particular the relative contributions to energy in the United Kingdom from gas and electricity. Hence the first slide.

The first key point to notice is that most heat demand in the UK in winter is still provided by Natural Gas, whether Natural Gas in home boilers, or electricity generated using Natural Gas.

The second is that heat demand in energy terms is much larger than power demand in the cold months, and much larger than both power and heat demand in the warm months.

The third is that power demand when viewed on annual basis seems pretty regular (despite the finer grain view having issues with twice-daily peaks and weekday demand being much higher than weekends).

The reflection I gave was that it would make no sense to attempt to provide all that deep winter heat demand with electricity, as the UK would need an enormous amount of extra power generation, and in addition, much of this capacity would do nothing for most of the rest of the year.

The point I didn’t make was that nuclear power currently provides – according to official figures – less than 20% of UK electricity, however, this works out as only 7.48% of total UK primary energy demand (DUKES, 2014, Table 1.1.1, Mtoe basis). The contribution to total national primary energy demand from Natural Gas by contrast is 35.31%. The generation from nuclear power plants has been falling unevenly, and the plan to replace nuclear reactors that have reached their end of life is not going smoothly. The UK Government Department of Energy and Climate Change have been pushing for new nuclear power, and project that all heating will convert to electricity, and that nuclear power will provide for much of this (75 GW by 2050). But if their plan relies on nuclear power, and nuclear power development is unreliable, it is hard to imagine that it will succeed.

Categories
Academic Freedom Advertise Freely Alchemical Assets not Liabilities Be Prepared Behaviour Changeling Big Number Biofools British Biogas Burning Money Carbon Capture Carbon Commodities Carbon Pricing Carbon Taxatious Change Management Climate Change Conflict of Interest Corporate Pressure Cost Effective Dead End Delay and Deny Divest and Survive Divide & Rule Dreamworld Economics Drive Train Economic Implosion Efficiency is King Emissions Impossible Energy Calculation Energy Change Energy Crunch Energy Denial Energy Insecurity Energy Revival Engineering Marvel Evil Opposition Extreme Energy Financiers of the Apocalypse Fossilised Fuels Freemarketeering Gamechanger Geogingerneering Global Warming Green Gas Green Power Hydrocarbon Hegemony Hydrogen Economy Insulation Low Carbon Life Mad Mad World Major Shift Mass Propaganda Methane Management Money Sings National Energy National Power Natural Gas Nuclear Shambles Oil Change Optimistic Generation Orwells Paradigm Shapeshifter Peak Coal Peak Emissions Policy Warfare Political Nightmare Price Control Public Relations Realistic Models Regulatory Ultimatum Renewable Gas Renewable Resource Revolving Door Shale Game Solution City Stirring Stuff The Data The Power of Intention The Right Chemistry The Science of Communitagion The War on Error Unnatural Gas Unutterably Useless Utter Futility Vain Hope Voluntary Behaviour Change Vote Loser Western Hedge

Only Just Getting Started

In the last couple of years I have researched and written a book about the technologies and systems of Renewable Gas – gas energy fuels that are low in net carbon dioxide emissions. From what I have learned so far, it seems that another energy world is possible, and that the transition is already happening. The forces that are shaping this change are not just climate or environmental policy, or concerns about energy security. Renewable Gas is inevitable because of a range of geological, economic and industrial reasons.

I didn’t train as a chemist or chemical process engineer, and I haven’t had a background in the fossil fuel energy industry, so I’ve had to look at a number of very basic areas of engineering, for example, the distillation and fractionation of crude petroleum oil, petroleum refinery, gas processing, and the thermodynamics of gas chemistry in industrial-scale reactors. Why did I need to look at the fossil fuel industry and the petrochemical industry when I was researching Renewable Gas ? Because that’s where a lot of the change can come from. Renewable Gas is partly about biogas, but it’s also about industrial gas processes, and a lot of them are used in the petrorefinery and chemicals sectors.

In addition, I researched energy system technologies. Whilst assessing the potential for efficiency gains in energy systems through the use of Renewable Electricity and Renewable Gas, I rekindled an interest in fuel cells. For the first time in a long time, I began to want to build something – a solid oxide fuel cell which switches mode to an electrolysis unit that produces hydrogen from water. Whether I ever get to do that is still a question, but it shows how involved I’m feeling that I want to roll up my sleeves and get my hands dirty.

Even though I have covered a lot of ground, I feel I’m only just getting started, as there is a lot more that I need to research and document. At the same time, I feel that I don’t have enough data, and that it will be hard to get the data I need, partly because of proprietary issues, where energy and engineering companies are protective of developments, particularly as regards actual numbers. Merely being a university researcher is probably not going to be sufficient. I would probably need to be an official within a government agency, or an industry institute, in order to be permitted to reach in to more detail about the potential for Renewable Gas. But there are problems with these possible avenues.

You see, having done the research I have conducted so far, I am even more scornful of government energy policy than I was previously, especially because of industrial tampering. In addition, I am even more scathing about the energy industry “playing both sides” on climate change. Even though there are some smart and competent people in them, the governments do not appear to be intelligent enough to see through expensive diversions in technology or unworkable proposals for economic tweaking. These non-solutions are embraced and promoted by the energy industry, and make progress difficult. No, carbon dioxide emissions taxation or pricing, or a market in carbon, are not going to make the kind of changes we need on climate change; and in addition they are going to be extremely difficult and slow to implement. No, Carbon Capture and Storage, or CCS, is never going to become relatively affordable in any economic scenario. No, nuclear power is too cumbersome, slow and dodgy – a technical term – to ever make a genuine impact on the total of carbon emissons. No, it’s not energy users who need to reduce their consumption of energy, it’s the energy companies who need to reduce the levels of fossil fuels they utilise in the energy they sell. No, unconventional fossil fuels, such as shale gas, are not the answer to high emissions from coal. No, biofuels added to petrofuels for vehicles won’t stem total vehicle emissions without reducing fuel consumption and limiting the number of vehicles in use.

I think that the fossil fuel companies know these proposals cannot bring about significant change, which is precisely why they lobby for them. They used to deny climate change outright, because it spelled the end of their industry. Now they promote scepticism about the risks of climate change, whilst at the same time putting their name to things that can’t work to suppress major amounts of emissions. This is a delayer’s game.

Because I find the UK Government energy and climate policy ridiculous on many counts, I doubt they will ever want me to lead with Renewable Gas on one of their projects. And because I think the energy industry needs to accept and admit that they need to undergo a major change, and yet they spend most of their public relations euros telling the world they don’t need to, and that other people need to make change instead, I doubt the energy industry will ever invite me to consult with them on how to make the Energy Transition.

I suppose there is an outside chance that the major engineering firms might work with me, after all, I have been an engineer, and many of these companies are already working in the Renewable Gas field, although they’re normally “third party” players for the most part – providing engineering solutions to energy companies.

Because I’ve had to drag myself through the equivalent of a “petro degree”, learning about the geology and chemistry of oil and gas, I can see more clearly than before that the fossil fuel industry contains within it the seeds of positive change, with its use of technologies appropriate for manufacturing low carbon “surface gas”. I have learned that Renewable Gas would be a logical progression for the oil and gas industry, and also essential to rein in their own carbon emissions from processing cheaper crude oils. If they weren’t so busy telling governments how to tamper with energy markets, pushing the blame for emissions on others, and begging for subsidies for CCS projects, they could instead be planning for a future where they get to stay in business.

The oil and gas companies, especially the vertically integrated tranche, could become producers and retailers of low carbon gas, and take part in a programme for decentralised and efficient energy provision, and maintain their valued contribution to society. At the moment, however, they’re still stuck in the 20th Century.

I’m a positive person, so I’m not going to dwell too much on how stuck-in-the-fossilised-mud the governments and petroindustry are. What I’m aiming to do is start the conversation on how the development of Renewable Gas could displace dirty fossil fuels, and eventually replace the cleaner-but-still-fossil Natural Gas as well.

Categories
Academic Freedom Alchemical Assets not Liabilities Bait & Switch British Biogas Change Management Climate Change Delay and Deny Direction of Travel Energy Change Energy Revival Fossilised Fuels Gas Storage Green Gas Green Investment Green Power Hydrocarbon Hegemony Hydrogen Economy Low Carbon Life Media Modern Myths Natural Gas Orwells Protest & Survive Pure Hollywood Realistic Models Renewable Gas Renewable Resource Solar Sunrise Solution City Stirring Stuff Sustainable Deferment Technofix The Myth of Innovation The Power of Intention The Right Chemistry The War on Error Wind of Fortune Zero Net

Renewable Energy : Google Blind

In an interesting article by two Google engineers, Ross Koningstein and David Fork, "What It Would Really Take to Reverse Climate Change : Today’s renewable energy technologies won’t save us. So what will?", the authors concluded from their modelling scenarios that :-

"While a large emissions cut sure sounded good, this scenario still showed substantial use of natural gas in the electricity sector. That’s because today’s renewable energy sources are limited by suitable geography and their own intermittent power production."

Erm. Yes. Renewable electricity is variable and sometimes not available, because, well, the wind doesn’t always blow and the sun doesn’t always shine, you know. This has been known for quite some time, actually. It’s not exactly news. Natural Gas is an excellent complement to renewable electricity, and that’s why major industrialised country grid networks rely on the pairing of gas and power, and will do so for some time to come. Thus far, no stunner.

What is astonishing is that these brain-the-size-of-a-planet guys do not appear to have asked the awkwardly obvious question of : "so, can we decarbonise the gas supply, then ?" Because the answer is "yes, very largely, yes."

And if you have Renewable Gas backing up Renewable Power, all of a sudden, shazam !, kabam ! and kapoom !, you have An Answer. You can use excess wind power and excess solar power to make gas, and you can store the gas to use when there’s a still, cold period on a wintry night. And at other times of low renewable power, too. And besides using spare green power to make green gas, you can make Renewable Gas in other ways, too.

The Google engineers write :-

"Now, [Research and Development] dollars must go to inventors who are tackling the daunting energy challenge so they can boldly try out their crazy ideas. We can’t yet imagine which of these technologies will ultimately work and usher in a new era of prosperity – but the people of this prosperous future won’t be able to imagine how we lived without them."

Actually, Renewable Gas is completely non-crazy. It’s already being done all over the world in a variety of locations – with a variety of raw resources. We just need to replace the fossil fuel resources with biomass – that’s all.

And there’s more – practically all the technology is over a century old – it just needs refining.

I wonder why the Google boys seem to have been so unaware of this. Maybe they didn’t study the thermodynamics of gas-to-gas reactions at kindergarten, or something.

Thanks to the deliberate misinterpretation of the Google "brothers" article, The Register, James Delingpole’s Breitbart News and Joanne Nova are not exactly helping move the Technological Debate forward, but that’s par for the course. They rubbished climate change science. Now they’ve been shown to be wrong, they’ve moved on, it seems, to rubbishing renewable energy systems. And they’re wrong there, too.

Onwards, my green engineering friends, and upwards.

Categories
Academic Freedom Bait & Switch Behaviour Changeling Big Picture Big Society Burning Money Carbon Taxatious Change Management Climate Change Climate Chaos Climate Damages Conflict of Interest Cool Poverty Corporate Pressure Demoticratica Direction of Travel Divide & Rule Eating & Drinking Economic Implosion Energy Autonomy Energy Change Energy Disenfranchisement Energy Revival Environmental Howzat Evil Opposition Faithful God Feed the World Feel Gooder Financiers of the Apocalypse Food Insecurity Fossilised Fuels Freemarketeering Gamechanger Growth Paradigm Health Impacts Human Nurture Hydrocarbon Hegemony Landslide Libertarian Liberalism Mass Propaganda No Pressure Nudge & Budge Optimistic Generation Paradigm Shapeshifter Petrolheads Policy Warfare Political Nightmare Protest & Survive Realistic Models Regulatory Ultimatum Screaming Panic Social Capital Social Change Social Democracy Solution City The Power of Intention The Science of Communitagion Voluntary Behaviour Change Vote Loser

20 Letters


[ Video : George Marshall of the Climate Outreach Information Network launching his new book "Don’t Even Think About It" on the communication of climate change at the Harvard Book Store, whereto he had to fly, thereby causing significant personal carbon dioxide emissions. This YouTube does not feature Ian Christie, but is not entirely unrelated to his address, which is documented in the text below. ]

Ian Christie of the Sustainable Lifestyles Research Group (SLRG) at the University of Surrey came to speak to the Green Christian Annual Members Meeting today under the heading “Sustainable Living : Why we struggle and how we can change”, and presided over three facilitated workshops on Church, Community and Campaigning. He was introduced as working with the Centre for Environmental Strategy at the University of Surrey, and having helped to pull together “Church and Earth”, the Seven Year Plan for the Church of England, as a response to the Alliance of Religions and Conservation initiative which culminated in the “Many Heavens, One Earth” Windsor Conference in November 2009. Ian Christie has also done project work with the Foundation for Democracy and Sustainable Development and the think tank Theos. He has been environmental advisor to the Bishop of Kingston.

Ian Christie joked that his colleague Tim Jackson, who has written a best-selling book “Prosperity Without Growth”, sometimes feels he is on a permanent global tour, given the huge impact his work has had worldwide. The “paradox” is that his carbon footprint is enormous. Yet clearly there is great benefit from travel to present the messages from Tim’s research. This illustrates the clash of goods and values that is always present in our attempts to reduce our impacts and change lifestyles. Ian said that we shouldn’t beat ourselves up too much about our carbon emissions-filled lifestyles – many of us are doing reasonably well in not very promising circumstances. It’s not surprising that we haven’t made much progress in sustainable living – this is perhaps the biggest challenge humanity has set itself.

Ian said, “Between 5% and 10% of the population (and this figure hasn’t changed over the last several years) are consistently trying to live as sustainably as they can in all areas of their lives. Meanwhile, another small segment – maybe 10% – 15% don’t care at all. The other two-thirds or more, including myself, are in the middle ground. We get confused. We sometimes give up on making particular changes. We might feel that taking the trouble on environmental issues is a bit of an effort – because other signals are not there, because other people are not doing it. Anyone who thinks we can bring about environmental “conversion”, person by person – it’s too difficult.”

He went on to say, “As advocates of change, we don’t tell positive stories very well. We environmentalists have been much better at telling the alarming or apocalyptic event, rather than explaining the diagnosis of unsustainability. There’s a lack of supporting infrastructure for doing the sustainable things in everyday life. People get locked-in to high-carbon behaviours. We might want to do the green, sustainable thing but we can’t. The idea that “joy in less” is possible can seem unbelievable.” He went on to explain that, “consumption can make us feel good. More can be more. I get a thrill going into John Lewis sometimes, all those bright and shiny things. It’s amazing they’re available for sale and that I can afford them. Consumerism can feel like it is bringing real benefits. It can be fun.”

Ian Christie remarked about the RESOLVE research at Surrey on the sense of “threatened identities”, a feeling that can arise when we’re asked to change our lifestyles – an important part of our identity can seem to be at stake. There is a lack of positive incentives and collective success stories. He gave an example – one where people cooking for their families want to recreate the cosy, nourishing food of their childhoods, or feel that they are giving a ‘proper meal’ to their loved ones, and they do that by using meat. These people find it hard to be told that they need to give up eating meat to save the planet. Another example, when people are told to cut down on car driving – there is a feeling of a loss of freedom, an assault on the idea that I can go where I like and do what I want to do. “Climate change is perhaps too big, distant or complicated for us. It is certainly too much for any one person to deal with”.

Ian Christie spoke about the clash of desires and values – and that St Paul got there first (Romans 7:15-17) (and St Augustine, but paraphrased). He joked that he has discovered that many people had a dirty secret, which he calls “Top Gear Syndrome” – “you’d be surprised how many environmentalists like watching Top Gear”. He also mentioned what he termed “Copenhagen Syndrome” – where environmentalists feel that they need to attend every meeting on climate change – and so they fly there. People like to go to exotic places – many Greens included.

Ian Christie emphasised that we can’t get to sustainable living one person at a time. He said that this amounted to a “Collective Action Problem” or (CAP). He showed us an image of what is commonly called a Mexican Stand-Off – where a group of three people have their weapons at each other’s throats and nobody will back down – each of the three major groups in society thinks that the other two should take the lead. So governments think that businesses and citizens should act. And citizens think that government and businesses should act. And businesses think that their consumers and governments should act.

Ian said that there is a clear finding from social research that people feel safety in numbers – we like to feel that we fit in with our peers and neighbours – for example, in some cultures like America, people would rather make everyone feel comfortable than break out of normative behaviour or views. Individual households have a low perception of “agency” – feeling that they can make any significant change – that they don’t have sufficient capacity to act – “no clout”, as one member of the audience commented.

Ian gave some examples of attitudes of people’s attitudes on environmental lifestyles : “I will even though you won’t – even though no one else steps forward”; “I will – but it’s never enough”; “I might if you will” or even, “I know you won’t, so don’t ask me”. He said that Collective Action Problems need to be addressed by all actors needing to be engaged. He said that there would be “no single ‘best buy’ policy” and that action will tend to be in the form of “clumsy solutions”. He said that people need “loud, long and legal” signals from government, consistent messages and incentives for change.

Ian Christie said there is a community level of action possible – “communities of practice”. He recommended that we look up the CLASL research done by Defra/WWF. He mentioned “moments of change” – times of transition in life – and whether these might be appropriate times to offer support for alternative choices. He said that action by individuals cannot be guaranteed by giving messages to people as if they are only consumers, rather than citizens. If we say that something will save people money, they won’t necessarily act in ways that support a shift to sustainable lifestyles. We need to address people’s intrinsic values as well as material self-interest.

Ian talked about some of the results of the research from the DEFRA-funded SLRG project, which is coming to an end. He spoke about the evidence of “Rebound Effects”, where people make savings on their carbon dioxide emissions by energy efficiency gains or other measures, and then spend the saved money in ways that can increase greenhouse gas emissions, like taking holidays by aeroplane – he mentioned the Tesco offer to “turn lights into flights”, where people were being encouraged to buy energy efficient light bulbs in exchange for Air Miles – “it’s going to make things much worse”. He said that research showed that re-spending (reinvestment) is what matters and that we need to go to the source of the emissions, through a carbon tax, for example.

Ian Christie said that it is very limited what we can do as individual households. Lots of policymakers have thought to get through to people at moments of change – although there used to be no evidence. People’s habits and networks can be restructured for example when they move home, have a child or retire – a “habit discontinuity”. Research has now shown that there is a small but significant effect with house-movers – who are much more likely to act on information if they are given well-timed and designed information packages on green living – but only a small minority are truly motivated. He asked “how do we magnify this effect ?” The sheer act of moving house makes people amenable to change. Research has also shown that there might be a willingness amongst new parents – who would express more pro-environmental values as a result of having a new child – but are less capable of acting on these wishes. The reverse was found in those entering retirement – they wanted to live more frugally – but didn’t necessarily express this desire in terms of sustainable living.

Ian said that the “window of opportunity” for introducing lifestyle change might be quite limited, perhaps a few months – and so people would not sustain their new habits without “lifestyle support systems”. People might not want to hear from a green group, but could be open to hearing from a church, or their Health Visitor, or Mumsnet. Maybe even a hairdresser ? One project that he recommended was PECT, the Peterborough Environment City Trust, which is acting as a facilitator for encouraging changes. He said people get demotivated if they feel businesses and governments are not doing the same thing. He mentioned avenues and approaches for increasing the sense of agency : framing environmental issues in : moments of change, local food growing, community energy groups, frugality, health and well-being…

Ian Christie said that Church of England work on “Shrinking the Footprint” was poised to make fresh progress, with leadership from the new lead bishop on the environment, Rt Revd Nicholas Holtam.

Ian Christie suggested that positive activities could inspire : why could a church not turn an emergency feeding centre – a food bank – into a food hub – a place where people could come for tools, seeds and food growing group support ? What about Cathedral Innovation Centres as catalysts for sustainable living schemes ? Why not partner with the National Trust or the National Health Service over environmental issues ? He said the NHS has a Sustainable Development Strategy – “one of the best I’ve seen”. How about calling for a New Green Deal for Communities ? One reason why the Green Deal has been so poorly supported has been it has been promoted to individuals and it’s much harder to get individuals to commit and act on projects.

Ian pointed towards good intervention concepts : “safety in numbers” approaches, moments of change, congregation spaces, trusted peers in the community, consistent messages. He recommended Staying Positive : “look how far we’ve come”; we have two decisive decades ahead; Business As Usual is failing – CEOs are breaking ranks; cities are going green – and the churches are waking up to ecological challenges.

In questions, I asked Ian Christie why he only had three social groups rather than four. I said that I see businesses broken down into two categories – those that produce energy and those that consume energy to provide goods and services. I said there were some excellent sustainable development strategies coming out of the private enterprises consuming energy, such as Marks and Spencer. He said that yes, amongst the fossil energy producing companies, there is a massive challenge in responding to climate change. He pointed to Unilever, who are beginning to see themselves as pioneers in a new model of sustainable business. There is a clear divergence of interest between fossil fuel producers and companies whose core business is being put at risk by climate disruption.

When asked about whether we should try to set the economy on a “war footing” as regards climate change, Ian Christie said “we aren’t in a war like that. We ourselves, with our high-carbon consumption, are ‘the enemy’, if we want to put it like that. We are not in a process where people can be mobilised as in a war.” He said that the churches need to bring climate change into every talk, every sermon “this is how we do Christian witness”.

In discussion after the breakout workshops, Ian Christie said that we need to try to get to local opinion-formers. He said that a critical mass of communication to a Member of Parliament on one subject could be as few as 20 letters. He said that mass letter writing to MPs is one way in which others seeking to influence policy “play the game” in politics, so we must do it too. For example, we could write to our churches, our leaders, our democratic representatives, and demand a New Green Deal for Communities, and in letters to political candidates for the General Election we could say it would be a critical factor in deciding who we vote for. In the General Election in 2015, Ian said that it could be a five-way split, and that the “green issue” could be decisive, and so we should say that our vote will go to the greenest of candidates.

Ian said we should try to audit our church expertise, and that we should aim for our churches to give one clear overall narrative – not an “environmental narrative”, but one that urges us to be truly Christian. He said that it was important that church leaders talk the talk as well as walk the talk – making it normal to talk about these things – not keeping them partitioned. The weekly sermon or talk in church must tell this story. He said that people disagree for really good reasons, but that the issue was one of trying to create a setting in which disagreement can get somewhere. He mentioned the work of George Marshall and the Climate Outreach Information Network as being relevant to building narratives that work on climate change out of a silence or absence of dialogue.

Categories
Academic Freedom Alchemical Arctic Amplification Assets not Liabilities Big Number Biofools Carbon Capture Carbon Commodities Carbon Pricing Carbon Rationing Carbon Taxatious Change Management China Syndrome Climate Change Climate Damages Coal Hell Conflict of Interest Corporate Pressure Cost Effective Dead End Deal Breakers Delay and Deny Demoticratica Direction of Travel Dreamworld Economics Economic Implosion Efficiency is King Emissions Impossible Energy Change Energy Denial Energy Insecurity Extreme Energy Financiers of the Apocalypse Foreign Investment Fossilised Fuels Freemarketeering Green Investment Growth Paradigm Hydrocarbon Hegemony Insulation Marine Gas Mass Propaganda Modern Myths Money Sings Natural Gas Nuclear Nuisance Nuclear Shambles Oil Change Optimistic Generation Orwells Peak Emissions Peak Natural Gas Peak Oil Petrolheads Policy Warfare Political Nightmare Price Control Public Relations Realistic Models Regulatory Ultimatum Shale Game Social Change Solar Sunrise Solution City Stirring Stuff Tarred Sands The Price of Oil The Right Chemistry Unnatural Gas Wind of Fortune

Shell Shirks Carbon Responsibility

I was in a meeting today held at the Centre for European Reform in which Shell’s Chief Financial Officer, Simon Henry, made two arguments to absolve the oil and gas industry of responsibility for climate change. He painted coal as the real enemy, and reiterated the longest hand-washing argument in politics – that Shell believes that a Cap and Trade system is the best way to suppress carbon dioxide emissions. In other words, it’s not up to Shell to do anything about carbon. He argued that for transportation and trade the world is going to continue to need highly energy-dense liquid fuels for some time, essentially arguing for the continuation of his company’s current product slate. He did mention proudly in comments after the meeting that Shell are the world’s largest bioethanol producers, in Brazil, but didn’t open up the book on the transition of his whole company to providing the world with low carbon fuels. He said that Shell wants to be a part of the global climate change treaty process, but he gave no indication of what Shell could bring to the table to the negotiations, apart from pushing for carbon trading. Mark Campanale of the Carbon Tracker Initiative was sufficiently convinced by the “we’re not coal” argument to attempt to seek common cause with Simon Henry after the main meeting. It would be useful to have allies in the oil and gas companies on climate change, but it always seems to be that the rest of the world has to adopt Shell’s and BP’s view on everything from policy to energy resources before they’ll play ball.

During the meeting, Mark Campanale pointed out in questions that Deutsche Bank and Goldman Sachs are going to bring Indian coal to trade on the London Stock Exchange and that billions of dollars of coal stocks are to be traded in London, and that this undermines all climate change action. He said he wanted to understand Shell’s position, as the same shareholders that hold coal (shares), hold Shell. I think he was trying to get Simon Henry to call for a separation in investment focus – to show that investment in oil and gas is not the same as investing in Big Bad Coal. But Simon Henry did not bite. According to the Carbon Tracker Initiative’s report of 2013, Unburnable Carbon, coal listed on the London Stock Exchange is equivalent to 49 gigatonnes of Carbon Dioxide (gtCO2), but oil and gas combined trade shares for stocks equivalent to 64 gtCO2, so there’s currently more emissions represented by oil and gas on the LSX than there is for coal. In the future, the emissions held in the coal traded in London have the potential to amount to 165 gtCO2, and oil and gas combined at 125 gtCO2. Despite the fact that the United Kingdom is only responsible for about 1.6% of direct country carbon dioxide emissions (excluding emissions embedded in traded goods and services), the London Stock Exchange is set to be perhaps the world’s third largest exchange for emissions-causing fuels.

Here’s a rough transcript of what Simon Henry said. There are no guarantees that this is verbatim, as my handwriting is worse than a GP’s.

[Simon Henry] I’m going to break the habit of a lifetime and use notes. Building a long-term sustainable energy system – certain forces shaping that. 7 billion people will become 9 billion people – [many] moving from off-grid to on-grid. That will be driven by economic growth. Urbanisation [could offer the possibility of] reducing demand for energy. Most economic growth will be in developing economies. New ways fo consuming energy. Our scenarios – in none do we see energy not growing materially – even with efficiencies. The current ~200 billion barrels of oil equivalent per day today of energy demand will rise to ~400 boe/d by 2050 – 50% higher than today. This will be demand-driven – nothing to do with supply…

[At least one positive-sounding grunt from the meeting – so there are some Peak Oil deniers in the room, then.]

[Simon Henry] …What is paramount for governments – if a threat, then it gets to the top of the agenda. I don’t think anybody seriously disputes climate change…

[A few raised eyebrows and quizzical looks around the table, including mine]

[Simon Henry] …in the absence of ways we change the use of energy […] Any approach to climate change has got to embrace science, policy and technology. All three levers must be pulled. Need a long-term stable policy that enables technology development. We think this is best in a market mechanism. […] Energy must be affordable at the point of use. What we call Triple A – available, acceptable and affordable. No silver bullet. Develop in a responsible way. Too much of it is soundbite – that simplifies what’s not a simple problem. It’s not gas versus coal. [Although, that appeared to be one of his chief arguments – that it is gas versus coal – and this is why we should play nice with Shell.]

1. Economy : About $1.5 to $2 trillion of new money must be invested in the energy industry each year, and this must be sustained until 2035 and beyond. A [few percent] of the world economy. It’s going to take time to make [massive changes]. […] “Better Growth : Better Climate” a report on “The New Climate Economy” by the Global Commission on the Economy and Climate, the Calderon Report. [The world invested] $700 billion last year on oil and gas [or rather, $1 trillion] and $220 – $230 billion on wind power and solar power. The Calderon Report showed that 70% of energy is urban. $6 trillion is being spent on urban infrastructure [each year]. $90 trillion is available. [Urban settings are] more compact, more connected, there’s public transport, [can build in efficiencies] as well as reducing final energy need. Land Use is the other important area – huge impact on carbon emissions. Urbanisation enables efficiency in distributed generation [Combined Heat and Power (CHP)], [local grids]. Eye-popping costs, but the money will be spent anyway. If it’s done right it will [significantly] reduce [carbon emissions and energy demand]…

2. Technology Development : Governments are very bad at picking winners. Better to get the right incentives in and let the market players decide [optimisation]. They can intervene, for example by [supporting] Research and Development. But don’t specify the means to an end…The best solution is a strong predictable carbon price, at $40 a tonne or more or it won’t make any difference. We prefer Cap and Trade. Taxes don’t actually decrease carbon [emissions] but fundamentally add cost to the consumer. As oil prices rose [in 2008 – 2009] North Americans went to smaller cars…Drivers [set] their behaviour from [fuel] prices…

[An important point to note here : one of the reasons why Americans used less motor oil during the “Derivatives Bubble” recession between 2006 and 2010 was because the economy was shot, so people lost their employment, and/or their homes and there was mass migration, so of course there was less commuter driving, less salesman driving, less business driving. This wasn’t just a response to higher oil prices, because the peak in driving miles happened before the main spike in oil prices. In addition, not much of the American fleet of cars overturned in this period, so Americans didn’t go to smaller cars as an adaptation response to high oil prices. They probably turned to smaller cars when buying new cars because they were cheaper. I think Simon Henry is rather mistaken on this. ]

[Simon Henry] …As regards the Carbon Bubble : 65% of the Unburnable fossil fuels to meet the 2 degrees [Celsius] target is coal. People would stuggle to name the top five coal companies [although they find it easy to name the top five oil and gas companies]. Bearing in mind that you have to [continue to] transport stuff [you are going to need oil for some time to come.] Dealing with coal is the best way of moving forward. Coal is used for electricity – but there are better ways to make electricity – petcoke [petroleum coke – a residue from processing heavy and unconventional crude oil] for example…

[The climate change impact of burning (or gasifying) petroleum coke for power generation is possibly worse than burning (or gasifying) hard coal (anthracite), especially if the pet coke is sourced from tar sands, as emissions are made in the production of the pet coke before it even gets combusted.]

