Categories
Academic Freedom Acid Ocean Babykillers Big Picture Carbon Capture Climate Change Dead Zone Deal Breakers Disturbing Trends Economic Implosion Energy Autonomy Energy Change Energy Disenfranchisement Energy Insecurity Evil Opposition Feed the World Fossilised Fuels Global Warming Incalculable Disaster Mad Mad World Marine Gas Mass Propaganda Methane Management Military Invention Modern Myths Natural Gas No Blood For Oil Orwells Peace not War Policy Warfare Political Nightmare Regulatory Ultimatum Renewable Energy Renewable Gas Renewable Hydrogen Renewable Methane Renewable Resource Resource Curse Stop War The Data The Power of Intention The Price of Gas The Price of Oil The Right Chemistry The War on Error Toxic Hazard Unconventional Foul Western Hedge

Russia Sours

I have a theory. But I don’t have access to the data to confirm or deny it. The data is in the hands of the oil and gas companies, and private oil industry data concerns, who charge a lot of money for access to the data. Some data might become public soon, as the International Energy Agency, the IEA, have made a commitment to opening up their databases, but I don’t know when this will be.

The data I would need to assess my theory regards the chemical composition of Natural Gas from a range of fields and wells, and its evolution over time. Although some data about chemical quality exists in the public domain, such as crude assays for various petroleum oils, and is published in various places, such as Eni’s annual review, and a handful of academic research papers regarding prospects for gas in some regions or countries, there is little to go on for a global view from gas analyses.

The European Union has announced a plan to “get off” Russian fossil fuel dependency (addiction), but I would contend that they would need to do it anyway, regardless of the incentive to “cancel” Russian oil and gas in sanction over Russia’s unspeakable acts of terror and aggression in their invasion of Ukraine. My view is that the rationale for an early exit from Russian fossil fuel supplies is all to do with the chemistry.

Gas fields and oil basins deplete, that we all know. The easy, good stuff gets emptied out first, and then the clever engineers are commissioned to suck out the last remaining dregs. So-called “sweet spots”, where easy, good stuff has accumulated over the ages, are quickly pumped dry, and investors and management push for the assets to be sweated, but it’s a game of diminishing returns.

If you look for a mention of problem contaminants, such as sulfur compounds and heavy metals, the publicly, freely-available literature is quite thin on the ground – even general discussion of the global overview – in other words, it is noticeable by its absence.

Natural Gas with high levels of inherent carbon dioxide has started to merit explicit mention, because of climate change mitigation efforts, but even there, there is not much in terms of basins, fields and wells by numbers and locations, and over timespans.

There was quite a lot of discussion about the procedure of reinjection of acid and sour gases, starting in the early 1990s or so, pumping unwanted molecules from contaminated or sub-standard Natural Gas back underground, after separation at or close to the well head. This was partly to answer climate change concerns, but also to enhance further oil and gas recovery from emptying wells. This has been known mostly by the term EOR – enhanced oil recovery. Bad gas was being pumped, then filtered, and the bad fraction was being pumped back down to build up pressure to get more gas and oil out.

There has also been a lot of very public discussion of the project to mitigate gas venting and gas flaring, as a potentially easy win against environmental damage – including climate change burden. Unburned Natural Gas has been routinely vented to the atmosphere from locations where gas was not the principal product from wells, or where it has been costly to install gas capture equipment. Unburned Natural Gas vented to air leeches methane, carbon dioxide and hydrogen sulfide, two of which are climate change-sparking greenhouse gases, and the other, a local toxin to all forms of life. But flaring unwanted Natural Gas is only marginally less dangerous, as it still emits carbon dioxide to air, as well as sulfur dioxide, and potentially some nitrogen oxides (and sometimes, still, some hydrogen sulfide) : and sulfur dioxide interferes with local temperatures through localised greenhouse cooling; sulfur dioxide is also a local environmental pollutant; and both sulfur dioxide and nitrogen oxides, in addition to the carbon dioxide, lead to acidification of air, water and soils. Obviously, it would be better to capture any currently unwanted Natural Gas, and make use of it in the economy, processing it somewhere in a way that can reduce the environmental disbenefits that would have come from venting or flaring it in the field.

However, discussion about venting and flaring of Natural Gas and the attempts to stem it centre on the potency of emissions of fossil methane as a short-term greenhouse gas, and there is little discussion of the emissions of fossil carbon dioxide and fossil sulfur compounds that are part of that unwanted Natural Gas.

Trying to drill down into the geography and localised basin- and field-specific gas composition is near-nigh impossible without insider access to data, or some kind of large budget for data. Public reports, such as the financial and annual reports of companies, focus on levels of Natural Gas production, but not the amounts of rejected molecules from the production yield – the molecules of hydrogen sulfide, carbon dioxide and nitrogen and so on that don’t make it into the final gas product. Keeping up production is discussed in terms of sales revenue and investment in exploration and production, but not in terms of the economic costs of bad chemistry.

Over time, oil and gas production companies must explore for new reserves that they can bring to production – often within their already-tapped resource base – because old fields empty, until well production starts slowing down, and become uneconomic to continue pumping. But running down the reserves, and having to find new locations within basins and fields to drill new wells is not the only issue. Oil and gas are not monolithic : resources vary in terms of accessibility, temperature, pressure, geology, but also chemistry – even within fields; and over time and operating conditions – which can even be seasonal.

Contaminants can be concentrated in one particular area, or at one particular pre-historic geological stratum or layer : the formation of the sediments. Not only that, but over time, oil and gas wells can sour, that is, production can experience increasing levels of hydrogen sulfide and other sulfur compounds. They can also show increasing production levels of inert non-combustible or acid-producing chemical species, mainly carbon dioxide and nitrogen.

As drilling goes deeper, the more likely inert, sour and acid gases are to occur, as the deposits will have had more time to mature, and reach temperatures where gas generation from organic matter is more likely than oil generation : the “gas window” depends on such things as temperature, pressure and time. And more gas can signal more non-useful molecules.

The deeper you go, the higher the risk of your Natural Gas being contaminated with hydrogen sulfide, carbon dioxide and nitrogen; as the deposits have cooked for too long. The presence of significant levels of sulfur compounds is credited to rock-oil and rock-gas chemical interactions known as TSR – thermochemical sulfate reduction – between hydrocarbons and sulfate-bearing rocks.

In addition, drilling a well can lead to BSR – bacterial sulfate reduction – where bacterial life starts to work on sulfate present in any water as the hydrocarbons are raised from the depths and depressurise and cool.

The closer to the source rocks drilling goes, the black shales, high in organic matter, from which all hydrocarbon oils and gases originate, the higher the risk of pumping up heavy metals where there are metal sulfides clustered.

Although wells can sour over time, especially if acid gas is reinjected to dispose of it, fields can even be highly acid or sour right from the get-go. For decades, some sour and acid resources were listed as proven reserves, but were considered too uneconomic to mine. But during the last decade or so, increasing numbers of sour gas projects have commenced.

The engineering can be incredible, but the chemistry is still wrong. With new international treaties, sulfur cannot be retained in fuels, so where does it end up ? Rejected sulfur atoms largely end up in abandoned pyramids of yellow granules, or on the sulfur market, and a lot is used to make sulfuric acid, a key industrial chemical, used for such things as the production of fertilisers, explosives, and petrochemicals. But after the sulfuric acid is used, where does the sulfur end up ? As sulfate in water, that drains to the sea ? And what about the granulated sulfur from the mega sour gas projects ? Some of that is used as soil treatment, as a fertiliser, either directly, or as part of ammonium sulfate. But after it is used, what happens to the sulfur ? Does it become sulfate in water, that courses to the ocean ? And what happens to it there ? How much is fossil sulfur going to contribute to ocean anoxia through BSR generation of hydrogen sulfide ?

Sulfur atoms don’t just disappear. It will take many millenia for the mined fossil sulfur to be incorporated back into sedimentary sulfides or rocks. As increasingly sour oils and gases are increasingly used, the question of the perturbation of the global sulfur cycle (as well as the global sulfur market) becomes relevant.

At what point will the balance tip, and high sulfur deposits of fossil fuels become untenable ?

In addition to management of the fossil sulfur mined during the exploitation of chemically-challenged Natural Gas, there are other important considerations about emissions.

Satellite monitoring of “trace” greenhouse and environmentally-damaging gases, such as sulfur dioxide and methane, is constantly evolving to support international calls for emissions reduction and control. For example, analyses of methane emissions from the oil and gas industry have pinpointed three geographical areas of concern for the locations of “ultra-emitters” : the United States, the Russian Federation and Turkmenistan. A lot of methane emissions from the oil and gas industry could be stemmed, but the question needs to be asked : is it worth opening up new gas fields, with all the infrastructure and risks of increased methane and other emissions ? And if the major explanation for methane emissions in gas drilling are connected to end-of-life fields, what incentives could be offered to cap those emissions, given the lack of an economic case, at so late a stage in the exploitation of assets ?

And so, to Russia.

A great variety of commentators have been working hard to put forward their theories about why Russia chose to launch a violent, cruel and destructive military assault on Ukraine in early 2022. Some suppose that Russia is looking to build out its empire, occupying lands for grain production and transportation routes, gaining control over peoples for slave labour, removing the irritant of social or political threat. Arguments about the ownership of territory, rightfully or wrongfully. Historically revisionist or revanchist philosophies are identified in the output from Russian voices and political narrative. However, there does not appear to be a truly justifying rationale for a war arising from these pseudo-historical caricatures. Even if the territory of Ukraine could be deemed, by some internal Russian legal process, to belong to some concocted Greater Russian Federation, it would require a lot of magical thinking to believe it would gain traction in the wider sphere.

Some see Russia’s actions as vindictive or retaliatory, but to assert this with any validity would require explaining what has really changed to justify the recent major escalation in one-sided aggression from Russia, action that has lasted for some time, principally since 2014.

What can really be driving Russia’s murderous marauding, the bombing of civilian districts, wanton infrastructure destruction, people snatching, torture basements and all forms of intimate, personal aggression and attack ?

I decided to do some reading, and I went back to 2004/2005 to do so, and then realised I should have gone back further, to the time of Vladimir Putin’s “ascension” to the Presidency of the Russian Federation.

Putin appears to have control issues, and seems to want to impress his will on absolutely any person and any organisation he comes across, up to and including whole countries. The means are various, and the medium also. There is continual “hybrid” warfare; and the evidence suggests that Russia has interfered with foreign democracy, for example, by playing the joker in the memetic transfer of ideologies and “fake news” through social media; used blackmail in “diplomacy”; used strong-arm tactics in trade and investment; and locked international energy companies into corrupting, compromising deals.

By far the most injurious behaviour, however, has been the outright military assaults he has ordered to be launched on lands and people groups, both inside and around the outside of Russia. I will leave the details to expert military historians and human rights organisations, but the pattern of the annihilation visited on many areas of Ukraine since early in 2022 is not new. There appears to be no dialogue possible to restrain Putin’s sadistic army of Zombies (Z) and Vampires (V).

But just what made this happen ? What was really behind Putin’s decision to launch an invasion on Ukraine ? It wasn’t to de-Nazify. That’s just weak and quite bizarre propaganda, that cannot hold together. He knows there are far fewer ultra-right wing cultists in Ukraine than in Moscow. The “war” wasn’t to protect Russian speakers. Many people in Ukraine speak several languages, and none of them have been safe from the rampaging hordes of Russian “orcs”. The invasion wasn’t to defend the Putin-styled Republics of Donetsk and Luhansk, as people there don’t feel defended from anything nasty the Russians seem to visit on everybody they invade, or the military responses of the Ukrainian forces, something the Russians could have anticipated. If Russia really cared about the people in the Donbas, they wouldn’t have brought troops there. The warfare isn’t benefitting or supporting any pro-Russian factions or Russian-speakers in Ukraine, and the only thing that looks like Nazis are the Russian Nasties.

It has come into focus for me from my reading that there seem to be three major, real, potential or probable reasons for Russia seeking to have overt, administrative, and if necessary, military control of the southern, littoral part of Ukraine; and my reading suggests that this is an outworking of the maritime policy of the Russian Federation going back at least 20 years.

I intend to give a list of my resources for reading later on, but for now, let’s begin with a Tweet thread from Dmitri Alperovitch, which really resonated for me :-

https://mobile.twitter.com/DAlperovitch/status/1520333220964933632

https://threadreaderapp.com/thread/1520333220964933632.html

He makes the point that with Russian forces control the coastal area of Ukraine, and its ports and seafaring routes, they will have a stranglehold on the economy of Ukraine. If the Russians deny grain and other agricultural exports, or deny the proceeds from export sales, then the Ukrainian economy will be seriously damaged. In addition, the continual bombing and mining of agricultural lands means that crops are already at risk this year in Ukraine, which will add to these woes. There is already some discussion about the effects on the importers of Ukrainian grain in particular, as it has been a “bread basket of the world”.

It is easy to see from maps of the fighting that controlling the coastal ports must have been a major part of the reason for the Russian invasion, but the triggering of conflict is surely not just about control of the trade routes in and out of Ukraine, as a means to squeeze the country into submission.

It’s clear from my reading so far that Russia has an historical and significant ambition to control more of the maritime routes in that region. Russia clearly didn’t like the awkwardness of having to share the Black Sea and the Sea of Azov. They’d rather just run all of it, apparently. Russia appears to regard rulership of the “warm seas” to the south of Federation lands as vital to their aims. There are mentions of improving the waterway routes from the Caspian, through the Black Sea, out to the Mediterranean, to permit military vessels to exert control in the region, and to enable Russian trade. The Russians built a contested bridge to Crimea, but they may end up building vast new canals as well. Are you listening yet, Turkey ?

This is grandiose enough, but this is still not the end of Russia’s aims in taking over the coast of Ukraine, it could transpire.

What floats on top of the Black Sea, the Sea of Azov, the Mediterranean Sea and the Caspian Sea is important enough, but what lies beneath is far more important, I am beginning to find in my reading.

There has been a couple of decades or so of development of newly-discovered oil and gas resources around the Caspian Sea. Russia even acted quite collaboratively initially with the other countries bordering co-littorally. Although it hasn’t been very happy since in some parts of the region. Due to Russian military carpet-bombing and martial illegalities, in some cases.

But despite oil- and gas-aplenty, for example, in the Kashagan, fossil fuel deposits there are really rather sour, that is, loaded with sulfur compounds; particularly hydrogen sulfide, which is corrosive, explosive and needs to be removed before the fossil fuels can be utilised. That, coupled with the anoxic and difficult conditions of the undersea mining, mean that Russia has looked elsewhere to build up new proved resources, as they have become necessary.

There was much talk of Russia going to drill in the Arctic; but even with melting ice from global warming, conditions north of the Arctic Circle are tough, and the offshore prospects are likely to be costly. Yes, they might end up trying to keep their rights to trade LNG from the far North, but the “cold seas” make for harsh economic conditions.

After years of stagnating Natural Gas production in Russia, more gas fields have been opened up in the Yamal Peninsula, but they only have a half life of approximately ten to fifteen years, perhaps. And judging by other gas fields, some parts of them could be extremely contaminated with sulfur compounds, which would lead to extra costs in cleaning the products up for sale and piping out for export.

And then came the Mediterranean and Black Sea seismic surveys and gas prospecting. What was found ? Sweet, sweet gas. Little in the way of sulfur contamination, and continental sea conditions, as opposed to stormy oceans. There are many countries that border both bodies of water that have been rapidly developing Natural Gas projects, eager to jump right in and tap as much as they can from fields, presumably before other countries tap into the same fields from another entry point.

There is some evidence that the primary goal for Russia in invading Crimea in 2014 was to secure control of Ukraine’s Natural Gas production projects in the Black Sea. Ukraine had been at the mercy of Russia’s energy “policy” for decades (which seems to consist mostly of what looks like : threat, supply cuts, blackmail, extortion, compromise, false accusation, unjustifiable price hikes), and now it was about to start developing a new sizeable domestic resource, and could conceivably become energy-independent. It could have been too much for Vladimir Putin to bear, thinking that Ukraine could become the masters and mistresses of their own energy destiny. He wanted the sales of that Natural Gas for himself, and deny Ukraine control over their own economy. Hence what has been described as the “theft” of energy company, oil and gas rigs, other utility holdings and the EEZ maritime exclusive exploitation zone out at sea. Oh Chornomornaftogaz !

If Russia establish control of the whole of Southern Ukraine, recognised or no, they will almost inevitably be seeking to exploit as much of the Black Sea Natural Gas as they can. It will be cleaner than Caspian gas, cheaper than Arctic gas, and easier to export as ship-laden LNG.

So, I ask again, why did Russia invade Ukraine ? To take advantage of ten to fifteen years of sweet, cheap Black Sea Natural Gas ? Is that really what this is actually about ?

The European Union has declared that they will wind down their use of Natural Gas, and develop Renewable Gas instead over the next decade. There will be a divorce from Russian gas, because of this policy, and as a reaction to the invasion of Ukraine.

I would argue however, that this policy is needed not just because of climate change, and not simply as a reaction to unjustifiable horrors of aggression. The future of gas sourced from Russia is either sour or stolen, and so the European Union has no choice but to wean itself away.

To support my theory, I would need to have access to gas composition analysis by the major oil and gas companies of Russia, and the countries surrounding the Caspian, Black Sea, Sea of Azov and Mediterranean Sea, and the companies working on oil and gas projects onshore and offshore in the region.

I have made a few enquiries, but nothing has emerged as yet.

Categories
Academic Freedom Battery Ramp Carbon Capture Change Management Clean Burn Climate Change Divest and Survive Efficiency is King Energy Calculation Energy Change Energy Revival Energy Storage Gas Storage Green Gas Hydrogen Economy Introduction Natural Gas Objectives Realistic Models Regulatory Ultimatum Renewable Energy Renewable Gas Renewable Hydrogen Renewable Methane Science Rules The Data The Myth of Innovation The Price of Gas The Right Chemistry The Science of Communitagion

Clean Burn : Introduction and Objectives

From my studies, I conclude that humanity will continue to use gas energy fuels for a long time to come.