[Simon Henry] …It will take us 30 years to get away entirely from coal. Even if we used all the oil and gas, the 2 degrees [Celsius] target is still possible…

3. Policy : We tested this with the Dutch Government recently – need to create an honest dialogue for a long-term perspective. Demand for energy needs to change. It’s not about supply…

[Again, some “hear hears” from the room from the Peak Oil and Peak Natural Gas deniers]

[Simon Henry] …it’s about demand. Our personal wish for [private] transport. [Not good to be] pushing the cost onto the big bad energy companies and their shareholders. It’s taxes or prices. [Politicians] must start to think of their children and not the next election…

…On targets and subsidies : India, Indonesia, Brazil […] to move on fossil fuel subsidies – can’t break the Laws of Economics forever. If our American friends drove the same cars we do, they’d reduce their oil consumption equivalent to all of the shale [Shale Gas ? Or Shale Oil ?]… Targets are an emotive issue when trying to get agreement from 190 countries. Only a few players that really matter : USA, China, EU, India – close to 70% of current emissions and maybe more in future. The EPA [Environmental Protection Agency in the United States of America] [announcement] on power emissions. China responded in 24 hours. The EU target on 27% renewables is not [country-specific, uniform across-the-board]. Last week APEC US deal with China on emissions. They switched everything off [and banned traffic] and people saw blue sky. Coal with CCS [Carbon Capture and Storage] we see as a good idea. We would hope for a multi-party commitment [from the United Nations climate talks], but [shows doubt]… To close : a couple of words on Shell – have to do that. We have only 2% [of the energy market], but we [hope we] can punch above our weight [in policy discussions]. We’re now beginning to establish gas as a transport fuel. Brazil – low carbon [bio]fuels. Three large CCS projects in Canada, EU… We need to look at our own energy use – pretty trivial, but [also] look at helping our customers look at theirs. Working with the DRC [China]. Only by including companies such as ourselves in [climate and energy policy] debate can we get the [global deal] we aspire to…

[…]

[Question from the table, Ed Wells (?), HSBC] : Green Bonds : how can they provide some of the finance [for climate change mitigation and adaptation] ? The first Renminbi denominated Green Bond from [?]. China has committed to non-fossil fuels. The G20 has just agreed the structure on infrastructure – important – not just for jobs and growth – parallel needs on climate change. [Us at HSBC…] Are people as excited about Green Bonds as we are ?

[Stephen Tindale] Yes.

[Question from the table, Anthony Cary, Commonwealth Scholarship Commission] …The key seems to be pricing carbon into the economy. You said you preferred Cap and Trade. I used to but despite reform the EU Emissions Trading Scheme (EU ETS) – [failures and] gaming the system. Tax seems to be a much more solid basis.

[Simon Henry] [The problem with the ETS] too many credits and too many exemptions. Get rid of the exemptions. Bank reserve of credits to push the price up. Degress the number of credits [traded]. Tax : if people can afford it, they pay the tax, doesn’t stop emissions. In the US, no consumption tax, they are very sensitive to the oil price going up and down – 2 to 3 million barrels a day [swing] on 16 million barrels a day. All the political impact on the US from shale could be done in the same way on efficiency [fuel standards and smaller cars]. Green Bonds are not something on top of – investment should be financed by Green Bonds, but investment is already being done today – better to get policy right and then all investment directed.

[…]

[Question from the table, Kirsten Gogan, Energy for Humanity] The role of nuclear power. By 2050, China will have 500 gigawatts (GW) of nuclear power. Electricity is key. Particularly coal. Germany is building new coal as removing nuclear…

[My internal response] It’s at this point that my ability to swallow myths was lost. I felt like shouting, politely, across the table : ACTUALLY KIRSTEN, YOU, AND A LOT OF OTHER PEOPLE IN THE ROOM ARE JUST PLAIN WRONG ON GERMANY AND COAL.

“Germany coal power generation at 10-year low in August”, 9th September 2014

And the only new coal-fired plants being built are those that were planned up to five years ago. No new coal-fired capacity is now being agreed.

[Kirsten Gogan]…German minister saying in public that you can’t phase out nuclear and coal at the same time. Nuclear is not included in that conversation. Need to work on policy to scale up nuclear to replace coal. Would it be useful to have a clear sectoral target on decarbonising – 100% on electricity ?

[Stephen Tindale] Electricity is the least difficult of the energy sectors to decarbonise. Therefore the focus should be on electricity. If a target would help (I’m not a fan) nuclear certainly needs to be a part of the discussions. Angela Merkel post-Fukushima has been crazy, in my opinion. If want to boost renewable energy, nuclear power will take subsidies away from that. But targets for renewable energy is the wrong objective.. If the target is keeping the climate stable then it’s worth subsidising nuclear. Subsidising is the wrong word – “risk reduction”.

[Simon Henry] If carbon was properly priced, nuclear would become economic by definition…

[My internal response] NO IT WOULDN’T. A LOT OF NUCLEAR CONSTRUCTION AND DECOMMISSIONING AND SPENT FUEL PROCESSING REQUIRES CARBON-BASED ENERGY.

[Simon Henry] …Basically, all German coal is exempted (from the EU ETS). If you have a proper market-based system then the right things will happen. The EU – hypocrisy at country level. Only [a couple of percent] of global emissions. The EU would matter if it was less hypocritical. China are more rational – long-term thinking. We worked with the DRC. Six differing carbon Cap and Trade schemes in operation to find the one that works best. They are effectively supporting renewable energy – add 15 GW each of wind and solar last year. They don’t listen to NIMBYs [they also build in the desert]. NIMBYism [reserved for] coal – because coal was built close to cities. [Relationship to Russia] – gas replacing coal. Not an accident. Five year plan. They believe in all solutions. Preferably Made in China so we can export to the rest of the world. [Their plans are for a range of aims] not just climate.

[…]
[…]

[Simon Henry] [in answer to a question about the City of London] We don’t rely on them to support our activities [my job security depends on a good relationship with them]]. We have to be successful first and develop [technological opportunities] [versus being weakened by taxes]. They can support change in technology. Financing coal may well be new money. Why should the City fund new coal investments ?

[Question from the table, asking about the “coal is 70% of the problem” message from Simon Henry] When you talk to the City investors, do you take the same message to the City ?

[Simon Henry] How much of 2.7 trillion tonnes of “Unburnable Carbon” is coal, oil and gas ? Two thirds of carbon reserves is coal. [For economic growth and] transport you need high density liquid fuels. Could make from coal [but the emissions impact would be high]. We need civil society to have a more serious [understanding] of the challenges.

After the discussion, I asked Simon Henry to clarify his words about the City of London.

[Simon Henry] We don’t use the City as a source of capital. 90% is equity finance. We don’t go to the market to raise equity. For every dollar of profit, we invest 75 cents, and pay out 25 cents as dividend to our shareholders. Reduces [problems] if we can show we can reinvest. [ $12 billion a year is dividend. ]

I asked if E&P [Exploration and Production] is working – if there are good returns on investment securing new reserves of fossil fuels – I know that the company aims for a 10 or 11 year Reserves to Production ratio (R/P) to ensure shareholder confidence.

Simon Henry mentioned the price of oil. I asked if the oil price was the only determinant on the return on investment in new E&P ?

[Simon Henry] If the oil price is $90 a barrel, that’s good. At $100 a barrel or $120 a barrel [there’s a much larger profit]. Our aim is to ensure we can survive at $70 a barrel. [On exploration] we still have a lot of things in play – not known if they are working yet… Going into the Arctic [At which point I said I hope we are not going into the Arctic]… [We are getting returns] Upstream is fine [supply of gas and oil]. Deepwater is fine. Big LNG [Liquefied Natural Gas] is fine. Shale is a challenge. Heavy Oil returns could be better – profitable, but… [On new E&P] Iraq, X-stan, [work in progress]. Downstream [refinery] has challenges on return. Future focus – gas and deepwater. [On profitability of investment – ] “Gas is fine. Deepwater is fine.”

[My summary] So, in summary, I think all of this means that Shell believes that Cap and Trade is the way to control carbon, and that the Cap and Trade cost would be borne by their customers (in the form of higher bills for energy because of the costs of buying carbon credits), so their business will not be affected. Although a Cap and Trade market could possibly cap their own market and growth as the sales envelope for carbon would be fixed, since Shell are moving into lower carbon fuels – principally Natural Gas, their own business still has room for growth. They therefore support Cap and Trade because they believe it will not affect them. WHAT THEY DON’T APPEAR TO WANT PEOPLE TO ASK IS IF A CAP AND TRADE SYSTEM WILL ACTUALLY BE EFFECTIVE IN CURBING CARBON DIOXIDE EMISSIONS. They want to be at the negotiating table. They believe that they’re not the problem – coal is. They believe that the world will continue to need high energy-dense oil for transport for some time to come. It doesn’t matter if the oil market gets constrained by natural limits to expansion because they have gas to expand with. They don’t see a problem with E&P so they believe they can keep up their R/P and stay profitable and share prices can continue to rise. As long as the oil price stays above $70 a barrel, they’re OK.

However, there was a hint in what Simon Henry talked about that all is not completely well in Petro-land.

a. Downstream profit warning

Almost in passing, Simon Henry admitted that downstream is potentially a challenge for maintaining returns on investment and profits. Downstream is petrorefinery and sales of the products. He didn’t say which end of the downstream was the issue, but oil consumption has recovered from the recent Big Dip recession, so that can’t be his problem – it must be in petrorefinery. There are a number of new regulations about fuel standards that are going to be more expensive to meet in terms of petroleum refinery – and the chemistry profiles of crude oils are changing over time – so that could also impact refinery costs.

b. Carbon disposal problem

The changing profile of crude oils being used for petrorefinery is bound to cause an excess of carbon to appear in material flows – and Simon Henry’s brief mention of petcoke is more significant than it may first appear. In future there may be way too much carbon to dispose of (petcoke is mostly carbon rejected by thermal processes to make fuels), and if Shell’s plan is to burn petcoke to make power as a solution to dispose of this carbon, then the carbon dioxide emissions profile of refineries is going to rise significantly… where’s the carbon responsiblity in that ?

Categories
Academic Freedom Big Picture Big Society Carbon Capture Carbon Pricing Climate Change Coal Hell Emissions Impossible Freemarketeering Gamechanger Global Warming Green Gas Hydrocarbon Hegemony Natural Gas Oil Change Paradigm Shapeshifter Peak Coal Peak Emissions Peak Energy Peak Natural Gas Peak Oil Price Control Realistic Models Regulatory Ultimatum Renewable Gas Renewable Resource Resource Wards Shale Game The Price of Gas The Price of Oil Unnatural Gas Western Hedge Wind of Fortune

UKERC : Gas by Design (2)

This week, I had the opportunity to join the launch of the UKERC’s latest research into the future of gas. The esteemed delegates included members of a Russian Trade Delegation and several people from the US Embassy. Clearly, the future of gas is an international thing.


[continued from Gas by Design ]

Mike Bradshaw, Warwick Business School = [MB]

[MB] I’m somewhat daunted by this audience – the report is aimed perhaps for informed public audience. The media [ambushed us on the question of shale gas, shale gas attracted more attention] but things we didn’t cover much about there we can cover here. It’s been a real rollercoaster ride in the gas industry. Any flights of fancy (in the report) are our faults and not theirs [reference to work of colleagues, such as Jonathan Stern at Oxford Institute for Energy Studies]. A set of shortcomings dealing with the issue of Energy Security. There is a tendency to think that oil and gas are the same. They’re not. The framework, the actors and the networks, trade statistics, policies [much different for gas than for oil]. [In the UK for example we are seeing] a rapid increase in import dependence [and in other countries]. Need to [pay] particular understanding on what will happen in far-flung places. Today, the US-China agreement could influence gas demand. [In the literature on gas, some anomalies, perhaps]. Academics may not understand markets. [What we are seeing here is] the globalisation of UK gas security – primarily Europeanisation. There is growing uncertainty [about] the material flow of gas. [Threshold] balance in three sectors – strong seasonality, impact of climate and temperature [on gas demand]. The Russian agreement with Ukraine [and Europe] – the one thing everybody was hoping for was a warm winter. While the gas market is important [industrial use and energy use], domestic/residential demand is still very significant [proportion of total demand], so we need to look at energy efficiency [building insulation rates] and ask will people rip out their gas boilers ? For the UK, we are some way across the gas bridge – gas has enabled us to meet [most of] our Kyoto Protocol commitments. Not long until we’ve crossed it. Our coal – gone. With coal gone, what fills the gaps ? Renewable electricity – but there is much intermittency already. We’re not saying that import dependency is necessarily a problem. Physical security is not really the problem – but the [dependence on] the interconnectors, the LNG (Liquefied Natural Gas) imports – these create uncertainties. The UK also plays a role as a gas exporter – and in landing Norwegian gas [bringing it into the European market]. I’m a geographer – have to have at least one map – of gas flows [in and out of the country]. The NTS (National Transmission System – the high pressure Natural Gas-carrying pipeline network – the “backbone” of the gas transmission and distribution system of National Grid] has responded to change – for example in the increasing sources of LNG [and “backflow” and “crossflow” requirements]. There are 9 points of entry for gas into the UK at the moment. If the Bowland Shale is exploited, there could be 100s of new points of entry [the injection of biogas as biomethane into the gas grid would also create new entry points]. A new challenge to the system. [The gas network has had some time to react in the past, for example] LNG imports – the decision to ramp up the capacity was taken a long time ago. [Evolution of] prices in Asia have tracked the gas away [from the European markets] after the Fukushima Dai-ichi disaster. And recently, we have decided to “fill up the tanks” again [LNG imports have risen in the last 24 or so months]. Very little LNG is “firm” – it needs to follow the market. It’s not good to simply say that “the LNG will come” [without modelling this market]. The literature over-emphasises the physical security of the upstream supplies of gas. [The projections have] unconventional gas growing [and growing amounts of biogas]. But it’s far too early to know about shale gas – far too early to make promises about money when we don’t even have a market [yet]. Policy cannot influence the upstream especially in a privatised market. The interconnectors into the European Union means we have to pay much more attention to the Third EU Energy Package. Colleagues in Oxford are tracking that. The thorny question of storage. We have less than 5 bcm (billion cubic metres). We’d like 10% perhaps [of the winter period demand ?] Who should pay for it ? [A very large proportion of our storage is in one place] the Rough. We know what happens – we had a fire at the Rough in 2006… Everyone worries about geopolitics, but there are other potential sources of problems – our ageing infrastructure […] if there is a technical problem and high demand [at the same time]. Resilience [of our gas system is demonstrated by the fact that we have] gas-on-gas competition [in the markets] – “liquid” gas hub trading – setting the NBP (National Balancing Point). [There are actually 3 kinds of gas security to consider] (a) Security of Supply – not really a problem; (b) Security of Transport (Transit) – this depends on markets and (c) Security of Demand – [which strongly depends on whether there is a] different role for gas in the future. But we need to design enough capacity even though we may not use all of it [or not all of the time]. We have mothballed gas-fired power plants already, for reasons you all know about. We already see the failure of the ETS (European Union Emissions Trading Scheme) [but if this can be reformed, as as the Industrial Emissions Directive bites] there will be a return to gas as coal closes. The role of Carbon Capture and Storage (CCS) becomes critical in retaining gas. CCS however doesn’t answer issues of [physical energy security, since CCS requires higher levels of fuel use].

[Question from the floor] Gas has a role to play in transition. But how do we need to manage that role ? Too much focus on building Renewable Energy system. What is the impact on the current infrastructure ? For managing that decline in the incumbent system – gas is there to help – gas by design rather than gas by default.

[Question from the floor, Jonathan Stern] [In your graphs/diagrams] the Middle East is a major contributor to gas trade. We see it differently. The Qataris [could/may/will] hold back [with expanding production] until 2030. Iran – our study [sees it as] a substitute contributor. Oil-indexed gas under threat and under challenge. If you could focus more on the global gas price… [New resources of gas could be very dispersed.]Very difficult to get UK people to understand [these] impacts on the gas prices [will] come from different places than they can think of.

[Question from the floor] Availability of CCS capacity ? When ? How much ? Assumptions of cost ?

[Question from the floor : Tony Bosworth, Friends of the Earth] Gas as a bridge – how much gas do we need for [this process] ? What about unburnable carbon ? Do we need more gas to meet demands ?

[Answer – to Jonathan Stern – from Christophe McGlade ?] The model doesn’t represent particularly well political probabilities. Iran has a lot of gas – some can come online. It will bring it online if it wants to export it. Some simplifications… might be over optimistic. Your work is helpful to clarify.

On gas prices – indexation versus global gas price – all the later scenarios assumed a globalised gas price. More reasonable assumptions.

On CCS : first [coming onstream] 2025 – initially quite a low level, then increasing by 10% a year. The capital costs are approximately 60% greater than other options and causes a drop in around 10% on efficiency [because making CCS work costs you in extra fuel consumed]. If the prices of energy [including gas] increase, then CCS will have a lesser relative value [?].

On availability of gas : under the 2 degrees Celsius scenario, we could consume 5 tcm (trillion cubic metres) of gas – and this can come from reserves and resources. There are a lot of resources of Natural Gas, but some of it will be at a higher price. In the model we assume development of some new resources, with a growth in shale gas, and other unconventional gas. Because of the climate deal, we need to leave some gas underground.

[Answer from the panel] Indexation of gas prices to oil… Further gas demand is in Asia – it’s a question of whose gas gets burnt. [Something like] 70% of all Natural Gas gets burned indigenously [within the country in which it is produced]. When we talk about “unburnable gas”, we get the response “you’re dreaming” from some oil companies, “it won’t be our fossil fuels that get stranded”. LNG models envisage a different demand profile [in the future, compared to now]. When China [really gets] concerned about air quality [for example]. Different implications.

[Question from the floor, from Centrica ?] What’s in the model for the globalised gas price – Henry Hub plus a bit ? There is not a standard one price.

[Question from the floor] On the question of bridging – the long-term bridge. What issues do you see when you get to 2030 for investment ? [We can see] only for the next few years. What will investors think about that ?

[Question from the floor] [With reference to the Sankey diagram of gas use in the UK] How would that change in a scenario of [electrification – heat and transport being converted to run on electrical power] ?

[Question from the floor] Stranded assets. How the markets might react ? Can you put any numbers on it – especially in the non-CCS scenario ? When do we need to decide [major strategy] for example, [whether we could or should be] shutting off the gas grid ? How would we fund that ? Where are the pinch points ?

[Answer from the panel] On the global gas price – the model does not assume a single price – [it will differ over each] region. [The price is allowed to change regionally [but is assumed to arise from global gas trading without reference to oil prices.] Asian basin will always be more expensive. There will be a temperature differential between different hubs [since consumption is strongly correlated with seasonal change]. On stranded assets – I think you mean gas power plants ? The model is socially-optimal – all regions working towards the 2 degrees Celsius global warming target. The model doesn’t limit stranded assets – and do get in the non-CCS scenario. Build gas plants to 2025 – then used at very low load factors. Coal plants need to reduce [to zero] given that the 2 degrees Celsius targets are demanding. Will need gas for grid balancing – [new gas-fired power generation assets will be] built and not used at high load factors.

[Answer from the panel] Our report – we have assume a whole system question for transition. How successful will the Capacity Mechanism be ? UKERC looking at electrification of heating – but they have not considered the impact on gas (gas-to-power). Will the incentives in place be effective ? The Carbon Budget – what are the implications ? Need to use whole system analysis to understand the impact on gas. Issue of stranded assets : increasingly important now [not at some point in the future]. On pinch point : do we need to wait another three years [for more research] ? Researchers have looked more at what to spend – what to build – and less on how to manage the transition. UKERC have started to explore heat options. It’s a live issue. Referenced in the report.

[Question from the floor, from Richard Sverrisson, News Editor of Montel] Will reform to the EU ETS – the Market Stability Reserve (MSR) – will that be enough to bring gas plant into service ?

[Question from the floor] On oil indexation and the recent crash in the crude price – what if it keeps continuing [downwards] ? It takes gas prices down to be competitive with hub prices. [What about the impact on the economic profitability of] shale oil – where gas driving related prices ? Are there some pricing [functions/variables] in the modelling – or is it merely a physical construct ?

[Question from the floor, from Rob Gross of UCL] On intermittency and the flexibility of low carbon capacity. The geographical units in the modelling are large – the role of gas depends on how the model is constrained vis-a-vis intermittency.

[Answer from the panel, from Christophe McGlade] On carbon dioxide pricing : in the 2 degrees Celsius scenario, the price is assumed to be $200 per tonne. In the non-CCS scenario, the price is in the region of $400 – $500 per tonne [?] From 2020 : carbon price rises steeply – higher than the Carbon Floor Price. How is the the 2 degrees Celsius target introduced ? If you place a temperature constraint on the energy system, the model converts that into carbon emissions. The latest IPCC report shows that there remains an almost linear trend between carbon budget and temperature rise – or should I say a greenhouse gas budget instead : carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The emissions pledges of the [European Union ?] have been adopted by this model – also the development of renewable energy and fuel standards. No exogenous assumptions on carbon pricing. On intermittency – the seasonality is represented by summer, winter and intermediate; and time day generalised as morning, night, evening and peak (morning peak). [Tighter modelling would provide more] certainty which would remove ~40% of effective demand [?] Each technology has a contribution to make to peak load. Although, we assume nothing from wind power – cannot capture hour to hour market. The model does build capacity that then it doesn’t use.

[Answer from the panel] On carbon pricing and the EU ETS reform : I wouldn’t hold my breath [that this will happen, or that it will have a major impact]. We have a new commission and their priority is Poland – nothing serious will happen on carbon pricing until 2020. Their emphasis is much more on Central European issues. I don’t expect [us] to have a strong carbon price since policy [will probably be] more focussed on social democracy issues. Moving to a relatively lower price on oil : Asia will hedge. Other explorters currently sticking to indexation with oil. The low price of wet gas (condensate) in the USA is a result of the over-supply, which followed an over-supply in NGLs (Natural Gas Liquids) – a bumpy road. Implications from USA experience ? Again, comes back to watching what is happening in Asia.

[to be continued…]

Categories
Academic Freedom Advancing Africa Assets not Liabilities Big Picture Change Management China Syndrome Climate Change Coal Hell Deal Breakers Design Matters Direction of Travel Emissions Impossible Energy Change Energy Revival Fossilised Fuels Green Gas Hydrocarbon Hegemony Marvellous Wonderful Methane Management Natural Gas Nudge & Budge Optimistic Generation Paradigm Shapeshifter Peak Coal Peak Emissions Peak Energy Peak Natural Gas Price Control Realistic Models Regulatory Ultimatum Renewable Gas Science Rules Shale Game Solution City The Data The Power of Intention The Price of Gas The Price of Oil The Right Chemistry The War on Error Unconventional Foul Unnatural Gas

UKERC : Gas by Design

Today I attended a meeting of minds.

It’s clear to me that the near-term and mid-term future for energy in the United Kingdom and the European Union will best be centred on Natural Gas and Renewable Electricity, and now the UK Energy Research Centre has modelled essentially the same scenario. This can become a common narrative amongst all parties – the policy people, the economists, the technologists, the non-governmental groups, as long as some key long-term de-carbonisation and energy security objectives are built into the plan.

The researchers wanted to emphasise from their report that the use of Natural Gas should not be a default option in the case that other strategies fail – they want to see a planned transition to a de-carbonised energy system using Natural Gas by design, as a bridge in that transition. Most of the people in the room found they could largely agree with this. Me, too. My only caveat was that when the researchers spoke about Gas-CCS – Natural Gas-fired power generation with Carbon Capture and Storage attached, my choice would be Gas-CCU – Natural Gas-fired power generation with Carbon Capture and Re-utilisation – carbon recycling – which will eventually lead to much lower emissions gas supply at source.

What follows is a transcription of my poorly-written notes at the meeting, so you cannot accept them as verbatim.

Jim Watson, UKERC = [JW]
Christophe McGlade, University College London (UCL) = [CM]
Mike Bradshaw, Warwick Business School = [MB]

[JW] Thanks to Matt Aylott. Live Tweeting #FutureOfGas. Clearly gas is very very important. It’s never out of the news. The media all want to talk about fracking… If we want to meet the 2 degrees Celsius target of the United Nations Framework Convention on Climate Change, how much can gas be a part of this ? Is Natural Gas a bridge – how long a ride will that gas bridge be ?

[CM] Gas as a bridge ? There is healthy debate about the Natural Gas contribution to climate change [via the carbon dioxide emissions from burning Natural Gas, and also about how much less in emissions there is from burning Natural Gas compared to burning coal]. The IPCC said that “fuel switching” from coal to gas would offer emissions benefits, but some research, notably McJeon et al. (2014) made statements that switching to Natural Gas cannot confer emissions benefits. Until recently, there have not been many disaggregated assessments on gas as a bridge. We have used TIAM-UCL. The world is divided into 16 regions. The “climate module” seeks to constrain the global temperature rise to 2 degrees Celsius. One of the outcomes from our model was that export volumes [from all countries] would be severaly impacted by maintaining the price indexation between oil and gas. [Reading from chart on the screen : exports would peak in 2040s]. Another outcome was that gas consumption is not radically affected by different gas market structures. However, the over indexation to the oil price may destroy gas export markets. Total exports of natural gas are higher under the 2 degrees Celsius scenario compared to the 4 degrees Celsius scenario – particularly LNG [Liquefied Natural Gas]. A global climate deal will support gas exports. There will be a higher gas consumption under a 2 degrees Celsius deal compared to unconstrained scenario [leading to a 4 degrees Celsius global temperature rise]. The results of our modelling indicate that gas acts as a bridge fuel out to 2035 [?] in both absolute and relative terms. There is 15% greater gas consumption in the 2 degrees Celsius global warming scenario than in the 4 degrees Celsius global warming scenario. Part of the reason is that under the 4 degrees Celsius scenario, Compressed Natural Gas vehicles are popular, but a lot less useful under the 2 degrees Celsius scenario [where hydrogen and other fuels are brought into play].

There are multiple caveats on these outcomes. The bridging period is strictly time-limited. Some sectors need to sharply reduce consumption [such as building heating by Natural Gas boilers, which can be achieved by mass insulation projects]. Coal must be curtailed, but coal-for-gas substitution alone is not sufficient. Need a convincing narrative about how coal can be curtailed. In an absence of a global binding climate deal we will get consumption increases in both coal and gas. In the model, gas is offsetting 15% of coal by 2020, and 85% by 2030. With Carbon Capture and Storage (CCS), gas’s role is drastically reduced – after 2025 dropping by 2% a year [of permitted gas use]. Not all regions of the world can use gas as a bridge. [Reading from the chart : with CCS, gas is a strong bridging fuel in the China, EU, India, Japan and South Korea regions, but without CCS, gas is only strong in China. With CCS, gas’s bridging role is good in Australasia, ODA presumably “Offical Development Assistance” countries and USA. Without CCS, gas is good for Africa, Australasia, EU, India, Japan, South Korea, ODA and USA.]

In the UK, despite the current reliance on coal, there is little scope to use it as a transition fuel. Gas is unlikely to be removed from UK energy system by 2050.

[Question from the floor] The logic of gas price indexation with the oil price ?

[CM] If maintain oil indexation, exports will reduce as countries turn more towards indigenous at-home production of gas for their domestic demand. This would not be completely counter-balanced by higher oil and therefore gas prices, which should stimulate more exports.

[Point from the floor] This assumes logical behaviour…

[Question from the floor] [Question about Carbon Capture and Storage (CCS)]

[CM] The model does anticipate more CCS – which permits some extra coal consumption [at the end of the modelling period]. Gas-CCS [gas-fired power generation with CCS attached] is always going to generate less emissions than coal-CCS [coal-fired power generation with CCS attached] – so the model prefers gas-CCS.