In that case, we need to know how to burn it cleanly, so I am starting a new phase of research and publication on this topic – “Clean Burn”.

Anybody is welcome to comment, feedback, review and contribute. It will all be Open Access.

Here is a draft version of the Introduction and Objectives.

Categories
Academic Freedom Carbon Capture Carbon Recycling Renewable Gas Renewable Resource

I Agree With George

For once, I agree with George Osborne.

Well, for twice, actually.

In his Autumn Statement of the state budget, he reversed a painful austerity measure aimed at the lowest paid workers, by performing a U-turn on removing tax credits.

And, perhaps more importantly, not in the Autumn Statement, he cancelled the Carbon Capture and Storage demonstration subsidy. I completely applaud this decision. Apart from the speed at which it was enacted.

George Osborne did a number of other things in his Autumn Statement that I definitely do not agree with – such as converting student nurse grants into loans – which shows the most appalling lack of judgement, as it will deter just the trainees the National Health Service really needs.

Without more nursing staff on the front line of hospital health care, nothing will improve, no matter how many middle managers you employ. But anyway, back to energy…

For some reason, the news that the Carbon Capture and Storage (CCS) “competition” money, formerly ringfenced, had been axed, was not included in the Autumn Statement. It was “snuck out” on the London Stock Exchange website, and I cannot find a mention of it yet on the Department of Energy and Climate Change website. Curious.

What’s not curious in the slightest is the racket of the complaints against this decision. Which is to be expected, as a great many engineers and researchers have been relying on this very cash injection for their careers in carbon capture.

Many politicos have been “captured” by CCS along the way, and their resentment is shrill today. Caroline Flint, in particular, should know better than to support CCS – she should look at the numbers, the history, and follow the money…

There is an almost desperate misunderstanding about exactly how poor “value for money” the current CCS technologies are. This is because they are being applied to power generation plant, where the thermodynamics are against the efficient capture of carbon dioxide, because capture would need to be done behind combustion in most configurations.

What is really needed is to go back to basics – chemistry and physics basics – and go back in time to the research done by earlier industrial gas engineers, terminated in the 1980s because of the discoveries of abundant (but not infinite) Natural Gas.

Carbon capture in industrial gas processing has options that are relatively efficient compared to capturing carbon dioxide at low temperatures and low pressures in a venting stack on the back of a power plant.

As one colleague of mine said (to paraphrase slightly), “The government have been pushing carbon capture in the power sector – but this is exactly the wrong place for it to be done. We in the gas industry, we want carbon capture back, please.”

However, carbon capture in gas-related industries, in order to make it truly efficient, both energy-efficient and resource-efficient, and also carbon-efficient too, it needs to be CCU, not CCS, in other words Carbon Capture and Utilisation.

Carbon recycling in integrated gas systems will allow us to manufacture very low carbon and sustainable Renewable Gas, even as fossil fuels deplete or become too chemically complex to permit us to burn them.

Categories
Academic Freedom Alchemical Assets not Liabilities Baseload is History Be Prepared Big Number Big Picture Bioeffigy Biofools Biomess British Biogas Burning Money Carbon Capture Carbon Commodities Carbon Pricing Carbon Recycling Carbon Taxatious Change Management Coal Hell Corporate Pressure Cost Effective Design Matters Direction of Travel Dreamworld Economics Efficiency is King Electrificandum Emissions Impossible Energy Autonomy Energy Change Energy Insecurity Energy Revival Energy Socialism Engineering Marvel Foreign Investment Fossilised Fuels Gamechanger Gas Storage Geogingerneering Green Gas Green Investment Green Power Grid Netmare Growth Paradigm Hydrocarbon Hegemony Hydrogen Economy Insulation Low Carbon Life Marine Gas Methane Management National Energy National Power Natural Gas Nuclear Nuisance Nuclear Shambles Oil Change Optimistic Generation Paradigm Shapeshifter Peak Natural Gas Petrolheads Policy Warfare Political Nightmare Price Control Public Relations Realistic Models Regulatory Ultimatum Renewable Gas Shale Game Solar Sunrise Solution City Technofix Technomess The Power of Intention The Price of Gas The Right Chemistry Tree Family Unconventional Foul Ungreen Development Unnatural Gas Wasted Resource Wind of Fortune Zero Net

A Partial Meeting of Engineering Minds

So I met somebody last week, at their invitation, to talk a little bit about my research into Renewable Gas.

I can’t say who it was, as I didn’t get their permission to do so. I can probably (caveat emptor) safely say that they are a fairly significant player in the energy engineering sector.

I think they were trying to assess whether my work was a bankable asset yet, but I think they quickly realised that I am nowhere near a full proposal for a Renewable Gas system.

Although there were some technologies and options over which we had a meeting of minds, I was quite disappointed by their opinions in connection with a number of energy projects in the United Kingdom.

Categories
Academic Freedom Alchemical Assets not Liabilities Baseload is History Big Number Big Picture Bioeffigy Biofools Biomess British Biogas Carbon Capture Carbon Commodities Carbon Pricing Carbon Recycling Change Management Corporate Pressure Demoticratica Direction of Travel Efficiency is King Electrificandum Energy Autonomy Energy Calculation Energy Change Energy Revival Engineering Marvel Fossilised Fuels Gamechanger Green Gas Green Investment Green Power Growth Paradigm Hydrocarbon Hegemony Hydrogen Economy Major Shift Marvellous Wonderful Methane Management National Energy National Power Natural Gas Nuclear Nuisance Nuclear Shambles Oil Change Optimistic Generation Peak Emissions Peak Natural Gas Realistic Models Regulatory Ultimatum Renewable Gas Renewable Resource Revolving Door Social Capital Social Change Social Democracy Solution City Tarred Sands Technofix The Data The Myth of Innovation The Power of Intention The Price of Gas The Right Chemistry Transport of Delight Tree Family Ungreen Development Unnatural Gas Wasted Resource Western Hedge Wind of Fortune Zero Net

DECC Dungeons and Dragnets

Out of the blue, I got an invitation to a meeting in Whitehall.

I was to join industrial developers and academic researchers at the Department of Energy and Climate Change (DECC) in a meeting of the “Green Hydrogen Standard Working Group”.

The date was 12th June 2015. The weather was sunny and hot and merited a fine Italian lemonade, fizzing with carbon dioxide. The venue was an air-conditioned grey bunker, but it wasn’t an unfriendly dungeon, particularly as I already knew about half the people in the room.

The subject of the get-together was Green Hydrogen, and the work of the group is to formulate a policy for a Green Hydrogen standard, navigating a number of issues, including the intersection with other policy, and drawing in a very wide range of chemical engineers in the private sector.

My reputation for not putting up with any piffle clearly preceded me, as somebody at the meeting said he expected I would be quite critical. I said that I would not be saying anything, but that I would be listening carefully. Having said I wouldn’t speak, I must admit I laughed at all the right places in the discussion, and wrote copious notes, and participated frequently in the way of non-verbal communication, so as usual, I was very present. At the end I was asked for my opinion about the group’s work and I was politely congratulational on progress.

So, good. I behaved myself. And I got invited back for the next meeting. But what was it all about ?

Most of what it is necessary to communicate is that at the current time, most hydrogen production is either accidental output from the chemical industry, or made from fossil fuels – the main two being coal and Natural Gas.

Hydrogen is used extensively in the petroleum refinery industry, but there are bold plans to bring hydrogen to transport mobility through a variety of applications, for example, hydrogen for fuel cell vehicles.

Clearly, the Green Hydrogen standard has to be such that it lowers the bar on carbon dioxide (CO2) emissions – and it could turn out that the consensus converges on any technologies that have a net CO2 emissions profile lower than steam methane reforming (SMR), or the steam reforming of methane (SRM), of Natural Gas.

[ It’s at this very moment that I need to point out the “acronym conflict” in the use of “SMR” – which is confusingly being also used for “Small Modular Reactors” of the nuclear fission kind. In the context of what I am writing here, though, it is used in the context of turning methane into syngas – a product high in hydrogen content. ]

Some numbers about Carbon Capture and Storage (CCS) used in the manufacture of hydrogen were presented in the meeting, including the impact this would have on CO2 emissions, and these were very intriguing.

I had some good and useful conversations with people before and after the meeting, and left thinking that this process is going to be very useful to engage with – a kind of dragnet pulling key players into low carbon gas production.

Here follow my notes from the meeting. They are, of course, not to be taken verbatim. I have permission to recount aspects of the discussion, in gist, as it was an industrial liaison group, not an internal DECC meeting. However, I should not say who said what, or which companies or organisations they are working with or for.

Categories
Academic Freedom Alchemical Assets not Liabilities Bad Science Bait & Switch Be Prepared Behaviour Changeling Big Number Big Picture Carbon Capture Carbon Commodities Carbon Pricing Carbon Recycling Carbon Taxatious Change Management Climate Change Conflict of Interest Corporate Pressure Cost Effective Deal Breakers Delay and Deny Delay and Distract Divest and Survive Divide & Rule Emissions Impossible Energy Change Energy Denial Energy Insecurity Energy Revival Engineering Marvel Extreme Energy Extreme Weather Fair Balance Fossilised Fuels Freak Science Freemarketeering Gamechanger Geogingerneering Global Warming Green Gas Green Investment Green Power Hydrocarbon Hegemony Hydrogen Economy Low Carbon Life Major Shift Marvellous Wonderful Mass Propaganda Modern Myths Orwells Paradigm Shapeshifter Peak Emissions Pet Peeves Petrolheads Policy Warfare Political Nightmare Price Control Protest & Survive Public Relations Regulatory Ultimatum Renewable Gas Renewable Resource Social Capital Solution City Stirring Stuff The Myth of Innovation The Power of Intention The Right Chemistry The Science of Communitagion Wasted Resource Western Hedge Zero Net

Shell and BP : from “Delay and Deny” to “Delay and Distract”

Shell, BP and some of their confederates in the European oil and gas industry have inched, or perhaps “centimetred”, forward in their narrative on climate change. Previously, the major oil and gas companies were regularly outed as deniers of climate change science; either because of their own public statements, or because of secretive support of organisations active in denying climate change science. It does seem, finally, that Shell in particular has decided to drop this counter-productive “playing of both sides”. Not that there are any “sides” to climate change science. The science on climate change is unequivocal : changes are taking place across the world, and recent global warming is unprecedented, and has almost definitely been attributed to the burning of fossil fuels and land use change.

So Shell and BP have finally realised that they need to shed the mantle of subtle or not-so-subtle denial, although they cling to the shreds of dispute when they utter doubts about the actual numbers or impacts of global warming (for example : https://www.joabbess.com/2015/06/01/shells-public-relations-offensive/). However, we have to grant them a little leeway on that, because although petrogeologists need to understand the science of global warming in order to know where to prospect for oil and gas, their corporate superiors in the organisation may not be scientists at all, and have no understanding of the global carbon cycle and why it’s so disruptive to dig up all that oil and gas hydrocarbon and burn it into the sky. So we should cut the CEOs of Shell and BP a little slack on where they plump for in the spectrum of climate change narrative – from “utter outright doom” to “trifling perturbation”. The central point is that they have stopped denying climate change. In fact, they’re being open that climate change is happening. It’s a miracle ! They have seen the light !

But not that much light, though. Shell and BP’s former position of “scepticism” of the gravity and actuality of global warming and climate change was deployed to great effect in delaying any major change in their business strategies. Obviously, it would have been unseemly to attempt to transmogrify into renewable energy businesses, which is why anybody in the executive branches who showed signs of becoming pro-green has been shunted. There are a number of fairly decent scalps on the fortress pikes, much to their shame. Shell and BP have a continuing duty to their shareholders – to make a profit from selling dirt – and this has shelved any intention to transition to lower carbon energy producers. Granted, both Shell and BP have attempted to reform their internal businesses by applying an actual or virtual price on carbon dioxide emissions, and in some aspects have cleaned up and tidied up their mining and chemical processing. The worsening chemistry of the cheaper fossil fuel resources they have started to use has had implications on their own internal emissions control, but you have to give them credit for trying to do better than they used to do. However, despite their internal adjustments, their external-facing position of denial of the seriousness of climate change has supported them in delaying major change.

With these recent public admissions of accepting climate change as a fact (although CEOs without appropriate science degrees irritatingly disagree with some of the numbers on global warming), it seems possible that Shell and BP have moved from an outright “delay and deny” position, which is to be applauded.

However, they might have moved from “delay and deny” to “delay and distract”. Since the commencement of the global climate talks, from about the 1980s, Shell and BP have said the equivalent of “if the world is serious about acting on global warming (if global warming exists, and global warming is caused by fossil fuels), then the world should agree policy for a framework, and then we will work within that framework.” This is in effect nothing more than the United Nations Framework Convention on Climate Change (UNFCCC) has put forward, so nobody has noticed that Shell and BP are avoiding taking any action themselves here, by making action somebody else’s responsibility.

Shell and BP have known that it would take some considerable time to get unanimity between governments on the reality and severity of climate change. Shell and BP knew that it would take even longer to set up a market in carbon, or a system of carbon dioxide emissions taxation. Shell and BP knew right from the outset that if they kept pushing the ball back to the United Nations, nothing would transpire. The proof of the success of this strategy was the Copenhagen conference in 2009. The next proof of the durability of this delaying tactic will be the outcomes of the Paris 2015 conference. The most that can come out of Paris is another set of slightly improved targets from governments, but no mechanism for translating these into real change.

Shell and BP and the other oil and gas companies have pushed the argument towards a price on carbon, and a market in carbon, and expensive Carbon Capture and Storage technologies. Not that a price on carbon is likely to be anywhere near high enough to pay for Carbon Capture and Storage. But anyway, the point is that these are all distractions. What really needs to happen is that Shell and BP and the rest need to change their products from high carbon to low carbon. They’ve delayed long enough. Now is the time for the United Nations to demand that the fossil fuel companies change their products.

This demand is not just about protecting the survival of the human race, or indeed, the whole biome. Everybody is basically on the same page on this : the Earth should remain liveable-inable. This demand for change is about the survival of Shell and BP as energy companies. They have already started to talk about moving their businesses away from oil to gas. There are high profile companies developing gas-powered cars, trains, ships and possibly even planes. But this will only be a first step. Natural Gas needs to be a bridge to a fully zero carbon world. The oil and gas companies need to transition from oil to gas, and then they need to transition to low carbon gas.

Renewable Gas is not merely “vapourware” – the techniques and technologies for making low carbon gas are available, and have been for decades, or in some cases, centuries. Shell and BP know they can manufacture gas instead of digging it up. They know they can do the chemistry because they already have to do much of the same chemistry in processing fossil hydrocarbons now to meet environmental and performance criteria. BP has known since the 1970s or before that it can recycle carbon in energy systems. Shell is currently producing hydrogen from biomass, and they could do more. A price on carbon is not going to make this transition to low carbon gas. While Shell and BP are delaying the low carbon transition by placing focus on the price of carbon, they could lose a lot of shareholders who shy away from the “carbon bubble” risk of hydrocarbon investment. Shell and BP need to decide for themselves that they want to survive as energy companies, and go public with their plans to transition to low carbon gas, instead of continuing to distract attention away from themselves.

Categories
Academic Freedom Alchemical Assets not Liabilities Bait & Switch Be Prepared Behaviour Changeling Big Picture Big Society British Biogas Carbon Capture Carbon Commodities Carbon Pricing Carbon Recycling Carbon Taxatious Change Management Climate Change Coal Hell Conflict of Interest Corporate Pressure Cost Effective Dead End Dead Zone Delay and Deny Design Matters Direction of Travel Divest and Survive Dreamworld Economics Emissions Impossible Energy Change Energy Revival Engineering Marvel Extreme Energy Fossilised Fuels Freemarketeering Gamechanger Geogingerneering Green Gas Green Investment Green Power Growth Paradigm Hydrocarbon Hegemony Hydrogen Economy Low Carbon Life Mad Mad World Major Shift Marvellous Wonderful Mass Propaganda Modern Myths Money Sings Natural Gas Nudge & Budge Oil Change Orwells Paradigm Shapeshifter Peak Coal Peak Emissions Peak Energy Peak Natural Gas Peak Oil Pet Peeves Petrolheads Policy Warfare Political Nightmare Price Control Protest & Survive Public Relations Realistic Models Regulatory Ultimatum Renewable Gas Renewable Resource Resource Curse Solar Sunrise Solution City Sustainable Deferment Technofix The Myth of Innovation The Power of Intention The Price of Gas The Price of Oil The Right Chemistry The Science of Communitagion The War on Error Wind of Fortune

Why Shell is Wrong

So, some people do not understand why I am opposed to the proposal for a price on carbon put forward by Royal Dutch Shell and their oil and gas company confederates.

Those who have been following developments in climate change policy and the energy sector know that the oil and gas companies have been proposing a price on carbon for decades; and yet little has been achieved in cutting carbon dioxide emissions, even though carbon markets and taxes have been instituted in several regions.

Supporters of pricing carbon dioxide emissions urge the “give it time” approach, believing that continuing down the road of tweaking the price of energy in the global economy will cause a significant change in the types of resources being extracted.

My view is that economic policy and the strengthening of carbon markets and cross-border carbon taxes cannot provide a framework for timely and major shifts in the carbon intensity of energy resources, and here’s a brief analysis of why.

1.   A price on carbon shifts the locus of action on to the energy consumer and investor

A price on carbon could be expected to alter the profitability of certain fossil fuel mining, drilling and processing operations. For example, the carbon dioxide emissions of a “tank of gas” from a well-to-wheel or mine-to-wheel perspective, could be made to show up in the price on the fuel station forecourt pump. Leaving aside the question of how the carbon tax or unit price would be applied and redistributed for the moment, a price on carbon dioxide emissions could result in fuel A being more expensive than fuel B at the point of sale. Fuel A could expect to fall in popularity, and its sales could falter, and this could filter its effect back up the chain of production, and have implications on the capital expenditure on the production of Fuel A, and the confidence of the investors in investing in Fuel A, and so the oil and gas company would pull out of Fuel A.

However, the business decisions of the oil and gas company are assumed to be dependent on the consumer and the investor. By bowing to the might god of unit price, Shell and its confederates are essentially arguing that they will act only when the energy consumers and energy investors act. There are problems with this declaration of “we only do what we are told by the market” position. What if the unit price of Fuel A is only marginally affected by the price on carbon ? What if Fuel A is regarded as a superior product because of its premium price or other marketing factors ? This situation actually exists – the sales of petroleum oil-based gasoline and diesel are very healthy, despite the fact that running a car on Natural Gas, biogas or electricity could be far cheaper. Apart from the fact that so many motor cars in the global fleet have liquid fuel-oriented engines, what else is keeping people purchasing oil-based fuels when they are frequently more costly than the alternative options ?

And what about investment ? Fuel A might become more costly to produce with a price on carbon, but it will also be more expensive when it is sold, and this could create an extra margin of profit for the producers of Fuel A, and they could then return higher dividends to their shareholders. Why should investors stop holding stocks in Fuel A when their rates of return are higher ?

If neither consumers nor investors are going to change their practice because Fuel A becomes more costly than Fuel B because of a price on carbon, then the oil and gas company are not going to transition out of Fuel A resources.

For Shell to urge a price on carbon therefore, is a delegation of responsibility for change to other actors. This is irresponsible. Shell needs to lead on emissions reduction, not insist that other people change.

2.   A price on carbon will not change overall prices or purchasing decsions

In economic theory, choices about products, goods and services are based on key factors such as trust in the supplier, confidence in the product, availability and sustainability of the service, and, of course, the price. Price is a major determinant in most markets, and artificially altering the price of a vital commodity will certainly alter purchasing decisions – unless, that is, the price of the commodity in question increases across the board. If all the players in the field start offering a more expensive product, for example, because of supply chain issues felt across the market, then consumers will not change their choices.

Now consider the global markets in energy. Upwards of 80% of all energy consumed in the global economy is fossil fuel-based. Putting a price on carbon will raise the prices of energy pretty much universally. There will not be enough cleaner, greener product to purchase, so most purchasing decisions will remain the same. Price differentiation in the energy market will not be established by asserting a price on carbon.

A key part of Shell’s argument is that price differentiation will occur because of a price on carbon, and that this will drive behaviour change, and yet there is nothing to suggest it could do that effectively.

3.   A price on carbon will not enable Carbon Capture and Storage

Athough a key part of Shell’s argument about a price on carbon is the rationale that it would stimulate the growth in Carbon Capture and Storage (CCS), it seems unlikely that the world will ever agree to a price on carbon that would be sufficient to stimulate significant levels of CCS. A price on carbon will be deemed to be high enough when it creates a difference in the marginal extra production cost of a unit of one energy resource compared to another. A carbon price can only be argued for on the basis of this optimisation process – after all – a carbon price will be expected to be cost-efficient, and not punitive to markets. In other words, carbon prices will be tolerated if they tickle the final cost of energy, but not if they mangle with it. However, CCS could imply the use of 20% to 45% extra energy consumption at a facility or plant. In other words, CCS would create a parasitic load on energy resources that is not slim enough to be supported by a cost-optimal carbon price.

Some argue that the technology for CCS is improving, and that the parasitic load of CCS at installations could be reduced to around 10% to 15% extra energy consumption. However, it is hard to imagine a price on carbon that would pay even for this. And additionally, CCS will continue to require higher levels of energy consumption which is highly inefficient in the use of resources.

Shell’s argument that CCS is vital, and that a price on carbon can support CCS, is invalidated by this simple analysis.

4.   Shell needs to be fully engaged in energy transition

Calling for a price on carbon diverts attention from the fact that Shell itself needs to transition out of fossil fuels in order for the world to decarbonise its energy.

Shell rightly says that they should stick to their “core capabilities” – in other words geology and chemistry, instead of wind power and solar power. However, they need to demonstrate that they are willing to act within their central business activities.

Prior to the explosion in the exploitation of deep geological hydrocarbon resources for liquid and gas fuels, there was an energy economy that used coal and chemistry to manufacture gas and liquid fuels. Manufactured gas could still replace Natural Gas, if there are climate, economic or technological limits to how much Natural Gas can be resourced or safely deployed. Of course, to meet climate policy goals, coal chemistry would need to be replaced by biomass chemistry, and significant development of Renewable Hydrogen technologies.

Within its own production facilities, Shell has the answers to meet this challenge. Instead of telling the rest of the world to change its economy and its behaviour, Shell should take up the baton of transition, and perfect its production of low carbon manufactured gas.

Categories
Academic Freedom Advertise Freely Alchemical Arctic Amplification Assets not Liabilities Bait & Switch Be Prepared Big Picture Carbon Capture Carbon Commodities Carbon Pricing Carbon Recycling Carbon Taxatious Change Management Climate Change Conflict of Interest Corporate Pressure Delay and Deny Divest and Survive Dreamworld Economics Emissions Impossible Energy Change Extreme Energy Financiers of the Apocalypse Fossilised Fuels Freemarketeering Gamechanger Green Gas Hydrocarbon Hegemony Low Carbon Life Mad Mad World Major Shift Mass Propaganda Media Money Sings Natural Gas Near-Natural Disaster No Pressure Not In My Name Orwells Paradigm Shapeshifter Policy Warfare Political Nightmare Price Control Protest & Survive Public Relations Pure Hollywood Regulatory Ultimatum Renewable Gas Stirring Stuff Sustainable Deferment Tarred Sands The Right Chemistry The Science of Communitagion The War on Error Wasted Resource Western Hedge

The Price on Carbon

Although The Guardian newspaper employs intelligent people, sometimes they don’t realise they’ve been duped into acting as a mouthpiece for corporate propaganda. The “strapline” for the organisation is “Owned by no one. Free to say anything.”, and so it seemed like a major coup to be granted an interview with Ben Van Beurden of Royal Dutch Shell, recorded for a podcast that was uploaded on 29th May 2015.

However, the journalists, outoing editor Alan Rusbridger, Damian Carrington and Terry McAllister probably didn’t fully appreciate that this was part of an orchestrated piece of public relations. The same day as the podcast was published, Shell, along with five other oil and gas companies wrote a letter to officials of the United Nations Framework Convention on Climate Change (UNFCCC).

Favourable copy appeared in various places, for example, at Climate Central, The Daily Telegraph and in the Financial Times where a letter also appeared.

In the letter to Christiana Figueres and Laurent Fabius of the UNFCCC, Shell and fellow companies BP, BG Group, Eni, Total and Statoil, wrote that they appreciate the risks of the “critical challenge” of climate change and that they “stand ready to play their part”. After listing their contributions towards a lower carbon energy economy, they wrote :-

“For us to do more, we need governments across the world to provide us with clear, stable, long-term, ambitious policy frameworks. This would reduce uncertainty and help stimulate investments in the right low carbon technologies and the right resources at the right pace.”

“We believe that a price on carbon should be a key element of these frameworks. If governments act to price carbon, this discourages high carbon options and encourages the most efficient ways of reducing emissions widely, including reduced demand for the most carbon intensive fossil fuels, greater energy efficiency, the use of natural gas in place of coal, increased investment in carbon capture and storage, renewable energy, smart buildings and grids, off-grid access to energy, cleaner cars and new mobility business models and behaviors.”

The obvious problem with this call is that the oil and gas companies are pushing responsibility for change out to other actors in the economy, namely, the governments; yet the governments have been stymied at every turn by the lobbying of the oil and gas companies – a non-virtuous cycle of pressure. Where is the commitment by the oil and gas companies to act regardless of regulatory framework ?

I think that many of the technological and efficiency gains mentioned above can be achieved without pricing carbon, and I also think that efforts to assert a price on carbon dioxide emissions will fail to achieve significant change. Here are my top five reasons :-

1. Large portions of the economy will probably be ringfenced from participating in a carbon market or have exemptions from paying a carbon tax. There will always be special pleading, and it is likely that large industrial concerns, and centralised transportation such as aviation, will be able to beat back at a liability for paying for carbon dioxide emissions. Large industrial manufacture will be able to claim that their business is essential in sustaining the economy, so they should not be subject to a price on carbon. International industry and aviation, because of its international nature, will be able to claim that a carbon tax or a market in carbon could infringe their cross-border rights to trade without punitive regulatory charges.

2. Those who dig up carbon will not pay the carbon price. Fossil fuel producers will pass any carbon costs placed on them to the end consumers of fossil fuels. A price on carbon will inevitably make the cost of energy more expensive for every consumer, since somewhere in the region of 80% of global energy is fossil fuel-derived. Customers do not have a non-carbon option to turn to, so will be forced to pay the carbon charges.

3. A price on carbon dioxide emissions will not stop energy producers digging up carbon. An artificial re-levelising of the costs of high carbon energy will certainly deter some projects from going ahead, as they will become unprofitable – such as heavy oil, tar sands and remote oil, such as in the Arctic. However, even with jiggled energy prices from a price on carbon, fossil fuel producers will continue to dig up carbon and sell it to be burned into the sky.

4. A price on carbon dioxide emissions is being touted as a way to incentivise carbon capture and storage (CCS) by the authors of the letter – and we’ve known since they first started talking about CCS in the 1990s that they believe CCS can wring great change. Yet CCS will only be viable at centralised facilities, such as mines and power plants. It will not be possible to apply CCS in transport, or in millions of homes with gas-fired boilers.

5. A price on carbon dioxide emissions will not cause the real change that is needed – the world should as far as possible stop digging up carbon and burning it into the sky. What fossil carbon that still enters energy systems should be recycled where possible, using Renewable Gas technologies, and any other carbon that enters the energy systems should be sourced from renewable resources such as biomass.

Categories
Academic Freedom Alchemical Assets not Liabilities Be Prepared Big Number Big Picture British Biogas Carbon Capture Carbon Commodities Carbon Pricing Carbon Recycling Climate Change Coal Hell Conflict of Interest Corporate Pressure Delay and Deny Demoticratica Divest and Survive Dreamworld Economics Efficiency is King Emissions Impossible Energy Calculation Energy Change Energy Denial Energy Revival Engineering Marvel Environmental Howzat Extreme Energy Financiers of the Apocalypse Fossilised Fuels Freemarketeering Gamechanger Geogingerneering Green Gas Green Investment Green Power Hydrocarbon Hegemony Hydrogen Economy Low Carbon Life Major Shift Mass Propaganda Modern Myths Natural Gas Not In My Name Nudge & Budge Paradigm Shapeshifter Peak Emissions Policy Warfare Political Nightmare Price Control Protest & Survive Public Relations Pure Hollywood Realistic Models Regulatory Ultimatum Renewable Gas Renewable Resource Social Capital Solar Sunrise Solution City Sustainable Deferment Tarred Sands Technofix Technological Sideshow The Power of Intention The Price of Gas The Price of Oil The Right Chemistry The Science of Communitagion Unconventional Foul Ungreen Development Wasted Resource Western Hedge Wind of Fortune Zero Net

Shell’s Public Relations Offensive #2

And so it has begun – Shell’s public relations offensive ahead of the 2015 Paris climate talks. The substance of their “advocacy” – and for a heavyweight corporation, it’s less lobbying than badgering – is that the rest of the world should adapt. Policymakers should set a price on carbon, according to Shell. A price on carbon might make some dirty, polluting energy projects unprofitable, and there’s some value in that. A price on carbon might also stimulate a certain amount of Carbon Capture and Storage, or CCS, the capturing and permanent underground sequestration of carbon dioxide at large mines, industrial plant and power stations. But how much CCS could be incentivised by pricing carbon is still unclear. Egging on the rest of the world to price carbon would give Shell the room to carry on digging up carbon and burning it and then capturing it and burying it – because energy prices would inevitably rise to cover this cost. Shell continues with the line that they started in the 1990s – that they should continue to dig up carbon and burn it, or sell it to other people to burn, and that the rest of the world should continue to pay for the carbon to be captured and buried – but Shell has not answered a basic problem. As any physicist could tell you, CCS is incredibly energy-inefficient, which makes it cost-inefficient. A price on carbon wouldn’t solve that. It would be far more energy-efficient, and therefore cost-efficient, to either not dig up the carbon in the first place, or, failing that, recycle carbon dioxide into new energy. Shell have the chemical prowess to recycle carbon dioxide into Renewable Gas, but they are still not planning to do it. They are continuing to offer us the worst of all possible worlds. They are absolutely right to stick to their “core capabilities” – other corporations can ramp up renewable electricity such as wind and solar farms – but Shell does chemistry, so it is appropriate for them to manufacture Renewable Gas. They are already using most of the basic process steps in their production of synthetic crude in Canada, and their processing of coal and biomass in The Netherlands. They need to join the dots and aim for Renewable Gas. This will be far less expensive, and much more efficient, than Carbon Capture and Storage. The world does not need to shoulder the expense and effort of setting a price on carbon. Shell and its fellow fossil fuel companies need to transition out to Renewable Gas.

Categories
Academic Freedom Acid Ocean Alchemical Assets not Liabilities Be Prepared Big Picture British Biogas Carbon Capture Carbon Commodities Carbon Pricing Carbon Taxatious Change Management Climate Change Conflict of Interest Corporate Pressure Delay and Deny Direction of Travel Energy Autonomy Energy Change Energy Denial Energy Revival Engineering Marvel Fossilised Fuels Gas Storage Green Gas Green Investment Green Power Growth Paradigm Hydrocarbon Hegemony Hydrogen Economy Low Carbon Life Methane Management Modern Myths National Energy National Power Natural Gas No Blood For Oil Non-Science Nuclear Nuisance Nuclear Shambles Oil Change Optimistic Generation Paradigm Shapeshifter Policy Warfare Political Nightmare Protest & Survive Realistic Models Regulatory Ultimatum Renewable Gas Renewable Resource Science Rules Shale Game Solution City Stirring Stuff Sustainable Deferment Technofix The Data The Power of Intention The Price of Gas The Price of Oil The Right Chemistry Vote Loser Wasted Resource Zero Net

Zero Careers In Plainspeaking

There are many ways to make a living, but there appear to be zero careers in plainspeaking.

I mean, who could I justify working with, or for ? And would any of them be prepared to accept me speaking my mind ?

Much of what I’ve been saying over the last ten years has been along the lines of “that will never work”, but people generally don’t get consulted or hired for picking holes in an organisation’s pet projects or business models.

Could I imagine myself taking on a role in the British Government ? Short answer : no.

The slightly longer answer : The British Government Department of Energy and Climate Change (DECC) ? No, they’re still hooked on the failed technology of nuclear power, the stupendously expensive and out-of-reach Carbon Capture and Storage (CCS), and the mythical beast of shale gas. OK, so they have a regular “coffee club” about Green Hydrogen (whatever that turns out to be according to their collective ruminations), and they’ve commissioned reports on synthetic methane, but I just couldn’t imagine they’re ever going to work up a serious plan on Renewable Gas. The British Government Department for Transport ? No, they still haven’t adopted a clear vision of the transition of the transport sector to low carbon energy. They’re still chipping away at things instead of coming up with a strategy.

Could I imagine myself taking on a role with a British oil and gas multinational ? Short and very terse and emphatic answer : no.

The extended answer : The oil and gas companies have had generous support and understanding from the world’s governments, and are respected and acclaimed. Yet they are in denial about “unburnable carbon” assets, and have dismissed the need for Energy Change that is the outcome of Peak Oil (whether on the supply or the demand side). Sneakily, they have also played both sides on Climate Change. Several major oil and gas companies have funded or in other ways supported Climate Change science denial. Additionally, the policy recommendations coming from the oil and gas companies are what I call a “delayer’s game”. For example, BP continues to recommend the adoption of a strong price on carbon, yet they know this would be politically unpalatable and take decades (if ever) to bring into effect. Shell continues to argue for extensive public subsidy support for Carbon Capture and Storage (CCS), knowing this would involve such huge sums of money, so it’s never going to happen, at least not for several decades. How on Earth could I work on any project with these corporations unless they adopt, from the centre, a genuine plan for transition out of fossil fuels ? I’m willing to accept that transition necessitates the continued use of Natural Gas and some petroleum for some decades, but BP and Royal Dutch Shell do need to have an actual plan for a transition to Renewable Gas and renewable power, otherwise I would be compromising everything I know by working with them.

Could I imagine myself taking on a role with a large engineering firm, such as Siemens, GE, or Alstom, taking part in a project on manufactured low carbon gas ? I suppose so. I mean, I’ve done an IT project with Siemens before. However, they would need to demonstrate that they are driving for a Renewable Gas transition before I could join a gas project with them. They might not want to be so bold and up-front about it, because they could risk the wrath of the oil and gas companies, whose business model would be destroyed by engineered gas and fuel solutions.

Could I imagine myself building fuel cells, or designing methanation catalysts, or improving hydrogen production, biocoke/biocoal manufacture or carbon dioxide capture from the oceans… with a university project ? Yes, but the research would need to be funded by companies (because all applied academic research is funded by companies) with a clear picture on Energy Change and their own published strategy on transition out of fossil fuels.