[to be continued…]

Categories
Academic Freedom Advertise Freely Bait & Switch Be Prepared Big Picture Big Society Burning Money Carbon Army Carbon Capture Carbon Commodities Carbon Pricing Carbon Taxatious Change Management Climate Change Coal Hell Conflict of Interest Cost Effective Deal Breakers Demoticratica Divide & Rule Emissions Impossible Energy Autonomy Energy Change Energy Denial Energy Insecurity Energy Revival Engineering Marvel Fossilised Fuels Freemarketeering Gamechanger Global Warming Green Investment Green Power Hydrocarbon Hegemony Landslide Libertarian Liberalism Low Carbon Life Major Shift Mass Propaganda Media Money Sings National Energy National Power Nuclear Nuisance Oil Change Optimistic Generation Orwells Paradigm Shapeshifter Peak Coal Peak Emissions Peak Natural Gas Peak Oil Policy Warfare Political Nightmare Protest & Survive Public Relations Realistic Models Regulatory Ultimatum Renewable Gas Resource Wards Social Capital Social Change Social Chaos Social Democracy Solar Sunrise Solution City Stirring Stuff Sustainable Deferment The Science of Communitagion The War on Error Unsolicited Advice & Guidance Vote Loser Western Hedge Wind of Fortune

European Referendum : Corpse Factory

So I was in a meeting on a dateless date, at an organisation with a nameless name, with some other unidentifiable people in the room with me. For some reason I had been invited, I cannot think why. Ah, yes, I can. I was invited to attend because, apparently, I am a “campaigner”. I am, allegedly, somebody who buys into the notion that communications should serve the purpose of directing public attention and support towards a particular outcome, decided in advance by a political elite. And it seems, if I believe something is right, and that a message needs communicating, I will take action, but never invoice, because I am a believer. Well let me tell you right here and now, I am not that person. I may have that reputation, but really, I despise propaganda : the deliberate formation of a murmur of Tweet starlings, or the collective wall-to-wall newspaper coverage of the same story, the scandal story hauled out to scare the horses and herd them to the salt water shore, the faux narrative of collective political or social will for change.

I want to believe that even though I am occasionally paid to communicate a story (but most often not), that my narrative, and importantly my agenda, is my own. I will not be co-opted. I shall not be defined by storytelling, I shall not be paid for spreading information – for if I were to be telling money-backed tales, I may end up peddling lies. And I do not want lies to be spoken. I am an ontologist. My ontology is :-

SO
IT IS
AS
IT IS.

and not

IT IS
AS
IT IS,
SO…

There is no “therefore” in what I write. When I say “should”, like, “we should adopt renewable energy”, it’s your choice as to whether you agree with me. You shouldn’t read anything and be swayed or directed, except by the force of reason based on evidence. I am the photographer, the recorder, but not the public relations consultant. And I am especially not an unsalaried volunteer. I paint the future using my own perspective, my own understanding, my own research, my own best judgement, but I am not telling people what to think. Although I go slightly beyond merely noting and analysing what is happening, to articulate possible futures, I am not a persuader.

I do not want to write the script for the actions of the readers or listeners. I do not want to precipitate a revolution, or dehydrate the horses before leading them to the river bank. I want to describe rather than proscribe or prescribe. I want to scribe the way I see things, I do not do it in order to create waves or push buttons or light beacons. The facts should speak for themselves, and if anybody consumes my communication, they should be free to act as they feel fit, or suits. I am not a paid-for, paid-up, in-the-pocket campaigner. I am not spun round other peoples’ fingers like a talking puppet. I am a free person.

So, there I was in this meeting, and the people in the room were discussing an event that is likely to take place. It appears from some analysis that the next British Government could well be another Coalition Government, with the Conservative Party having only a shaving of a majority for rule. And when they have crossed the i’s and dotted the t’s and formed a currently impossible political marriage, which I’m guessing will involve the Green Party as well as the Liberal Democrats, then they will need to live up to their promise to hold a referendum on British participation in the Grand European Experiment – economic union with other European countries.

But nobody talks about Europe. Except to complain. In the meeting I attended, the hosts of the meeting were consulting for ways to highlight the Europe Question, and to give it a pro-Union light.

For me, it’s facile. The United Kingdom of Great Britain and Northern Ireland is just a bunch of mediocre-sized islands off the coast of the European continent. Something like 80% of UK trade is with European countries, because Europe is our gateway to the rest of the global market, and you always do the most trade with your neighbours. It’s natural. Can anybody seriously suggest we ditch the Common Market – the agreements that European countries have come to to ensure common standards of goods and services, common terms and conditions of trade and common legal processes regulating trade ? So we want to reserve some kind of sovereignty over some kinds of decisions ? Why ? The UK is heavily involved in the central European institutions and governance bodies. We have massive input. We vote for MEPs. Why should things not go our way ? And even if things don’t go perfectly our way, will the negotiated compromises be so bad ? Subsidiarity – making decisions at the lowest/best/most appropriate level of administration – that’s still going to keep a lot of British control over British affairs. Surely the UK suffers a greater risk of interference from any pan-Atlantic trade deal that it does from Europe ?

The UK have made commitments. Our Parliament has agreed that we need to work on climate change, social justice and economic stability. We have implicitly agreed that to address climate change we need Energy Change and environmental regulation; to achieve social justice we need human rights, justice, health, education and a benefits system; and for economic stability we need economic stimuli – for example, in national infrastructure projects. In terms of climate change and Energy Change there is so much we need to do. If we stay in Europe, all of this will be so much easier. Within the European project for energy market harmonisation is the work on standards to achieve gas and electricity grid harmonisation. The improvement and augmenting of interconnections between countries, and the provision of wider energy storage, will enable the balanced use of renewable energy. Governments need to create incentives for deploying renewable energy. Governments need to create mechanisms to leverage and facilitate renewable energy deployment. Without Europe, outwith Europe, it will cost us more, and be more complex. Within Europe, it will be easier.

So, in the meeting I attended, I put forward my vision : if the UK stays in Europe, it will be easier to handle problems of energy – improving and replacing infrastructure and plant, co-ordinating the uptake of new renewable energy technologies and dealing with emerging energy security issues. Why, the North Sea, as everybody knows, is draining dry, and we can only build certain levels of relationship with countries outside the European Union, such as Russia. If the UK left the EU, the EU would be competitors with the UK for Russian Natural Gas, for example. I said I thought that energy security was a good thing to explain to people and a good reason to raise support for UK’s continued participation in Europe.

So, somebody else in the meeting, who shall remain faceless and nameless, poured very cold water on this idea. They seemed to disbelieve that the UK faces risks to energy security. Instead, they suggested that the pro-Europe argument should be based on how the UK can “keep our place at the table”. How out of touch can one get, I thought to myself ? This kind of patrician argument is not going to wash. Appealing to some non-existent pride in the UK’s continued role as stakeholder in the European project is going to go down like a lead balloon. It’s a vote loser, for sure.

What most people care about first is money. Their money. Any appeal to their pockets is going to help. We live in tough times – thanks to Government austerity policy – and we still cannot get a handle on public borrowing and spending. Because of the Government’s austerity policy.

So how about we cast it like this : your energy is going to get much more expensive if the UK abandons the European community of nations. Plus, your lights could genuinely go out, unless you, the people, either as taxpayers or billpayers, fork out for new energy investments that the energy companies haven’t made for 20 years. Because of privatisation. Without taking part in the European energy market harmonisation, and the European development of new and renewable energy infrastructure, plant and networks, your bills could significantly rise/spiral out of control. If European companies were required to sell energy assets back to the UK, because the UK pulled out of Europe, we would be in a very fine mess indeed. Do you really want this kind of chaos ? Energy policy in the UK is already bad enough.

The facts are available to those who search : British production of oil and gas from the North Sea is declining at something like 6% a year. The UK became a net energy importer between 2004 and 2006 (depending on how you define it). The Netherlands will become a net Natural Gas importer in the 2020s. Norway’s Natural Gas will reach a peak some time in the 2020s. It’s no good thinking that because the UK is a “gas hub”, and that British finance can currently spin up gas imports to the UK, that this situation is going to remain true. Within 10 to 15 years, I think that the UK will face significant competition for Natural Gas supplies with other European countries. Better to be in the debating chamber, surely, rather than scratching at the wind-and-rain-splattered window from outside ? So can the UK forge a gas alliance with countries outside the European Union, and apart from Norway ? A gas import alliance that sticks ? And that isn’t demolished by competition from the rest of the European Union for gas supplies that come through pipes sitting in European Union territory ? OK, the UK might want to leave full European Union membership, and join Norway in the European Economic Area, but will this guarantee beneficial import status for Natural Gas from countries that supply the full members of the European Community ?

I said, instead of trying to talk about direct opposites – either Inside Europe or Outside Europe – let’s talk about how things can be helped by wider co-operation. The European Union was founded on energy treaties – coal and nuclear energy (and steel), and now Europe needs to move to a union forged on renewable power and Natural Gas – and later Renewable Gas – and it’s going to be so much easier to do if the UK stays at the party.

The North Sea needs re-developing. Not for oil, but for wind power. This is going to happen best with full cross-border co-operation. Already, the UK has agreed to play a large part in the “North Sea Offshore Grid” wind power project in league with Ireland, Germany, Denmark, Sweden, The Netherlands, Belgium and France. And Luxembourg, strangely, although it doesn’t have a coast. Unlike new nuclear power, which could be decades in construction, offshore and onshore wind in Europe can be quick-build. If you want new power, you pick wind and solar. And, despite policy fumbles, this is happening. Actually, in the end, who really cares about subsidies for renewable energy, when the most capital-heavy organisations in the world start backing renewable power ? In some ways, I don’t care who brings me low carbon energy, and I don’t care if I have to pay for it through my tax or my bills, I just want it to happen. OK, offshore wind power is for the big boys, and you’re never going to get a diversity of suppliers with this project, and the dreams of decentralised energy are vapours, whisked away by giant engineering firms, but at least renewable energy is going to happen. One day people will realise that for the newspapers to rehearse the arguments of High Net Worth Individuals, and for sheep-like energy ministers to complain about onshore wind power and solar farms, is just a way to keep small electricity generators out of the energy markets, and allow the incumbent energy players to keep making profits. But when the need for a multiplicity of small energy installations becomes critical, I think this tune will change.

I can see all this. But, because I am not a spin meister, or spin meistress, or a campaigner, I’m not going to be crafting fine messages to share with my networks on this particular subject. I did start (see below), but then I thought better of it. I dislike the use of social media, web logging and journalism to push an agenda. The trouble is, I know that the people who are vehemently against the European endeavour have so many trigger arguments tested and ready to deploy, such as : immigration, regulations, budgetary demands. None of these stand up to scutiny, but they are very easy props on which to deploy Corpse Factory scares and scandals, up there with the War on Terror. The pro-European segment of the population always stays so silent. If there were to be a Referendum on Europe today, I can pretty much guarantee a kneejerk exit. The British public act collectively by reflex. They never re-analyse their position. They mob, gang and plunder.

I don’t think pro-Europe organisations know how to sell Europe. But they shouldn’t need to “sell” Europe. European membership should be an obvious best choice. So why should I try to talk up Europe ? I couldn’t have any influence, as one lone voice, against the Daily Mails, Daily Expresses and Daily Telegraphs of this world. And anyway, it’s not really my fight to fight. I don’t have a job title that reads “arch propagandist”. I am not that person. It does not become me. I prefer straight-talking, not mind-bending.

I won’t get invited back. That’s just fine. I am not a volunteer campaigner. I’m not a political pusher. I’ve only played the role of “evangelist” on climate change, renewable energy and good policy because sometimes there is little else I can think of that might help or make a difference. But I don’t have any influence. And I don’t want any. I am just going to continue telling it the way I see it. Giving my perspective. I cannot guarantee any outcomes. And anyway, I prefer democratic engagement over salesmanship. Don’t ask me to sell your ideas, your policies, your projections. I don’t want to.

Full membership of the European Union is the logical option for the United Kingdom, no matter how many tired dead donkey corpses the rabid tabloid media keep digging up to appall us all. Sooner or later, we also need to consider joining the Euro currency, and I predict we will, but I’m not your convincer on that argument, either.




“What has Europe ever done for us ?”

Common Climate : Common Cause : Common Market

On climate change, the United Kingdom has secured the Climate Change Act, legislation with broad-based support across all political parties. The UK shares the concerns of other European countries about the potential risks and impacts from climate change in our geographical region. Society-level change in response to climate change includes energy change – changing the sources and use of energy – and changing policies for land use to include planting forests and energy crops. Within the European Community, the UK has worked to secure region-wide legislation on renewable energy, energy efficiency, waste control and air quality. All of these contribute to the response to climate change, and have developed action on climate change into a common cause. In addition to regulatory change, the European Community is seeking to develop trading mechanisms to enable carbon dioxide emissions control, and it working to develop a common market in carbon.

Common Future : Common Purpose : Common Interest

Common Values : Common Opportunities : Common Voice

Common Security : Common Goals : Common Networks

Common Infrastructure : Common Society : Common Protection

Common Standards : Common Framework : Common Development

Categories
Academic Freedom National Energy National Power Peak Energy Peak Natural Gas Peak Oil Petrolheads Policy Warfare Political Nightmare Price Control Realistic Models Regulatory Ultimatum Renewable Gas Renewable Resource

My Next Freedom of Information Request

Information Rights Unit
Department for Business, Innovation & Skills
5th Floor
Victoria 3
1 Victoria Street
London
SW1H OET

28th May 2014

Request to the Department of Energy and Climate Change

Re : Policy and Strategy for North Sea Natural Gas Fields Depletion

Previous Freedom of Information Request Reference : 14/0672
Previous Freedom of Information Request Dated : 27th April 2014

Dear Madam / Sir,

Thank you for your reply to my previous Freedom of Information Request, which has prompted me to ask for further information in order to fully comprehend the prospects for manufactured gas in British energy policy.

1. The Potential for Synthetic Natural Gas (SNG)

In the reply to my previous Freedom of Information Request of 27th April 2014, with the reference number 14/0672, the following statement was offered :-

“Furthermore, we have doubts that synthetic natural gas production under current technologies could meet any significant shortfall of gas supply either economically or in sufficient quantity.”

Under the Freedom of Information Act of 2000, please could you send me documentation such as interim and final reports, reviews and feasibility studies on which you base your lack of confidence in the potential of the current technologies for Synthetic Natural Gas to meet any significant shortfall of gas supply either economically or in terms of quantity.

In particular, as the production of Renewable Hydrogen is a key element of several suggested “Power to Gas” Synthetic Natural Gas system designs, I would like to have copies of final reports, reviews and studies in relation to the GridGas project, a feasibility study for which was funded by the Department of Energy and Climate Change (DECC), and which had partners in ITM Power, (Royal Dutch) Shell, Kiwa (GASTEC), National Grid and The Scottish Hydrogen and Fuel Cell Association (SHFCA).

I should also especially like to have copies of interim and final reports and reviews from the feasibility study into the Production of Synthetic Methane, conducted by ITM Power, as funded by DECC under the Carbon Capture and Storage Innovation Competition, in a consortium with Scottish and Southern Energy (SSE), Scotia Gas Networks, Logan Energy Ltd and Kiwa GASTEC at CRE.

I should also like to know which designs for Synthetic Natural Gas systems you have considered, which will entail you furnishing me with diagrams and other engineering information for process elements and plant equipment, to allow me to understand which gas processing configurations you have considered, and which you have dismissed.

I would also like to know what your estimates are for “spare” wind and solar power hours of generation by 2025 in the UK. This excess generation, whereby power demand does not meet power supply from variable renewable electricity, is crucial to anticipate as this is a key input for “Power to Gas” designs.

I should also like to see your assessment of the German Energy Agency (dena) “Power to Gas” Strategy and your analysis of how this compares to the British situation and prospects.

As regards relative economic values of different sources of gas energy fuel, I would like to receive information about your analyses of the near-term gas market, and the likelihood of price rises in Natural Gas, and competition in the market from new Natural Gas customers, especially in light of the imminent closure of coal-fired power plants due to the European Community’s Large Combustion Plant Directive (LPCD) and the Industrial Emissions Directive (IED).

2. The Potential for Natural Gas Supply Shocks

In the reply to my previous Freedom of Information Request of 27th April 2014, given the reference number 14/0672, the following statements were made :-

“It is the government’s stance that developments in the gas industry should be market-led, underpinned by robust price signals. This is a model which has ensured that UK domestic and small business consumers have never faced gas shortages and even industry-level warnings are rare. This approach has also delivered significant investment in gas infrastructure, in response to declining production from the UK Continental Shelf, and we are well placed to absorb supply shocks, with a diverse range of suppliers, routes and sources. Discounting our indigenous production, which is still responsible for around half of our annual gas demand, UK import infrastructure can meet 189% of annual demand. This resilience to supply shocks is demonstrated by Ofgem’s 2012 Gas Security of Supply report which found that in a normal winter we would have to lose 50% of non-storage supplies for there to be an interruption to gas supplies to large industrial users and/or the power sector, and between 60% and 70% of all gas sources for there to be an interruption of supplies to domestic customers – equivalent to losing all LNG supply, all imports from the Continent and 50% of our production at the same time.”

Under the Freedom of Information Act 2000, please can you supply me copies of, or links to, documents that specify analysis of what kinds of “robust price signals” you are referring to, and how these are achieved. In particular, I should like to know if you mean the ebb and flow of gas prices under market conditions, or whether you consider regulatory instruments, for example, carbon pricing, or economic policy, such as tax breaks or subsidies for gas producers, to be at least part of the source of the “robust price signals” you expect.

In particular, I should like to know from your internal reports how you view the impact of the Capacity Mechanism on the price of Natural Gas in the UK – the Capacity Mechanism having been proposed to keep gas-fired power plants from closure, in order to be available to balance electrical grid fluctuations.

I should also like you to supply me with copies of your internal reviews of the impact on imported Natural Gas prices from events unrelated to market conditions, such as the outcomes of warfare, or political manoeuvres, and whether these price shocks could contribute to “supply shocks”.

I should also like to have sight of reports or other documentation that outlines analysis of risks of “supply shock” in gas supply, for instance, what circumstances are considered capable of causing a 50%, 60% or 70% drop in non-domestic gas supplies, causing a loss of imported Liquified Natural Gas, or imported pipeline Natural Gas. Please can you also provide me with reports, or links to reports, that show the analysis of circumstances that would cause a loss of 50% of Natural Gas from the North Sea and other production areas in the United Kingdom; including an analysis of risks of a trade war between a putative newly-independent Scotland and its gas customer England, given that most Natural Gas consumption is south of the border.

Please may I also have information that details your analyses of the decline in Natural Gas production from the North Sea, including from territorial waters outside the UK, a calculation of depletion rates in reserves, and the projection for decline in production.

I should also like to have sight of the documents on which you base your calculations of depletion of Natural Gas reserves across Eurasia, Asia, North Africa and the Middle East, and the risks to production levels according [to] the passage of time.

As a corollary, I would like to have sight of the documents on which you base your analysis of future changes in market demand for Natural Gas across Eurasia, Asia, North Africa and the Middle East, especially considering new trade relationships between China and Russia, and China and the Middle East.

Thank you for your attention to my request for information.

Regards,

Categories
Academic Freedom Advancing Africa Alchemical Assets not Liabilities Behaviour Changeling Big Picture Big Society Carbon Commodities Carbon Pricing Carbon Taxatious Change Management Climate Change Climate Chaos Coal Hell Conflict of Interest Contraction & Convergence Corporate Pressure Dead End Deal Breakers Demoticratica Design Matters Direction of Travel Divide & Rule Dreamworld Economics Emissions Impossible Energy Change Energy Crunch Energy Denial Energy Disenfranchisement Engineering Marvel Evil Opposition Extreme Weather Feed the World Foreign Interference Foreign Investment Fossilised Fuels Freemarketeering Gamechanger Geogingerneering Global Singeing Green Gas Green Investment Green Power Human Nurture Hydrocarbon Hegemony Low Carbon Life Mad Mad World Major Shift Money Sings National Energy National Power Paradigm Shapeshifter Peak Emissions Petrolheads Policy Warfare Political Nightmare Protest & Survive Realistic Models Regulatory Ultimatum Renewable Gas Revolving Door Social Capital Social Change Social Chaos Social Democracy Solution City Stirring Stuff Technofix The Power of Intention The Science of Communitagion The War on Error Ungreen Development Unutterably Useless Utter Futility Vain Hope Western Hedge Zero Net

This Too Will Fail

I will probably fail to make myself understood, yet again, but here goes…

The reasons the United Nations Climate Change process is failing are :-

1.   The wrong people are being asked to shoulder responsibility

It is a well-rumoured possibility that the fossil fuel industry makes sure it has sympathisers and lobbyists at the United Nations Framework Convention on Climate Change (UNFCCC) conferences. It is only natural that they should want to monitor proceedings, and influence outcomes. But interventions by the energy sector has a much wider scope. Delegates from the countries with national oil and gas companies are key actors at UNFCCC conferences. Their national interests are closely bound to their fossil fuel exports. Many other countries understand their national interest is bound to the success of energy sector companies operating within their borders. Still others have governments with energy policy virtually dictated by international energy corporations. Yet when the UNFCCC discusses climate change, the only obligations discussed are those of nations – the parties to any treaty are the governments and regimes of the world. The UNFCCC does not hold oil and gas (and coal) companies to account. BP and Shell (and Exxon and Chevron and Total and GDF Suez and Eni and so on) are not asked to make undertakings at the annual climate talks. Governments are hoped to forge a treaty, but this treaty will create no leverage for change; no framework of accountability amongst those who produce oil, gas and coal.

2.   The right people are not in the room

It’s all very well for Governments to commit to a treaty, but they cannot implement it. Yes, their citizens can make a certain amount of changes, and reduce their carbon emissions through controlling their energy consumption and their material acquisitions. But that’s not the whole story. Energy has to be decarbonised at source. There are technological solutions to climate change, and they require the deployment of renewable energy systems. The people who can implement renewable energy schemes should be part of the UNFCCC process; the engineering companies who make wind turbines, solar photovoltaic panels, the people who can build Renewable Gas systems. Companies such as Siemens, GE, Alstom. Energy engineering project companies. Chemical engineering companies.

3.   The economists are still in the building

In the United Kingdom (what will we call it if Scotland becomes independent ? And what will the word “British” then mean ?) the Parliament passed the Climate Change Act. But this legislation is meaningless without a means to implement the Carbon Budgets it institutes. The British example is just a minor parallel to the UNFCCC situation – how can a global climate treaty be made to work ? Most of the notions the economists have put forward so far to incentivise energy demand reduction and stimulate low carbon energy production have failed to achieve much. Carbon trading ! Carbon pricing ! All rather ineffective. Plus, there’s the residual notion of different treatment for developed and developing nations, which is a road to nowhere.

4.   Unilateral action is frowned upon

Apparently, since Climate Change is a global problem, we all have to act in a united fashion to solve it. But that’s too hard to ask, at least to start with. When countries or regions take it upon themselves to act independently, the policy community seem to counsel against it. There are a few exceptions, such as the C40 process, where individual cities are praised for independent action, but as soon as the European Community sets up something that looks like a border tax on carbon, that’s a no-no. Everybody is asked to be part of a global process, but it’s almost too hard to get anything done within this framework.

5.   Civil Society is hamstrung and tongue-tied

There is very little that people groups can achieve within the UNFCCC process, because there is a disconnect between the negotiations and practical action. The framework of the treaty discussions does not encompass the real change makers. The UNFCCC does not build the foundation for the architecture of a new green economy, because it only addresses itself to garnering commitments from parties that cannot fulfill them. Civil Society ask for an egg sandwich and they are given a sandy eggshell. If Civil Society groups call for technology, they are given a carbon credit framework. If they call for differential investment strategies that can discredit carbon dependency, they are given an opportunity to put money into the global adaptation fund.

Categories
Academic Freedom Advancing Africa Alchemical Artistic Licence Assets not Liabilities Bait & Switch Be Prepared Behaviour Changeling Big Number Big Picture Big Society Carbon Army Carbon Capture Carbon Commodities Carbon Pricing Carbon Rationing Carbon Recycling Carbon Taxatious Change Management Climate Change Climate Chaos Climate Damages Conflict of Interest Contraction & Convergence Corporate Pressure Dead End Dead Zone Deal Breakers Demoticratica Design Matters Direction of Travel Disturbing Trends Divide & Rule Dreamworld Economics Droughtbowl Earthquake Eating & Drinking Economic Implosion Electrificandum Energy Autonomy Energy Calculation Energy Change Energy Crunch Energy Denial Energy Insecurity Energy Revival Energy Socialism Engineering Marvel Evil Opposition Extreme Energy Feed the World Feel Gooder Financiers of the Apocalypse Floodstorm Food Insecurity Foreign Interference Foreign Investment Fossilised Fuels Fuel Poverty Gamechanger Global Warming Green Gas Green Investment Green Power Growth Paradigm Human Nurture Hydrocarbon Hegemony Incalculable Disaster Insulation Libertarian Liberalism Low Carbon Life Mad Mad World Major Shift Marvellous Wonderful Mass Propaganda Media Meltdown Money Sings National Energy National Power Near-Natural Disaster Neverending Disaster Not In My Name Nudge & Budge Optimistic Generation Orwells Paradigm Shapeshifter Peace not War Peak Coal Peak Emissions Peak Energy Peak Natural Gas Peak Oil Pet Peeves Petrolheads Policy Warfare Political Nightmare Protest & Survive Public Relations Pure Hollywood Realistic Models Regulatory Ultimatum Renewable Gas Renewable Resource Revolving Door Social Capital Social Change Social Chaos Social Democracy Solar Sunrise Solution City Stirring Stuff Sustainable Deferment Technofix Technological Sideshow The Myth of Innovation The Power of Intention The Price of Gas The Price of Oil The Right Chemistry The Science of Communitagion The War on Error Toxic Hazard Tree Family Unconventional Foul Unqualified Opinion Unsolicited Advice & Guidance Unutterably Useless Utter Futility Vain Hope Vote Loser Western Hedge Wind of Fortune Zero Net

Positively Against Negative Campaigning

How to organise a political campaign around Climate Change : ask a group of well-fed, well-meaning, Guardian-reading, philanthropic do-gooders into the room to adopt the lowest common denominator action plan. Now, as a well-fed, well-meaning, Guardian-reading (well, sometimes), philanthropic do-gooder myself, I can expect to be invited to attend such meetings on a regular basis. And always, I find myself frustrated by the outcomes : the same insipid (but with well-designed artwork) calls to our publics and networks to support something with an email registration, a signed postcard, a fistful of dollars, a visit to a public meeting of no consequence, or a letter to our democratic representative. No output except maybe some numbers. Numbers to support a government decision, perhaps, or numbers to indicate what kind of messaging people need in future.

I mean, with the Fair Trade campaign, at least there was some kind of real outcome. Trade Justice advocates manned stall tables at churches, local venues, public events, and got money flowing to the international co-operatives, building up the trade, making the projects happen, providing schooling and health and aspirations in the target countries. But compare that to the Make Poverty History campaign which was largely run to support a vain top-level political attempt to garner international funding promises for social, health and economic development. Too big to succeed. No direct line between supporting the campaign and actually supporting the targets. Passing round the hat to developed, industrialised countries for a fund to support change in developing, over-exploited countries just isn’t going to work. Lord Nicholas Stern tried to ask for $100 billion a year by 2020 for Climate Change adaptation. This has skidded to a halt, as far as I know. The economic upheavals, don’t you know ?

And here we are again. The United Nations Framework Convention on Climate Change (UNFCCC), which launched the Intergovernmental Panel on Climate Change (IPCC) reports on climate change, oh, so, long, ago, through the person of its most charismatic and approachable Executive Secretary, Christiana Figueres, is calling for support for a global Climate Change treaty in 2015. Elements of this treaty, being drafted this year, will, no doubt, use the policy memes of the past – passing round the titfer begging for a couple of billion squid for poor, hungry people suffering from floods and droughts; proposing some kind of carbon pricing/taxing/trading scheme to conjure accounting bean solutions; trying to implement an agreement around parts per million by volume of atmospheric carbon dioxide; trying to divide the carbon cake between the rich and the poor.

Somehow, we believe, that being united around this proposed treaty, few of which have any control over the contents of, will bring us progress.

What can any of us do to really have input into the building of a viable future ? Christiana – for she is now known frequently only by her first name – has called for numbers – a measure of support for the United Nations process. She has also let it be known that if there is a substantial number of people who, with their organisations, take their investments out of fossil fuels, then this could contribute to the mood of the moment. Those who are advocating divestment are yet small in number, and I fear that they will continue to be marginal, partly because of the language that is being used.

First of all, there are the Carbon Disclosers. Their approach is to conjure a spectre of the “Carbon Bubble” – making a case that investments in carbon dioxide-rich enterprises could well end up being stranded by their assets, either because of wrong assumptions about viable remaining resources of fossil fuels, or because of wrong assumptions about the inability of governments to institute carbon pricing. Well, obviously, governments will find it hard to implement effective carbon pricing, because governments are in bed with the energy industry. Politically, governments need to keep big industry sweet. No surprise there. And it’s in everybody’s interests if Emperor Oil and Prince Regent Natural Gas are still wearing clothes. In the minds of the energy industry, we still have a good four decades of healthy fossil fuel assets. Royal Dutch Shell’s CEO can therefore confidently say at a public AGM that There Is No Carbon Bubble. The Carbon Discloser language is not working, it seems, as any kind of convincer, except to a small core of the concerned.