Could I imagine myself working on rolling out gas cars, buses and trucks ? Yes. The transition of the transport sector is the most difficult problem in Energy Change. However, apart from projects that are jumping straight to new vehicles running entirely on Hydrogen or Natural Gas, the good options for transition involve converting existing diesel engine vehicles to running mostly on Natural Gas, such as “dual fuel”, still needing roughly 20% of liquid diesel fuel for ignition purposes. So I would need to be involved with a project that aims to supply biodiesel, and have a plan to transition from Natural Gas to Renewable Gas.

Could I imagine myself working with a team that has extensive computing capabilities to model carbon dioxide recycling in power generation plant ? Yes.

Could I imagine myself modelling the use of hydrogen in petroleum refinery, and making technological recommendations for the oil and gas industry to manufacture Renewable Hydrogen ? Possibly. But I would need to be clear that I’m doing it to enable Energy Change, and not to prop up the fossil fuel paradigm – a game that is actually already bust and needs helping towards transition.

Could I imagine myself continuing to research the growth in Renewable Gas – both Renewable Hydrogen and Renewable Methane – in various countries and sectors ? Possibly. It’s my kind of fun, talking to engineers.

But whatever future work I consider myself doing, repeatedly I come up against this problem – whoever asked me to work with them would need to be aware that I do not tolerate non-solutions. I will continue to say what doesn’t work, and what cannot work.

If people want to pay me to tell them that what they’re doing isn’t working, and won’t work, then fine, I’ll take the role.

I’d much rather stay positive, though, and forge a role where I can promote the things that do work, can work and will work.

The project that I’m suitable for doesn’t exist yet, I feel. I’m probably going to continue in one way or another in research, and after that, since I cannot see a role that I could fit easily or ethically, I can see I’m going to have to write my own job description.

Categories
Academic Freedom Advertise Freely Alchemical Assets not Liabilities Be Prepared Behaviour Changeling Big Number Biofools British Biogas Burning Money Carbon Capture Carbon Commodities Carbon Pricing Carbon Taxatious Change Management Climate Change Conflict of Interest Corporate Pressure Cost Effective Dead End Delay and Deny Divest and Survive Divide & Rule Dreamworld Economics Drive Train Economic Implosion Efficiency is King Emissions Impossible Energy Calculation Energy Change Energy Crunch Energy Denial Energy Insecurity Energy Revival Engineering Marvel Evil Opposition Extreme Energy Financiers of the Apocalypse Fossilised Fuels Freemarketeering Gamechanger Geogingerneering Global Warming Green Gas Green Power Hydrocarbon Hegemony Hydrogen Economy Insulation Low Carbon Life Mad Mad World Major Shift Mass Propaganda Methane Management Money Sings National Energy National Power Natural Gas Nuclear Shambles Oil Change Optimistic Generation Orwells Paradigm Shapeshifter Peak Coal Peak Emissions Policy Warfare Political Nightmare Price Control Public Relations Realistic Models Regulatory Ultimatum Renewable Gas Renewable Resource Revolving Door Shale Game Solution City Stirring Stuff The Data The Power of Intention The Right Chemistry The Science of Communitagion The War on Error Unnatural Gas Unutterably Useless Utter Futility Vain Hope Voluntary Behaviour Change Vote Loser Western Hedge

Only Just Getting Started

In the last couple of years I have researched and written a book about the technologies and systems of Renewable Gas – gas energy fuels that are low in net carbon dioxide emissions. From what I have learned so far, it seems that another energy world is possible, and that the transition is already happening. The forces that are shaping this change are not just climate or environmental policy, or concerns about energy security. Renewable Gas is inevitable because of a range of geological, economic and industrial reasons.

I didn’t train as a chemist or chemical process engineer, and I haven’t had a background in the fossil fuel energy industry, so I’ve had to look at a number of very basic areas of engineering, for example, the distillation and fractionation of crude petroleum oil, petroleum refinery, gas processing, and the thermodynamics of gas chemistry in industrial-scale reactors. Why did I need to look at the fossil fuel industry and the petrochemical industry when I was researching Renewable Gas ? Because that’s where a lot of the change can come from. Renewable Gas is partly about biogas, but it’s also about industrial gas processes, and a lot of them are used in the petrorefinery and chemicals sectors.

In addition, I researched energy system technologies. Whilst assessing the potential for efficiency gains in energy systems through the use of Renewable Electricity and Renewable Gas, I rekindled an interest in fuel cells. For the first time in a long time, I began to want to build something – a solid oxide fuel cell which switches mode to an electrolysis unit that produces hydrogen from water. Whether I ever get to do that is still a question, but it shows how involved I’m feeling that I want to roll up my sleeves and get my hands dirty.

Even though I have covered a lot of ground, I feel I’m only just getting started, as there is a lot more that I need to research and document. At the same time, I feel that I don’t have enough data, and that it will be hard to get the data I need, partly because of proprietary issues, where energy and engineering companies are protective of developments, particularly as regards actual numbers. Merely being a university researcher is probably not going to be sufficient. I would probably need to be an official within a government agency, or an industry institute, in order to be permitted to reach in to more detail about the potential for Renewable Gas. But there are problems with these possible avenues.

You see, having done the research I have conducted so far, I am even more scornful of government energy policy than I was previously, especially because of industrial tampering. In addition, I am even more scathing about the energy industry “playing both sides” on climate change. Even though there are some smart and competent people in them, the governments do not appear to be intelligent enough to see through expensive diversions in technology or unworkable proposals for economic tweaking. These non-solutions are embraced and promoted by the energy industry, and make progress difficult. No, carbon dioxide emissions taxation or pricing, or a market in carbon, are not going to make the kind of changes we need on climate change; and in addition they are going to be extremely difficult and slow to implement. No, Carbon Capture and Storage, or CCS, is never going to become relatively affordable in any economic scenario. No, nuclear power is too cumbersome, slow and dodgy – a technical term – to ever make a genuine impact on the total of carbon emissons. No, it’s not energy users who need to reduce their consumption of energy, it’s the energy companies who need to reduce the levels of fossil fuels they utilise in the energy they sell. No, unconventional fossil fuels, such as shale gas, are not the answer to high emissions from coal. No, biofuels added to petrofuels for vehicles won’t stem total vehicle emissions without reducing fuel consumption and limiting the number of vehicles in use.

I think that the fossil fuel companies know these proposals cannot bring about significant change, which is precisely why they lobby for them. They used to deny climate change outright, because it spelled the end of their industry. Now they promote scepticism about the risks of climate change, whilst at the same time putting their name to things that can’t work to suppress major amounts of emissions. This is a delayer’s game.

Because I find the UK Government energy and climate policy ridiculous on many counts, I doubt they will ever want me to lead with Renewable Gas on one of their projects. And because I think the energy industry needs to accept and admit that they need to undergo a major change, and yet they spend most of their public relations euros telling the world they don’t need to, and that other people need to make change instead, I doubt the energy industry will ever invite me to consult with them on how to make the Energy Transition.

I suppose there is an outside chance that the major engineering firms might work with me, after all, I have been an engineer, and many of these companies are already working in the Renewable Gas field, although they’re normally “third party” players for the most part – providing engineering solutions to energy companies.

Because I’ve had to drag myself through the equivalent of a “petro degree”, learning about the geology and chemistry of oil and gas, I can see more clearly than before that the fossil fuel industry contains within it the seeds of positive change, with its use of technologies appropriate for manufacturing low carbon “surface gas”. I have learned that Renewable Gas would be a logical progression for the oil and gas industry, and also essential to rein in their own carbon emissions from processing cheaper crude oils. If they weren’t so busy telling governments how to tamper with energy markets, pushing the blame for emissions on others, and begging for subsidies for CCS projects, they could instead be planning for a future where they get to stay in business.

The oil and gas companies, especially the vertically integrated tranche, could become producers and retailers of low carbon gas, and take part in a programme for decentralised and efficient energy provision, and maintain their valued contribution to society. At the moment, however, they’re still stuck in the 20th Century.

I’m a positive person, so I’m not going to dwell too much on how stuck-in-the-fossilised-mud the governments and petroindustry are. What I’m aiming to do is start the conversation on how the development of Renewable Gas could displace dirty fossil fuels, and eventually replace the cleaner-but-still-fossil Natural Gas as well.

Categories
Academic Freedom Alchemical Arctic Amplification Assets not Liabilities Big Number Biofools Carbon Capture Carbon Commodities Carbon Pricing Carbon Rationing Carbon Taxatious Change Management China Syndrome Climate Change Climate Damages Coal Hell Conflict of Interest Corporate Pressure Cost Effective Dead End Deal Breakers Delay and Deny Demoticratica Direction of Travel Dreamworld Economics Economic Implosion Efficiency is King Emissions Impossible Energy Change Energy Denial Energy Insecurity Extreme Energy Financiers of the Apocalypse Foreign Investment Fossilised Fuels Freemarketeering Green Investment Growth Paradigm Hydrocarbon Hegemony Insulation Marine Gas Mass Propaganda Modern Myths Money Sings Natural Gas Nuclear Nuisance Nuclear Shambles Oil Change Optimistic Generation Orwells Peak Emissions Peak Natural Gas Peak Oil Petrolheads Policy Warfare Political Nightmare Price Control Public Relations Realistic Models Regulatory Ultimatum Shale Game Social Change Solar Sunrise Solution City Stirring Stuff Tarred Sands The Price of Oil The Right Chemistry Unnatural Gas Wind of Fortune

Shell Shirks Carbon Responsibility

I was in a meeting today held at the Centre for European Reform in which Shell’s Chief Financial Officer, Simon Henry, made two arguments to absolve the oil and gas industry of responsibility for climate change. He painted coal as the real enemy, and reiterated the longest hand-washing argument in politics – that Shell believes that a Cap and Trade system is the best way to suppress carbon dioxide emissions. In other words, it’s not up to Shell to do anything about carbon. He argued that for transportation and trade the world is going to continue to need highly energy-dense liquid fuels for some time, essentially arguing for the continuation of his company’s current product slate. He did mention proudly in comments after the meeting that Shell are the world’s largest bioethanol producers, in Brazil, but didn’t open up the book on the transition of his whole company to providing the world with low carbon fuels. He said that Shell wants to be a part of the global climate change treaty process, but he gave no indication of what Shell could bring to the table to the negotiations, apart from pushing for carbon trading. Mark Campanale of the Carbon Tracker Initiative was sufficiently convinced by the “we’re not coal” argument to attempt to seek common cause with Simon Henry after the main meeting. It would be useful to have allies in the oil and gas companies on climate change, but it always seems to be that the rest of the world has to adopt Shell’s and BP’s view on everything from policy to energy resources before they’ll play ball.

During the meeting, Mark Campanale pointed out in questions that Deutsche Bank and Goldman Sachs are going to bring Indian coal to trade on the London Stock Exchange and that billions of dollars of coal stocks are to be traded in London, and that this undermines all climate change action. He said he wanted to understand Shell’s position, as the same shareholders that hold coal (shares), hold Shell. I think he was trying to get Simon Henry to call for a separation in investment focus – to show that investment in oil and gas is not the same as investing in Big Bad Coal. But Simon Henry did not bite. According to the Carbon Tracker Initiative’s report of 2013, Unburnable Carbon, coal listed on the London Stock Exchange is equivalent to 49 gigatonnes of Carbon Dioxide (gtCO2), but oil and gas combined trade shares for stocks equivalent to 64 gtCO2, so there’s currently more emissions represented by oil and gas on the LSX than there is for coal. In the future, the emissions held in the coal traded in London have the potential to amount to 165 gtCO2, and oil and gas combined at 125 gtCO2. Despite the fact that the United Kingdom is only responsible for about 1.6% of direct country carbon dioxide emissions (excluding emissions embedded in traded goods and services), the London Stock Exchange is set to be perhaps the world’s third largest exchange for emissions-causing fuels.

Here’s a rough transcript of what Simon Henry said. There are no guarantees that this is verbatim, as my handwriting is worse than a GP’s.

[Simon Henry] I’m going to break the habit of a lifetime and use notes. Building a long-term sustainable energy system – certain forces shaping that. 7 billion people will become 9 billion people – [many] moving from off-grid to on-grid. That will be driven by economic growth. Urbanisation [could offer the possibility of] reducing demand for energy. Most economic growth will be in developing economies. New ways fo consuming energy. Our scenarios – in none do we see energy not growing materially – even with efficiencies. The current ~200 billion barrels of oil equivalent per day today of energy demand will rise to ~400 boe/d by 2050 – 50% higher than today. This will be demand-driven – nothing to do with supply…

[At least one positive-sounding grunt from the meeting – so there are some Peak Oil deniers in the room, then.]

[Simon Henry] …What is paramount for governments – if a threat, then it gets to the top of the agenda. I don’t think anybody seriously disputes climate change…

[A few raised eyebrows and quizzical looks around the table, including mine]

[Simon Henry] …in the absence of ways we change the use of energy […] Any approach to climate change has got to embrace science, policy and technology. All three levers must be pulled. Need a long-term stable policy that enables technology development. We think this is best in a market mechanism. […] Energy must be affordable at the point of use. What we call Triple A – available, acceptable and affordable. No silver bullet. Develop in a responsible way. Too much of it is soundbite – that simplifies what’s not a simple problem. It’s not gas versus coal. [Although, that appeared to be one of his chief arguments – that it is gas versus coal – and this is why we should play nice with Shell.]

1. Economy : About $1.5 to $2 trillion of new money must be invested in the energy industry each year, and this must be sustained until 2035 and beyond. A [few percent] of the world economy. It’s going to take time to make [massive changes]. […] “Better Growth : Better Climate” a report on “The New Climate Economy” by the Global Commission on the Economy and Climate, the Calderon Report. [The world invested] $700 billion last year on oil and gas [or rather, $1 trillion] and $220 – $230 billion on wind power and solar power. The Calderon Report showed that 70% of energy is urban. $6 trillion is being spent on urban infrastructure [each year]. $90 trillion is available. [Urban settings are] more compact, more connected, there’s public transport, [can build in efficiencies] as well as reducing final energy need. Land Use is the other important area – huge impact on carbon emissions. Urbanisation enables efficiency in distributed generation [Combined Heat and Power (CHP)], [local grids]. Eye-popping costs, but the money will be spent anyway. If it’s done right it will [significantly] reduce [carbon emissions and energy demand]…

2. Technology Development : Governments are very bad at picking winners. Better to get the right incentives in and let the market players decide [optimisation]. They can intervene, for example by [supporting] Research and Development. But don’t specify the means to an end…The best solution is a strong predictable carbon price, at $40 a tonne or more or it won’t make any difference. We prefer Cap and Trade. Taxes don’t actually decrease carbon [emissions] but fundamentally add cost to the consumer. As oil prices rose [in 2008 – 2009] North Americans went to smaller cars…Drivers [set] their behaviour from [fuel] prices…

[An important point to note here : one of the reasons why Americans used less motor oil during the “Derivatives Bubble” recession between 2006 and 2010 was because the economy was shot, so people lost their employment, and/or their homes and there was mass migration, so of course there was less commuter driving, less salesman driving, less business driving. This wasn’t just a response to higher oil prices, because the peak in driving miles happened before the main spike in oil prices. In addition, not much of the American fleet of cars overturned in this period, so Americans didn’t go to smaller cars as an adaptation response to high oil prices. They probably turned to smaller cars when buying new cars because they were cheaper. I think Simon Henry is rather mistaken on this. ]

[Simon Henry] …As regards the Carbon Bubble : 65% of the Unburnable fossil fuels to meet the 2 degrees [Celsius] target is coal. People would stuggle to name the top five coal companies [although they find it easy to name the top five oil and gas companies]. Bearing in mind that you have to [continue to] transport stuff [you are going to need oil for some time to come.] Dealing with coal is the best way of moving forward. Coal is used for electricity – but there are better ways to make electricity – petcoke [petroleum coke – a residue from processing heavy and unconventional crude oil] for example…

[The climate change impact of burning (or gasifying) petroleum coke for power generation is possibly worse than burning (or gasifying) hard coal (anthracite), especially if the pet coke is sourced from tar sands, as emissions are made in the production of the pet coke before it even gets combusted.]

[Simon Henry] …It will take us 30 years to get away entirely from coal. Even if we used all the oil and gas, the 2 degrees [Celsius] target is still possible…

3. Policy : We tested this with the Dutch Government recently – need to create an honest dialogue for a long-term perspective. Demand for energy needs to change. It’s not about supply…

[Again, some “hear hears” from the room from the Peak Oil and Peak Natural Gas deniers]

[Simon Henry] …it’s about demand. Our personal wish for [private] transport. [Not good to be] pushing the cost onto the big bad energy companies and their shareholders. It’s taxes or prices. [Politicians] must start to think of their children and not the next election…

…On targets and subsidies : India, Indonesia, Brazil […] to move on fossil fuel subsidies – can’t break the Laws of Economics forever. If our American friends drove the same cars we do, they’d reduce their oil consumption equivalent to all of the shale [Shale Gas ? Or Shale Oil ?]… Targets are an emotive issue when trying to get agreement from 190 countries. Only a few players that really matter : USA, China, EU, India – close to 70% of current emissions and maybe more in future. The EPA [Environmental Protection Agency in the United States of America] [announcement] on power emissions. China responded in 24 hours. The EU target on 27% renewables is not [country-specific, uniform across-the-board]. Last week APEC US deal with China on emissions. They switched everything off [and banned traffic] and people saw blue sky. Coal with CCS [Carbon Capture and Storage] we see as a good idea. We would hope for a multi-party commitment [from the United Nations climate talks], but [shows doubt]… To close : a couple of words on Shell – have to do that. We have only 2% [of the energy market], but we [hope we] can punch above our weight [in policy discussions]. We’re now beginning to establish gas as a transport fuel. Brazil – low carbon [bio]fuels. Three large CCS projects in Canada, EU… We need to look at our own energy use – pretty trivial, but [also] look at helping our customers look at theirs. Working with the DRC [China]. Only by including companies such as ourselves in [climate and energy policy] debate can we get the [global deal] we aspire to…

[…]

[Question from the table, Ed Wells (?), HSBC] : Green Bonds : how can they provide some of the finance [for climate change mitigation and adaptation] ? The first Renminbi denominated Green Bond from [?]. China has committed to non-fossil fuels. The G20 has just agreed the structure on infrastructure – important – not just for jobs and growth – parallel needs on climate change. [Us at HSBC…] Are people as excited about Green Bonds as we are ?

[Stephen Tindale] Yes.

[Question from the table, Anthony Cary, Commonwealth Scholarship Commission] …The key seems to be pricing carbon into the economy. You said you preferred Cap and Trade. I used to but despite reform the EU Emissions Trading Scheme (EU ETS) – [failures and] gaming the system. Tax seems to be a much more solid basis.

[Simon Henry] [The problem with the ETS] too many credits and too many exemptions. Get rid of the exemptions. Bank reserve of credits to push the price up. Degress the number of credits [traded]. Tax : if people can afford it, they pay the tax, doesn’t stop emissions. In the US, no consumption tax, they are very sensitive to the oil price going up and down – 2 to 3 million barrels a day [swing] on 16 million barrels a day. All the political impact on the US from shale could be done in the same way on efficiency [fuel standards and smaller cars]. Green Bonds are not something on top of – investment should be financed by Green Bonds, but investment is already being done today – better to get policy right and then all investment directed.

[…]

[Question from the table, Kirsten Gogan, Energy for Humanity] The role of nuclear power. By 2050, China will have 500 gigawatts (GW) of nuclear power. Electricity is key. Particularly coal. Germany is building new coal as removing nuclear…

[My internal response] It’s at this point that my ability to swallow myths was lost. I felt like shouting, politely, across the table : ACTUALLY KIRSTEN, YOU, AND A LOT OF OTHER PEOPLE IN THE ROOM ARE JUST PLAIN WRONG ON GERMANY AND COAL.

“Germany coal power generation at 10-year low in August”, 9th September 2014

And the only new coal-fired plants being built are those that were planned up to five years ago. No new coal-fired capacity is now being agreed.

[Kirsten Gogan]…German minister saying in public that you can’t phase out nuclear and coal at the same time. Nuclear is not included in that conversation. Need to work on policy to scale up nuclear to replace coal. Would it be useful to have a clear sectoral target on decarbonising – 100% on electricity ?

[Stephen Tindale] Electricity is the least difficult of the energy sectors to decarbonise. Therefore the focus should be on electricity. If a target would help (I’m not a fan) nuclear certainly needs to be a part of the discussions. Angela Merkel post-Fukushima has been crazy, in my opinion. If want to boost renewable energy, nuclear power will take subsidies away from that. But targets for renewable energy is the wrong objective.. If the target is keeping the climate stable then it’s worth subsidising nuclear. Subsidising is the wrong word – “risk reduction”.

[Simon Henry] If carbon was properly priced, nuclear would become economic by definition…

[My internal response] NO IT WOULDN’T. A LOT OF NUCLEAR CONSTRUCTION AND DECOMMISSIONING AND SPENT FUEL PROCESSING REQUIRES CARBON-BASED ENERGY.

[Simon Henry] …Basically, all German coal is exempted (from the EU ETS). If you have a proper market-based system then the right things will happen. The EU – hypocrisy at country level. Only [a couple of percent] of global emissions. The EU would matter if it was less hypocritical. China are more rational – long-term thinking. We worked with the DRC. Six differing carbon Cap and Trade schemes in operation to find the one that works best. They are effectively supporting renewable energy – add 15 GW each of wind and solar last year. They don’t listen to NIMBYs [they also build in the desert]. NIMBYism [reserved for] coal – because coal was built close to cities. [Relationship to Russia] – gas replacing coal. Not an accident. Five year plan. They believe in all solutions. Preferably Made in China so we can export to the rest of the world. [Their plans are for a range of aims] not just climate.

[…]
[…]

[Simon Henry] [in answer to a question about the City of London] We don’t rely on them to support our activities [my job security depends on a good relationship with them]]. We have to be successful first and develop [technological opportunities] [versus being weakened by taxes]. They can support change in technology. Financing coal may well be new money. Why should the City fund new coal investments ?

[Question from the table, asking about the “coal is 70% of the problem” message from Simon Henry] When you talk to the City investors, do you take the same message to the City ?

[Simon Henry] How much of 2.7 trillion tonnes of “Unburnable Carbon” is coal, oil and gas ? Two thirds of carbon reserves is coal. [For economic growth and] transport you need high density liquid fuels. Could make from coal [but the emissions impact would be high]. We need civil society to have a more serious [understanding] of the challenges.

After the discussion, I asked Simon Henry to clarify his words about the City of London.

[Simon Henry] We don’t use the City as a source of capital. 90% is equity finance. We don’t go to the market to raise equity. For every dollar of profit, we invest 75 cents, and pay out 25 cents as dividend to our shareholders. Reduces [problems] if we can show we can reinvest. [ $12 billion a year is dividend. ]

I asked if E&P [Exploration and Production] is working – if there are good returns on investment securing new reserves of fossil fuels – I know that the company aims for a 10 or 11 year Reserves to Production ratio (R/P) to ensure shareholder confidence.

Simon Henry mentioned the price of oil. I asked if the oil price was the only determinant on the return on investment in new E&P ?

[Simon Henry] If the oil price is $90 a barrel, that’s good. At $100 a barrel or $120 a barrel [there’s a much larger profit]. Our aim is to ensure we can survive at $70 a barrel. [On exploration] we still have a lot of things in play – not known if they are working yet… Going into the Arctic [At which point I said I hope we are not going into the Arctic]… [We are getting returns] Upstream is fine [supply of gas and oil]. Deepwater is fine. Big LNG [Liquefied Natural Gas] is fine. Shale is a challenge. Heavy Oil returns could be better – profitable, but… [On new E&P] Iraq, X-stan, [work in progress]. Downstream [refinery] has challenges on return. Future focus – gas and deepwater. [On profitability of investment – ] “Gas is fine. Deepwater is fine.”

[My summary] So, in summary, I think all of this means that Shell believes that Cap and Trade is the way to control carbon, and that the Cap and Trade cost would be borne by their customers (in the form of higher bills for energy because of the costs of buying carbon credits), so their business will not be affected. Although a Cap and Trade market could possibly cap their own market and growth as the sales envelope for carbon would be fixed, since Shell are moving into lower carbon fuels – principally Natural Gas, their own business still has room for growth. They therefore support Cap and Trade because they believe it will not affect them. WHAT THEY DON’T APPEAR TO WANT PEOPLE TO ASK IS IF A CAP AND TRADE SYSTEM WILL ACTUALLY BE EFFECTIVE IN CURBING CARBON DIOXIDE EMISSIONS. They want to be at the negotiating table. They believe that they’re not the problem – coal is. They believe that the world will continue to need high energy-dense oil for transport for some time to come. It doesn’t matter if the oil market gets constrained by natural limits to expansion because they have gas to expand with. They don’t see a problem with E&P so they believe they can keep up their R/P and stay profitable and share prices can continue to rise. As long as the oil price stays above $70 a barrel, they’re OK.

However, there was a hint in what Simon Henry talked about that all is not completely well in Petro-land.

a. Downstream profit warning

Almost in passing, Simon Henry admitted that downstream is potentially a challenge for maintaining returns on investment and profits. Downstream is petrorefinery and sales of the products. He didn’t say which end of the downstream was the issue, but oil consumption has recovered from the recent Big Dip recession, so that can’t be his problem – it must be in petrorefinery. There are a number of new regulations about fuel standards that are going to be more expensive to meet in terms of petroleum refinery – and the chemistry profiles of crude oils are changing over time – so that could also impact refinery costs.

b. Carbon disposal problem

The changing profile of crude oils being used for petrorefinery is bound to cause an excess of carbon to appear in material flows – and Simon Henry’s brief mention of petcoke is more significant than it may first appear. In future there may be way too much carbon to dispose of (petcoke is mostly carbon rejected by thermal processes to make fuels), and if Shell’s plan is to burn petcoke to make power as a solution to dispose of this carbon, then the carbon dioxide emissions profile of refineries is going to rise significantly… where’s the carbon responsiblity in that ?

Categories
Academic Freedom Big Picture Big Society Carbon Capture Carbon Pricing Climate Change Coal Hell Emissions Impossible Freemarketeering Gamechanger Global Warming Green Gas Hydrocarbon Hegemony Natural Gas Oil Change Paradigm Shapeshifter Peak Coal Peak Emissions Peak Energy Peak Natural Gas Peak Oil Price Control Realistic Models Regulatory Ultimatum Renewable Gas Renewable Resource Resource Wards Shale Game The Price of Gas The Price of Oil Unnatural Gas Western Hedge Wind of Fortune

UKERC : Gas by Design (2)

This week, I had the opportunity to join the launch of the UKERC’s latest research into the future of gas. The esteemed delegates included members of a Russian Trade Delegation and several people from the US Embassy. Clearly, the future of gas is an international thing.


[continued from Gas by Design ]

Mike Bradshaw, Warwick Business School = [MB]

[MB] I’m somewhat daunted by this audience – the report is aimed perhaps for informed public audience. The media [ambushed us on the question of shale gas, shale gas attracted more attention] but things we didn’t cover much about there we can cover here. It’s been a real rollercoaster ride in the gas industry. Any flights of fancy (in the report) are our faults and not theirs [reference to work of colleagues, such as Jonathan Stern at Oxford Institute for Energy Studies]. A set of shortcomings dealing with the issue of Energy Security. There is a tendency to think that oil and gas are the same. They’re not. The framework, the actors and the networks, trade statistics, policies [much different for gas than for oil]. [In the UK for example we are seeing] a rapid increase in import dependence [and in other countries]. Need to [pay] particular understanding on what will happen in far-flung places. Today, the US-China agreement could influence gas demand. [In the literature on gas, some anomalies, perhaps]. Academics may not understand markets. [What we are seeing here is] the globalisation of UK gas security – primarily Europeanisation. There is growing uncertainty [about] the material flow of gas. [Threshold] balance in three sectors – strong seasonality, impact of climate and temperature [on gas demand]. The Russian agreement with Ukraine [and Europe] – the one thing everybody was hoping for was a warm winter. While the gas market is important [industrial use and energy use], domestic/residential demand is still very significant [proportion of total demand], so we need to look at energy efficiency [building insulation rates] and ask will people rip out their gas boilers ? For the UK, we are some way across the gas bridge – gas has enabled us to meet [most of] our Kyoto Protocol commitments. Not long until we’ve crossed it. Our coal – gone. With coal gone, what fills the gaps ? Renewable electricity – but there is much intermittency already. We’re not saying that import dependency is necessarily a problem. Physical security is not really the problem – but the [dependence on] the interconnectors, the LNG (Liquefied Natural Gas) imports – these create uncertainties. The UK also plays a role as a gas exporter – and in landing Norwegian gas [bringing it into the European market]. I’m a geographer – have to have at least one map – of gas flows [in and out of the country]. The NTS (National Transmission System – the high pressure Natural Gas-carrying pipeline network – the “backbone” of the gas transmission and distribution system of National Grid] has responded to change – for example in the increasing sources of LNG [and “backflow” and “crossflow” requirements]. There are 9 points of entry for gas into the UK at the moment. If the Bowland Shale is exploited, there could be 100s of new points of entry [the injection of biogas as biomethane into the gas grid would also create new entry points]. A new challenge to the system. [The gas network has had some time to react in the past, for example] LNG imports – the decision to ramp up the capacity was taken a long time ago. [Evolution of] prices in Asia have tracked the gas away [from the European markets] after the Fukushima Dai-ichi disaster. And recently, we have decided to “fill up the tanks” again [LNG imports have risen in the last 24 or so months]. Very little LNG is “firm” – it needs to follow the market. It’s not good to simply say that “the LNG will come” [without modelling this market]. The literature over-emphasises the physical security of the upstream supplies of gas. [The projections have] unconventional gas growing [and growing amounts of biogas]. But it’s far too early to know about shale gas – far too early to make promises about money when we don’t even have a market [yet]. Policy cannot influence the upstream especially in a privatised market. The interconnectors into the European Union means we have to pay much more attention to the Third EU Energy Package. Colleagues in Oxford are tracking that. The thorny question of storage. We have less than 5 bcm (billion cubic metres). We’d like 10% perhaps [of the winter period demand ?] Who should pay for it ? [A very large proportion of our storage is in one place] the Rough. We know what happens – we had a fire at the Rough in 2006… Everyone worries about geopolitics, but there are other potential sources of problems – our ageing infrastructure […] if there is a technical problem and high demand [at the same time]. Resilience [of our gas system is demonstrated by the fact that we have] gas-on-gas competition [in the markets] – “liquid” gas hub trading – setting the NBP (National Balancing Point). [There are actually 3 kinds of gas security to consider] (a) Security of Supply – not really a problem; (b) Security of Transport (Transit) – this depends on markets and (c) Security of Demand – [which strongly depends on whether there is a] different role for gas in the future. But we need to design enough capacity even though we may not use all of it [or not all of the time]. We have mothballed gas-fired power plants already, for reasons you all know about. We already see the failure of the ETS (European Union Emissions Trading Scheme) [but if this can be reformed, as as the Industrial Emissions Directive bites] there will be a return to gas as coal closes. The role of Carbon Capture and Storage (CCS) becomes critical in retaining gas. CCS however doesn’t answer issues of [physical energy security, since CCS requires higher levels of fuel use].

[Question from the floor] Gas has a role to play in transition. But how do we need to manage that role ? Too much focus on building Renewable Energy system. What is the impact on the current infrastructure ? For managing that decline in the incumbent system – gas is there to help – gas by design rather than gas by default.

[Question from the floor, Jonathan Stern] [In your graphs/diagrams] the Middle East is a major contributor to gas trade. We see it differently. The Qataris [could/may/will] hold back [with expanding production] until 2030. Iran – our study [sees it as] a substitute contributor. Oil-indexed gas under threat and under challenge. If you could focus more on the global gas price… [New resources of gas could be very dispersed.]Very difficult to get UK people to understand [these] impacts on the gas prices [will] come from different places than they can think of.

[Question from the floor] Availability of CCS capacity ? When ? How much ? Assumptions of cost ?

[Question from the floor : Tony Bosworth, Friends of the Earth] Gas as a bridge – how much gas do we need for [this process] ? What about unburnable carbon ? Do we need more gas to meet demands ?

[Answer – to Jonathan Stern – from Christophe McGlade ?] The model doesn’t represent particularly well political probabilities. Iran has a lot of gas – some can come online. It will bring it online if it wants to export it. Some simplifications… might be over optimistic. Your work is helpful to clarify.

On gas prices – indexation versus global gas price – all the later scenarios assumed a globalised gas price. More reasonable assumptions.

On CCS : first [coming onstream] 2025 – initially quite a low level, then increasing by 10% a year. The capital costs are approximately 60% greater than other options and causes a drop in around 10% on efficiency [because making CCS work costs you in extra fuel consumed]. If the prices of energy [including gas] increase, then CCS will have a lesser relative value [?].

On availability of gas : under the 2 degrees Celsius scenario, we could consume 5 tcm (trillion cubic metres) of gas – and this can come from reserves and resources. There are a lot of resources of Natural Gas, but some of it will be at a higher price. In the model we assume development of some new resources, with a growth in shale gas, and other unconventional gas. Because of the climate deal, we need to leave some gas underground.

[Answer from the panel] Indexation of gas prices to oil… Further gas demand is in Asia – it’s a question of whose gas gets burnt. [Something like] 70% of all Natural Gas gets burned indigenously [within the country in which it is produced]. When we talk about “unburnable gas”, we get the response “you’re dreaming” from some oil companies, “it won’t be our fossil fuels that get stranded”. LNG models envisage a different demand profile [in the future, compared to now]. When China [really gets] concerned about air quality [for example]. Different implications.

[Question from the floor, from Centrica ?] What’s in the model for the globalised gas price – Henry Hub plus a bit ? There is not a standard one price.

[Question from the floor] On the question of bridging – the long-term bridge. What issues do you see when you get to 2030 for investment ? [We can see] only for the next few years. What will investors think about that ?

[Question from the floor] [With reference to the Sankey diagram of gas use in the UK] How would that change in a scenario of [electrification – heat and transport being converted to run on electrical power] ?

[Question from the floor] Stranded assets. How the markets might react ? Can you put any numbers on it – especially in the non-CCS scenario ? When do we need to decide [major strategy] for example, [whether we could or should be] shutting off the gas grid ? How would we fund that ? Where are the pinch points ?

[Answer from the panel] On the global gas price – the model does not assume a single price – [it will differ over each] region. [The price is allowed to change regionally [but is assumed to arise from global gas trading without reference to oil prices.] Asian basin will always be more expensive. There will be a temperature differential between different hubs [since consumption is strongly correlated with seasonal change]. On stranded assets – I think you mean gas power plants ? The model is socially-optimal – all regions working towards the 2 degrees Celsius global warming target. The model doesn’t limit stranded assets – and do get in the non-CCS scenario. Build gas plants to 2025 – then used at very low load factors. Coal plants need to reduce [to zero] given that the 2 degrees Celsius targets are demanding. Will need gas for grid balancing – [new gas-fired power generation assets will be] built and not used at high load factors.

[Answer from the panel] Our report – we have assume a whole system question for transition. How successful will the Capacity Mechanism be ? UKERC looking at electrification of heating – but they have not considered the impact on gas (gas-to-power). Will the incentives in place be effective ? The Carbon Budget – what are the implications ? Need to use whole system analysis to understand the impact on gas. Issue of stranded assets : increasingly important now [not at some point in the future]. On pinch point : do we need to wait another three years [for more research] ? Researchers have looked more at what to spend – what to build – and less on how to manage the transition. UKERC have started to explore heat options. It’s a live issue. Referenced in the report.