And then there are the Carbon Voices. These are the people reached by email campaigns who have no real idea how to do anything practical to affect change on carbon dioxide emissions, but they have been touched by the message of the risks of climate change and they want to be seen to be supporting action, although it’s not clear what action will, or indeed can, be taken. Well-designed brochures printed on stiff recycled paper with non-toxic inks will pour through their doors and Inboxes. Tick it. Send it back. Sign it. Send it on. Maybe even send some cash to support the campaign. This language is not achieving anything except guilt.

And then there are the Carbon Divestors. These are extremely small marginal voices who are taking a firm stand on where their organisations invest their capital. The language is utterly dated. The fossil fuel industry are evil, apparently, and investing in fossil fuels is immoral. It is negative campaigning, and I don’t think it stands a chance of making real change. It will not achieve its goal of being prophetic in nature – bearing witness to the future – because of the non-inclusive language. Carbon Voices reached by Carbon Divestor messages will in the main refuse to respond, I feel.

Political action on Climate Change, and by that I mean real action based on solid decisions, often taken by individuals or small groups, has so far been under-the-radar, under-the-counter, much like the Fair Trade campaign was until it burst forth into the glorious day of social acceptability and supermarket supply chains. You have the cyclists, the Transition Towners, the solar power enthusiasts. Yet to get real, significant, economic-scale transition, you need Energy Change – that is, a total transformation of the energy supply and use systems. It’s all very well for a small group of Methodist churches to pull their pension funds from investments in BP and Shell, but it’s another thing entirely to engage BP and Shell in an action plan to diversify out of petroleum oil and Natural Gas.

Here below are my email words in my feeble attempt to challenge the brain of Britain’s charitable campaigns on what exactly is intended for the rallying cry leading up to Paris 2015. I can pretty much guarantee you won’t like it – but you have to remember – I’m not breaking ranks, I’m trying to get beyond the Climate Change campaigning and lobbying that is currently in play, which I regard as ineffective. I don’t expect a miraculous breakthrough in communication, the least I can do is sow the seed of an alternative. I expect I could be dis-invited from the NGO party, but it doesn’t appear to be a really open forum, merely a token consultation to build up energy for a plan already decided. If so, there are probably more important things I could be doing with my time than wasting hours and hours and so much effort on somebody else’s insipid and vapid agenda.

I expect people might find that attitude upsetting. If so, you know, I still love you all, but you need to do better.


[…]

A lot of campaigning over the last 30 years has been very negative and divisive, and frequently ends in psychological stalemate. Those who are cast as the Bad Guys cannot respond to the campaigning because they cannot admit to their supporters/employees/shareholders that the campaigners are “right”. Joe Average cannot support a negative campaign as there is no apparent way to make change happen by being so oppositional, and because the ask is too difficult, impractical, insupportable. [Or there is simply too much confusion or cognitive dissonance.]

One of the things that was brought back from the […] working group breakout on […] to the plenary feedback session was that there should be some positive things about this campaign on future-appropriate investment. I think […] mentioned the obvious one of saying effectively “we are backing out of these investments in order to invest in things that are more in line with our values” – with the implicit encouragement for fossil fuel companies to demonstrate that they can be in line with our values and that they are moving towards that. There was some discussion that there are no bulk Good Guy investment funds, that people couldn’t move investments in bulk, although some said there are. […] mentioned Ethex.

Clearly fossil fuel production companies are going to find it hard to switch from oil and gas to renewable electricity, so that’s not a doable we can ask them for. Several large fossil fuel companies, such as BP, have tried doing wind and solar power, but they have either shuttered those business units, or not let them replace their fossil fuel activities.

[…] asked if the [divestment] campaign included a call for CCS – Carbon Capture and Storage – and […] referred to […] which showed where CCS is listed in a box on indicators of a “good” fossil fuel energy company.

I questioned whether the fossil fuel companies really want to do CCS – and that they have simply been waiting for government subsidies or demonstration funds to do it. (And anyway, you can’t do CCS on a car.)

I think I said in the meeting that fossil fuel producer companies can save themselves and save the planet by adopting Renewable Gas – so methods for Carbon Capture and Utilisation (CCU) or “carbon recycling”. Plus, they could be making low carbon gas by using biomass inputs. Most of the kit they need is already widely installed at petrorefineries. So – they get to keep producing gas and oil, but it’s renewably and sustainably sourced with low net carbon dioxide emissions. That could be turned into a positive, collaborative ask, I reckon, because we could all invest in that, the fossil fuel companies and their shareholders.

Anyway, I hope you did record something urging a call to positive action and positive engagement, because we need the co-operation of the fossil fuel companies to make appropriate levels of change to the energy system. Either that, or they go out of business and we face social turmoil.

If you don’t understand why this is relevant, that’s OK. If you don’t understand why a straight negative campaign is a turn-off to many people (including those in the fossil fuel industry), well, I could role play that with you. If you don’t understand what I’m talking about when I talk about Renewable Gas, come and talk to me about it again in 5 years, when it should be common knowledge. If you don’t understand why I am encouraging positive collaboration, when negative campaigning is so popular and marketable to your core segments, then I will resort to the definition of insanity – which is to keep doing the same things, expecting a different result.

I’m sick and tired of negative campaigning. Isn’t there a more productive thing to be doing ?

There are no enemies. There are no enemies. There are no enemies.

——-

As far as I understand the situation, both the […] and […] campaigns are negative. They don’t appear to offer any positive routes out of the problem that could engage the fossil fuel companies in taking up the baton of Energy Change. If that is indeed the main focus of […] and […] efforts, then I fear they will fail. Their work will simply be a repeat of the negative campaigning of the last 30 years – a small niche group will take up now-digital placards and deploy righteous, holy social media anger, and that will be all.

Since you understand this problem, then I would suggest you could spend more time and trouble helping them to see a new way. You are, after all, a communications expert. And so you know that even Adolf Hitler used positive, convening, gathering techniques of propaganda to create power – and reserved the negative campaigning for easily-marginalised vulnerable groups to pile the bile and blame on.

Have a nicer day,

—–

The important thing as far as I understand it is that the “campaigning” organisations need to offer well-researched alternatives, instead of just complaining about the way things are. And these well-researched alternatives should not just be the token sops flung at the NGOs and UN by the fossil fuel companies. What do I mean ?

Well, let’s take Carbon Capture and Storage (CCS). The injection of carbon dioxide into old oil and gas caverns was originally proposed for Enhanced Oil Recovery (EOR) – that is – getting more oil and gas out the ground by pumping gas down there – a bit like fracking, but with gas instead of liquid. The idea was that the expense of CCS would be compensated for by the new production of oil and gas – however, the CCS EOR effect has shown to be only temporary. So now the major oil and gas companies say they support carbon pricing (either by taxation or trading), to make CCS move forward. States and federations have given them money to do it. I think the evidence shows that carbon pricing cannot be implemented at a sufficiently high level to incentivise CCS, therefore CCS is a non-answer. Why has […] not investigated this ? CCS is a meme, but not necessarily part of the carbon dioxide solution. Not even the UNFCCC IPCC reports reckon that much CCS can be done before 2040. So, why does CCS appear in the […] criteria for a “good” fossil fuel company ? Because it’s sufficiently weak as a proposal, and sufficiently far enough ahead that the fossil fuel companies can claim they are “capture ready”, and in the Good Book, but in reality are doing nothing.

Non-starters don’t just appear from fossil fuel companies. From my point of view, another example of running at and latching on to things that cannot help was the support of the GDR – Greenhouse Development Rights, of which there has been severe critique in policy circles, but the NGOs just wrote it into their policy proposals without thinking about it. There is no way that the emissions budgets set out in the GDR policy could ever get put into practice. For a start, there is no real economic reason to divide the world into developing and developed nations (Kyoto [Protocol]’s Annex I and Annex II).

If you give me some links, I’m going to look over your […] and think about it.

I think that if a campaign really wants to get anywhere with fossil fuel companies, instead of being shunted into a siding, it needs to know properly what the zero carbon transition pathways really are. Unequal partners do not make for a productive engagement, I reckon.

—–

I’m sorry to say that this still appears to be negative campaigning – fossil fuel companies are “bad”; and we need to pull our money out of fossil fuel companies and put it in other “good” companies. Where’s the collective, co-operative effort undertaken with the fossil fuel companies ? What’s your proposal for helping to support them in evolving ? Do you know how they can technologically transition from using fossil fuels to non-fossil fuels ? And how are you communicating that with them ?

——

They call me the “Paradigm Buster”. I’m not sure if “the group” is open to even just peeking into that kind of approach, let alone “exploring” it. The action points on the corporate agenda could so easily slip back into the methods and styles of the past. Identify a suffering group. Build a theory of justice. Demand reparation. Make Poverty History clearly had its victims and its saviours. Climate change, in my view, requires a far different treatment. Polar bears cannot substitute for starving African children. And not even when climate change makes African children starve, can they inspire the kind of action that climate change demands. A boycott campaign without a genuine alternative will only touch a small demographic. Whatever “the group” agrees to do, I want it to succeed, but by rehashing the campaigning strategies and psychology of the past, I fear it will fail. Even by adopting the most recent thinking on change, such as Common Cause, [it] is not going to surmount the difficulties of trying to base calls to action on the basis of us-and-them thinking – polar thinking – the good guys versus the bad guys – the body politic David versus the fossil fuel company Goliath. By challenging this, I risk alienation, but I am bound to adhere to what I see as the truth. Climate change is not like any other disaster, aid or emergency campaign. You can’t just put your money in the [collecting tin] and pray the problem will go away with the help of the right agencies. Complaining about the “Carbon Bubble” and pulling your savings from fossil fuels is not going to re-orient the oil and gas companies. The routes to effective change require a much more comprehensive structure of actions. And far more engagement that agreeing to be a flag waver for whichever Government policy is on the table. I suppose it’s too much to ask to see some representation from the energy industry in “the group”, or at least […] leaders who still believe in the fossil fuel narratives, to take into account their agenda and their perspective, and a readiness to try positive collaborative change with all the relevant stakeholders ?


Categories
Academic Freedom Advancing Africa Animal Kingdoom Arctic Amplification Artistic Licence Bad Science Bait & Switch Big Number Change Management Climate Change Climate Chaos Climate Damages Conflict of Interest Delay and Deny Direction of Travel Disturbing Trends Divide & Rule Emissions Impossible Energy Calculation Energy Change Environmental Howzat Evil Opposition Extreme Weather Fair Balance Feed the World Forestkillers Fossilised Fuels Freak Science Global Heating Global Singeing Global Warming Growth Paradigm Health Impacts Heatwave Hide the Incline Human Nurture Incalculable Disaster Mad Mad World Mass Propaganda Meltdown Methane Management Money Sings Near-Natural Disaster Neverending Disaster Orwells Protest & Survive Public Relations Realistic Models Science Rules Scientific Fallacy Screaming Panic Sea Level Risk Sustainable Deferment The Data The War on Error Toxic Hazard Unutterably Useless Utter Futility Vote Loser

Nigel Lawson : Unreferenced & Ill-Informed ?

An appeal was issued by David Andrews of the Claverton Energy Research Group, to respond to the Bath Lecture given by Nigel Lawson :-

“Dear All, this group is not meant to be a mere venting of frustration and opinion at what is perceived to be poor policy. So what would be really useful is to have the Lawson spiel with the countering fact interspersed. I can then publish this on the Claverton web site which does get a lot of hits and appears to be quite influential. Can I therefore first thank Ed Sears for making a good effort, but ask him to copy his bits into the Lawson article at the appropriate point. Then circulate it and get others to add in bits. Otherwise these good thoughts will simply be lost in the wind. Dave”

My reply of today :-

“Dear Dave, I don’t have time at the moment to answer all of Nigel Lawson’s layman ruminations, but I have written a few comments here (see below) which begin to give vent to frustration typical of that which his tactics cause in the minds of people who have some acquaintance with the actual science. The sheer volume of his output suggests an attempt to filibuster proper debate rather than foster it. To make life more complicated to those who wish to answer his what I think are absurd notions, he gives no accurate references to his supposed facts or cites any accredited, peer-reviewed documentation that could back up his various emotive generalisations and what appear to be aspersions. Regards, jo.”


https://www.thegwpf.org/nigel-lawson-the-bath-lecture/

Nigel Lawson: The Bath Lecture

Climate Alarmism Is A Belief System And Needs To Be Evaluated As Such

Nigel Lawson: Cool It

Standpoint, May 2014

This essay is based on the text of a speech given to the Institute for Sustainable Energy and the Environment at the University of Bath.

There is something odd about the global warming debate — or the climate change debate, as we are now expected to call it, since global warming has for the time being come to a halt.

[ joabbess.com : Contrary to what Nigel Lawson is claiming, there is no pause – global warming continues unabated. Of this there can be no doubt. All of the data that has been assessed – and there is a lot of it – confirms the theoretical framework – so it is odd that Nigel Lawson states otherwise, seemingly without any evidence to substantiate his assertion. Nigel Lawson appears to be taking advantage of fluctuations, or short-term wrinkles, in the records of air temperatures close to the Earth, to claim that up is down, dark is light and that truth is in error. Why are temperatures in the atmosphere close to the Earth’s surface, or “surface temperatures”, subject to variability ? Because heat can flow through matter, is the short answer. The longer answer is the interplay between the atmosphere and the oceans, where heat is being transfered between parts of the Earth system under conditions of flows such as the movement of air and water – what we call winds and ocean currents. There are detectable patterns in the flows of air and water – and some are oscillatory, so the temperature (taken at any one time) may appear to wriggle up and down (when viewed over a period of time). Despite these wobbles, the overall trend of temperature over several decades has been reliably detected. Despite Nigel Lawson’s attention to air temperatures, they are probably the least significant in detecting global warming, even though the data shows that baseline air temperatures, averaged over time, are rising. The vast proportion of heat being added to the Earth system is ending up in the oceans :-
https://www.skepticalscience.com/global-cooling-intermediate.htm
and the rise in ocean temperatures is consistent :-
https://www.skepticalscience.com/cherrypicking-deny-continued-ocean-global-warming.html
which indicates that circulatory patterns of heat exchange in the oceans have less effect on making temperatures fluctuate than the movement of masses of air in the atmosphere. This is exactly what you would expect from the study of basic physics. If you give only a cursory glance at the recent air temperatures at the surface of the Earth, you could think that temperatures have levelled off in the last decade or so, but taking a longer term view easily shows that global warming continues to be significant :-
https://data.giss.nasa.gov/gistemp/graphs_v3/
What is truly astonishing about this data is that the signal shows through the noise – that the trend in global warming is easily evident by eye, despite the wavy shakes from natural variability. For Nigel Lawson’s information, the reason why we refer to climate change is to attempt to encompass other evidence in this term besides purely temperature measurements. As the climate changes, rainfall patterns are altering, for example, which is not something that can be expressed in the term global warming. ]

I have never shied away from controversy, nor — for example, as Chancellor — worried about being unpopular if I believed that what I was saying and doing was in the public interest.

But I have never in my life experienced the extremes of personal hostility, vituperation and vilification which I — along with other dissenters, of course — have received for my views on global warming and global warming policies.

For example, according to the Climate Change Secretary, Ed Davey, the global warming dissenters are, without exception, “wilfully ignorant” and in the view of the Prince of Wales we are “headless chickens”. Not that “dissenter” is a term they use. We are regularly referred to as “climate change deniers”, a phrase deliberately designed to echo “Holocaust denier” — as if questioning present policies and forecasts of the future is equivalent to casting malign doubt about a historical fact.

[ joabbess.com : Climate change science is built on observations : all historical facts. Then, as in any valid science, a theoretical framework is applied to the data to check the theory – to make predictions of future change, and to validate them. It is an historical fact that the theoretical framework for global warming has not been falsified. The Earth system is warming – this cannot be denied. It seems to me that Nigel Lawwon usurps the truth with myth and unsubstantiated rumour, casting himself in the role of doubting dissenter, yet denying the evidence of the data. He therefore self-categorises as a denier, by the stance of denial that he takes. His denial is also an historical fact, but calling him a denier is not a value judgement. It is for each person to ascribe for themselves a moral value to the kind of denial he expresses. ]

The heir to the throne and the minister are senior public figures, who watch their language. The abuse I received after appearing on the BBC’s Today programme last February was far less restrained. Both the BBC and I received an orchestrated barrage of complaints to the effect that it was an outrage that I was allowed to discuss the issue on the programme at all. And even the Science and Technology Committee of the House of Commons shamefully joined the chorus of those who seek to suppress debate.

[ joabbess.com : Considering the general apathy of most television viewers, it is therefore quite refreshingly positive that so many people decided to complain about Nigel Lawson being given a platform to express his views about climate change, a subject about which it seems he is unqualified to speak with authority of learning. He may consider the complaints an “orchestrated barrage”. Another interpretation could be that the general mood of the audience ran counter to his contributions, and disagreed with the BBC’s decisiont to permit him to air his contrarian position, to the point of vexation. A parallel example could be the kind of outrage that could be expressed if Nigel Lawson were to deny that the Earth is approximately spherical, that gravity means that things actually move out to space rather than towards the ground, or that water is generally warmer than ice. He should expect opposition to his opinions if he is denying science. ]

In fact, despite having written a thoroughly documented book about global warming more than five years ago, which happily became something of a bestseller, and having founded a think tank on the subject — the Global Warming Policy Foundation — the following year, and despite frequently being invited on Today to discuss economic issues, this was the first time I had ever been asked to discuss climate change. I strongly suspect it will also be the last time.

The BBC received a well-organised deluge of complaints — some of them, inevitably, from those with a vested interest in renewable energy — accusing me, among other things, of being a geriatric retired politician and not a climate scientist, and so wholly unqualified to discuss the issue.

[ joabbess.com : It is a mark of integrity to put you money where your mouth is, not an indicator on insincerity. It is natural to expect people who accept climate change science to be taking action on carbon dioxide emissions, which includes investment in renewable energy. ]

Perhaps, in passing, I should address the frequent accusation from those who violently object to any challenge to any aspect of the prevailing climate change doctrine, that the Global Warming Policy Foundation’s non-disclosure of the names of our donors is proof that we are a thoroughly sinister organisation and a front for the fossil fuel industry.

As I have pointed out on a number of occasions, the Foundation’s Board of Trustees decided, from the outset, that it would neither solicit nor accept any money from the energy industry or from anyone with a significant interest in the energy industry. And to those who are not-regrettably-prepared to accept my word, I would point out that among our trustees are a bishop of the Church of England, a former private secretary to the Queen, and a former head of the Civil Service. Anyone who imagines that we are all engaged in a conspiracy to lie is clearly in an advanced stage of paranoia.

The reason why we do not reveal the names of our donors, who are private citizens of a philanthropic disposition, is in fact pretty obvious. Were we to do so, they, too, would be likely to be subject to the vilification and abuse I mentioned earlier. And that is something which, understandably, they can do without.

That said, I must admit I am strongly tempted to agree that, since I am not a climate scientist, I should from now on remain silent on the subject — on the clear understanding, of course, that everyone else plays by the same rules. No more statements by Ed Davey, or indeed any other politician, including Ed Milliband, Lord Deben and Al Gore. Nothing more from the Prince of Wales, or from Lord Stern. What bliss!

But of course this is not going to happen. Nor should it; for at bottom this is not a scientific issue. That is to say, the issue is not climate change but climate change alarmism, and the hugely damaging policies that are advocated, and in some cases put in place, in its name. And alarmism is a feature not of the physical world, which is what climate scientists study, but of human behaviour; the province, in other words, of economists, historians, sociologists, psychologists and — dare I say it — politicians.

[ joabbess.com : Au contraire, I would say to Nigel Lawson. At root, climate change is very much a scientific issue. Science defines it, describes it and provides evidence for it. Climate change is an epistemological concern, and an ontological challenge. How we know what we know about climate change is by study of a very large number of results from data collection and other kinds of research. The evidence base is massive. The knowledge expressed in climate change science is empirical – based on observations – which is how we are sure that what we know is assured. There is still scope for uncertainty – will the surface temperatures rise by X plus or minus some Y, owing to the dynamic between the atmosphere, the oceans, the ice cover and the land masses ? The results of the IPCC assessments are that we pretty much know what X is, and we have an improved clarity on a range of values for Y. The more science is done, the clearer these numbers emerge. Knowledge increases as more science is done, which is why the IPCC assessments are making firmer conclusions as time passes. Climate change science does not make value judgements on its results. It concludes that sea levels are rising and will continue to rise; that rainfall patterns are changing and will continue to change; that temperatures are rising and will continue to rise under current economic conditions and the levels of fossil fuel use and land use. Science describes the outcomes of these and other climate changes. It is for us as human beings, with humanity in our hearts, to place a meaning on predicted outcomes such as crop and harvest failures, displacement of peoples, unliveable habitats, loss of plant and animal species, extreme weather. You cannot take the human out of the scientist. Of course scientists will experience alarm at the thought of these outcomes, just as the rest of society will do. The people should not be denied the right to feeling alarm. ]

And en passant, the problem for dissenting politicians, and indeed for dissenting climate scientists for that matter, who certainly exist, is that dissent can be career-threatening. The advantage of being geriatric is that my career is behind me: there is nothing left to threaten.

[ joabbess.com : Climate change science is not something you can “dissent” from if you are at all versed in it. For those who question any part of climate change science from inside the community of those who have appropriate knowledge and learning, their position is not one of dissent, but of being unable to assent completely to the conclusions of their peers. They lack a capacity to fully assent to the results of other people’s research because their own research indicates otherwise. As responsible members of the science community, they would then put their research conclusions and the research conclusions of others to the test. There is an integrity in this kind of questioning. It is a valid position, as long as the questions are posed in the language of scientific enquiry, and answered with scientific methods. For example, the Berkeley BEST team had questions about the evidence of global warming and set out to verify or falsify the results of others. Their own research led them to become convinced that their peers had been correct in the their conclusions. This is how science comes to consensus. Nigel Lawson should fund research in the field if he wishes to be taken seriously in denying the current consensus in climate change science. Instead of which, he invests in the publication of what appears to be uncorroborated hearsay and emotive politicking. ]

But to return: the climate changes all the time, in different and unpredictable (certainly unpredicted) ways, and indeed often in different ways in different parts of the world. It always has done and no doubt it always will. The issue is whether that is a cause for alarm — and not just moderate alarm. According to the alarmists it is the greatest threat facing humankind today: far worse than any of the manifold evils we see around the globe which stem from what Pope called “man’s inhumanity to man”.

[ joabbess.com : Nigel Lawson doesn’t need to tell anyone that weather is changeable and that climate changes. They can see it for themselves if they care to study the data. Climate change science has discovered that the current changes in the climate are unprecedented within at least the last 800,000 years. No previous period of rapid climate change in that era has been entirely similar to the changes we are experiencing today. This is definite cause for alarm, high level alarm, and not moderate. If there is a fire, it is natural to sound the alarm. If there is a pandemic, people spread the news. If there is a risk, as human beings, we take collective measures to avoid the threat. This is normal human precautionary behaviour. It is unreasonable for Nigel Lawson to insist that alarm is not an appropriate response to what is patently in the process of happening. ]

Climate change alarmism is a belief system, and needs to be evaluated as such.

[ joabbess.com : Belief in gravity, or thinking that protein is good to eat are also belief systems. Everything we accept as normal and true is part of our own belief system. For example, I believe that Nigel Lawson is misguided and has come to the wrong conclusions. The evidence lies before me. Is my opinion to be disregarded because I have a belief that Nigel Lawson is incorrect ? ]

There is, indeed, an accepted scientific theory which I do not dispute and which, the alarmists claim, justifies their belief and their alarm.

This is the so-called greenhouse effect: the fact that the earth’s atmosphere contains so-called greenhouse gases (of which water vapour is overwhelmingly the most important, but carbon dioxide is another) which, in effect, trap some of the heat we receive from the sun and prevent it from bouncing back into space.

Without the greenhouse effect, the planet would be so cold as to be uninhabitable. But, by burning fossil fuels — coal, oil and gas — we are increasing the amount of carbon dioxide in the atmosphere and thus, other things being equal, increasing the earth’s temperature.

But four questions immediately arise, all of which need to be addressed, coolly and rationally.

First, other things being equal, how much can increased atmospheric CO2 be expected to warm the earth? (This is known to scientists as climate sensitivity, or sometimes the climate sensitivity of carbon.) This is highly uncertain, not least because clouds have an important role to play, and the science of clouds is little understood. Until recently, the majority opinion among climate scientists had been that clouds greatly amplify the basic greenhouse effect. But there is a significant minority, including some of the most eminent climate scientists, who strongly dispute this.

[ joabbess.com : Simple gas chemistry and physics that is at least a century old is evidence that carbon dioxide allows sunlight to pass right through to warm the Earth, which then emits infrared light because it has warmed up. When the infrared radiation is emitted, the Earth cools down. Infrared is partially blocked by carbon dioxide, which absorbs it, then re-radiates it, partially back to the Earth, which warms up again. Eventually, the warming radiation will escape the carbon dioxide blanket, but because of this trapping effect, the net result is for more heat to remain in the atmosphere close to the Earth’s surface than you would expect. This is the main reason why the temperature of the Earth’s surface is warmer than space. As carbon dioxide accumulates in the atmosphere, the warming effect will be enhanced. This is global warming and it is undisputed by the overwhelming majority of scientists. Climate sensitivity, or Equilibrium Climate Sensitivity (ECS) is a calculated measure of the total temperature change that would be experienced (after some time) at the surface of the Earth for a doubling of atmospheric carbon dioxide concentrations compare to the pre-industrial age. The Transient Climate Response (TCR) is a measure of the temperature change that would be experienced in the shorter-term for a doubling of atmospheric carbon dioxide concentrations. The TCR can be easily calculated from basic physics. The shorter-term warming will cause climate change. Some of the changes will act to cool the Earth down from the TCR (negative feedbacks). Some of the changes will act to heat the Earth up from the TCR (positive feedbacks). These are some disagreements about the ECS, such as the net effects from the fertilisation effect of carbon dioxide on plant growth, the net effects of changes in weather and cloud systems, and the net effects of changes in ocean and atmospheric circulation. However, evidence from the deep past (paleoclimatology) is helping to determine the range of temperatures that ECS could be. ]

Second, are other things equal, anyway? We know that, over millennia, the temperature of the earth has varied a great deal, long before the arrival of fossil fuels. To take only the past thousand years, a thousand years ago we were benefiting from the so-called medieval warm period, when temperatures are thought to have been at least as warm, if not warmer, than they are today. And during the Baroque era we were grimly suffering the cold of the so-called Little Ice Age, when the Thames frequently froze in winter and substantial ice fairs were held on it, which have been immortalised in contemporary prints.

[ joabbess.com : The Medieval Warming Period (or Medieval Warm Period) was just a blip compared to the current global warming of the last 150 years. And the Little Ice Age was also a minor anomaly, being pretty much confined to the region of Europe, and some expect could have become the Rather Much Longer Icy Period had it not been for the use of fossil fuels, which warmed Europe up again. Burning coal and other fossil fuels releases carbon that would have originally been in the atmosphere in the form of carbon dioxide millions of years ago, that trees and other plants used to grow. Geological evidence shows that surface temperatures at those times were warmer than today. ]

Third, even if the earth were to warm, so far from this necessarily being a cause for alarm, does it matter? It would, after all, be surprising if the planet were on a happy but precarious temperature knife-edge, from which any change in either direction would be a major disaster. In fact, we know that, if there were to be any future warming (and for the reasons already given, “if” is correct) there would be both benefits and what the economists call disbenefits. I shall discuss later where the balance might lie.

[ joabbess.com : The evidence from the global warming that we have experienced so far since around 1880 is almost universally limiting in terms of the ability of species of animals and plants to survive. There are tiny gems of positive outcomes, compared to a sand pit of negatives. Yes, of course it matters. The mathematics of chaos with strong perturbations to any system do not permit it to coast on a precarious knife-edge for very long. Sooner or later there will be a major alteration, and the potential for some milder probable outcomes will collapse. ]

And fourth, to the extent that there is a problem, what should we, calmly and rationally, do about it?

[ joabbess.com : The most calm and rational thing to do is to compile all the evidence and report on it. Oh yes, we’ve already done that. It’s called the Intergovernmental Panel on Climate Change or IPCC. The concluisons of the compilation of over 100 years of science is that global warming is real, and it’s happening now, and that there is a wide range of evidence for climate change, and indicators that it is a major problem, and that we have caused it, through using fossil fuels and changing how we use land. ]

It is probably best to take the first two questions together.

According to the temperature records kept by the UK Met Office (and other series are much the same), over the past 150 years (that is, from the very beginnings of the Industrial Revolution), mean global temperature has increased by a little under a degree centigrade — according to the Met Office, 0.8ºC. This has happened in fits and starts, which are not fully understood. To begin with, to the extent that anyone noticed it, it was seen as a welcome and natural recovery from the rigours of the Little Ice Age. But the great bulk of it — 0.5ºC out of the 0.8ºC — occurred during the last quarter of the 20th century. It was then that global warming alarmism was born.

[ joabbess.com : Nigel Lawson calls it “alarmism”. I call it empirical science. And there are many scientific explanations for what he calls “fits and starts”, it’s just that they’re written in research papers, so he will probably never read them, going on his lack of attention to research publications in the past. ]

But since then, and wholly contrary to the expectations of the overwhelming majority of climate scientists, who confidently predicted that global warming would not merely continue but would accelerate, given the unprecedented growth of global carbon emissions, as China’s coal-based economy has grown by leaps and bounds, there has been no further warming at all. To be precise, the latest report of the Intergovernmental Panel on Climate Change (IPCC), a deeply flawed body whose non-scientist chairman is a committed climate alarmist, reckons that global warming has latterly been occurring at the rate of — wait for it — 0.05ºC per decade, plus or minus 0.1ºC. Their figures, not mine. In other words, the observed rate of warming is less than the margin of error.