[Question from the floor, from Richard Sverrisson, News Editor of Montel] Will reform to the EU ETS – the Market Stability Reserve (MSR) – will that be enough to bring gas plant into service ?

[Question from the floor] On oil indexation and the recent crash in the crude price – what if it keeps continuing [downwards] ? It takes gas prices down to be competitive with hub prices. [What about the impact on the economic profitability of] shale oil – where gas driving related prices ? Are there some pricing [functions/variables] in the modelling – or is it merely a physical construct ?

[Question from the floor, from Rob Gross of UCL] On intermittency and the flexibility of low carbon capacity. The geographical units in the modelling are large – the role of gas depends on how the model is constrained vis-a-vis intermittency.

[Answer from the panel, from Christophe McGlade] On carbon dioxide pricing : in the 2 degrees Celsius scenario, the price is assumed to be $200 per tonne. In the non-CCS scenario, the price is in the region of $400 – $500 per tonne [?] From 2020 : carbon price rises steeply – higher than the Carbon Floor Price. How is the the 2 degrees Celsius target introduced ? If you place a temperature constraint on the energy system, the model converts that into carbon emissions. The latest IPCC report shows that there remains an almost linear trend between carbon budget and temperature rise – or should I say a greenhouse gas budget instead : carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The emissions pledges of the [European Union ?] have been adopted by this model – also the development of renewable energy and fuel standards. No exogenous assumptions on carbon pricing. On intermittency – the seasonality is represented by summer, winter and intermediate; and time day generalised as morning, night, evening and peak (morning peak). [Tighter modelling would provide more] certainty which would remove ~40% of effective demand [?] Each technology has a contribution to make to peak load. Although, we assume nothing from wind power – cannot capture hour to hour market. The model does build capacity that then it doesn’t use.

[Answer from the panel] On carbon pricing and the EU ETS reform : I wouldn’t hold my breath [that this will happen, or that it will have a major impact]. We have a new commission and their priority is Poland – nothing serious will happen on carbon pricing until 2020. Their emphasis is much more on Central European issues. I don’t expect [us] to have a strong carbon price since policy [will probably be] more focussed on social democracy issues. Moving to a relatively lower price on oil : Asia will hedge. Other explorters currently sticking to indexation with oil. The low price of wet gas (condensate) in the USA is a result of the over-supply, which followed an over-supply in NGLs (Natural Gas Liquids) – a bumpy road. Implications from USA experience ? Again, comes back to watching what is happening in Asia.

[to be continued…]

Categories
Academic Freedom Advertise Freely Bait & Switch Be Prepared Big Picture Big Society Burning Money Carbon Army Carbon Capture Carbon Commodities Carbon Pricing Carbon Taxatious Change Management Climate Change Coal Hell Conflict of Interest Cost Effective Deal Breakers Demoticratica Divide & Rule Emissions Impossible Energy Autonomy Energy Change Energy Denial Energy Insecurity Energy Revival Engineering Marvel Fossilised Fuels Freemarketeering Gamechanger Global Warming Green Investment Green Power Hydrocarbon Hegemony Landslide Libertarian Liberalism Low Carbon Life Major Shift Mass Propaganda Media Money Sings National Energy National Power Nuclear Nuisance Oil Change Optimistic Generation Orwells Paradigm Shapeshifter Peak Coal Peak Emissions Peak Natural Gas Peak Oil Policy Warfare Political Nightmare Protest & Survive Public Relations Realistic Models Regulatory Ultimatum Renewable Gas Resource Wards Social Capital Social Change Social Chaos Social Democracy Solar Sunrise Solution City Stirring Stuff Sustainable Deferment The Science of Communitagion The War on Error Unsolicited Advice & Guidance Vote Loser Western Hedge Wind of Fortune

European Referendum : Corpse Factory

So I was in a meeting on a dateless date, at an organisation with a nameless name, with some other unidentifiable people in the room with me. For some reason I had been invited, I cannot think why. Ah, yes, I can. I was invited to attend because, apparently, I am a “campaigner”. I am, allegedly, somebody who buys into the notion that communications should serve the purpose of directing public attention and support towards a particular outcome, decided in advance by a political elite. And it seems, if I believe something is right, and that a message needs communicating, I will take action, but never invoice, because I am a believer. Well let me tell you right here and now, I am not that person. I may have that reputation, but really, I despise propaganda : the deliberate formation of a murmur of Tweet starlings, or the collective wall-to-wall newspaper coverage of the same story, the scandal story hauled out to scare the horses and herd them to the salt water shore, the faux narrative of collective political or social will for change.

I want to believe that even though I am occasionally paid to communicate a story (but most often not), that my narrative, and importantly my agenda, is my own. I will not be co-opted. I shall not be defined by storytelling, I shall not be paid for spreading information – for if I were to be telling money-backed tales, I may end up peddling lies. And I do not want lies to be spoken. I am an ontologist. My ontology is :-

SO
IT IS
AS
IT IS.

and not

IT IS
AS
IT IS,
SO…

There is no “therefore” in what I write. When I say “should”, like, “we should adopt renewable energy”, it’s your choice as to whether you agree with me. You shouldn’t read anything and be swayed or directed, except by the force of reason based on evidence. I am the photographer, the recorder, but not the public relations consultant. And I am especially not an unsalaried volunteer. I paint the future using my own perspective, my own understanding, my own research, my own best judgement, but I am not telling people what to think. Although I go slightly beyond merely noting and analysing what is happening, to articulate possible futures, I am not a persuader.

I do not want to write the script for the actions of the readers or listeners. I do not want to precipitate a revolution, or dehydrate the horses before leading them to the river bank. I want to describe rather than proscribe or prescribe. I want to scribe the way I see things, I do not do it in order to create waves or push buttons or light beacons. The facts should speak for themselves, and if anybody consumes my communication, they should be free to act as they feel fit, or suits. I am not a paid-for, paid-up, in-the-pocket campaigner. I am not spun round other peoples’ fingers like a talking puppet. I am a free person.

So, there I was in this meeting, and the people in the room were discussing an event that is likely to take place. It appears from some analysis that the next British Government could well be another Coalition Government, with the Conservative Party having only a shaving of a majority for rule. And when they have crossed the i’s and dotted the t’s and formed a currently impossible political marriage, which I’m guessing will involve the Green Party as well as the Liberal Democrats, then they will need to live up to their promise to hold a referendum on British participation in the Grand European Experiment – economic union with other European countries.

But nobody talks about Europe. Except to complain. In the meeting I attended, the hosts of the meeting were consulting for ways to highlight the Europe Question, and to give it a pro-Union light.

For me, it’s facile. The United Kingdom of Great Britain and Northern Ireland is just a bunch of mediocre-sized islands off the coast of the European continent. Something like 80% of UK trade is with European countries, because Europe is our gateway to the rest of the global market, and you always do the most trade with your neighbours. It’s natural. Can anybody seriously suggest we ditch the Common Market – the agreements that European countries have come to to ensure common standards of goods and services, common terms and conditions of trade and common legal processes regulating trade ? So we want to reserve some kind of sovereignty over some kinds of decisions ? Why ? The UK is heavily involved in the central European institutions and governance bodies. We have massive input. We vote for MEPs. Why should things not go our way ? And even if things don’t go perfectly our way, will the negotiated compromises be so bad ? Subsidiarity – making decisions at the lowest/best/most appropriate level of administration – that’s still going to keep a lot of British control over British affairs. Surely the UK suffers a greater risk of interference from any pan-Atlantic trade deal that it does from Europe ?

The UK have made commitments. Our Parliament has agreed that we need to work on climate change, social justice and economic stability. We have implicitly agreed that to address climate change we need Energy Change and environmental regulation; to achieve social justice we need human rights, justice, health, education and a benefits system; and for economic stability we need economic stimuli – for example, in national infrastructure projects. In terms of climate change and Energy Change there is so much we need to do. If we stay in Europe, all of this will be so much easier. Within the European project for energy market harmonisation is the work on standards to achieve gas and electricity grid harmonisation. The improvement and augmenting of interconnections between countries, and the provision of wider energy storage, will enable the balanced use of renewable energy. Governments need to create incentives for deploying renewable energy. Governments need to create mechanisms to leverage and facilitate renewable energy deployment. Without Europe, outwith Europe, it will cost us more, and be more complex. Within Europe, it will be easier.

So, in the meeting I attended, I put forward my vision : if the UK stays in Europe, it will be easier to handle problems of energy – improving and replacing infrastructure and plant, co-ordinating the uptake of new renewable energy technologies and dealing with emerging energy security issues. Why, the North Sea, as everybody knows, is draining dry, and we can only build certain levels of relationship with countries outside the European Union, such as Russia. If the UK left the EU, the EU would be competitors with the UK for Russian Natural Gas, for example. I said I thought that energy security was a good thing to explain to people and a good reason to raise support for UK’s continued participation in Europe.

So, somebody else in the meeting, who shall remain faceless and nameless, poured very cold water on this idea. They seemed to disbelieve that the UK faces risks to energy security. Instead, they suggested that the pro-Europe argument should be based on how the UK can “keep our place at the table”. How out of touch can one get, I thought to myself ? This kind of patrician argument is not going to wash. Appealing to some non-existent pride in the UK’s continued role as stakeholder in the European project is going to go down like a lead balloon. It’s a vote loser, for sure.

What most people care about first is money. Their money. Any appeal to their pockets is going to help. We live in tough times – thanks to Government austerity policy – and we still cannot get a handle on public borrowing and spending. Because of the Government’s austerity policy.

So how about we cast it like this : your energy is going to get much more expensive if the UK abandons the European community of nations. Plus, your lights could genuinely go out, unless you, the people, either as taxpayers or billpayers, fork out for new energy investments that the energy companies haven’t made for 20 years. Because of privatisation. Without taking part in the European energy market harmonisation, and the European development of new and renewable energy infrastructure, plant and networks, your bills could significantly rise/spiral out of control. If European companies were required to sell energy assets back to the UK, because the UK pulled out of Europe, we would be in a very fine mess indeed. Do you really want this kind of chaos ? Energy policy in the UK is already bad enough.

The facts are available to those who search : British production of oil and gas from the North Sea is declining at something like 6% a year. The UK became a net energy importer between 2004 and 2006 (depending on how you define it). The Netherlands will become a net Natural Gas importer in the 2020s. Norway’s Natural Gas will reach a peak some time in the 2020s. It’s no good thinking that because the UK is a “gas hub”, and that British finance can currently spin up gas imports to the UK, that this situation is going to remain true. Within 10 to 15 years, I think that the UK will face significant competition for Natural Gas supplies with other European countries. Better to be in the debating chamber, surely, rather than scratching at the wind-and-rain-splattered window from outside ? So can the UK forge a gas alliance with countries outside the European Union, and apart from Norway ? A gas import alliance that sticks ? And that isn’t demolished by competition from the rest of the European Union for gas supplies that come through pipes sitting in European Union territory ? OK, the UK might want to leave full European Union membership, and join Norway in the European Economic Area, but will this guarantee beneficial import status for Natural Gas from countries that supply the full members of the European Community ?

I said, instead of trying to talk about direct opposites – either Inside Europe or Outside Europe – let’s talk about how things can be helped by wider co-operation. The European Union was founded on energy treaties – coal and nuclear energy (and steel), and now Europe needs to move to a union forged on renewable power and Natural Gas – and later Renewable Gas – and it’s going to be so much easier to do if the UK stays at the party.

The North Sea needs re-developing. Not for oil, but for wind power. This is going to happen best with full cross-border co-operation. Already, the UK has agreed to play a large part in the “North Sea Offshore Grid” wind power project in league with Ireland, Germany, Denmark, Sweden, The Netherlands, Belgium and France. And Luxembourg, strangely, although it doesn’t have a coast. Unlike new nuclear power, which could be decades in construction, offshore and onshore wind in Europe can be quick-build. If you want new power, you pick wind and solar. And, despite policy fumbles, this is happening. Actually, in the end, who really cares about subsidies for renewable energy, when the most capital-heavy organisations in the world start backing renewable power ? In some ways, I don’t care who brings me low carbon energy, and I don’t care if I have to pay for it through my tax or my bills, I just want it to happen. OK, offshore wind power is for the big boys, and you’re never going to get a diversity of suppliers with this project, and the dreams of decentralised energy are vapours, whisked away by giant engineering firms, but at least renewable energy is going to happen. One day people will realise that for the newspapers to rehearse the arguments of High Net Worth Individuals, and for sheep-like energy ministers to complain about onshore wind power and solar farms, is just a way to keep small electricity generators out of the energy markets, and allow the incumbent energy players to keep making profits. But when the need for a multiplicity of small energy installations becomes critical, I think this tune will change.

I can see all this. But, because I am not a spin meister, or spin meistress, or a campaigner, I’m not going to be crafting fine messages to share with my networks on this particular subject. I did start (see below), but then I thought better of it. I dislike the use of social media, web logging and journalism to push an agenda. The trouble is, I know that the people who are vehemently against the European endeavour have so many trigger arguments tested and ready to deploy, such as : immigration, regulations, budgetary demands. None of these stand up to scutiny, but they are very easy props on which to deploy Corpse Factory scares and scandals, up there with the War on Terror. The pro-European segment of the population always stays so silent. If there were to be a Referendum on Europe today, I can pretty much guarantee a kneejerk exit. The British public act collectively by reflex. They never re-analyse their position. They mob, gang and plunder.

I don’t think pro-Europe organisations know how to sell Europe. But they shouldn’t need to “sell” Europe. European membership should be an obvious best choice. So why should I try to talk up Europe ? I couldn’t have any influence, as one lone voice, against the Daily Mails, Daily Expresses and Daily Telegraphs of this world. And anyway, it’s not really my fight to fight. I don’t have a job title that reads “arch propagandist”. I am not that person. It does not become me. I prefer straight-talking, not mind-bending.

I won’t get invited back. That’s just fine. I am not a volunteer campaigner. I’m not a political pusher. I’ve only played the role of “evangelist” on climate change, renewable energy and good policy because sometimes there is little else I can think of that might help or make a difference. But I don’t have any influence. And I don’t want any. I am just going to continue telling it the way I see it. Giving my perspective. I cannot guarantee any outcomes. And anyway, I prefer democratic engagement over salesmanship. Don’t ask me to sell your ideas, your policies, your projections. I don’t want to.

Full membership of the European Union is the logical option for the United Kingdom, no matter how many tired dead donkey corpses the rabid tabloid media keep digging up to appall us all. Sooner or later, we also need to consider joining the Euro currency, and I predict we will, but I’m not your convincer on that argument, either.




“What has Europe ever done for us ?”

Common Climate : Common Cause : Common Market

On climate change, the United Kingdom has secured the Climate Change Act, legislation with broad-based support across all political parties. The UK shares the concerns of other European countries about the potential risks and impacts from climate change in our geographical region. Society-level change in response to climate change includes energy change – changing the sources and use of energy – and changing policies for land use to include planting forests and energy crops. Within the European Community, the UK has worked to secure region-wide legislation on renewable energy, energy efficiency, waste control and air quality. All of these contribute to the response to climate change, and have developed action on climate change into a common cause. In addition to regulatory change, the European Community is seeking to develop trading mechanisms to enable carbon dioxide emissions control, and it working to develop a common market in carbon.

Common Future : Common Purpose : Common Interest

Common Values : Common Opportunities : Common Voice

Common Security : Common Goals : Common Networks

Common Infrastructure : Common Society : Common Protection

Common Standards : Common Framework : Common Development

Categories
Acid Ocean Animal Kingdoom Babykillers Behaviour Changeling Big Picture Big Society Carbon Capture Carbon Commodities Carbon Pricing Carbon Rationing Carbon Taxatious Change Management Climate Change Climate Chaos Climate Damages Coal Hell Corporate Pressure Demoticratica Disturbing Trends Divide & Rule Emissions Impossible Energy Autonomy Energy Crunch Energy Denial Energy Disenfranchisement Energy Insecurity Engineering Marvel Fossilised Fuels Freshwater Stress Gamechanger Global Heating Global Singeing Global Warming Green Gas Green Power Human Nurture Hydrogen Economy Landslide Mad Mad World Major Shift Mass Propaganda Media Meltdown Oil Change Paradigm Shapeshifter Peak Coal Peak Emissions Peak Energy Peak Natural Gas Peak Oil Policy Warfare Political Nightmare Public Relations Pure Hollywood Regulatory Ultimatum Renewable Gas Resource Curse Screaming Panic Social Capital Social Change Social Chaos Social Democracy Solar Sunrise Solution City Stirring Stuff The Science of Communitagion Vote Loser Wind of Fortune Zero Net

Climbing the Concern Ladder

How do we get things changed in a democracy ? The model of political campaigning that has been established over the last century is failing us. In the past, if there was a problem, a small group of people could create a fuss about it, march some placards to somewhere relevant, write some letters, talk to some dignitaries, chain themselves to some railings, occupy a lobby, get some press, and after some years, maybe, get something done.

These days there are just too many complaints for them all to be heard. Philanthropic, charitable and political messages crowd the stage. In this age of social media, the campaign metaphor has been replaced by a ladder of concern. Concern is expressed. Hopefully others will find that they too are sufficiently concerned, and reflect that concern through some medium. And slowly, it is hoped, this concern climbs the ladder of attention, until it is visible, audible. The entitled and endowed middle classes catch the concern, and repeat it. Lots of emails fly. George Monbiot writes about it in The Guardian. Some speeches are made at serious meetings. Angelina Jolie is invited to grace a conference. And then, hopefully, this concern hits the people who have some kind of leverage over the problem, and they act.