[ joabbess.com : It is not valid for Nigel Lawson to claim that there has been “no further warming at all”. Heat accumulation continues to be documented. Where is Nigel Lawson’s evidence to support his claim that the IPCC is a “deeply flawed body” ? Or is that another one of his entirely unsubstantiated dismissals of science ? Does he just fudge the facts, gloss over the details, pour scorn on scientists, impugn the academies of science, play with semantics, stir up antipathy, wave his hands and the whole history of science suddenly vanishes in a puff of dismissive smoke ? I doubt it ! Nigel Lawson says “the observed rate of warming is less than the margin of error.” This is ridiculous, because temperature is not something that you can add or subtract, like bags of sugar, or baskets of apples, or Pounds Sterling to the Global Warming Policy Foundation’s public relations fund. Two degrees Celsius, or Centigrade, is not twice as warm as one degree Celsius. 30 degrees C doesn’t indicate twice as much heat as 15 degrees C, or require twice as much heating. The range of figures that Nigel Lawson is quoting, minus 0.05 degrees C plus or minus 0.1 degrees C, that is, somewhere between a cooling of 0.05 degrees C and a warming of 0.15 degrees C, is a calculation of temperature trends averaged over the whole Earth’s surface for the last 15 years :-
https://www.climatechange2013.org/images/uploads/WGIAR5_WGI-12Doc2b_FinalDraft_Chapter09.pdf (Box 9.2)
It is not surprising that over such a short timescale it might appear that the Earth as experienced a mild cooling effect. In the last 15 years there have been a couple of years far hotter than average, and these spike the calculated trend. For example, 1998 was much hotter than the years before or after it, so if you were just to compare 1998 with 2008, it would look like the Earth is cooling down. But who would be foolish enough to look at just two calendar years of the data record on which to base their argument ? The last 15 years have to be taken in context. In “Climate Change 2013 : The Physical Science Basis”, the IPCC report from Working Group 1, in the Summary for Policymakers, page 5, Section B1, the IPCC write :-
https://www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf
“In addition to robust multi-decadal warming, global mean surface temperature exhibits substantial decadal and interannual variability […] Due to natural variability, trends based on short records are very sensitive to the beginning and end dates and do not in general reflect long-term climate trends. As one example, the rate of warming over the past 15 years (1998–2012; 0.05 [–0.05 to 0.15] °C per decade), which begins with a strong El Niño, is smaller than the rate calculated since 1951 (1951–2012; 0.12 [0.08 to 0.14] °C per decade).” (El Niño is a prominent pattern of winds and ocean currents in the Pacific Ocean with two main states – one that tends to produce a warming effect on the Earth’s surface temperatures, and the other, La Niña, which has a general cooling effect.) ] In other words, in the last fifteen years, the range of rate of change of temperature is calculated to be somewhere between the surface of the planet cooling by 0.05 degrees Centigrade, up to warming by 0.15 degrees Centigrade :-
https://data.giss.nasa.gov/gistemp/graphs_v3/Fig.C.gif
https://www.climate4you.com/GlobalTemperatures.htm#Recent%20global%20satellite%20temperature
However, this calculation of a trend line does not take account of three things. First, in the last decade or so, the variability of individual years could mask a trend, but relative to the last 50 years, everything is clearly hotter on average. Secondly, temperature is not a “discrete” quantity, it is a continuous field of effect, and it is going to have different values depending on location and time. The temperature for any January to December is only going to be an average of averages. If you were to measure the year from March to February instead, the average of averages could look different, because of the natural variability. Thirdly, there are lots of causes for local and regional temperature variability, all concurrent, so it is not until some time after a set of measurements has been taken, and other sets of measurements have been done, that it is possible to determine that a substantial change has taken place. ]

And that margin of error, it must be said, is implausibly small. After all, calculating mean global temperature from the records of weather stations and maritime observations around the world, of varying quality, is a pretty heroic task in the first place. Not to mention the fact that there is a considerable difference between daytime and night-time temperatures. In any event, to produce a figure accurate to hundredths of a degree is palpably absurd.

[ joabbess.com : Nigel Lawson could be said to mislead in his explanation of what “a figure accurate to hundredths of a degree” implies. Temperature is measured on an arbitrarily decided scale. To raise the whole of the Earth surface temperatures by 1 degree Celsius requires a lot of extra trapped energy. The surface temperature of the Earth is increasing by the absorption of energy that amounts roughly to 2 trillion Hiroshima atombic bombs since 1998, or 4 Hiroshimas a second. That is not a small number, although it has to be seen in the full context of the energy flows in and out of the Earth system :-
https://www.skepticalscience.com/4-Hiroshima-bombs-per-second-widget-raise-awareness-global-warming.html
https://blogs.discovermagazine.com/imageo/2013/12/03/climate-bomb-redux/#.U2tlfaI-hrQ
Nigel Lawson credits the global temperature monitoring exercise as “heroic”, but then berates its quality. However, climate change scientists do already appreciate that there are differences between daytime and nighttime temperatures – it is called the diurnal range. Besides differences between years, it is known that there are also differences between seasons, and latitudes, and climatic zones. Scientists are not claiming an absolute single value for the temperature of the Earth, accurate to within hundredths of a degree – that’s why they always give a margin of error. What is astonishing from reviews of the data is something that Nigel Lawson has completely missed. Global warming appears to have fractal resolution – that is – at whatever geographical scale you resolve the data, the trend in most cases appears to be similar. If you take a look at some of the websites offering graphs, for example :-
https://www.rimfrost.no/
https://data.giss.nasa.gov/gistemp/station_data/
the global warming trend is seen to be generally similar when averaged locally, regionally or at the global scale. This is an indicator that the global warming signal is properly being detected, as these trend lines are more or less what you would expect from basic physics and chemistry – the more carbon dioxide in the air, the more heat gets trapped, and the rate of carbon dioxide accumulation in the atmosphere has seen similar trendlines :-
https://cdiac.esd.ornl.gov/trends/co2/recent_mauna_loa_co2.html ]

The lessons of the unpredicted 15-year global temperature standstill (or hiatus as the IPCC calls it) are clear. In the first place, the so-called Integrated Assessment Models which the climate science community uses to predict the global temperature increase which is likely to occur over the next 100 years are almost certainly mistaken, in that climate sensitivity is almost certainly significantly less than they once thought, and thus the models exaggerate the likely temperature rise over the next hundred years.

[ joabbess.com : I repeat : there is no pause. The IPCC are not claiming that global warming has stopped, only that there is an apparent “hiatus” in global surface temperature averages. Some scientists have concluded from their work that Climate Sensitivity is less than once feared. However, Climate Sensitivity is calculated for an immediate, once-only doubling of carbon dioxide in the atmosphere, whereas the reality is that carbon dioxide is continuing to build up in the atmosphere, and if emissions continue unabated, there could be a tripling or quadrupling of carbon dioxide concentrations in the atmosphere, which would mean that you would need to multiply the Climate Sensitivity by 1.5 or 2 to arrive at the final top temperature – higher than previously calculated, regardless of whether the expected Climate Sensitivity were to be less than previously calculated. It is therefore illogical for Nigel Lawson to extrapolate from his understanding that Climate Sensitivity is lower than previously calculated to his conclusion that the final level of global warming will be lower than previously calculated. The more carbon dioxide we emit, the worse it will be. ]

But the need for a rethink does not stop there. As the noted climate scientist Professor Judith Curry, chair of the School of Earth and Atmospheric Sciences at the Georgia Institute of Technology, recently observed in written testimony to the US Senate:
“Anthropogenic global warming is a proposed theory whose basic mechnism is well understood, but whose magnitude is highly uncertain. The growing evidence that climate models are too sensitive to CO2 has implications for the attribution of late-20th-century warming and projections of 21st-century climate. If the recent warming hiatus is caused by natural variability, then this raises the question as to what extent the warming between 1975 and 2000 can also be explained by natural climate variability.”

[ joabbess.com : The IPCC reports constitute the world’s best attempts to “rethink” Climate Change. Professor Judith Curry, in the quotation given by Nigel Lawson, undervalues a great deal of her colleagues’ work by dismissing their valid attribution of Climate Change to the burning of fossil fuels and the change in land use. ]

It is true that most members of the climate science establishment are reluctant to accept this, and argue that the missing heat has for the time being gone into the (very cold) ocean depths, only to be released later. This is, however, highly conjectural. Assessing the mean global temperature of the ocean depths is — unsurprisingly — even less reliable, by a long way, than the surface temperature record. And in any event most scientists reckon that it will take thousands of years for this “missing heat” to be released to the surface.

[ joabbess.com : That the oceans are warming is not conjecture – it is a statement based on data. The oceans have a far greater capacity for heat retention than the atmosphere, so yes, it will take a long time for heat in the oceans to re-emerge into the atmosphere. However, the processes that directed heat into the oceans rather than the atmosphere in recent years could easily reverse, and in a short space of time the atmosphere could heat up considerably. In making his arguments, Nigel Lawson omits to consider this eventuality, which lowers considerably the value of his conclusions. ]

In short, the CO2 effect on the earth’s temperature is probably less than was previously thought, and other things — that is, natural variability and possibly solar influences — are relatively more significant than has hitherto been assumed.

[ joabbess.com : Nothing about science has changed. The Earth system continues to accumulate heat and respond to that. Carbon dioxide still contributes to the Greenhouse Effect, and extra carbon dioxide in the air will cause further global warming. The Transient Climate Response to carbon dioxide is still apparently linear. The Equilibrium Climate Sensitivity is still calculated to be roughly what it always has been – but that’s only for a doubling of atmospheric carbon dioxide. If more methane is emitted as a result of Arctic warming, for example, or the rate of fossil fuel use increases, then the temperature increase of the Earth’s surface could be more than previously thought. Natural variability and solar changes are all considered in the IPCC reports, and all calculations and models take account of them. However, the obvious possibility presents itself – that the patterns of natural variability as experienced by the Earth during the last 800,000 years are themseles being changed. If Climate Change is happening so quickly as to affect natural variability, then the outcomes could be much more serious than anticipated. ]

But let us assume that the global temperature hiatus does, at some point, come to an end, and a modest degree of global warming resumes. How much does this matter?

The answer must be that it matters very little. There are plainly both advantages and disadvantages from a warmer temperature, and these will vary from region to region depending to some extent on the existing temperature in the region concerned. And it is helpful in this context that the climate scientists believe that the global warming they expect from increased atmospheric CO2 will be greatest in the cold polar regions and least in the warm tropical regions, and will be greater at night than in the day, and greater in winter than in summer. Be that as it may, studies have clearly shown that, overall, the warming that the climate models are now predicting for most of this century (I referred to these models earlier, and will come back to them later) is likely to do more good than harm.

[ joabbess.com : The claim that warming will “overall […] do more good than harm” is erroneous, according to Climate Change Science. ]

Global warming orthodoxy is not merely irrational. It is wicked.

[ joabbess.com : My conclusions upon reading this lecture are that the evidence suggests that Nigel Lawson’s position is ill-informed. He should read the IPCC reports and re-consider. ]

Categories
Academic Freedom Alchemical Assets not Liabilities Baseload is History Be Prepared Big Picture Carbon Recycling Change Management Corporate Pressure Demoticratica Design Matters Direction of Travel Economic Implosion Energy Autonomy Energy Calculation Energy Change Energy Insecurity Engineering Marvel Environmental Howzat Extreme Energy Fossilised Fuels Freemarketeering Fuel Poverty Gamechanger Gas Storage Green Gas Green Investment Green Power Major Shift National Power Optimistic Generation Paradigm Shapeshifter Peak Natural Gas Petrolheads Policy Warfare Political Nightmare Protest & Survive Realistic Models Regulatory Ultimatum Renewable Gas Renewable Resource Shale Game Social Democracy Solution City Technofix Technological Sideshow The Power of Intention The Right Chemistry The War on Error Unconventional Foul Unnatural Gas Western Hedge Wind of Fortune

All Kinds of Gas

Amongst the chink-clink of wine glasses at yesterday evening’s Open Cities Green Sky Thinking Max Fordham event, I find myself supping a high ball orange juice with an engineer who does energy retrofits – more precisely – heat retrofits. “Yeah. Drilling holes in Grade I Listed walls for the District Heating pipework is quite nervewracking, as you can imagine. When they said they wanted to put an energy centre deep underneath the building, I asked them, “Where are you going to put the flue ?””

Our attention turns to heat metering. We discuss cases we know of where people have installed metering underground on new developments and fitted them with Internet gateways and then found that as the rest of the buildings get completed, the meter can no longer speak to the world. The problems of radio-meets-thick-concrete and radio-in-a-steel-cage. We agree that anybody installing a remote wifi type communications system on metering should be obliged in the contract to re-commission it every year.

And then we move on to shale gas. “The United States of America could become fuel-independent within ten years”, says my correspondent. I fake yawn. It really is tragic how some people believe lies that big. “There’s no way that’s going to happen !”, I assert.

“Look,” I say, (jumping over the thorny question of Albertan syncrude, which is technically Canadian, not American), “The only reason there’s been strong growth in shale gas production is because there was a huge burst in shale gas drilling, and now it’s been shown to be uneconomic, the boom has busted. Even the Energy Information Administration is not predicting strong growth in shale gas. They’re looking at growth in coalbed methane, after some years. And the Arctic.” “The Arctic ?”, chimes in Party Number 3. “Yes,” I clarify, “Brought to you in association with Canada. Shale gas is a non-starter in Europe. I always think back to the USGS. They estimate that the total resource in the whole of Europe is a whole order of magnitude, that is, ten times smaller than it is in Northern America.” “And I should have thought you couldn’t have the same kind of drilling in Europe because of the population density ?”, chips in Party Number 3. “They’re going to be drilling a lot of empty holes,” I add, “the “sweet spot” problem means they’re only likely to have good production in a few areas. And I’m not a geologist, but there’s the stratigraphy and the kind of shale we have here – it’s just not the same as in the USA.” Parties Number 2 and 3 look vaguely amenable to this line of argument. “And the problems that we think we know about are not the real problems,” I out-on-a-limbed. “The shale gas drillers will probably give up on hydraulic fracturing of low density shale formations, which will appease the environmentalists, but then they will go for drilling coal lenses and seams inside and alongside the shales, where there’s potential for high volumes of free gas just waiting to pop out. And that could cause serious problems if the pressures are high – subsidence, and so on. Even then, I cannot see how production could be very high, and it’s going to take some time for it to come on-stream…” “…about 10 years,” says Party Number 2.

“Just think about who is going for shale gas in the UK,” I ventured, “Not the big boys. They’ve stood back and let the little guys come in to drill for shale gas. I mean, BP did a bunch of onshore seismic surveys in the 1950s, after which they went drilling offshore in the North Sea, so I think that says it all, really. They know there’s not much gas on land.” There were some raised eyebrows, as if to say, well, perhaps seismic surveys are better these days, but there was agreement that shale gas will come on slowly.

“I don’t think shale gas can contribute to energy security for at least a decade,” I claimed, “even if there’s anything really there. Shale gas is not going to answer the problems of the loss of nuclear generation, or the problems of gas-fired generation becoming uneconomic because of the strong growth in renewables.” There was a nodding of heads.

“I think,” I said, “We should forget subsidies. UK plc ought to purchase a couple of CCGTS [Combined Cycle Gas Turbine electricity generation units]. That will guarantee they stay running to load balance the power grid when we need them to. Although the UK’s Capacity Mechanism plan is in line with the European Union’s plans for supporting gas-fired generation, it’s not achieving anything yet.” I added that we needed to continue building as much wind power as possible, as it’s quick to put in place. I quite liked my radical little proposal for energy security, and the people I was talking with did not object.

There was some discussion about Green Party policy on the ownership of energy utilities, and how energy and transport networks are basically in the hands of the State, but then Party Number 2 said, “What we really need is consistency of policy. We need an Energy Bill that doesn’t get gutted by a change of administration. I might need to vote Conservative, because Labour would mess around with policy.” “I don’t know,” I said, “it’s going to get messed with whoever is in power. All those people at DECC working on the Electricity Market Reform – they all disappeared. Says something, doesn’t it ?”

I spoke to Parties Number 2 and 3 about my research into the potential for low carbon gas. “Basically, making gas as a kind of energy storage ?”, queried Party Number 2. I agreed, but omitted to tell him about Germany’s Power-to-Gas Strategy. We agreed that it would be at least a decade before much could come of these technologies, so it wouldn’t contribute immediately to energy security. “But then,” I said, “We have to look at the other end of this transition, and how the big gas producers are going to move towards Renewable Gas. They could be making decisions now that make more of the gas they get out of the ground. They have all the know-how to build kit to make use of the carbon dioxide that is often present in sour conventional reserves, and turn it into fuel, by reacting it with Renewable Hydrogen. If they did that, they could be building sustainability into their business models, as they could transition to making Renewable Gas as the Natural Gas runs down.”

I asked Parties Number 2 and 3 who they thought would be the first movers on Renewable Gas. We agreed that companies such as GE, Siemens, Alstom, the big engineering groups, who are building gas turbines that are tolerant to a mix of gases, are in prime position to develop closed-loop Renewable Gas systems for power generation – recycling the carbon dioxide. But it will probably take the influence of the shareholders of companies like BP, who will be arguing for evidence that BP are not going to go out of business owing to fossil fuel depletion, to roll out Renewable Gas widely. “We’ve all got our pensions invested in them”, admitted Party Number 2, arguing for BP to gain the ability to sustain itself as well as the planet.

Categories
Academic Freedom Alchemical Artistic Licence Baseload is History Be Prepared Behaviour Changeling Big Number Big Picture Big Society Bioeffigy Biofools Biomess British Biogas Burning Money Carbon Army Change Management Climate Change Cool Poverty Cost Effective Deal Breakers Design Matters Efficiency is King Electrificandum Emissions Impossible Energy Change Energy Insecurity Fossilised Fuels Fuel Poverty Gamechanger Global Heating Green Gas Green Power Heatwave Human Nurture Hydrogen Economy Insulation Major Shift National Energy Nudge & Budge Optimistic Generation Paradigm Shapeshifter Peak Emissions Policy Warfare Political Nightmare Realistic Models Regulatory Ultimatum Renewable Gas Renewable Resource Social Capital Solution City Technofix The Data The Power of Intention The Right Chemistry Voluntary Behaviour Change Wasted Resource Wind of Fortune

David MacKay : Heating London

I took some notes from remarks made by Professor David MacKay, the UK Government’s Chief Scientific Advisor, yesterday, 1st May 2014, at an event entitled “How Will We Heat London ?”, held by Max Fordhams as part of the Green Sky Thinking, Open City week. I don’t claim to have recorded his words perfectly, but I hope I’ve captured the gist.


[David MacKay] : [Agreeing with others on the panel – energy] demand reduction is really important. [We have to compensate for the] “rebound effect”, though [where people start spending money on new energy services if they reduce their demand for their current energy services].

SAP is an inaccurate tool and not suitable for the uses we put it too :-
https://www.eden.gov.uk/planning-and-development/building-control/building-control-guidance-notes/sap-calculations-explained/
https://www.dimplex.co.uk/products/renewable_solutions/building_regulations_part_l.htm

Things seem to be under-performing [for example, Combined Heat and Power and District Heating schemes]. It would be great to have data. A need for engineering expertise to get in.

I’m not a Chartered Engineer, but I’m able to talk to engineers. I know a kilowatt from a kilowatt hour [ (Laughter from the room) ]. We’ve [squeezed] a number of engineers into DECC [the Department of Energy and Climate Change].

I’m an advocate of Heat Pumps, but the data [we have received from demonstration projects] didn’t look very good. We hired two engineers and asked them to do the forensic analysis. The heat pumps were fine, but the systems were being wrongly installed or used.

Now we have a Heat Network team in DECC – led by an engineer. We’ve published a Heat Strategy. I got to write the first three pages and included an exergy graph.

[I say to colleagues] please don’t confuse electricity with energy – heat is different. We need not just a green fluffy solution, not just roll out CHP [Combined Heat and Power] [without guidance on design and operation].

Sources of optimism ? Hopefully some of the examples will be available – but they’re not in the shop at the moment.

For example, the SunUp Heat Battery – works by having a series of chambers of Phase Change Materials, about the size of a fridge that you would use to store heat, made by electricity during the day, for use at night, and meet the demand of one home. [Comment from Paul Clegg, Senior Partner at Feilden Clegg Bradley Studios : I first heard about Phase Change Materials back in the 1940s ? 1950s ? And nothing’s come of it yet. ] Why is that a good idea ? Well, if you have a heat pump and a good control system, you can use electricity when it’s cheapest… This is being trialled in 10 homes.

Micro-CHP – [of those already trialled] definitely some are hopeless, with low temperature and low electricity production they are just glorified boilers with a figleaf of power.

Maybe Fuel Cells are going to deliver – power at 50% efficiency [of conversion] – maybe we’ll see a Fuel Cell Micro-Combined Heat and Power unit ?

Maybe there will be hybrid systems – like the combination of a heat pump and a gas boiler – with suitable controls could lop off peaks of demand (both in power and gas).

We have designed the 2050 Pathways Calculator as a tool in DECC. It was to see how to meet the Carbon Budget. You can use it as an energy security calculator if you want. We have helped China, Korea and others to write their own calculators.

A lot of people think CHP is green and fluffy as it is decentralised, but if you’re using Natural Gas, that’s still a Fossil Fuel. If you want to run CHP on biomass, you will need laaaaaarge amounts of land. You can’t make it all add up with CHP. You would need many Wales’-worth of bioenergy or similar ways to make it work.

Maybe we should carry on using boilers and power with low carbon gas – perhaps with electrolysis [A “yay !” from the audience. Well, me, actually]. Hydrogen – the the 2050 Calculator there is no way to put it back into the beginning of the diagram – but it could provide low carbon heat, industry and transport. At the moment we can only put Hydrogen into Transport [in the 2050 Calculator. If we had staff in DECC to do that… It’s Open Source, so if any of you would like to volunteer…

Plan A of DECC was to convert the UK to using lots of electricity [from nuclear power and other low carbon technologies, to move to a low carbon economy], using heat pumps at the consumer end, but there’s a problem in winter [Bill Watts of Max Fordham had already shown a National Grid or Ofgem chart of electricity demand and gas demand over the year, day by day. Electricity demand (in blue) fluctuates a little, but it pretty regular over the year. Gas demand (in red) however, fluctuates a lot, and is perhaps 6 to 10 times larger in winter than in summer.]

If [you abandon Plan A – “electrification of everything”] and do it the other way, you will need a large amount of Hydrogen, and a large Hydrogen store. Electrolysers are expensive, but we are doing/have done a feasibility study with ITM Power – to show the cost of electrolysers versus the cost of your wind turbines [My comment : but you’re going to need your wind turbines to run your electrolysers with their “spare” or “curtailed” kilowatt hours.]

[David Mackay, in questions from the floor] We can glue together [some elements]. Maybe the coming smart controls will help…can help save a load of energy. PassivSystems – control such things as your return temperature [in your Communal or District Heating]…instead of suing your heat provider [a reference to James Gallagher who has problems with his communal heating system at Parkside SE10], maybe you could use smart controls…

[Question] Isn’t using smart controls like putting a Pirelli tyre on a Ford Cortina ? Legacy of poor CHP/DH systems…

[David MacKay in response to the question of insulation] If insulation were enormously expensve, we wouldn’t have to be so enthusastic about it…We need a well-targeted research programme looking at deep retrofitting, instead of letting it all [heat] out.

[Adrian Gault, Committee on Climate Change] We need an effective Government programme to deliver that. Don’t have it in the Green Deal. We did have it [in the previous programmes of CERT and CESP], but since they were cancelled in favour of the Green Deal, it’s gone off a cliff [levels of insulation installations]. We would like to see an initiative on low cost insulation expanded. The Green Deal is not producing a response.

[Bill Watts, Max Fordham] Agree that energy efficiency won’t run on its own. But it’s difficult to do. Not talking about automatons/automation. Need a lot of pressure on this.

[Adrian Gault] Maybe a street-by-street approach…

[Michael Trousdell, Arup] Maybe a rule like you can’t sell a house unless you’ve had the insulation done…

[Peter Clegg] … We can do heat recovery – scavenging the heat from power stations, but we must also de-carbonise the energy supply – this is a key part of the jigsaw.

Categories
Academic Freedom Assets not Liabilities Be Prepared Big Number Big Picture British Biogas Carbon Commodities Change Management Corporate Pressure Demoticratica Design Matters Disturbing Trends Energy Autonomy Energy Change Energy Crunch Energy Denial Energy Insecurity Energy Revival Engineering Marvel Fossilised Fuels Fuel Poverty Gamechanger Gas Storage Green Gas Green Investment Green Power Growth Paradigm Hide the Incline Hydrocarbon Hegemony Hydrogen Economy Insulation Major Shift Marine Gas Methane Management Money Sings National Energy Paradigm Shapeshifter Peak Natural Gas Realistic Models Regulatory Ultimatum Renewable Gas Renewable Resource Resource Curse Resource Wards Shale Game Solution City Technofix Technological Sideshow The Power of Intention The Price of Gas The Right Chemistry Unconventional Foul Unnatural Gas Western Hedge

Fiefdom of Information

Sigh. I think I’m going to need to start sending out Freedom of Information requests… Several cups of tea later…


To: Information Rights Unit, Department for Business, Innovation & Skills, 5th Floor, Victoria 3, 1 Victoria Street, London SW1H OET

28th April 2014

Request to the Department of Energy and Climate Change

Re: Policy and Strategy for North Sea Natural Gas Fields Depletion

Dear Madam / Sir,

I researching the history of the development of the gas industry in the United Kingdom, and some of the parallel evolution of the industry in the United States of America and mainland Europe.

In looking at the period of the mid- to late- 1960s, and the British decision to transition from manufactured gas to Natural Gas supplies, I have been able to answer some of my questions, but not all of them, so far.

From a variety of sources, I have been able to determine that there were contingency plans to provide substitutes for Natural Gas, either to solve technical problems in the grid conversion away from town gas, or to compensate should North Sea Natural Gas production growth be sluggish, or demand growth higher than anticipated.

Technologies included the enriching of “lean” hydrogen-rich synthesis gas (reformed from a range of light hydrocarbons, by-products of the petroleum refining industry); Synthetic Natural Gas (SNG) and methane-“rich” gas making processes; and simple mixtures of light hydrocarbons with air.

In the National Archives Cmd/Cmnd/Command document 3438 “Fuel Policy. Presented to Parliament by the Minister of Power Nov 1967”, I found discussion on how North Sea gas fields could best be exploited, and about expected depletion rates, and that this could promote further exploration and discovery.

In a range of books and papers of the time, I have found some discussion about options to increase imports of Natural Gas, either by the shipping of Liquified Natural Gas (LNG) or by pipeline from The Netherlands.

Current British policy in respect of Natural Gas supplies appears to rest on “pipeline diplomacy”, ensuring imports through continued co-operation with partner supplier countries and international organisations.

I remain unclear about what official technological or structural strategy may exist to bridge the gap between depleting North Sea Natural Gas supplies and continued strong demand, in the event of failure of this policy.

It is clear from my research into early gas field development that depletion is inevitable, and that although some production can be restored with various techniques, that eventually wells become uneconomic, no matter what the size of the original gas field.

To my mind, it seems unthinkable that the depletion of the North Sea gas fields was unanticipated, and yet I have yet to find comprehensive policy statements that cover this eventuality and answer its needs.

Under the Freedom of Information Act (2000), I am requesting information to answer the following questions :-

1.   At the time of European exploration for Natural Gas in the period 1948 to 1965, and the British conversion from manufactured gas to Natural Gas, in the period 1966 to 1977, what was HM Government’s policy to compensate for the eventual depletion of the North Sea gas fields ?

2.   What negotiations and agreements were made between HM Government and the nationalised gas industry between 1948 and 1986; and between HM Government and the privatised gas industry between 1986 and today regarding the projections of decline in gas production from the UK Continental Shelf, and any compensating strategy, such as the development of unconventional gas resources, such as shale gas ?

3.   Is there any policy or strategy to restore the SNG (Synthetic Natural Gas) production capacity of the UK in the event of a longstanding crisis emerging, for example from a sharp rise in imported Natural Gas costs or geopolitical upheaval ?

4.   Has HM Government any plan to acquire the Intellectual Property rights to SNG production technology, whether from British Gas/Centrica or any other private enterprise, especially for the slagging version of the Lurgi gasifier technology ?

5.   Has HM Government any stated policy intention to launch new research and development into, or pilot demonstrations of, SNG ?

6.   Does HM Government have any clearly-defined policy on the production and use of manufactured gas of any type ? If so, please can I know references for the documents ?

7.   Does HM Government anticipate that manufactured gas production could need to increase in order to support the production of synthetic liquid vehicle fuels; and if so, which technologies are to be considered ?

Thank you for your attention to my request for information.

Regards,

jo.