Action is almost guaranteed if the concern is the result of a specific outrage, committed by a specific person or group, and has a specific solution. But otherwise, who knows ? How universal and impactful does a concern need to be before it gets acted upon ? And surely some things don’t need campaigns, because the governments already know enough about problems such as people trafficking, slavery, animal welfare, crime and torture ? After all, things such as prostitution and illegal drug trade are included in national economic statistics.

I took public transport today in London and I was doused in outrage pouring from advertisements asking for charitable giving to prevent the inhuman practice of Female Genital Mutilation (FGM). As I read these appeals, I felt two overwhelming sensations – one of intense anger that children are being permanently injured because of insane and unjustifiable, hateful beliefs about female sexuality. And a second feeling of dragging despair that giving a small donation every month to this organisation would have very little impact on abusive culture, which leads to many forms of violation, not just the unimaginably painful and destructive incision and even resection of a child’s clitoris and the sewing together of her labia, leading to permanent nerve damage, lasting wounds, loss of sexual function, complications from incontinence, ruined relationships, injuries from sexual intercourse, and serious medical risks during childbirth, and possibly the need for reconstructive surgery.

This is a problem which cannot be fixed by expressing normal murmurs of concern, building a wave of concern that climbs a ladder of concern, or making monthly token charitable payments. This concern is not susceptible to a campaign. What this problem needs is regulation, legislation, policing. This concern shouldn’t have to compete with all the other concerns out there, like distressed retired donkeys, threatened butterflies, meltdown polar bears, de-forested orangutans and by-catch dolphins. Some things just shouldn’t happen. They just shouldn’t be tolerated. And they shouldn’t be lost amongst an avalanche of other concerns. This problem is so serious that it should be an automatic priority for all the authorities, co-ordinating to detect and prevent it. This concern shouldn’t have to campaign for funds. Or attention.

Switch to BBC News. Roger Harrabin reports that “The UK’s chief scientist says the oceans face a serious and growing risk from man-made carbon emissions. […] Sir Mark Walport warns that the acidity of the oceans has increased by about 25% since the industrial revolution, mainly thanks to manmade emissions. […] He told BBC News: “If we carry on emitting CO2 [carbon dioxide] at the same rate, ocean acidification will create substantial risks to complex marine food webs and ecosystems.” […] The consequences of acidification are likely to be made worse by the warming of the ocean expected with climate change, a process which is also driven by CO2.”

Media Lens Editors reported this piece. My reaction was – who would be paying attention to this ? This is not the “dangerous climate change comes from global warming” story, this is the “other” carbon problem, the decimation of marine productivity and the whole pyramid of life, resulting from increasing levels of dissolved carbon dioxide in seawater because of higher levels of carbon dioxide in the air. The overwhelmingly major causes of this problem are irrefutably and definitely fossil fuel combustion, and its seriousness is hard to deny, even though Roger Harrabin attempts to make light of it by devoting column inches to a laboratory crab who isn’t getting with the programme.

Ocean acidification is a concern that shouldn’t get lost in amongst other concerns. It should be paid serious levels of attention. And not just by middle class philanthropists who work for non-governmental organisations and charities. And yet, cursory analysis of the segmentation of the population who treat BBC News as a main and trusted information source may suggest that the only readers who would act on this piece are exactly these middle class charity staff, or at a push, retired middle class charity staff.

My Media Lens comment was, “Right expert. Right message. Wrong audience. Wrong medium. The UK Government’s chief scientist. OK. Good. Ocean acidification. OK. Good. No quibbles about whether or not extra carbon dioxide in the atmosphere is a real problem or not (as known as “climate change” or “global warming”, which is real by the way). The BBC News. Wrong medium. Wrong audience. The only people going to listen to this are those who already know about the problem but are still as powerless to act as they were yesterday. The UK Government should present this information to the oil, gas and coal companies with a polite request for them to unveil their plan of action in the face of this undeniable problem.”

There is no reason why this story should be covered in BBC News by Roger Harrabin. What can anybody reading it do about the problem ? There is no purpose for this article. It is a pointless statement of concern, or rather, a belittling rehearsal of the concern. Unless this article, and the thousands like it, lead to the Government demanding answers on Energy Change from the fossil fuel companies, there is no point in reporting it, or in this case, disparaging it with faint humour.

The only time that ocean acidification should appear in a media piece is to report that the problem has been presented to the architects of increased ocean carbon dioxide, and answers have been requested.

And who are the architects of increased atmospheric and ocean carbon dioxide ? Those who mine fossil fuels. Those companies like BP and Shell, ExxonMobil, and all the coal extraction companies should act. They should offer us alternative non-fossil fuel energy. And the news should be about how these companies are taking action to offer us Renewable Hydrogen, Renewable Methane, solar power, wind power and Zero Carbon transport fuels.

Answers from the past will simply not do. Trying to assert that somebody needs to pay for pollution won’t prevent pollution occurring. Carbon taxes or carbon pricing won’t work – since they won’t prevent the mining of fossil fuels – and if fossil fuels are mined, of course they will be burned. Carbon combustion quotas won’t work – since economic wealth is based on burning carbon, so many forces will conspire to maintain levels of fossil fuel combustion. Carbon mining quotas won’t work, since the forces for increasing mining quotas are strong. Carbon trading won’t work, since it won’t reduce the amount of fossil fuels mined – because, obviously, if fossil fuels are mined, they will be burned.

I am tired of reading about climate change, global warming, freshwater stress and ocean acidification in the news. It seems there is nothing I can do that I have not already done that can provide a solution to these problems. Enough with communicating the disaster. I want to read about engineering and energy companies who have switched business models to producing Zero Carbon energy. I want to hear how energy security concern is taking oil, gas and coal companies towards Renewable Everything.

Categories
Academic Freedom Advancing Africa Alchemical Artistic Licence Assets not Liabilities Bait & Switch Be Prepared Behaviour Changeling Big Number Big Picture Big Society Carbon Army Carbon Capture Carbon Commodities Carbon Pricing Carbon Rationing Carbon Recycling Carbon Taxatious Change Management Climate Change Climate Chaos Climate Damages Conflict of Interest Contraction & Convergence Corporate Pressure Dead End Dead Zone Deal Breakers Demoticratica Design Matters Direction of Travel Disturbing Trends Divide & Rule Dreamworld Economics Droughtbowl Earthquake Eating & Drinking Economic Implosion Electrificandum Energy Autonomy Energy Calculation Energy Change Energy Crunch Energy Denial Energy Insecurity Energy Revival Energy Socialism Engineering Marvel Evil Opposition Extreme Energy Feed the World Feel Gooder Financiers of the Apocalypse Floodstorm Food Insecurity Foreign Interference Foreign Investment Fossilised Fuels Fuel Poverty Gamechanger Global Warming Green Gas Green Investment Green Power Growth Paradigm Human Nurture Hydrocarbon Hegemony Incalculable Disaster Insulation Libertarian Liberalism Low Carbon Life Mad Mad World Major Shift Marvellous Wonderful Mass Propaganda Media Meltdown Money Sings National Energy National Power Near-Natural Disaster Neverending Disaster Not In My Name Nudge & Budge Optimistic Generation Orwells Paradigm Shapeshifter Peace not War Peak Coal Peak Emissions Peak Energy Peak Natural Gas Peak Oil Pet Peeves Petrolheads Policy Warfare Political Nightmare Protest & Survive Public Relations Pure Hollywood Realistic Models Regulatory Ultimatum Renewable Gas Renewable Resource Revolving Door Social Capital Social Change Social Chaos Social Democracy Solar Sunrise Solution City Stirring Stuff Sustainable Deferment Technofix Technological Sideshow The Myth of Innovation The Power of Intention The Price of Gas The Price of Oil The Right Chemistry The Science of Communitagion The War on Error Toxic Hazard Tree Family Unconventional Foul Unqualified Opinion Unsolicited Advice & Guidance Unutterably Useless Utter Futility Vain Hope Vote Loser Western Hedge Wind of Fortune Zero Net

Positively Against Negative Campaigning

How to organise a political campaign around Climate Change : ask a group of well-fed, well-meaning, Guardian-reading, philanthropic do-gooders into the room to adopt the lowest common denominator action plan. Now, as a well-fed, well-meaning, Guardian-reading (well, sometimes), philanthropic do-gooder myself, I can expect to be invited to attend such meetings on a regular basis. And always, I find myself frustrated by the outcomes : the same insipid (but with well-designed artwork) calls to our publics and networks to support something with an email registration, a signed postcard, a fistful of dollars, a visit to a public meeting of no consequence, or a letter to our democratic representative. No output except maybe some numbers. Numbers to support a government decision, perhaps, or numbers to indicate what kind of messaging people need in future.

I mean, with the Fair Trade campaign, at least there was some kind of real outcome. Trade Justice advocates manned stall tables at churches, local venues, public events, and got money flowing to the international co-operatives, building up the trade, making the projects happen, providing schooling and health and aspirations in the target countries. But compare that to the Make Poverty History campaign which was largely run to support a vain top-level political attempt to garner international funding promises for social, health and economic development. Too big to succeed. No direct line between supporting the campaign and actually supporting the targets. Passing round the hat to developed, industrialised countries for a fund to support change in developing, over-exploited countries just isn’t going to work. Lord Nicholas Stern tried to ask for $100 billion a year by 2020 for Climate Change adaptation. This has skidded to a halt, as far as I know. The economic upheavals, don’t you know ?

And here we are again. The United Nations Framework Convention on Climate Change (UNFCCC), which launched the Intergovernmental Panel on Climate Change (IPCC) reports on climate change, oh, so, long, ago, through the person of its most charismatic and approachable Executive Secretary, Christiana Figueres, is calling for support for a global Climate Change treaty in 2015. Elements of this treaty, being drafted this year, will, no doubt, use the policy memes of the past – passing round the titfer begging for a couple of billion squid for poor, hungry people suffering from floods and droughts; proposing some kind of carbon pricing/taxing/trading scheme to conjure accounting bean solutions; trying to implement an agreement around parts per million by volume of atmospheric carbon dioxide; trying to divide the carbon cake between the rich and the poor.

Somehow, we believe, that being united around this proposed treaty, few of which have any control over the contents of, will bring us progress.

What can any of us do to really have input into the building of a viable future ? Christiana – for she is now known frequently only by her first name – has called for numbers – a measure of support for the United Nations process. She has also let it be known that if there is a substantial number of people who, with their organisations, take their investments out of fossil fuels, then this could contribute to the mood of the moment. Those who are advocating divestment are yet small in number, and I fear that they will continue to be marginal, partly because of the language that is being used.

First of all, there are the Carbon Disclosers. Their approach is to conjure a spectre of the “Carbon Bubble” – making a case that investments in carbon dioxide-rich enterprises could well end up being stranded by their assets, either because of wrong assumptions about viable remaining resources of fossil fuels, or because of wrong assumptions about the inability of governments to institute carbon pricing. Well, obviously, governments will find it hard to implement effective carbon pricing, because governments are in bed with the energy industry. Politically, governments need to keep big industry sweet. No surprise there. And it’s in everybody’s interests if Emperor Oil and Prince Regent Natural Gas are still wearing clothes. In the minds of the energy industry, we still have a good four decades of healthy fossil fuel assets. Royal Dutch Shell’s CEO can therefore confidently say at a public AGM that There Is No Carbon Bubble. The Carbon Discloser language is not working, it seems, as any kind of convincer, except to a small core of the concerned.

And then there are the Carbon Voices. These are the people reached by email campaigns who have no real idea how to do anything practical to affect change on carbon dioxide emissions, but they have been touched by the message of the risks of climate change and they want to be seen to be supporting action, although it’s not clear what action will, or indeed can, be taken. Well-designed brochures printed on stiff recycled paper with non-toxic inks will pour through their doors and Inboxes. Tick it. Send it back. Sign it. Send it on. Maybe even send some cash to support the campaign. This language is not achieving anything except guilt.

And then there are the Carbon Divestors. These are extremely small marginal voices who are taking a firm stand on where their organisations invest their capital. The language is utterly dated. The fossil fuel industry are evil, apparently, and investing in fossil fuels is immoral. It is negative campaigning, and I don’t think it stands a chance of making real change. It will not achieve its goal of being prophetic in nature – bearing witness to the future – because of the non-inclusive language. Carbon Voices reached by Carbon Divestor messages will in the main refuse to respond, I feel.

Political action on Climate Change, and by that I mean real action based on solid decisions, often taken by individuals or small groups, has so far been under-the-radar, under-the-counter, much like the Fair Trade campaign was until it burst forth into the glorious day of social acceptability and supermarket supply chains. You have the cyclists, the Transition Towners, the solar power enthusiasts. Yet to get real, significant, economic-scale transition, you need Energy Change – that is, a total transformation of the energy supply and use systems. It’s all very well for a small group of Methodist churches to pull their pension funds from investments in BP and Shell, but it’s another thing entirely to engage BP and Shell in an action plan to diversify out of petroleum oil and Natural Gas.

Here below are my email words in my feeble attempt to challenge the brain of Britain’s charitable campaigns on what exactly is intended for the rallying cry leading up to Paris 2015. I can pretty much guarantee you won’t like it – but you have to remember – I’m not breaking ranks, I’m trying to get beyond the Climate Change campaigning and lobbying that is currently in play, which I regard as ineffective. I don’t expect a miraculous breakthrough in communication, the least I can do is sow the seed of an alternative. I expect I could be dis-invited from the NGO party, but it doesn’t appear to be a really open forum, merely a token consultation to build up energy for a plan already decided. If so, there are probably more important things I could be doing with my time than wasting hours and hours and so much effort on somebody else’s insipid and vapid agenda.

I expect people might find that attitude upsetting. If so, you know, I still love you all, but you need to do better.


[…]

A lot of campaigning over the last 30 years has been very negative and divisive, and frequently ends in psychological stalemate. Those who are cast as the Bad Guys cannot respond to the campaigning because they cannot admit to their supporters/employees/shareholders that the campaigners are “right”. Joe Average cannot support a negative campaign as there is no apparent way to make change happen by being so oppositional, and because the ask is too difficult, impractical, insupportable. [Or there is simply too much confusion or cognitive dissonance.]

One of the things that was brought back from the […] working group breakout on […] to the plenary feedback session was that there should be some positive things about this campaign on future-appropriate investment. I think […] mentioned the obvious one of saying effectively “we are backing out of these investments in order to invest in things that are more in line with our values” – with the implicit encouragement for fossil fuel companies to demonstrate that they can be in line with our values and that they are moving towards that. There was some discussion that there are no bulk Good Guy investment funds, that people couldn’t move investments in bulk, although some said there are. […] mentioned Ethex.

Clearly fossil fuel production companies are going to find it hard to switch from oil and gas to renewable electricity, so that’s not a doable we can ask them for. Several large fossil fuel companies, such as BP, have tried doing wind and solar power, but they have either shuttered those business units, or not let them replace their fossil fuel activities.

[…] asked if the [divestment] campaign included a call for CCS – Carbon Capture and Storage – and […] referred to […] which showed where CCS is listed in a box on indicators of a “good” fossil fuel energy company.

I questioned whether the fossil fuel companies really want to do CCS – and that they have simply been waiting for government subsidies or demonstration funds to do it. (And anyway, you can’t do CCS on a car.)

I think I said in the meeting that fossil fuel producer companies can save themselves and save the planet by adopting Renewable Gas – so methods for Carbon Capture and Utilisation (CCU) or “carbon recycling”. Plus, they could be making low carbon gas by using biomass inputs. Most of the kit they need is already widely installed at petrorefineries. So – they get to keep producing gas and oil, but it’s renewably and sustainably sourced with low net carbon dioxide emissions. That could be turned into a positive, collaborative ask, I reckon, because we could all invest in that, the fossil fuel companies and their shareholders.

Anyway, I hope you did record something urging a call to positive action and positive engagement, because we need the co-operation of the fossil fuel companies to make appropriate levels of change to the energy system. Either that, or they go out of business and we face social turmoil.

If you don’t understand why this is relevant, that’s OK. If you don’t understand why a straight negative campaign is a turn-off to many people (including those in the fossil fuel industry), well, I could role play that with you. If you don’t understand what I’m talking about when I talk about Renewable Gas, come and talk to me about it again in 5 years, when it should be common knowledge. If you don’t understand why I am encouraging positive collaboration, when negative campaigning is so popular and marketable to your core segments, then I will resort to the definition of insanity – which is to keep doing the same things, expecting a different result.

I’m sick and tired of negative campaigning. Isn’t there a more productive thing to be doing ?

There are no enemies. There are no enemies. There are no enemies.

——-

As far as I understand the situation, both the […] and […] campaigns are negative. They don’t appear to offer any positive routes out of the problem that could engage the fossil fuel companies in taking up the baton of Energy Change. If that is indeed the main focus of […] and […] efforts, then I fear they will fail. Their work will simply be a repeat of the negative campaigning of the last 30 years – a small niche group will take up now-digital placards and deploy righteous, holy social media anger, and that will be all.

Since you understand this problem, then I would suggest you could spend more time and trouble helping them to see a new way. You are, after all, a communications expert. And so you know that even Adolf Hitler used positive, convening, gathering techniques of propaganda to create power – and reserved the negative campaigning for easily-marginalised vulnerable groups to pile the bile and blame on.

Have a nicer day,

—–

The important thing as far as I understand it is that the “campaigning” organisations need to offer well-researched alternatives, instead of just complaining about the way things are. And these well-researched alternatives should not just be the token sops flung at the NGOs and UN by the fossil fuel companies. What do I mean ?