Categories
Academic Freedom Assets not Liabilities Be Prepared Big Society Change Management Conflict of Interest Corporate Pressure Dreamworld Economics Economic Implosion Emissions Impossible Energy Crunch Energy Denial Energy Revival Engineering Marvel Extreme Energy Fossilised Fuels Fuel Poverty Gamechanger Human Nurture Hydrocarbon Hegemony Libertarian Liberalism Mad Mad World Mass Propaganda Money Sings Nudge & Budge Oil Change Optimistic Generation Orwells Paradigm Shapeshifter Peak Coal Peak Energy Peak Natural Gas Peak Oil Petrolheads Policy Warfare Political Nightmare Pure Hollywood Realistic Models Resource Curse Shale Game Social Change Tarred Sands Technofix The Right Chemistry The Science of Communitagion Unconventional Foul Ungreen Development Vain Hope Wasted Resource Western Hedge

Peak Oil : Kitchen Burlesque

An engineering buddy and I find ourselves in my kitchen, reading out loud from Jeremy Leggett’s 2013 book “The Energy of Nations : Risk Blindness and the Road to Renaissance”. The main topic of the work, I feel, is the failure of the energy sector and the political elites to develop a realistic plan for the future, and their blinkered adherence to clever arguments taken from failing and cracked narratives – such as the belief that unconventional fossil fuels, such as tar sands, can make up for declining conventional oil and gas production. It’s also about compromise of the highest order in the most influential ranks. The vignettes recalling conversations with the high and mighty are pure comedy.

“It’s very dramatic…”

“You can imagine it being taken to the West End theatres…”

“We should ask Ben Elton to take a look – adapt it for the stage…”

“It should really have costumes. Period costumes…Racy costumes…”

“Vaudeville ?”

“No…burlesque ! Imagine the ex-CEO of BP, John Browne, in a frou-frou tutu, slipping a lacy silk strap from his shoulder…What a Lord !”

“Do you think Jeremy Leggett would look good in a bodice ?”

Categories
Academic Freedom Alchemical Behaviour Changeling Big Picture British Biogas Carbon Capture Carbon Commodities Carbon Pricing Carbon Recycling Carbon Taxatious Change Management Climate Change Conflict of Interest Corporate Pressure Cost Effective Dead End Design Matters Direction of Travel Dreamworld Economics Efficiency is King Emissions Impossible Energy Change Energy Crunch Energy Denial Energy Insecurity Geogingerneering Green Gas Green Investment Green Power Human Nurture Hydrocarbon Hegemony Insulation Low Carbon Life Major Shift Money Sings National Power Nuclear Nuisance Nuclear Shambles Paradigm Shapeshifter Policy Warfare Political Nightmare Price Control Realistic Models Regulatory Ultimatum Renewable Gas Resource Curse Resource Wards Science Rules Solution City Technofix Technological Sideshow The Myth of Innovation The Power of Intention Utter Futility Vain Hope Wasted Resource Western Hedge

On Having to Start Somewhere

In the last few weeks I have heard a lot of noble but futile hopes on the subject of carbon dioxide emissions control.

People always seem to want to project too far into the future and lay out their wonder solution – something that is just too advanced enough to be attainable through any of the means we currently have at our disposal. It is impossible to imagine how the gulf can be bridged between the configuration of things today and their chosen future solutions.

Naive civil servants strongly believe in a massive programme of new nuclear power. Head-in-the-clouds climate change consultants and engineers who should know otherwise believe in widespread Carbon Capture and Storage or CCS. MBA students believe in carbon pricing, with carbon trading, or a flat carbon tax. Social engineers believe in significant reductions in energy intensity and energy consumer behaviour change, and economists believe in huge cost reductions for all forms of renewable electricity generation.

To make any progress at all, we need to start where we are. Our economic system has strong emissions-dependent components that can easily be projected to fight off contenders. The thing is, you can’t take a whole layer of bricks out of a Jenga stack without severe degradation of its stability. You need to work with the stack as it is, with all the balances and stresses that already exist. It is too hard to attempt to change everything at once, and the glowing ethereal light of the future is just too ghostly to snatch a hold of without a firm grasp on an appropriate practical rather than spiritual guide.

Here’s part of an email exchange in which I strive for pragmatism in the face of what I perceive as a lack of realism.


To: Jo

I read your article with interest. You have focused on energy, whereas I
tend to focus on total resource. CCS does make sense and should be pushed
forward with real drive as existing power stations can be cleaned up with it
and enjoy a much longer life. Establishing CCS is cheaper than building new
nuclear and uses far less resources. Furthermore, CCS should be used on new
gas and biomass plants in the future.

What we are lacking at the moment is any politician with vision in this
space. Through a combination of boiler upgrades, insulation, appliance
upgrades and behaviour change, it is straight forward to halve domestic
energy use. Businesses are starting to make real headway with energy
savings. We can therefore maintain a current total energy demand for the
foreseeable future.

To service this demand, we should continue to eke out every last effective
joule from the current generating stock by adding cleansing kit to the dirty
performers. While this is being done, we can continue to develop renewable
energy and localised systems which can help to reduce the base load
requirement even further.

From an operational perspective, CCS has stagnated over the last 8 years, so
a test plant needs to be put in place as soon as possible.

The biggest issue for me is that, through political meddling and the
unintended consequences of ill-thought out subsidies, the market has been
skewed in such a way that the probability of a black-out next year is very
high indeed.

Green gas is invisible in many people’s thinking, but the latest House of
Lords Report highlighted its potential.

Vested interests are winning hands down in the stand-off with the big
picture!


From: Jo

What is the title of the House of Lords report to which you refer ?

Sadly, I am old enough to remember Carbon Capture and Storage (CCS)
the first time the notion went around the block, so I’d say that
progress has been thin for 30 years rather than 8.

Original proposals for CCS included sequestration at the bottom of the
ocean, which have only recently been ruled out as the study of global
ocean circulation has discovered more complex looping of deep and
shallower waters that originally modelled – the carbon dioxide would
come back up to the surface waters eventually…

The only way, I believe, that CCS can be made to work is by creating a
value stream from the actual carbon dioxide, and I don’t mean Enhanced
Oil Recovery (EOR).

And I also definitely do not mean carbon dioxide emissions pricing,
taxation or credit trading. The forces against an
investment-influencing carbon price are strong, if you analyse the
games going on in the various economic system components. I do not
believe that a strong carbon price can be asserted when major economic
components are locked into carbon – such as the major energy producers
and suppliers, and some parts of industry, and transport.

Also, carbon pricing is designed to be cost-efficient, as markets will
always find the lowest marginal pricing for any externality in fines
or charges – which is essentially what carbon dioxide emissions are.
The EU Emissions Trading Scheme was bound to deliver a low carbon
price – that’s exactly what the economists predicted in modelling
carbon pricing.

I cannot see that a carbon price could be imposed that was more than
5% of the base commodity trade price. At those levels, the carbon
price is just an irritation to pass on to end consumers.

The main problem is that charging for emissions does not alter
investment decisions. Just like fines for pollution do not change the
risks for future pollution. I think that we should stop believing in
negative charging and start backing positive investment in the energy
transition.

You write “You have focused on energy, whereas I tend to focus on
total resource.” I assume you mean the infrastructure and trading
systems. My understanding leads me to expect that in the current
continuing economic stress, solutions to the energy crisis will indeed
need to re-use existing plant and infrastructure, which is why I
think that Renewable Gas is a viable option for decarbonising total
energy supply – it slots right in to substitute for Natural Gas.

My way to “eke out every last effective joule from the current
generating stock” is to clean up the fuel, rather than battle
thermodynamics and capture the carbon dioxide that comes out the back
end. Although I also recommend carbon recycling to reduce the need for
input feedstock.

I completely agree that energy efficiency – cutting energy demand
through insulation and so on – is essential. But there needs to be a
fundamental change in the way that profits are made in the energy
sector before this will happen in a significant way. Currently it
remains in the best interests of energy production and supply
companies to produce and supply as much energy as they can, as they
have a duty to their shareholders to return a profit through high
sales of their primary products.

“Vested interests” have every right under legally-binding trade
agreements to maximise their profits through the highest possible
sales in a market that is virtually a monopoly. I don’t think this can
be challenged, not even by climate change science. I think the way
forward is to change the commodities upon which the energy sector
thrives. If products from the energy sector include insulation and
other kinds of efficiency, and if the energy sector companies can
continue to make sales of these products, then they can reasonably be
expected to sell less energy. I’m suggesting that energy reduction
services need to have a lease component.

Although Alistair Buchanan formerly of Ofgem is right about the
electricity generation margins slipping really low in the next few
winters, there are STOR contracts that National Grid have been working
on, which should keep the lights on, unless Russia turn off the gas
taps, which is something nobody can do anything much about – not BP,
nor our diplomatic corps, the GECF (the gas OPEC), nor the WTO.


Categories
Academic Freedom Alchemical Assets not Liabilities British Biogas Carbon Capture Carbon Commodities Carbon Pricing Carbon Recycling Carbon Taxatious Corporate Pressure Cost Effective Design Matters Direction of Travel Dreamworld Economics Efficiency is King Emissions Impossible Energy Revival Engineering Marvel Fossilised Fuels Gamechanger Gas Storage Geogingerneering Green Investment Hydrocarbon Hegemony Low Carbon Life National Energy National Power Nudge & Budge Paradigm Shapeshifter Peak Emissions Price Control Realistic Models Regulatory Ultimatum Renewable Gas

The General Lightness of Carbon Pricing

I was at a very interesting meeting this morning, entitled “Next Steps for Carbon Capture and Storage in the UK”, hosted by the Westminster Energy, Environment and Transport Forum :-

https://www.westminsterforumprojects.co.uk/forums/event.php?eid=713
https://www.westminsterforumprojects.co.uk/forums/agenda/CCS-2014-agenda.pdf

During the proceedings, there were liberal doses of hints at that the Chancellor of the Exchequer is about to freeze the Carbon Price Floor – the central functioning carbon pricing policy in the UK (since the EU Emissions Trading Scheme “isn’t working”).

All of the more expensive low carbon energy technologies rely on a progressively heavier price for carbon emissions to make their solutions more attractive.

Where does this leave the prospects for Carbon Capture and Storage in the 2030s ? Initial technology-launching subsidies will have been dropped, and the Contracts for Difference will have been ground down into obscurity. So how will CCS keep afloat ? It’s always going to remain more expensive than other technology options to prevent atmospheric carbon dioxide emissions, so it needs some prop.

What CCS needs is some Added Value. It will come partly from EOR – Enhanced Oil Recovery, as pumping carbon dioxide down depleting oil and gas fields will help stimulate a few percent of extra production.

But what will really make the difference is using carbon dioxide to make new fuel. That’s the wonder of Renewable Gas – it will be able to provide a valued product for capturing carbon dioxide.

This wasn’t talked about this morning. The paradigm is still “filter out the CO2 and flush it down a hole”. But it won’t stay that way forever. Sooner or later, somebody’s going to start mining carbon dioxide from CCS projects to make new chemicals and gas fuels. Then, who cares if there’s negative charging for emissions ? Or at what price ? The return on investment in carbon capture will simply bypass assumptions about needing to create a carbon market or set a carbon tax.

Categories
Academic Freedom Assets not Liabilities Baseload is History Carbon Capture Carbon Commodities Carbon Recycling Climate Change Climate Damages Corporate Pressure Design Matters Energy Crunch Energy Insecurity Energy Revival Engineering Marvel Feel Gooder Gamechanger Gas Storage Geogingerneering Green Power Hydrogen Economy Low Carbon Life Major Shift Marine Gas Marvellous Wonderful Methane Management Military Invention National Energy Nuclear Nuisance Nuclear Shambles Optimistic Generation Paradigm Shapeshifter Peak Natural Gas Realistic Models Renewable Gas Renewable Resource Solar Sunrise Solution City Stirring Stuff Technofix The Power of Intention The Price of Gas The Right Chemistry Transport of Delight Unconventional Foul Wasted Resource Western Hedge Wind of Fortune Zero Net

Gain in Transmission #2

Here is further email exchange with Professor Richard Sears, following on from a previous web log post.


From: Richard A. Sears
Date: 24 February 2014
To: Jo Abbess
Subject: Question from your TED talk

Jo,

I was looking back over older emails and saw that I had never responded to your note. It arrived as I was headed to MIT to teach for a week and then it got lost. Sorry about that.

Some interesting questions. I don’t know anybody working specifically on wind power to gas options. At one time Shell had a project in Iceland using geothermal to make hydrogen. Don’t know what its status is but if you search on hydrogen and Iceland on the Shell website I’m sure there’s something. If the Germans have power to gas as a real policy option I’d poke around the web for information on who their research partners are for this.

Here are a couple of high level thoughts. Not to discourage you because real progress comes from asking new questions, but there are some physical fundamentals that are important.

Direct air capture of anything using current technology is prohibitively expensive to do at scale for energy. More energy will be expended in capture and synthesis than the fuels would yield.

Gaseous fuels are problematic on their own. Gas doesn’t travel well and is difficult to contain at high energy densities as that means compressing or liquefying it. That doesn’t make anything impossible, but it raises many questions about infrastructure and energy balance. If we take the energy content of a barrel of oil as 1.0, then a barrel of liquefied natural gas is about 0.6, compressed natural gas which is typically at about 3600psi is around 0.3, and a barrel (as a measure of volume equal to 42 US gallons) of natural gas at room temperature and pressure is about 0.0015 (+/-). Also there’s a real challenge in storing and transporting gasses as fuel at scale, particularly motor fuel to replace gasoline and diesel.

While there is some spare wind power potential that doesn’t get utilized because of how the grid must be managed, I expect it is a modest amount of energy compared to what we use today in liquid fuels. I think what that means is that while possible, it’s more likely to happen in niche local markets and applications rather than at national or global scales.

If you haven’t seen it, a nice reference on the potential of various forms of sustainable energy is available free and online here. https://www.withouthotair.com/

Hope some of this helps.

Rich

Richard A. Sears
Consulting Professor
Department of Energy Resources Engineering
Stanford University


From: Jo Abbess
Date: 24 February 2014
To: Richard A. Sears

Dear Richard,

Many thanks for getting back to me. Responses are nice – even if they
are months late. As they say – better late than never, although with
climate change, late action will definitely be unwise, according to an
increasing number of people.

I have indeed seen the website, and bought and spilled coffee on the
book of Professor David MacKay’s “Sustainable Energy Without The Hot
Air” project. It is legendary. However, I have checked and he has only
covered alternative gas in a couple of paragraphs – in notes. By
contrast, he spent a long chapter discussing how to filter uranium out
of seawater and other nuclear pursuits.

Yet as a colleague of mine, who knows David better than I do, said to
me this morning, his fascination with nuclear power is rather naive,
and his belief in the success of Generation III and Generation IV
lacks evidence. Plus, if we get several large carbon dioxide
sequestration projects working in the UK – Carbon Capture and Storage
(CCS) – such as the Drax pipeline (which other companies will also
join) and the Shell Peterhead demonstration, announced today, then we
won’t need new nuclear power to meet our 4th Carbon Budget – and maybe
not even the 5th, either (to be negotiated in 2016, I hear) :-

https://www.heraldscotland.com/politics/referendum-news/peterhead-confirmed-for-carbon-capture-sitebut-its-not-a-bribe-says-ed-dave.1393232825

We don’t need to bury this carbon, however; we just need to recycle
it. And the number of ways to make Renewable Hydrogen, and
energy-efficiently methanate carbon monoxide and carbon dioxide with
hydrogen, is increasing. People are already making calculations on how
much “curtailed” or spare wind power is likely to be available for
making gas in 10 years’ time, and if solar power in the UK is
cranked/ramped up, then there will be lots of juicy cost-free power
ours for the taking – especially during summer nights.

Direct Air Capture of carbon dioxide is a nonsensical proposition.
Besides being wrong in terms of the arrow of entropy, it also has the
knock-on effect of causing carbon dioxide to come back out of the
ocean to re-equilibrate. I recently read a paper by climate scientists
that estimated that whatever carbon dioxide you take out of the air,
you will need to do almost all of it again.

Instead of uranium, we should be harvesting carbon dioxide from the
oceans, and using it to make gaseous and liquid fuels.

Gaseous fuels and electricity complement each other very well –
particularly in storage and grid balancing terms – there are many
provisions for the twins of gas and power in standards, laws, policies
and elsewhere. Regardless of the limitations of gas, there is a huge
infrastructure already in place that can store, pipe and use it, plus
it is multi-functional – you can make power, heat, other fuels and
chemicals from gas. In addition, you can make gas from a range of
resources and feedstocks and processing streams – the key quartet of
chemical gas species keep turning up : hydrogen, methane, carbon
monoxide and carbon dioxide – whether you are looking at the exhaust
from combustion, Natural Gas, industrial furnace producer gas,
biological decomposition, just about everywhere – the same four gases.

Energy transition must include large amounts of renewable electricity
– because wind and solar power are quick to build yet long nuclear
power lead times might get extended in poor economic conditions. The
sun does not always shine and the wind does not always blow (and the
tide is not always in high flux). Since demand profiles will never be
able to match supply profiles exactly, there will always be spare
power capacity that grids cannot use. So Power to Gas becomes the
optimal solution. At least until there are ways to produce Renewable
Hydrogen at plants that use process heat from other parts of the
Renewable Gas toolkit. So the aims are to recycle carbon dioxide from
gas combustion to make more gas, and recycle gas production process
heat to make hydrogen to use in the gas production process, and make
the whole lot as thermally balanced as possible. Yes. We can do that.
Lower the inputs of fresh carbon of any form, and lower the energy
requirements to make manufactured gas.

I met somebody working with Jacobs who was involved in the Carbon
Recycling project in Iceland. Intriguing, but an order of magnitude
smaller than I think is possible.

ITM Power in the UK are doing a Hydrogen-to-gas-grid and methanation
project in Germany with one of the regions. They have done several
projects with Kiwa and Shell on gas options in Europe. I know of the
existence of feasibility reports on the production of synthetic
methane, but I have not had the opportunity to read them yet…

I feel quite encouraged that Renewable Gas is already happening. It’s
a bit patchy, but it’s inevitable, because the narrative of
unconventional fossil fuels has many flaws. I have been looking at
issues with reserves growth and unconventionals are not really
commensurate with conventional resources. There may be a lot of shale
gas in the ground, but getting it out could be a long process, so
production volumes might never be very good. In the USA you’ve had
lots of shale gas – but that’s only been supported by massive drilling
programmes – is this sustainable ?

BP have just finished building lots of dollars of kit at Whiting to
process sour Natural Gas. If they had installed Renewable Gas kit
instead of the usual acid gas and sulfur processing, they could have
been preparing for the future. As I understand it, it is possible to
methanate carbon dioxide without first removing it from the rest of
the gas it comes in – so methanating sour gas to uprate it is a viable
option as far as I can see. The hydrogen sulfide would still need to
be washed out, but the carbon dioxide needn’t be wasted – it can be
made part of the fuel. And when the sour gas eventually thins out,
those now methanating sour gas can instead start manufacturing gas
from low carbon emissions feedstocks and recycled carbon.

I’m thinking very big.

Regards,

jo.

Categories
Academic Freedom Assets not Liabilities Be Prepared Big Picture British Biogas Carbon Capture Carbon Commodities Carbon Pricing Carbon Taxatious Change Management Climate Change Corporate Pressure Cost Effective Design Matters Direction of Travel Energy Autonomy Energy Change Energy Insecurity Energy Revival Environmental Howzat Extreme Energy Extreme Weather Fossilised Fuels Fuel Poverty Gamechanger Green Investment Hydrocarbon Hegemony Low Carbon Life Major Shift National Energy Nudge & Budge Optimistic Generation Orwells Paradigm Shapeshifter Peak Emissions Peak Energy Peak Natural Gas Peak Oil Price Control Public Relations Pure Hollywood Realistic Models Renewable Gas Renewable Resource Resource Wards Shale Game Solution City Sustainable Deferment Technofix Technological Sideshow The Price of Gas The Price of Oil Unconventional Foul Unnatural Gas Wasted Resource Western Hedge

In Confab : Paul Elsner

Dr Paul Elsner of Birkbeck College at the University of London gave up some of his valuable time for me today at his little bijou garret-style office in Bloomsbury in Central London, with an excellent, redeeming view of the British Telecom Tower. Leader of the Energy and Climate Change module on Birkbeck’s Climate Change Management programme, he offered me tea and topical information on Renewable Energy, and some advice on discipline in authorship.

He unpacked the recent whirlwind of optimism surrounding the exploitation of Shale Gas and Shale Oil, and how Climate Change policy is perhaps taking a step back. He said that we have to accept that this is the way the world is at the moment.

I indicated that I don’t have much confidence in the “Shale Bubble”. I consider it mostly as a public relations exercise – and that there are special conditions in the United States of America where all this propaganda comes from. I said that there are several factors that mean the progress with low carbon fuels continues to be essential, and that Renewable Gas is likely to be key.

1. First of all, the major energy companies, the oil and gas companies, are not in a healthy financial state to make huge investment. For example, BP has just had the legal ruling that there will be no limit to the amount of compensation claims they will have to face over the Deepwater Horizon disaster. Royal Dutch Shell meanwhile has just had a serious quarterly profit warning – and if that is mostly due to constrained sales (“Peak Oil Demand”) because of economic collapse, that doesn’t help them with the kind of aggressive “discovery” they need to continue with to keep up their Reserves to Production ratio (the amount of proven resources they have on their books). These are not the only problems being faced in the industry. This problem with future anticipated capitalisation means that Big Oil and Gas cannot possibly look at major transitions into Renewable Electricity, so it would be pointless to ask, or try to construct a Carbon Market to force it to happen.

2. Secondly, despite claims of large reserves of Shale Gas and Shale Oil, ripe for the exploitation of, even major bodies are not anticipating that Peak Oil and Peak Natural Gas will be delayed by many years by the “Shale Gale”. The reservoir characteristics of unconventional fossil fuel fields do not mature in the same way as conventional ones. This means that depletion scenarios for fossil fuels are still as relevant to consider as the decades prior to horizontal drilling and hydraulic fracturing (“fracking”).

3. Thirdly, the reservoir characteristics of conventional fossil fuel fields yet to exploit, especially in terms of chemical composition, are drifting towards increasingly “sour” conditions – with sigificant levels of hydrogen sulfide and carbon dioxide in them. The sulphur must be removed for a variety of reasons, but the carbon dioxide remains an issue. The answer until recently from policy people would have been Carbon Capture and Storage or CCS. Carbon dioxide should be washed from acid Natural Gas and sequestered under the ocean in salt caverns that previously held fossil hydrocarbons. It was hoped that Carbon Markets and other forms of carbon pricing would have assisted with the payment for CCS. However, recently there has been reduced confidence that this will be significant.

Renewable Gas is an answer to all three of these issues. It can easily be pursued by the big players in the current energy provision system, with far less investment than wholesale change would demand. It can address concerns of gas resource depletion at a global scale, the onset of which could occur within 20 to 25 years. And it can be deployed to bring poor conventional fossil fuels into consideration for exploitation in the current time – answering regional gas resource depletion.

Outside, daffodils were blooming in Tavistock Square. In January, yes. The “freaky” weather continues…

Categories
Acid Ocean Assets not Liabilities Baseload is History Be Prepared Big Number Big Picture Biofools British Biogas British Sea Power Carbon Capture Carbon Recycling China Syndrome Climate Change Climate Chaos Climate Damages Coal Hell Design Matters Direction of Travel Disturbing Trends Efficiency is King Electrificandum Energy Autonomy Energy Calculation Energy Crunch Energy Denial Energy Insecurity Energy Revival Engineering Marvel Environmental Howzat Extreme Energy Extreme Weather Fair Balance Feel Gooder Fossilised Fuels Freshwater Stress Gamechanger Gas Storage Green Investment Green Power Hydrocarbon Hegemony Hydrogen Economy Insulation Low Carbon Life Major Shift Marine Gas Marvellous Wonderful Methane Management Military Invention National Energy National Power Nuclear Nuisance Nuclear Shambles Optimistic Generation Peak Emissions Policy Warfare Political Nightmare Realistic Models Regulatory Ultimatum Renewable Gas Resource Curse Resource Wards Shale Game Solar Sunrise Solution City The Power of Intention The Right Chemistry Transport of Delight Unconventional Foul Ungreen Development Unnatural Gas Utter Futility Vain Hope Wind of Fortune

But Uh-Oh – Those Summer Nights

A normal, everyday Monday morning at Energy Geek Central. Yes, this is a normal conversation for me to take part in on a Monday morning. Energy geekery at breakfast. Perfect.

Nuclear Flower Power

This whole UK Government nuclear power programme plan is ridiculous ! 75 gigawatts (GW) of Generation III nuclear fission reactors ? What are they thinking ? Britain would need to rapidly ramp up its construction capabilities, and that’s not going to happen, even with the help of the Chinese. (And the Americans are not going to take too kindly to the idea of China getting strongly involved with British energy). And then, we’d need to secure almost a quarter of the world’s remaining reserves of uranium, which hasn’t actually been dug up yet. And to cap it all, we’d need to have 10 more geological disposal repositories for the resulting radioactive spent fuel, and we haven’t even managed to negotiate one yet. That is, unless we can burn a good part of that spent fuel in Generation IV nuclear fission reactors – which haven’t even been properly demonstrated yet ! Talk about unconscionable risk !

Baseload Should Be History By Now, But…

Whatever the technological capability for nuclear power plants to “load follow” and reduce their output in response to a chance in electricity demand, Generation III reactors would not be run as anything except “baseload” – constantly on, and constantly producing a constant amount of power – although they might turn them off in summer for maintenance. You see, the cost of a Generation III reactor and generation kit is in the initial build – so their investors are not going to permit them to run them at low load factors – even if they could.

There are risks to running a nuclear power plant at partial load – mostly to do with potential damage to the actual electricity generation equipment. But what are the technology risks that Hinkley Point C gets built, and all that capital is committed, and then it only runs for a couple of years until all that high burn up fuel crumbles and the reactors start leaking plutonium and they have to shut it down permanently ? Who can guarantee it’s a sound bet ?

If they actually work, running Generation III reactors at constant output as “baseload” will also completely mess with the power market. In all of the scenarios, high nuclear, high non-nuclear, or high fossil fuels with Carbon Capture and Storage (CCS), there will always need to be some renewables in the mix. In all probability this will be rapidly deployed, highly technologically advanced solar power photovoltaics (PV). The amount of solar power that will be generated will be high in summer, but since you have a significant change in energy demand between summer and winter, you’re going to have a massive excess of electricity generation in summer if you add nuclear baseload to solar. Relative to the demand for energy, you’re going to get more Renewable Energy excess in summer and under-supply in winter (even though you get more offshore wind in winter), so it’s critical how you mix those two into your scenario.

The UK Government’s maximum 75 GW nuclear scenario comprises 55 GW Generation III and 20 GW Generation IV. They could have said 40 GW Gen III to feed Gen IV – the spent fuel from Gen III is needed to kick off Gen IV. Although, if LFTR took off, if they had enough fluoride materials there could be a Thorium way into Gen IV… but this is all so technical, no MP [ Member of Parliament ] is going to get their head round this before 2050.

The UK Government are saying that 16 GW of nuclear by 2030 should be seen as a first tranche, and that it could double or triple by 2040 – that’s one heck of a deployment rate ! If they think they can get 16 GW by 2030 – then triple that by 10 years later ? It’s not going to happen. And even 30 GW would be horrific. But it’s probably more plausible – if they can get 16 GW by 2030, they can arguably get double that by 2040.

As a rule of thumb, you would need around 10 tonnes of fissionable fuel to kickstart a Gen IV reactor. They’ve got 106 tonnes of Plutonium, plus 3 or 4 tonnes they recently acquired – from France or Germany (I forget which). So they could start 11 GW of Gen IV – possibly the PRISM – the Hitachi thing – sodium-cooled. They’ve been trying them since the Year Dot – these Fast Reactors – the Breeders – Dounreay. People are expressing more confidence in them now – “Pandora’s Promise” hangs around the narrative that the Clinton administration stopped research into Fast Reactors – Oak Ridge couldn’t be commercial. Throwing sodium around a core 80 times hotter than current core heats – you can’t throw water at it easily. You need something that can carry more heat out. It’s a high technological risk. But then get some French notable nuclear person saying Gen IV technologies – “they’re on the way and they can be done”.

Radioactive Waste Disposal Woes

The point being is – if you’re commissioning 30 GW of Gen III in the belief that Gen IV will be developed – then you are setting yourself up to be a hostage to technological fortune. That is a real ethical consideration. Because if you can’t burn the waste fuel from Gen III, you’re left with up to 10 radioactive waste repositories required when you can’t even get one at the moment. The default position is that radioactive spent nuclear fuel will be left at the power stations where they’re created. Typically, nuclear power plants are built on the coast as they need a lot of cooling water. If you are going for 30 GW you will need a load of new sites – possibly somewhere round the South East of England. This is where climate change comes in – rising sea levels, increased storm surge, dissolving, sinking, washed-away beaches, more extreme storms […] The default spent fuel scenario with numerous coastal decommissioned sites with radioactive interim stores which contain nearly half the current legacy radioactive waste […]

Based on the figures from the new Greenpeace report, I calculate that the added radioactive waste and radioactive spent fuel arisings from a programme of 16 GW of nuclear new build would be 244 million Terabequerel (TBq), compared to the legacy level of 87 million TBq.

The Nuclear Decommissioning Authority (NDA) are due to publish their Radioactive Waste Inventory and their Report on Radioactive Materials not in the Waste Inventory at the end of January 2014. We need to keep a watch out for that, because they may have adapted their anticipated Minimum and Maxmium Derived Inventory.

Politics Is Living In The Past

What you hear from politicians is they’re still talking about “baseload”, as if they’ve just found the Holy Grail of Energy Policy. And failed nuclear power. Then tidal. And barrages. This is all in the past. Stuff they’ve either read – in an article in a magazine at the dentist’s surgery waiting room, and they think, alright I’ll use that in a TV programme I’ve been invited to speak on, like Question Time. I think that perhaps, to change the direction of the argument, we might need to rubbish their contribution. A technological society needs to be talking about gasification, catalysis. If you regard yourselves as educated, and have a technological society – your way of living in the future is not only in manufacturing but also ideas – you need to be talking about this not that : low carbon gas fuels, not nuclear power. Ministers and senior civil servants probably suffer from poor briefing – or no briefing. They are relying on what is literally hearsay – informal discussions, or journalists effectively representing industrial interests. Newspapers are full of rubbish and it circulates, like gyres in the oceans. Just circulates around and around – full of rubbish.

I think part of the problem is that the politicians and chief civil servants and ministers are briefed by the “Old Guard” – very often the ex-nuclear power industry guard. They still believe in big construction projects, with long lead times and massive capital investment, whereas Renewable Electricity is racing ahead, piecemeal, and private investors are desperate to get their money into wind power and solar power because the returns are almost immediate and risk-free.

Together in Electric Dreams

Question : Why are the UK Government ploughing on with plans for so much nuclear power ?

1. They believe that a lot of transport and heat can be made to go electric.
2. They think they can use spent nuclear fuel in new reactors.
3. They think it will be cheaper than everything else.
4. They say it’s vital for UK Energy Security – for emissions reductions, for cost, and for baseload. The big three – always the stated aim of energy policy, and they think nuclear ticks all those three boxes. But it doesn’t.

What they’ll say is, yes, you have to import uranium, but you’ve got a 4 year stock. Any war you’re going to get yourselves involved in you can probably resolve in 4 days, or 4 weeks. If you go for a very high nuclear scenario, you would be taking quite a big share of the global resource of uranium. There’s 2,600 TWh of nuclear being produced globally. And global final energy demand is around 100,000 TWh – so nuclear power currently produces around 2.6% of global energy supply. At current rates of nuclear generation, according to the World Nuclear Association, you’ve got around 80 years of proven reserves and probably a bit more. Let’s say you double nuclear output by 2050 or 2040 – but in the same time you might just have enough uranium – and then find a bit more. But global energy demand rises significantly as well – so nuclear will still only provide around 3% of global energy demand. That’s not a climate solution – it’s just an energy distraction. All this guff about fusion. Well.

Cornering The Market In Undug Uranium

A 75 GW programme would produce at baseload 590 TWh a year – divide by 2,600 – is about 23% of proven global uranium reserves. You’re having to import, regardless of what other countries are doing, you’re trying to corner the market – roughly a quarter. Not even a quarter of the market – a quarter of all known reserves – it’s not all been produced yet. It’s still in the ground. So could you be sure that you could actually run these power stations if you build them ? Without global domination of the New British Empire […]. The security issues alone – defending coastal targets from a tweeb with a desire to blow them up. 50 years down the line they’re full of radioactive spent fuel that won’t have a repository to go to – we don’t want one here – and how much is it going to cost ?

My view is that offshore wind will be a major contributor in a high or 100% Renewable Electricity scenario by 2050 or 2060. Maybe 180 GW, that will also be around 600 TWh a year – comparable to that maximum nuclear programme. DECC’s final energy demand 2050 – several scenarios – final energy demand from 6 scenarios came out as between roughly 1,500 TWh a year and the maximum 2,500 TWh. Broadly speaking, if you’re trying to do that just with Renewable Electricity, you begin to struggle quite honestly, unless you’re doing over 600 TWh of offshore wind, and even then you need a fair amount of heat pump stuff which I’m not sure will come through. The good news is that solar might – because of the cost and technology breakthroughs. That brings with it a problem – because you’re delivering a lot of that energy in summer. The other point – David MacKay would say – in his book his estimate was 150 TWh from solar by 2050, on the grounds that that’s where you south-facing roofs are – you need to use higher efficiency triple junction cells with more than 40% efficiency and this would be too expensive for a rollout which would double or triple that 150 TWh – that would be too costly – because those cells are too costly. But with this new stuff, you might get that. Not only the cost goes down, but the coverage goes down. Not doing solar across swathes of countryside. There have always been two issues with solar power – cost and where it’s being deployed.

Uh-Oh, Summer Days. Uh-Oh, Summer Nights

With the solar-wind headline, summer days and summer nights are an issue.

With the nuclear headline, 2040 – they would have up to 50 GW, and that would need to run at somewhere between 75% and 95% capacity – to protect the investment and electric generation turbines.

It will be interesting to provide some figures – this is how much over-capacity you’re likely to get with this amount of offshore wind. But if you have this amount of nuclear power, you’ll get this amount […]

Energy demand is strongly variable with season. We have to consider not just power, but heat – you need to get that energy out in winter – up to 4 times as much during peak in winter evenings. How are you going to do that ? You need gas – or you need extensive Combined Heat and Power (CHP) (which needs gas). Or you need an unimaginable deployment of domestic heat pumps. Air source heat pumps won’t work at the time you need them most. Ground source heat pumps would require the digging up of Britain – and you can’t do that in most urban settings.

District Heat Fields

The other way to get heat out to everyone in a low carbon world – apart from low carbon gas – is having a field-based ground source heat pump scheme – just dig up a field next to a city – and just put in pipes and boreholes in a field. You’re not disturbing anybody. You could even grow crops on it next season. Low cost and large scale – but would need a District Heating (DH) network. There are one or two heat pump schemes around the world. Not sure if they are used for cooling in summer or heat extraction in the winter. The other thing is hot water underground. Put in an extra pipe in the normal channels to domestic dwellings. Any excess heat from power generation or electrolysis or whatever is put down this loop and heats the sub-ground. Because heat travels about 1 metre a month in soil, that heat should be retained for winter. A ground source heat sink. Geothermal energy could come through – they’re doing a scheme in Manchester. If there’s a nearby heat district network – it makes it easier. Just want to tee it into the nearest DH system. The urban heat demand is 150 TWh a year. You might be able to put DH out to suburban areas as well. There are 9 million gas-connected suburban homes – another about 150 TWh there as well – or a bit more maybe. Might get to dispose of 300 TWh in heat through DH. The Green Deal insulation gains might not be what is claimed – and condensing gas boiler efficiencies are not that great – which feeds into the argument that in terms of energy efficiency, you not only want to do insulation, but also DH – or low carbon gas. Which is the most cost-effective ? Could argue reasonable energy efficiency measures are cheapest – but DH might be a better bet. That involves a lot of digging.

Gas Is The Logical Answer

But everything’s already laid for gas. (…but from the greatest efficiency first perspective, if you’re not doing DH, you’re not using a lot of Renewable Heat you could otherwise use […] )

The best package would be the use of low carbon gases and sufficient DH to use Renewable Heat where it is available – such as desalination, electrolysis or other energy plant. It depends where the electrolysis is being done.

The Age of Your Carbon

It also depends on which carbon atoms you’re using. If you are recycling carbon from the combustion of fossil fuels into Renewable Gas, that’s OK. But you can’t easily recapture carbon emissions from the built environment (although you could effectively do that with heat storage). You can’t do carbon capture from transport either. So your low carbon gas has to come from biogenic molecules. Your Renewable Gas has to be synthesised using biogenic carbon molecules rather than fossil ones.

[…] I’m using the phrase “Young Carbon”. Young Carbon doesn’t have to be from plants – biological things that grow.

Well, there’s Direct Air Capture (DAC). It’s simple. David Sevier, London-based, is working on this. He’s using heat to capture carbon dioxide. You could do it from exhaust in a chimney or a gasification process – or force a load of air through a space. He would use heat and cooling to create an updraft. It would enable the “beyond capture” problem to be circumvented. Cost is non-competitive. Can be done technically. Using reject heat from power stations for the energy to do it. People don’t realise you can use a lot of heat to capture carbon, not electricity.

Young Carbon from Seawater

If you’re playing around with large amounts of seawater anyway – that is, for desalination for irrigation, why not also do Renewable Hydrogen, and pluck the Carbon Dioxide out of there too to react with the Renewable Hydrogen to make Renewable Methane ? I’m talking about very large amounts of seawater. Not “Seawater Greenhouses” – condensation designs mainly for growing exotic food. If you want large amounts of desalinated water – and you’re using Concentrated Solar Power – for irrigating deserts – you would want to grow things like cacti for biological carbon.

Say you had 40 GW of wind power on Dogger Bank, spinning at 40% load factor a year. You’ve also got electrolysers there. Any time you’re not powering the grid, you’re making gas – so capturing carbon dioxide from seawater, splitting water for hydrogen, making methane gas. Wouldn’t you want to use flash desalination first to get cleaner water for electrolysis ? Straight seawater electrolysis is also being done.

It depends on the relative quantities of gas concentrated in the seawater. If you’ve got oxygen, hydrogen and carbon dioxide, that would be nice. You might get loads of oxygen and hydrogen, and only poor quantities of carbon dioxide ?

But if you could get hydrogen production going from spare wind power. And even if you had to pipe the carbon dioxide from conventional thermal power plants, you’re starting to look at a sea-based solution for gas production. Using seawater, though, chlorine is the problem […]

Look at the relative density of molecules – that sort of calculation that will show if this is going to fly. Carbon dioxide is a very fixed, stable molecule – it’s at about the bottom of the energy potential well – you have to get that reaction energy from somewhere.

How Much Spare Power Will There Be ?

If you’ve got an offshore wind and solar system. At night, obviously, the solar’s not working (unless new cells are built that can run on infrared night-time Earthshine). But you could still have 100 GWh of wind power at night not used for the power grid. The anticipated new nuclear 40 GW nuclear by 2030 will produce about 140 GWh – this would just complicate problems – adding baseload nuclear to a renewables-inclusive scenario. 40 GW is arguably a reasonable deployment of wind power by 2030 – low if anything.

You get less wind in a nuclear-inclusive scenario, but the upshot is you’ve definitely got a lot of power to deal with on a summer night with nuclear power. You do have with Renewable Electricity as well, but it varies more. Whichever route we take we’re likely to end up with excess electricity generation on summer nights.

In a 70 GW wind power deployment (50 GW offshore, 20 GW onshore – 160 TWh a year), you might have something like 50 to 100 GWh per night of excess (might get up to 150 GWh to store on a windy night). But if you have a 16 GW nuclear deployment by 2030 (125 TWh a year), you are definitely going to have 140 GWh of excess per night (that’s 16 GW for 10 hours less a bit). Night time by the way is roughly between 9pm and 7am between peak demands.

We could be making a lot of Renewable Gas !

Can you build enough Renewable Gas or whatever to soak up this excess nuclear or wind power ?

The energy mix is likely to be in reality somewhere in between these two extremes of high nuclear or high wind.

But if you develop a lot of solar – so that it knocks out nuclear power – it will be the summer day excess that’s most significant. And that’s what Germany is experiencing now.

Choices, choices, choices

There is a big choice in fossil fuels which isn’t really talked about very often – whether the oil and gas industry should go for unconventional fossil fuels, or attempt to make use of the remaining conventional resources that have a lower quality. The unconventionals narrative – shale gas, coalbed methane, methane hydrates, deepwater gas, Arctic oil and gas, heavy oil, is running out of steam as it becomes clear that some of these choices are expensive, and environmentally damaging (besides their climate change impact). So the option will be making use of gas with high acid gas composition. And the technological solutions for this will be the same as needed to start major production of Renewable Gas.

Capacity Payments

But you still need to answer the balancing question. If you have a high nuclear power scenario, you need maybe 50 TWh a year of gas-fired power generation. If high Renewable Electricity, you will need something like 100 TWh of gas, so you need Carbon Capture and Storage – or low carbon gas.

Even then, the gas power plants could be running only 30% of the year, and so you will need capacity payments to make sure new flexible plants get built and stay available for use.

If you have a high nuclear scenario, coupled with gas, you can meet the carbon budget – but it will squeeze out Renewable Electricity. If high in renewables, you need Carbon Capture and Storage (CCS) or Carbon Capture and Recycling into Renewable Gas, but this would rule out nuclear power. It depends which sector joins up with which.

Carbon Capture, Carbon Budget

Can the Drax power plant – with maybe one pipeline 24 inches in diameter, carrying away 20 megatonnes of carbon dioxide per year – can it meet the UK’s Carbon Budget target ?

Categories
Academic Freedom Alchemical Assets not Liabilities Big Picture Coal Hell Conflict of Interest Cost Effective Design Matters Direction of Travel Electrificandum Energy Change Energy Crunch Energy Insecurity Energy Revival Engineering Marvel Fossilised Fuels Gamechanger Geogingerneering Green Power Methane Management National Energy National Power Optimistic Generation Peak Energy Peak Natural Gas Peak Oil Price Control Realistic Models Renewable Gas Shale Game Solar Sunrise Solution City The Data The Power of Intention The Price of Gas The Price of Oil The Right Chemistry Western Hedge

Gain in Transmission

It constantly amazes and intrigues me how human individuals operate in networks to formulate, clarify and standardise ideas, tools, machines, procedures and systems. Several decades ago, Renewable Electricity from sources such as wind power was considered idealistic vapourware, esoteric, unworkable and uncertain, and now it’s a mainstream generator of reliable electricity in the UK’s National Grid. Who would have thought that invisible, odourless, tasteless gas phase chemicals would heat our homes ? It’s now just so normal, it’s impossible to imagine that Natural Gas was once considered to be so insignificant that it was vented – not even flared – from oil wells.

Judging by the sheer number of people working on aspects of Renewable Gas, I expect this too to be mainstream in the energy sector within a decade. What do others think ? I have begun the process of asking, for example, see below.

=x=x=x=x=x=x=x=x=

from: Jo Abbess
to: Richard A. Sears
date: Mon, May 2, 2011 at 11:59 PM
subject: Question from your TED talk

Dear [Professor] Sears,

I was intrigued by your TED talk that I recently viewed :-

https://www.ted.com/talks/richard_sears_planning_for_the_end_of_oil.html

Yes, I am interested in the idea of “printing” solar cells, which is what I think you might be alluding to with your reference to abalone shells.

But I am more interested in what you base your estimate of “Peak Gas” on. I recently did some very basic modelling of hydrocarbon resources and electricity, which look somewhat different from the IEA and EIA work and reports from BP and Royal Dutch Shell. My conclusion was that Peak Oil is roughly now, Peak Natural Gas will be around 2030, and Peak Electricity around 2060 :-

https://www.joabbess.com/2011/02/11/future-energy-tipping-points/

I am going to try to improve these charts before I submit my MSc Masters Thesis, so I am trying to find out what other people base their projections on. Could you help me by pointing me at the basis of your assessment of Peak Natural Gas ?

Thank you,

jo.

=x=x=x=x=x=x=

from: Richard A. Sears
to: Jo Abbess
date: Thu, Oct 24, 2013 at 5:30 PM

Jo,

I am just now finding a number of old emails that got archived (and ignored) when I moved from MIT to Stanford a few years ago. A quick answer is that I did about what Hubbert did in 1956. No detailed statistical modeling, just look at the trends, think about what’s happening in the industry, and make what seem like reasonable statements about it.

A number of interesting things have happened just in the last two years since you wrote to me. Significantly, US oil production is on the rise. When you count all hydrocarbon liquids, the US is or will soon be, the world largest producer. This just goes to one of my points from TED. Don’t expect oil and gas to go away any time soon. There are plenty of molecules out there. I first said this internally at Shell in the mid 1980’s when I was Manager of Exploration Economics and since then I’ve felt that I got it about right.

I did just look at your website and would caution you about extrapolating very recent trends into the future. The rate of growth in shale gas production has slowed, but there’s an important economic factor driving that. Gas prices in the US are very low compared to oil. With the development of fraccing technology to enable oil and liquids production from shale formations, the industry has shifted their effort to the liquids-rich plays. A few statistics. Gas is currently around $3.50/mcf. On an energy equivalent basis, this equates to an oil price of about $20/barrel. Brent currently sells for $110/barrel and the light oils produced from the shale plays in the US are getting between $90 and $100/barrel, depending on where they can be delivered. As a consequence, in the 3rd quarter of 2013, compared to one year ago, oil well completions are up 18% while natural gas well completions declined 30%.

Yes, you are right. Printing solar cells is an example of what I was talking about with Abalone shells. Similarly, what if you had paint that as it dried would self assemble into linked solar cells and your entire house is now generating electricity. I was totally amazed at the number of people that didn’t actually think about what I was saying and called me an !d!*t for imagining that I was going to transform coal itself into some magical new molecule. […]

In any case, I think it’s good that you’re thinking about these problems, and importantly it appears from your website that you’re thinking about the system and its complexity.

Best regards,
Rich Sears

Richard A. Sears
Visiting Scientist
MIT Energy Initiative
Massachusetts Institute of Technology

=x=x=x=x=x=x=x=x=x=

from: Jo Abbess
to: Richard A Sears
sent: Monday, May 02, 2011 3:59 PM

Dear [Professor] Sears,

Many thanks for your reply.

I had kinda given up of ever hearing back from you, so it’s lovely to
read your thoughts.

May I blog them ?

Regards,

jo.

=x=x=x=x=x=x=x=

from: Richard A Sears
date: Fri, Oct 25, 2013 at 5:03 PM
to: Jo Abbess

Jo,

I have personally avoided blogging because I don’t want to put up with people writing mean comments about me. But the data is worth sharing. You should also know the sources of that data otherwise you open yourself to more criticism.

The data on production comes from the International Energy Agency and a research firm PIRA. All of it was in recent press releases. The Energy Information Administration makes similar projections about future production. The data on well completions was recently released by API.

No need to reference me. The data is out there for all to see. But if you do, fair warning. You will get stupid comments about how I used to be a VP at Shell so of course these are the things I’m going to say. […]

By the way, there’s something else that’s very interesting in the world of peak oil and various peaks. I have long believed, as hinted in my TED talk that the most important aspect of peak oil is the demand driven phenomena, not the supply side. It’s worth noting in this context that US oil consumption peaked in 2005 and has declined about 10% since then. This data can be found easily in the BP Statistical Report on World Energy. This is real and is a result of economic shifts, greater efficiency, and the penetration of renewables. Future energy projections (references above) show that this trend continues. A big component of US energy consumption is gasoline, and US gasoline consumption peaked in 2007. I think that data can be found at https://www.eia.gov, although I haven’t looked for it lately. It’s a little factoid that I think I remember.

Rich

Richard A. Sears
Consulting Professor
Department of Energy Resources Engineering
Stanford University

=x=x=x=x=x=x=x=x=

from: Jo Abbess
to: Richard A Sears
date: Sun, Jan 12, 2014 at 11:47 AM

Dear Professor Sears,

HNY 2014 !

This year I am hoping to attempt the climb on my own personal K2 by writing an academic book on Renewable Gas – sustainable, low-to-zero carbon emissions gas phase fuels.

I am not a chemist, nor a chemical engineer, and so I would value any suggestions on who I should approach in the gas (and oil) industry to interview about projects that lean in this direction.

Examples would be :-

* Power-to-Gas : Using “spare” wind power to make Renewable Hydrogen – for example by electrolysis of water. Part of the German Power-to-Gas policy. Some hydrogen can be added to gas grids safely without changing regulations, pipework or end appliances.

* Methanation : Using Renewable Hydrogen and young or recycled carbon gas to make methane (using the energy from “spare” wind power, for example). Also part of the German Power-to-Gas policy.

NB “Young” carbon would be either carbon monoxide or carbon dioxide, and be sourced from biomass, Direct Air Capture, or from the ocean. “Old” carbon would come from the “deeper” geological carbon cycle, such as from fossil fuel, or industrial processes such as the manufacture of chemicals from minerals and/or rocks.

Precursors to Renewable Gas also interest me, as transitions are important – transitions from a totally fossil fuel-based gas system to a sustainable gas system. I have recently looked at some basic analysis on the chemistry of Natural Gas, and its refinery. It seems that methanation could be useful in making sour gas available as sweetened, as long as Renewable Hydrogen is developed for this purpose. It seems that there is a lot of sour gas in remaining reserves, and the kind of CCS (Carbon Capture and Storage) that would be required under emissions controls could make sour gas too expensive to use if it was just washed of acids.

I don’t think the future of energy will be completely electrified – it will take a very long time to roll out 100% Renewable Electricity and there will always be problems transitioning out of liquid fuels to electricity in vehicular transportation.

If you could suggest any names, organisations, university departments, companies, governance bodies that I should contact, or research papers that I should read, I would be highly grateful.

Many thanks,

jo.

Categories
Academic Freedom Alchemical Arctic Amplification Assets not Liabilities Baseload is History Big Picture Carbon Recycling Climate Change Cost Effective Direction of Travel Energy Autonomy Energy Change Energy Insecurity Energy Revival Extreme Energy Feel Gooder Fossilised Fuels Gamechanger Gas Storage Green Investment Hydrocarbon Hegemony Hydrogen Economy Insulation Low Carbon Life Major Shift Marine Gas Methane Management Optimistic Generation Paradigm Shapeshifter Peak Emissions Peak Natural Gas Price Control Realistic Models Renewable Gas Renewable Resource Solar Sunrise Solution City Stirring Stuff The Power of Intention The Price of Gas The Right Chemistry The Science of Communitagion Unnatural Gas Wind of Fortune

Making The Sour Sweet

In the long view, some things are inevitable, and I don’t just mean death and taxes. Within the lifetime of children born today, there must be a complete transformation in energy. The future is renewable, and carefully deployed renewable energy systems can be reliable, sustainable and low cost, besides being low in carbon dioxide emissions to air. This climate safety response is also the answer to a degradation and decline in high quality mineral hydrocarbons – the so-called “fossil” fuels. Over the course of 2014 I shall be writing about Renewable Gas – sustainable, low emissions gas fuels made on the surface of the earth without recourse to mining for energy. Renewable Gas can store the energy from currently underused Renewable Electricity from major producers such as wind and solar farms, and help to balance out power we capture from the variable wind and sun. Key chemical players in these fuels : hydrogen, methane, carbon monoxide and carbon dioxide. Key chemistry : how to use hydrogen to recycle the carbon oxides to methane. How we get from here to there is incredibly important, and interestingly, methods and techniques for increasing the production volumes of Renewable Gas will be useful for the gradually fading fossil fuel industry. Much of the world’s remaining easily accessible Natural Gas is “sour” – laced with high concentrations of hydrogen sulfide and carbon dioxide. Hydrogen sulfide needs to be removed from the gas, but carbon dioxide can be recycled into methane, raising the quality of the gas. We can preserve the Arctic from fossil gas exploitation, and save ourselves from this economic burden and ecological risk, by employing relatively cheap ways to upgrade sour Natural Gas, from Iran, for example, while we are on the decades-long road of transitioning to Renewable Gas. The new burn is coming.

Categories
Assets not Liabilities Big Number Big Picture Big Society Biofools Biomess British Sea Power Burning Money Carbon Army Carbon Capture Carbon Pricing Change Management Climate Change Climate Chaos Climate Damages Coal Hell Conflict of Interest Corporate Pressure Cost Effective Dead End Dead Zone Demoticratica Design Matters Direction of Travel Disturbing Trends Dreamworld Economics Efficiency is King Electrificandum Emissions Impossible Energy Autonomy Energy Change Energy Denial Energy Insecurity Energy Revival Energy Socialism Engineering Marvel Environmental Howzat Food Insecurity Forestkillers Fossilised Fuels Genetic Modification Geogingerneering Green Investment Green Power Growth Paradigm Health Impacts Hide the Incline Human Nurture Incalculable Disaster Insulation Major Shift Mass Propaganda Media Money Sings National Energy National Power Neverending Disaster No Pressure Nuclear Nuisance Nuclear Shambles Optimistic Generation Peak Coal Policy Warfare Political Nightmare Price Control Protest & Survive Public Relations Realistic Models Regulatory Ultimatum Renewable Resource Resource Curse Resource Wards Solution City Technofix Technological Fallacy Technological Sideshow Technomess The Price of Gas The Price of Oil The War on Error Tree Family Ungreen Development Western Hedge Wind of Fortune

Mind the Gap : BBC Costing the Earth

I listened to an interesting mix of myth, mystery and magic on BBC Radio 4.

Myths included the notion that long-term, nuclear power would be cheap; that “alternative” energy technologies are expensive (well, nuclear power is, but true renewables are most certainly not); and the idea that burning biomass to create heat to create steam to turn turbines to generate electricity is an acceptably efficient use of biomass (it is not).

Biofuelwatch are hosting a public meeting on this very subject :-
https://www.biofuelwatch.org.uk/2013/burning_issue_public_event/
“A Burning Issue – biomass and its impacts on forests and communities”
Tuesday, 29th October 2013, 7-9pm
Lumen Centre, London (close to St Pancras train station)
https://www.lumenurc.org.uk/lumencontact.htm
Lumen Centre, 88 Tavistock Place, London WC1H 9RS

Interesting hints in the interviews I thought pointed to the idea that maybe, just maybe, some electricity generation capacity should be wholly owned by the Government – since the country is paying for it one way or another. A socialist model for gas-fired generation capacity that’s used as backup to wind and solar power ? Now there’s an interesting idea…




https://www.bbc.co.uk/programmes/b03cn0rb

“Mind the Gap”
Channel: BBC Radio 4
Series: Costing the Earth
Presenter: Tom Heap
First broadcast: Tuesday 15th October 2013

Programme Notes :

“Our energy needs are growing as our energy supply dwindles.
Renewables have not come online quickly enough and we are increasingly
reliant on expensive imported gas or cheap but dirty coal. Last year
the UK burnt 50% more coal than in previous years but this helped
reverse years of steadily declining carbon dioxide emissions. By 2015
6 coal fired power stations will close and the cost of burning coal
will increase hugely due to the introduction of the carbon price
floor. Shale gas and biomass have been suggested as quick and easy
solutions but are they really sustainable, or cheap?”

“Carbon Capture and Storage could make coal or gas cleaner and a new
study suggests that with CCS bio energy could even decrease global
warming. Yet CCS has stalled in the UK and the rest of Europe and the
debate about the green credentials of biomass is intensifying. So what
is really the best answer to Britain’s energy needs? Tom Heap
investigates.”

00:44 – 00:48
[ Channel anchor ]
Britain’s energy needs are top of the agenda in “Costing the Earth”…

01:17
[ Channel anchor ]
…this week on “Costing the Earth”, Tom Heap is asking if our
ambitions to go green are being lost to the more immediate fear of
blackouts and brownouts.

01:27
[ Music : Arcade Fire – “Neighbourhood 3 (Power Out)” ]

[ Tom Heap ]

Energy is suddenly big news – central to politics and the economy. The
countdown has started towards the imminent shutdown of many coal-fired
power stations, but the timetable to build their replacements has
barely begun.

It’ll cost a lot, we’ll have to pay, and the politicians are reluctant
to lay out the bill. But both the official regulator and industry are
warning that a crunch is coming.

So in this week’s “Costing the Earth”, we ask if the goal of clean,
green and affordable energy is being lost to a much darker reality.

02:14
[ Historical recordings ]

“The lights have started going out in the West Country : Bristol,
Exeter and Plymouth have all had their first power cuts this
afternoon.”

“One of the biggest effects of the cuts was on traffic, because with
the traffic lights out of commission, major jams have built up,
particularly in the town centres. One of the oddest sights I saw is a
couple of ladies coming out of a hairdressers with towels around their
heads because the dryers weren’t working.”

“Television closes down at 10.30 [ pm ], and although the cinemas are
carrying on more or less normally, some London theatres have had to
close.”

“The various [ gas ] boards on both sides of the Pennines admit to
being taken by surprise with today’s cold spell which brought about
the cuts.”

“And now the major scandal sweeping the front pages of the papers this
morning, the advertisement by the South Eastern Gas Board recommending
that to save fuel, couples should share their bath.”

[ Caller ]
“I shall write to my local gas board and say don’t do it in
Birmingham. It might be alright for the trendy South, but we don’t
want it in Birmingham.”

03:13
[ Tom Heap ]

That was 1974.

Some things have changed today – maybe a more liberal attitude to
sharing the tub. But some things remain the same – an absence of
coal-fired electricity – threatening a blackout.

Back then it was strikes by miners. Now it’s old age of the power
plants, combined with an EU Directive obliging them to cut their
sulphur dioxide and nitrous oxide emissions by 2016, or close.

Some coal burners are avoiding the switch off by substituting wood;
and mothballed gas stations are also on standby.

But Dieter Helm, Professor of Energy Policy at the University of
Oxford, now believes power cuts are likely.

03:57
[ Dieter Helm ]

Well, if we take the numbers produced by the key responsible bodies,
they predict that there’s a chance that by the winter of 2-15 [sic,
meaning 2015] 2-16 [sic, meaning 2016], the gap between the demand for
electricity and the supply could be as low as 2%.

And it turns out that those forecasts are based on extremely
optimistic assumptions about how far demand will fall in that period
(that the “Green Deal” will work, and so on) and that we won’t have
much economic growth.

So basically we are on course for a very serious energy crunch by the
winter of 2-15 [sic, meaning 2015] 2-16 [sic, meaning 2016], almost
regardless of what happens now, because nobody can build any power
stations between now and then.

It’s sort of one of those slow motion car crashes – you see the whole
symptoms of it, and people have been messing around reforming markets
and so on, without addressing what’s immediately in front of them.

[ Tom Heap ]

And that’s where you think we are now ?

[ Dieter Helm ]

I think there’s every risk of doing so.

Fortunately, the [ General ] Election is a year and a half away, and
there’s many opportunities for all the political parties to get real
about two things : get real about the energy crunch in 2-15 [sic,
meaning 2015] 2-16 [sic, meaning 2016] and how they’re going to handle
it; and get real about creating the incentives to decarbonise our
electricity system, and deal with the serious environmental and
security and competitive issues which our electricity system faces.

And this is a massive investment requirement [ in ] electricity : all
those old stations retiring [ originally built ] back from the 1970s –
they’re all going to be gone.

Most of the nuclear power stations are coming to the end of their lives.

We need a really big investment programme. And if you really want an
investment programme, you have to sit down and work out how you’re
going to incentivise people to do that building.

[ Tom Heap ]

If we want a new energy infrastructure based on renewables and
carbon-free alternatives, then now is the time to put those incentives
on the table.

The problem is that no-one seems to want to make the necessary
investment, least of all the “Big Six” energy companies, who are
already under pressure about high bills.

[ “Big Six” are : British Gas / Centrica, EdF Energy (Electricite
de France), E.On UK, RWE npower, Scottish Power and SSE ]

Sam Peacock of the energy company SSE [ Scottish and Southern Energy ]
gives the commercial proof of Dieter’s prediction.

If energy generators can’t make money out of generating energy,
they’ll be reluctant to do it.

[ Sam Peacock ]

Ofgem, the energy regulator, has looked at this in a lot of detail,
and said that around 2015, 2016, things start to get tighter. The
reason for this is European Directives, [ is [ a ] ] closing down some
of the old coal plants. And also the current poor economics around [
or surround [ -ing ] ] both existing plant and potential new plant.

So, at the moment it’s very, very difficult to make money out of a gas
plant, or invest in a new one. So this leads to there being, you know,
something of a crunch point around 2015, 2016, and Ofgem’s analysis
looks pretty sensible to us.

[ Tom Heap ]

And Sam Peacock lays the blame for this crisis firmly at the Government’s door.

[ Sam Peacock ]

The trilemma, as they call it – of decarbonisation, security of supply
and affordability – is being stretched, because the Government’s
moving us more towards cleaner technologies, which…which are more
expensive.

However, if you were to take the costs of, you know, the extra costs
of developing these technologies off government [ sic, meaning
customer ] bills and into general taxation, you could knock about over
£100 off customer bills today, it’ll be bigger in the future, and you
can still get that much-needed investment going.

So, we think you can square the circle, but it’s going to take a
little bit of policy movement [ and ] it’s going to take shifting some
of those costs off customers and actually back where the policymakers
should be controlling them.

[ KLAXON ! Does he mean controlled energy prices ? That sounds a bit
centrally managed economy to me… ]

[ Tom Heap ]

No surprise that a power company would want to shift the pain of
rising energy costs from their bills to the tax bill.

But neither the Government nor the Opposition are actually proposing this.

Who pays the premium for expensve new energy sources is becoming like
a game of pass the toxic parcel.

[ Reference : https://en.wikipedia.org/wiki/Hot_potato_%28game%29 ]

I asked the [ UK Government Department of ] Energy and Climate Change
Secretary, Ed Davey, how much new money is required between now and
2020.

08:06

[ Ed Davey ]

About £110 billion – er, that’s critical to replace a lot of the coal
power stations that are closing, the nuclear power stations that are [
at the ] end of their lives, and replace a lot of the network which
has come to the end of its life, too.

So it’s a huge, massive investment task.

[ Tom Heap ]

So in the end we’re going to have to foot the bill for the £110 billion ?

[ Ed Davey ]

Yeah. Of course. That’s what happens now. People, in their bills that
they pay now, are paying for the network costs of investments made
several years, even several decades ago.

[ Yes – we’re still paying through our national nose to dispose of
radioactive waste and decommission old nuclear reactors. The liability
of it all weighs heavily on the country’s neck… ]

And there’s no escaping that – we’ve got to keep the lights on – we’ve
got to keep the country powered.

You have to look at both sides of the equation. If we’re helping
people make their homes more inefficient [ sic, meaning energy
efficient ], their product appliances more efficient, we’re doing
everything we possibly can to try to help the bills be kept down,

while we’re having to make these big investments to keep the lights
on, and to make sure that we don’t cook the planet, as you say.

[ Tom Heap ]

You mention the lights going out. There are predictions that we’re
headed towards just 2% of spare capacity in the system in a few years’
time.

Are you worried about the dangers of, I don’t know, maybe not lights
going out for some people, but perhaps big energy users being told
when and when [ sic, meaning where ] they can’t use power in the
winter ?

[ Ed Davey ]

Well, there’s no doubt that as the coal power stations come offline,
and the nuclear power plants, er, close, we’re going to have make sure
that new power plants are coming on to replace them.

And if we don’t, there will be a problem with energy security.

Now we’ve been working very hard over a long time now to make sure we
attract that investment. We’ve been working with Ofgem, the regulator;
with National Grid, and we’re…

[ Tom Heap ]

…Being [ or it’s being ] tough. I don’t see companies racing to come
and fill in the gap here and those coal power plants are going off
soon.

[ Ed Davey ]

…we’re actually having record levels of energy investment in the country.

The problem was for 13 years under the last Government
[ same old, same old Coalition argument ] we saw low levels of investment
in energy, and we’re having to race to catch up, but fortunately we’re
winning that race. And we’re seeing, you know, billions of pounds
invested but we’ve still got to do more. We’re not there. I’m not
pretending we’re there yet. [ Are we there, yet ? ] But we do have the
policies in place.

So, Ofgem is currently consulting on a set of proposals which will
enable it to have reserve power to switch on at the peak if it’s
needed.

We’re, we’ve, bringing forward proposals in the Energy Bill for what’s
called a Capacity Market, so we can auction to get that extra capacity
we need.

So we’ve got the policies in place.

[ Tom Heap ]

Some of Ed Davey’s policies, not least the LibDem [ Liberal Democrat
Party ] U-turn on nuclear, have been guided by DECC [ Department of
Energy and Climate Change ] Chief Scientist David MacKay, author of
the influential book “Renewable Energy without the Hot Air” [ sic,
actually “Sustainable Energy without the Hot Air” ].

Does he think the lights will dim in the second half of this decade ?

[ David MacKay ]

I don’t think there’s going to be any problem maintaining the capacity
that we need. We just need to make clear where Electricity Market
Reform [ EMR, part of the Energy Bill ] is going, and the way in which
we will be maintaining capacity.

[ Tom Heap ]

But I don’t quite understand that, because it seems to me, you know,
some of those big coal-fired power stations are going to be going off.
What’s going to be coming in their place ?

[ David MacKay ]

Well, the biggest number of power stations that’s been built in the
last few years are gas power stations, and we just need a few more gas
power stations like that, to replace the coal
, and hopefully some
nuclear power stations will be coming on the bars, as well as the wind
farms that are being built at the moment.

[ Tom Heap ]

And you’re happy with that increase in gas-fired power stations, are
you ? I mean, you do care deeply, personally, about reducing our
greenhouse gases, and yet you’re saying we’re going to have to build
more gas-fired power stations.

[ David MacKay ]

I do. Even in many of the pathways that reach the 2050 target, there’s
still a role for gas in the long-term, because some power sources like
wind and solar power are intermittent, so if you want to be keeping
the lights on in 2050 when there’s no wind and there’s no sun, you’re
going to need some gas power stations there
. Maybe not operating so
much of the time as they do today, but there’ll still be a role in
keeping the lights on.

[ KLAXON ! If gas plants are used only for peak periods or for backup to
renewables, then the carbon emissions will be much less than if they are
running all the time. ]

[ Tom Heap ]

Many energy experts though doubt that enough new wind power or nuclear
capacity could be built fast enough to affect the sums in a big way by
2020.

But that isn’t the only critical date looming over our energy system.
Even more challenging, though more distant, is the legally binding
objective of cutting greenhouse gas emissions in 2050.

David MacKay wants that certainty to provide the foundation for energy
decisions, and he showed me the effect of different choices with the
“Ultimate Future Energy App”. I was in his office, but anyone can try it online.

[ David MacKay ]

It’s a 2050 calculator. It computes energy demand and supply in
response to your choices, and it computes multiple consequences of
your choices. It computes carbon consequences. It also computes for
you estimates of air quality, consequences of different choices;
security of supply, consequences; and the costs of your choices.

So with this 2050 calculator, it’s an open source tool, and anyone can
go on the web and use the levers to imagine different futures in 2050
of how much action we’ve taken in different demand sectors and in
different supply sectors.

The calculator has many visualisations of the pathway that you’re choosing
and helps people understand all the trade-offs… There’s no silver
bullet for any of this. If I dial up a pathway someone made earlier,
we can visualise the implications in terms of the area occupied for
the onshore wind farms, and the area in the sea for the offshore wind
farms, and the length of the wave farms that you’ve built, and the
land area required for energy crops.

And many organisations have used this tool and some of them have given
us their preferred pathway. So you can see here the Friends of the
Earth have got their chosen pathway, the Campaign to Protect Rural
England, and various engineers like National Grid and Atkins have got
their pathways.

So you can see alternative ways of achieving our targets, of keeping
the lights on and taking climate change action. All of those pathways
all meet the 2050 target, but they do so with different mixes.

[ Tom Heap ]

And your view of this is you sort of can’t escape from the scientific
logic and rigour of it. You might wish things were different or you
could do it differently, but you’re sort of saying “Look, it’s either
one thing or the other”. That’s the point of this.

[ David MacKay ]

That’s true. You can’t be anti-everything. You can’t be anti-wind and
anti-nuclear and anti-home insulation. You won’t end up with a plan
that adds up.

[ KLAXON ! But you can be rationally against one or two things, like
expensive new nuclear power, and carbon and particulate emissions-heavy
biomass for the generation of electricity. ]

[ Tom Heap ]

But isn’t that exactly kind of the problem that we’ve had, without
pointing political fingers, that people rather have been
anti-everything, and that’s why we’re sort of not producing enough new
energy sources ?

[ David MacKay ]

Yeah. The majority of the British public I think are in favour of many
of these sources, but there are strong minorities who are vocally
opposed to every one of the major levers in this calculator. So one
aspiration I have for this tool is it may help those people come to a
position where they have a view that’s actually consistent with the
goal of keeping the lights on.

[ Tom Heap ]

Professor MacKay’s calculator also computes pounds and pence,
suggesting that both high and low carbon electricity work out pricey
in the end.

[ David MacKay ]

The total costs of all the pathways are pretty much the same.
“Business as Usual” is cheaper in the early years, and then pays more,
because on the “Business as Usual”, you carry on using fossil fuels,
and the prices of those fossil fuels are probably going to go up.

All of the pathways that take climate change action have a similar
total cost, but they pay more in the early years, ’cause you have to
pay for things like building insulation and power stations, like
nuclear power stations, or wind power, which cost up-front, but then
they’re very cheap to run in the future.

[ KLAXON ! Will the cost of decommissioning nuclear reactors and the
costs of the waste disposal be cheap ? I think not… ]

So the totals over the 40 or 50 year period here, are much the same for these.

[ Tom Heap ]

The cheapest immediate option of all is to keep shovelling the coal.
And last year coal overtook gas to be our biggest electricity
generation source, pushing up overall carbon emissions along the way
by 4.5%

[ KLAXON ! This is not very good for energy security – look where the
coal comes from… ]

As we heard earlier, most coal-fired power stations are scheduled for
termination, but some have won a reprieve, and trees are their
unlikely saviour.

Burning plenty of wood chip [ actually, Tom, it’s not wood “chip”, it’s
wood “pellets” – which often have other things mixed in with the wood,
like coal… ] allows coal furnaces to cut the sulphur dioxide and nitrous
oxide belching from their chimneys to below the level that requires their
closure under European law.

But some enthusiasts see wood being good for even more.

16:19

[ Outside ]

It’s one of those Autumn days that promises to be warm, but currently
is rather moist. I’m in a field surrounded by those dew-laden cobwebs
you get at this time of year.

But in the middle of this field is a plantation of willow. And I’m at
Rothamsted Research with Angela Karp who’s one of the directors here.

Angela, tell me about this willow I’m standing in front of here. I
mean, it’s about ten foot high or so, but what are you seeing ?

[ Angela Karp ]

Well, I’m seeing one of our better varieties that’s on display here.
We have a demonstration trial of about ten different varieties. This
is a good one, because it produces a lot of biomass, quite easily,
without a lot of additional fertilisers or anything. And as you can
see it’s got lovely straight stems. It’s got many stems, and at the
end of three years, we would harvest all those stems to get the
biomass from it. It’s nice and straight – it’s a lovely-looking, it’s
got no disease, no insects on it, very nice, clean willow.

[ Tom Heap ]

So, what you’ve been working on here as I understand it is trying to
create is the perfect willow – the most fuel for the least input – and
the easiest to harvest.

[ Angela Karp ]

That’s absolutely correct, because the whole reason for growing these
crops is to get the carbon from the atmosphere into the wood, and to
use that wood as a replacement for fossil fuels. Without putting a lot
of inputs in, because as soon as you add fertilisers you’re using
energy and carbon to make them, and that kind of defeats the whole
purpose of doing this.

[ KLAXON ! You don’t need to use fossil fuel energy or petrochemicals or
anything with carbon emissions to make fertiliser ! … Hang on, these
are GM trees, right ? So they will need inputs… ]

[ Tom Heap ]

And how much better do you think your new super-variety is, than say,
what was around, you know, 10 or 15 years ago. ‘Cause willow as an
idea for burning has been around for a bit. How much of an improvement
is this one here ?

[ Angela Karp ]

Quite a bit. So, these are actually are some of the, if you like,
middle-term varieties. So we started off yielding about 8 oven-dry
tonnes per hectare, and now we’ve almost doubled that.

[ Tom Heap ]

How big a place do you think biomass can have in the UK’s energy
picture in the future ?

[ Angela Karp ]

I think that it could contribute between 10% and 15% of our energy. If
we were to cultivate willows on 1 million hectares, we would probably
provide about 3% to 4% of energy in terms of electricity, and I think
that’s kind of a baseline figure. We could cultivate them on up to 3
million hectares, so you can multiply things up, and we could use them
in a much more energy-efficient way.

[ KLAXON ! Is that 4% of total energy or 4% of total electricity ?
Confused. ]

[ Tom Heap ]

Do we really have 3 million hectares going a-begging for planting willow in ?

[ Angela Karp ]

Actually, surprisingly we do. So, people have this kind of myth
there’s not enough land, but just look around you and you will find
there’s lots of land that’s not used for cultivating food crops.

We don’t see them taking over the whole country. We see them being
grown synergistically with food crops.

[ KLAXON ! This is a bit different than the statement made in 2009. ]

[ Tom Heap ]

But I’d just like to dig down a little bit more into the carbon cycle
of the combustion of these things, because that’s been the recent
criticism of burning a lot of biomass, is that you put an early spike
in the amount of carbon in the atmosphere, if you start burning a lot
of biomass, because this [ sounds of rustling ], this plant is going
to be turned into, well, partly, CO2 in the atmosphere.

[ Angela Karp ]

Yes, I think that’s probably a simple and not totally correct way of
looking at it. ‘Cause a lot depends on the actual conversion process
you are using.

So some conversion processes are much more efficient at taking
everything and converting it into what you want.

Heat for example is in excess of 80%, 90% conversion efficiency.

Electricity is a little bit more of the problem. And there, what
they’re looking at is capturing some of the carbon that you lose, and
converting that back in, in carbon storage processes, and that’s why
there’s a lot of talk now about carbon storage from these power
stations.

That I think is the future. It’s a question of connecting up all parts
of the process, and making sure that’s nothing wasted.

20:02

[ Tom Heap ]

So, is wood a desirable greener fuel ?

Not according to Almuth Ernsting of Biofuelwatch, who objects to the
current plans for large-scale wood burning, its use to prop up coal,
and even its low carbon claims.

[ Almuth Ernsting ]

The currently-announced industry plans, and by that I mean existing
power stations, but far more so, power stations which are in the
planning process [ and ] many of which have already been consented –
those [ biomass ] power stations, would, if they all go ahead,
require to burn around 82 million tonnes of biomass, primarily wood,
every year. Now by comparison, the UK in total only produces around
10 million tonnes, so one eighth of that amount, in wood, for all
industries and purposes, every year.

We are looking on the one hand at a significant number of proposed,
and in some cases, under-construction or operating new-build biomass
power stations, but the largest single investment so far going into
the conversion of coal power station units to biomass, the largest and
most advanced one of which at the moment is Drax, who are, have
started to move towards converting half their capacity to burning wood
pellets.

[ Tom Heap ]

Drax is that huge former, or still currently, coal-fired power station
in Yorkshire, isn’t it ?

[ Almuth Ernsting ]

Right, and they still want to keep burning coal as well. I mean, their
long-term vision, as they’ve announced, would be for 50:50 coal and
biomass.

[ Tom Heap ]

What do you think about that potential growth ?

[ Almuth Ernsting ]

Well, we’re seriously concerned. We believe it’s seriously bad news
for climate change, it’s seriously bad news for forests, and it’s
really bad news for communities, especially in the Global South, who
are at risk of losing their land for further expansion of monoculture
tree plantations, to in future supply new power stations in the UK.

A really large amount, increasingly so, of the wood being burned,
comes from slow-growing, whole trees that are cut down for that
purpose, especially at the moment in temperate forests in North
America. Now those trees will take many, many decades to grow back
and potentially re-absorb that carbon dioxide, that’s if they’re
allowed and able to ever grow back.

[ Tom Heap ]

There’s another technology desperate for investment, which is critical
to avoiding power failure, whilst still hitting our mid-century carbon
reduction goals – CCS – Carbon Capture and Storage, the ability to
take the greenhouse gases from the chimney and bury them underground.

It’s especially useful for biomass and coal, with their relatively
high carbon emissions, but would also help gas be greener.

The Chancellor has approved 30 new gas-fired power stations, so long
as they are CCS-ready [ sic, should be “capture ready”, or
“carbon capture ready” ].

Jon Gibbons is the boss of the UK CCS Research Centre, based in an
industrial estate in Sheffield.

[ Noise of processing plant ]

Jon’s just brought me up a sort of 3D maze of galvanized steel and
shiny metal pipes to the top of a tower that must be 20 or so metres
high.

Jon, what is this ?

[ Jon Gibbons ]

OK, so this is our capture unit, to take the CO2 out of the combustion
products from gas or coal. In the building behind us, in the test rigs
we’ve got, the gas turbine or the combustor rig, we’re burning coal or
gas, or oil, but mainly coal or gas.

We’re taking the combustion products through the green pipe over
there, bringing it into the bottom of the unit, and then you can see
these big tall columns we’ve got, about 18 inches diameter, half a
metre diameter, coming all the way up from the ground up to the level
we’re at.

It goes into one of those, it gets washed clean with water, and it
goes into this unit over here, and there it meets an amine solvent, a
chemical that will react reversibly with CO2, coming in the opposite
direction, over packing. So, it’s like sort of pebbles, if you can
imagine it, there’s a lot of surface area. The gas flows up, the
liquid flows down, and it picks up the CO2, just mainly the CO2.

[ Tom Heap ]

And that amine, that chemical as you call it, is stripping the CO2 out
of that exhaust gas. This will link to a storage facility.

What would then happen to the CO2 ?

[ Jon Gibbons ]

What would then happen is that the CO2 would be compressed up to
somewhere in excess of about 100 atmospheres. And it would turn from
being a gas into something that looks like a liquid, like water, about
the same density as water. And then it would be taken offshore in the
UK, probably tens or hundreds of kilometres offshore, and it would go
deep, deep down, over a kilometre down into the ground, and basically
get squeezed into stuff that looks like solid rock. If you go and look
at a sandstone building – looks solid, but actually, maybe a third of
it is little holes. And underground, where you’ve got cubic kilometres
of space, those little holes add up to an awful lot of free space. And
the CO2 gets squeezed into those, over time, and it spreads out, and
it just basically sits there forever, dissolves in the water, reacts
with the rocks, and will stay there for millions of years.

[ Tom Heap ]

Back in his office, I asked Jon why CCS seemed to be stuck in the lab.

[ Jon Gibbons ]

We’re doing enough I think on the research side, but what we really
need to do, is to do work on a full-scale deployment. Because you
can’t work on research in a vacuum. You need to get feedback –
learning by doing – from actual real projects.

And a lot of the problems we’ve got on delivering CCS, are to do with
how you handle the regulation for injecting CO2, and again, you can
only do that in real life.

So what we need to do is to see the commercialisation projects that
are being run by the Department of Energy and Climate Change actually
going through to real projects that can be delivered.

[ Tom Heap ]

Hmm. When I talk to engineers, they’re always very passionate and
actually quite optimistic about Carbon Capture and Storage. And when
I talk to people in industry, or indeed read the headlines, not least
a recent cancellation in Norway, it always seems like a very bleak picture.

[ Jon Gibbons ]

I think people are recognising that it’s getting quite hard to get
money for low carbon technologies.

So – recent presentation we had at one of our centre meetings, was
actually a professor from the United States, Howard Herzog. And he
said “You think you’re seeing a crisis in Carbon Capture and Storage.
But what you’re actually seeing is a crisis in climate change
mitigation.”

[ KLAXON ! Priming us for a scaling back of commitment to the
Climate Change Act ? I do hope not. ]

Now, Carbon Capture and Storage, you do for no other purpose than
cutting CO2 emissions to the atmosphere, and it does that extremely
effectively. It’s an essential technology for cutting emissions. But
until you’ve got a global process that says – actually we’re going to
get on top of this problem; we’re going to cut emissions – get them to
safe level before we actually see people dying in large numbers from
climate change effects – ’cause, certainly, if people start dying,
then we will see a response – but ideally, you’d like to do it before
then. But until you get that going, then actually persuading people to
spend money for no other benefit than sorting out the climate is
difficult.

There’s just no point, you know, no country can go it alone, so you
have to get accommodation. And there, we’re going through various
processes to debate that. Maybe people will come to an accommodation.
Maybe the USA and China will agree to tackle climate change. Maybe
they won’t.

What I am fairly confident is that you won’t see huge, you know,
really big cuts in CO2 emissions without that global agreement. But
I’m also confident that you won’t see big cuts in CO2 emissions
without CCS deployment.

And my guess is there’s about a 50:50 chance that we do CCS before we
need to, and about a 50:50 chance we do it after we have to. But I’m
pretty damn certain we’re going to do it.

[ Tom Heap ]

But we can’t wait for a global agreement that’s already been decades
in the making, with still no end in sight.

We need decisions now to provide more power with less pollution.

[ Music lyrics : “What’s the plan ? What’s the plan ?” ]

[ Tom Heap ]

Dieter Helm, Professor of Energy Policy at the University of Oxford
believes we can only deliver our plentiful green energy future if we
abandon our attitude of buy-now pay-later.

[ KLAXON ! Does he mean a kind of hire purchase energy economy ?
I mean, we’re still paying for nuclear electricity from decades ago,
in our bills, and through our taxes to the Department of Energy and
Climate Change. ]

[ Dieter Helm ]

There’s a short-term requirement and a long-term requirement. The
short-term requirement is that we’re now in a real pickle. We face
this energy crunch. We’ve got to try to make the best of what we’ve
got. And I think it’s really like, you know, trying to get the
Spitfires back up again during the Battle of Britain. You know, you
patch and mend. You need somebody in command. You need someone
in control. And you do the best with what you’ve got.

In that context, we then have to really stand back and say, “And this
is what we have to do to get a serious, long-term, continuous, stable
investment environment, going forward.” In which, you know, we pay the
costs, but of course, not any monopoly profits, not any excess
profits, but we have a world in which the price of electricity is
related to the cost.”

[ KLAXON ! Is Dieter Helm proposing state ownership of energy plant ? ]

29:04

[ Programme anchor ]

“Costing the Earth” was presented by Tom Heap, and made in Bristol by
Helen Lennard.

[ Next broadcast : 16th October 2013, 21:00, BBC Radio 4 ]

Categories
Energy Change Energy Denial Realistic Models Renewable Gas Solar Sunrise Solution City The Data Western Hedge Wind of Fortune

Wind Powers Energy Security #2

There’s no doubt about it – wind power is saving the grid. Since the economic deflation (otherwise more sensitively termed a “recession” or a “slowdown”), and the consequent drop in confidence about the growth in electricity demand, and the problem of “missing money” to finance new infrastructure projects, there has not been much investor appetite for commissioning new power plants running on “conventional” fossil fuels. But wind is raging away with 12 gigawatts of wind power capacity added in the European Union in 2012.

But can wind be relied on ? Well, there’s lots of wind, and so lots of wind power – in the UK, for example, wind turbines generated 16,884 gigawatt hours of power in 2012, more than double the amount in 2008 (DUKES Digest of UK Energy Statistics, Table 5.1).

But what if the wind dies down when a high pressure weather system sits tight over the UK in the depths of winter ? What “Equivalent Firm Capacity” (EFC) can we expect from wind power ? Ofgem models 17% of the total in their 2013 Electricity Capacity Assessment Report. National Grid modelled 8% in their Winter Outlook Report of 2011/2012, which went up to 10% in the Winter Outlook for 2012/2013, and 10% in the 2013/2014 Winter Consultation Report (but noted that actual availability of wind during the previous year winter high demand conditions had been 9%)

Views and evidence differ about whether wind power availability is destined to be so low in winter cold highs – whether calm conditions are bound to be experienced at the same time as high power demand. Both the National Grid and Ofgem, the UK Government’s energy market regulator, have modelled this from data, but just as the time series is relatively short, the number of wind generators is rapidly increasing, so the richness of the data has yet to improve.

The problem with concentrating on the winter is that the excellent contribution from wind power to indigenous electricity generation is obscured. Clearly that’s the intention of the wind power deniers, who dismiss wind power’s valuable contribution because of the risk of some still days in December or January.

For any time of the year apart from the deepest cold of winter, wind power is a healthy generation resource. In some cases, wind power is embedded into industrial, military and transport facilities and isn’t metered by National Grid, and at times of high wind generation, National Grid experiences a “negative demand” effect on the main power grid.

And here are just some of the reasons why the contribution of wind power to national energy security is going to improve :-

1. A wider geographical spread of wind farms

More wind power will almost certainly be built. And built fast. Wind turbines have a good Net Present Value, so are assets, as opposed to nuclear reactors which start depreciating in return value the moment you start pouring concrete. Wind turbines are also quick to deploy, compared to the interminable struggle to commit to building other sorts of generation. The reason why wind power is fast to grid is because of slight tilts in market conditions caused by government subsidies and other measures to favour their low carbon generation. The only other contender (besides solar electric) for speed to grid generation from first groundworks is new efficient Natural Gas-fired plant. While people are still debating whether or not to deploy other forms of low carbon generation, wind power and gas (and solar electric) will be ripping up the projection spreadsheets. As more wind power comes online, there will naturally be a wider geographical dispersion of resources. If wind power generation capacity is spread over distances wider than the average anti-cyclonic high pressure system, then higher capacity values can be guaranteed. The more wind power there is, the firmer the promise of power will be.

2. The development of wind power hubs serving a number of regions

Already we see wind power “hubs” emerging, centres of build and connection of wind farms where conditions, financing and planning are more favourable. Some of these projects are international, such as in the North Sea area. With the plans for growing the integrated wind power market over a larger number of territories comes the flexibility to use wind power where it’s most needed at any one time, almost certainly raising the levels of wind energy that can be supplied to consumers from the same quantity of generation equipment. If “spare” wind capacity can flow through beefed up European power networks to serve regional demand, then there will be more reason to count on wind.

3. Size of wind turbines – and height

Data modelling of wind power will need to adjust to new realities – larger and higher wind turbines – capturing more of the wind for power generation. Wind flow is more regular the higher you are from the surface of the land or sea, so stronger dependency on wind power will be possible in future.

4. The synergy between low carbon generation technologies

So you’ve hit a rough patch with low wind speeds today – but solar power is doing fine. Or tidal energy. The more renewable energy technologies we develop, the more they can support each other in their respective weaknesses, so firming up renewable energy capacity as a whole.

5. The development of hybrid wind systems

Already, levels of installed wind generation capacity mean that there are periods of unused wind. Part of this will be improved by strengthening transmission networks, and this will improve wind’s reliability by getting “stranded” wind power to market. If the spare or surplus, or even “constrained” or “curtailed” wind power could be put to use as part of a Power to Gas hybrid system, more of the wind energy could be captured for a more reliable source of electrical power. This is just one angle of the Renewable Gas story – there are already several wind-to-hydrogen projects testing the concept of using electrolysis of water by spare wind power to produce hydrogen gas that can be stored and burned later on for power generation.