Well, let’s take Carbon Capture and Storage (CCS). The injection of carbon dioxide into old oil and gas caverns was originally proposed for Enhanced Oil Recovery (EOR) – that is – getting more oil and gas out the ground by pumping gas down there – a bit like fracking, but with gas instead of liquid. The idea was that the expense of CCS would be compensated for by the new production of oil and gas – however, the CCS EOR effect has shown to be only temporary. So now the major oil and gas companies say they support carbon pricing (either by taxation or trading), to make CCS move forward. States and federations have given them money to do it. I think the evidence shows that carbon pricing cannot be implemented at a sufficiently high level to incentivise CCS, therefore CCS is a non-answer. Why has […] not investigated this ? CCS is a meme, but not necessarily part of the carbon dioxide solution. Not even the UNFCCC IPCC reports reckon that much CCS can be done before 2040. So, why does CCS appear in the […] criteria for a “good” fossil fuel company ? Because it’s sufficiently weak as a proposal, and sufficiently far enough ahead that the fossil fuel companies can claim they are “capture ready”, and in the Good Book, but in reality are doing nothing.

Non-starters don’t just appear from fossil fuel companies. From my point of view, another example of running at and latching on to things that cannot help was the support of the GDR – Greenhouse Development Rights, of which there has been severe critique in policy circles, but the NGOs just wrote it into their policy proposals without thinking about it. There is no way that the emissions budgets set out in the GDR policy could ever get put into practice. For a start, there is no real economic reason to divide the world into developing and developed nations (Kyoto [Protocol]’s Annex I and Annex II).

If you give me some links, I’m going to look over your […] and think about it.

I think that if a campaign really wants to get anywhere with fossil fuel companies, instead of being shunted into a siding, it needs to know properly what the zero carbon transition pathways really are. Unequal partners do not make for a productive engagement, I reckon.

—–

I’m sorry to say that this still appears to be negative campaigning – fossil fuel companies are “bad”; and we need to pull our money out of fossil fuel companies and put it in other “good” companies. Where’s the collective, co-operative effort undertaken with the fossil fuel companies ? What’s your proposal for helping to support them in evolving ? Do you know how they can technologically transition from using fossil fuels to non-fossil fuels ? And how are you communicating that with them ?

——

They call me the “Paradigm Buster”. I’m not sure if “the group” is open to even just peeking into that kind of approach, let alone “exploring” it. The action points on the corporate agenda could so easily slip back into the methods and styles of the past. Identify a suffering group. Build a theory of justice. Demand reparation. Make Poverty History clearly had its victims and its saviours. Climate change, in my view, requires a far different treatment. Polar bears cannot substitute for starving African children. And not even when climate change makes African children starve, can they inspire the kind of action that climate change demands. A boycott campaign without a genuine alternative will only touch a small demographic. Whatever “the group” agrees to do, I want it to succeed, but by rehashing the campaigning strategies and psychology of the past, I fear it will fail. Even by adopting the most recent thinking on change, such as Common Cause, [it] is not going to surmount the difficulties of trying to base calls to action on the basis of us-and-them thinking – polar thinking – the good guys versus the bad guys – the body politic David versus the fossil fuel company Goliath. By challenging this, I risk alienation, but I am bound to adhere to what I see as the truth. Climate change is not like any other disaster, aid or emergency campaign. You can’t just put your money in the [collecting tin] and pray the problem will go away with the help of the right agencies. Complaining about the “Carbon Bubble” and pulling your savings from fossil fuels is not going to re-orient the oil and gas companies. The routes to effective change require a much more comprehensive structure of actions. And far more engagement that agreeing to be a flag waver for whichever Government policy is on the table. I suppose it’s too much to ask to see some representation from the energy industry in “the group”, or at least […] leaders who still believe in the fossil fuel narratives, to take into account their agenda and their perspective, and a readiness to try positive collaborative change with all the relevant stakeholders ?


Categories
Academic Freedom Alchemical Behaviour Changeling Big Picture British Biogas Carbon Capture Carbon Commodities Carbon Pricing Carbon Recycling Carbon Taxatious Change Management Climate Change Conflict of Interest Corporate Pressure Cost Effective Dead End Design Matters Direction of Travel Dreamworld Economics Efficiency is King Emissions Impossible Energy Change Energy Crunch Energy Denial Energy Insecurity Geogingerneering Green Gas Green Investment Green Power Human Nurture Hydrocarbon Hegemony Insulation Low Carbon Life Major Shift Money Sings National Power Nuclear Nuisance Nuclear Shambles Paradigm Shapeshifter Policy Warfare Political Nightmare Price Control Realistic Models Regulatory Ultimatum Renewable Gas Resource Curse Resource Wards Science Rules Solution City Technofix Technological Sideshow The Myth of Innovation The Power of Intention Utter Futility Vain Hope Wasted Resource Western Hedge

On Having to Start Somewhere

In the last few weeks I have heard a lot of noble but futile hopes on the subject of carbon dioxide emissions control.

People always seem to want to project too far into the future and lay out their wonder solution – something that is just too advanced enough to be attainable through any of the means we currently have at our disposal. It is impossible to imagine how the gulf can be bridged between the configuration of things today and their chosen future solutions.

Naive civil servants strongly believe in a massive programme of new nuclear power. Head-in-the-clouds climate change consultants and engineers who should know otherwise believe in widespread Carbon Capture and Storage or CCS. MBA students believe in carbon pricing, with carbon trading, or a flat carbon tax. Social engineers believe in significant reductions in energy intensity and energy consumer behaviour change, and economists believe in huge cost reductions for all forms of renewable electricity generation.

To make any progress at all, we need to start where we are. Our economic system has strong emissions-dependent components that can easily be projected to fight off contenders. The thing is, you can’t take a whole layer of bricks out of a Jenga stack without severe degradation of its stability. You need to work with the stack as it is, with all the balances and stresses that already exist. It is too hard to attempt to change everything at once, and the glowing ethereal light of the future is just too ghostly to snatch a hold of without a firm grasp on an appropriate practical rather than spiritual guide.

Here’s part of an email exchange in which I strive for pragmatism in the face of what I perceive as a lack of realism.


To: Jo

I read your article with interest. You have focused on energy, whereas I
tend to focus on total resource. CCS does make sense and should be pushed
forward with real drive as existing power stations can be cleaned up with it
and enjoy a much longer life. Establishing CCS is cheaper than building new
nuclear and uses far less resources. Furthermore, CCS should be used on new
gas and biomass plants in the future.

What we are lacking at the moment is any politician with vision in this
space. Through a combination of boiler upgrades, insulation, appliance
upgrades and behaviour change, it is straight forward to halve domestic
energy use. Businesses are starting to make real headway with energy
savings. We can therefore maintain a current total energy demand for the
foreseeable future.

To service this demand, we should continue to eke out every last effective
joule from the current generating stock by adding cleansing kit to the dirty
performers. While this is being done, we can continue to develop renewable
energy and localised systems which can help to reduce the base load
requirement even further.

From an operational perspective, CCS has stagnated over the last 8 years, so
a test plant needs to be put in place as soon as possible.

The biggest issue for me is that, through political meddling and the
unintended consequences of ill-thought out subsidies, the market has been
skewed in such a way that the probability of a black-out next year is very
high indeed.

Green gas is invisible in many people’s thinking, but the latest House of
Lords Report highlighted its potential.

Vested interests are winning hands down in the stand-off with the big
picture!


From: Jo

What is the title of the House of Lords report to which you refer ?

Sadly, I am old enough to remember Carbon Capture and Storage (CCS)
the first time the notion went around the block, so I’d say that
progress has been thin for 30 years rather than 8.

Original proposals for CCS included sequestration at the bottom of the
ocean, which have only recently been ruled out as the study of global
ocean circulation has discovered more complex looping of deep and
shallower waters that originally modelled – the carbon dioxide would
come back up to the surface waters eventually…

The only way, I believe, that CCS can be made to work is by creating a
value stream from the actual carbon dioxide, and I don’t mean Enhanced
Oil Recovery (EOR).

And I also definitely do not mean carbon dioxide emissions pricing,
taxation or credit trading. The forces against an
investment-influencing carbon price are strong, if you analyse the
games going on in the various economic system components. I do not
believe that a strong carbon price can be asserted when major economic
components are locked into carbon – such as the major energy producers
and suppliers, and some parts of industry, and transport.

Also, carbon pricing is designed to be cost-efficient, as markets will
always find the lowest marginal pricing for any externality in fines
or charges – which is essentially what carbon dioxide emissions are.
The EU Emissions Trading Scheme was bound to deliver a low carbon
price – that’s exactly what the economists predicted in modelling
carbon pricing.

I cannot see that a carbon price could be imposed that was more than
5% of the base commodity trade price. At those levels, the carbon
price is just an irritation to pass on to end consumers.

The main problem is that charging for emissions does not alter
investment decisions. Just like fines for pollution do not change the
risks for future pollution. I think that we should stop believing in
negative charging and start backing positive investment in the energy
transition.

You write “You have focused on energy, whereas I tend to focus on
total resource.” I assume you mean the infrastructure and trading
systems. My understanding leads me to expect that in the current
continuing economic stress, solutions to the energy crisis will indeed
need to re-use existing plant and infrastructure, which is why I
think that Renewable Gas is a viable option for decarbonising total
energy supply – it slots right in to substitute for Natural Gas.

My way to “eke out every last effective joule from the current
generating stock” is to clean up the fuel, rather than battle
thermodynamics and capture the carbon dioxide that comes out the back
end. Although I also recommend carbon recycling to reduce the need for
input feedstock.

I completely agree that energy efficiency – cutting energy demand
through insulation and so on – is essential. But there needs to be a
fundamental change in the way that profits are made in the energy
sector before this will happen in a significant way. Currently it
remains in the best interests of energy production and supply
companies to produce and supply as much energy as they can, as they
have a duty to their shareholders to return a profit through high
sales of their primary products.

“Vested interests” have every right under legally-binding trade
agreements to maximise their profits through the highest possible
sales in a market that is virtually a monopoly. I don’t think this can
be challenged, not even by climate change science. I think the way
forward is to change the commodities upon which the energy sector
thrives. If products from the energy sector include insulation and
other kinds of efficiency, and if the energy sector companies can
continue to make sales of these products, then they can reasonably be
expected to sell less energy. I’m suggesting that energy reduction
services need to have a lease component.

Although Alistair Buchanan formerly of Ofgem is right about the
electricity generation margins slipping really low in the next few
winters, there are STOR contracts that National Grid have been working
on, which should keep the lights on, unless Russia turn off the gas
taps, which is something nobody can do anything much about – not BP,
nor our diplomatic corps, the GECF (the gas OPEC), nor the WTO.


Categories
Academic Freedom Assets not Liabilities Bioeffigy British Biogas Burning Money Carbon Capture Climate Change Conflict of Interest Corporate Pressure Cost Effective Design Matters Direction of Travel Disturbing Trends Dreamworld Economics Emissions Impossible Energy Change Engineering Marvel Extreme Energy Financiers of the Apocalypse Fossilised Fuels Gamechanger Gas Storage Geogingerneering Green Gas Green Investment Green Power Hydrocarbon Hegemony Hydrogen Economy Low Carbon Life Mad Mad World Marine Gas Mass Propaganda Methane Madness Methane Management Money Sings Mudslide National Energy National Power No Pressure Nuclear Nuisance Nuclear Shambles Nudge & Budge Orwells Paradigm Shapeshifter Petrolheads Policy Warfare Political Nightmare Public Relations Pure Hollywood Regulatory Ultimatum Renewable Gas Solar Sunrise Solution City Technofix Technological Fallacy Technological Sideshow Technomess The Myth of Innovation The Power of Intention Ungreen Development Vote Loser Wasted Resource Western Hedge Wind of Fortune Zero Net

Failing Narratives : Carbon Culprits

In the last few weeks I have attended a number of well-intentioned meetings on advances in the field of carbon dioxide emissions mitigation. My overall impression is that there are several failing narratives to be encountered if you make even the shallowest foray into the murky mix of politics and energy engineering.

As somebody rightly pointed out, no capitalist worth their share price is going to spend real money in the current economic environment on new kit, even if they have asset class status – so all advances will necessarily be driven by public subsidies – in fact, significant technological advance has only ever been accomplished by state support.

Disturbingly, free money is also being demanded to roll out decades-old low carbon energy technology – nuclear power, wind power, green gas, solar photovoltaics – so it seems to me the only way we will ever get appropriate levels of renewable energy deployment is by directed, positive public investment.

More to the point, we are now in an era where nobody at all is prepared to spend any serious money without a lucrative slap on the back, and reasons beyond reasons are being deployed to justify this position. For example, the gas-fired power plant operators make claims that the increase in wind power is threatening their profitability, so they are refusing to built new electricity generation capacity without generous handouts. This will be the Capacity Mechanism, and will keep gas power plants from being mothballed. Yes, there is data to support their complaint, but it does still seem like whinging and special pleading.

And the UK Government’s drooling and desperate fixation with new nuclear power has thrown the European Commission into a tizzy about the fizzy promises of “strike price” guaranteed sales returns for the future atomic electricity generation.

But here, I want to contrast two other energy-polity dialogues – one for developing an invaluable energy resource, and the other about throwing money down a hole.

First, let’s take the white elephant. Royal Dutch Shell has for many years been lobbying for state financial support to pump carbon dioxide down holes in the ground. Various oil and gas industry engineers have been selling this idea to governments, federal and sub-federal for decades, and even acted as consultants to the Civil Society process on emissions control – you just need to read the United Nations’ IPCC Climate Change Assessment Report and Special Report output to detect the filigree of a trace of geoengineering fingers scratching their meaning into global intention. Let us take your nasty, noxious carbon dioxide, they whisper suggestively, and push it down a hole, out of sight and out of accounting mind, but don’t forget to slip us a huge cheque for doing so. You know, they add, we could even do it cost-effectively, by producing more oil and gas from emptying wells, resulting from pumping the carbon dioxide into them. Enhanced Oil Recovery – or EOR – would of course mean that some of the carbon dioxide pumped underground would in effect come out again in the form of the flue gas from the combustion of new fossil fuels, but anyway…

And governments love being seen to be doing something, anything, really, about climate change, as long as it’s not too complicated, and involves big players who should be trustworthy. So, you get the Peterhead project picking up a fat cheque for a trial of Carbon Capture and Storage (CCS) in Scotland, and the sidestep hint that if Scotland decides to become independent, this project money could be lost…But this project doesn’t involve much of anything that is really new. The power station that will be used is a liability that ought to be closing now, really, according to some. And the trial will only last for ten years. There will be no EOR – at least – not in the public statements, but this plan could lead the way.

All of this is like pushing a fat kid up a shiny slide. Once Government take their greasy Treasury hands off the project, the whole narrative will fail, falling to an ignominious muddy end. This perhaps explains the underlying desperation of many – CCS is the only major engineering response to emissions that many people can think of – because they cannot imagine burning less fossil fuels. So this wobbling effigy has to be kept on the top of the pedestal. And so I have enjoyed two identical Shell presentations on the theme of the Peterhead project in as many weeks. CCS must be obeyed.

But, all the same, it’s big money. And glaring yellow and red photo opps. You can’t miss it. And then, at the other end of the scale of subsidies, is biogas. With currently low production volumes, and complexities attached to its utilisation, anaerobically digesting wastes of all kinds and capturing the gas for use as a fuel, is a kind of token technology to many, only justified because methane is a much stronger greenhouse gas than carbon dioxide, so it needs to be burned.

The subsidy arrangements for many renewable energy technologies are in flux. Subsidies for green gas will be reconsidered and reformulated in April, and will probably experience a degression – a hand taken off the tiller of driving energy change.

At an evening biogas briefing given by Rushlight this week, I could almost smell a whiff of despair and disappointment in the levels of official support for green gas. It was freely admitted that not all the planned projects around the country will see completion, not only because of the prevailing economic climate, but because of the vagaries of feedstock availability, and the complexity of gas cleaning regulations.

There was light in the tunnel, though, even if the end had not been reached – a new Quality Protocol for upgrading biogas to biomethane, for injection into the gas grid, has been established. You won’t find it on the official UK Goverment website, apparently, as it has fallen through the cracks of the rebranding to gov.uk, but here it is, and it’s from the Environment Agency, so it’s official :-

https://www.greengas.org.uk/pdf/biomethane-qp.pdf

https://www.r-e-a.net/news/rea-welcomes-environment-agencys-updated-anaerobic-digestion-quality-protocol

https://adbiogas.co.uk/2014/01/30/biomethane-qp-could-boost-renewable-gas-to-grid-market/
https://adbiogas.co.uk/2014/01/30/biomethane-quality-protocol-published/

Here’s some background :-

https://www.environment-agency.gov.uk/aboutus/wfo/epow/124111.aspx

To get some picture of the mess that British green energy policy is in, all you need do is take a glance at Germany and Denmark, where green gas is considered the “third leg of the stool”, stabilising renewable energy supply with easily-stored low carbon gas, to balance out the peaks and troughs in wind power and solar power provision.

Green gas should not be considered a nice-to-have minor addition to the solutions portfolio in my view. The potential to de-carbonise the energy gas supply is huge, and the UK are missing a trick here – the big money is being ladled onto the “incumbents” – the big energy companies who want to carry on burning fossil fuels but sweep their emissions under the North Sea salt cavern carpet with CCS, whilst the beer change is being reluctantly handed out as a guilt offering to people seeking genuinely low carbon energy production.

Seriously – where the exoplanet are we at ?

Categories
Academic Freedom Alchemical Assets not Liabilities British Biogas Carbon Capture Carbon Commodities Carbon Pricing Carbon Recycling Carbon Taxatious Corporate Pressure Cost Effective Design Matters Direction of Travel Dreamworld Economics Efficiency is King Emissions Impossible Energy Revival Engineering Marvel Fossilised Fuels Gamechanger Gas Storage Geogingerneering Green Investment Hydrocarbon Hegemony Low Carbon Life National Energy National Power Nudge & Budge Paradigm Shapeshifter Peak Emissions Price Control Realistic Models Regulatory Ultimatum Renewable Gas

The General Lightness of Carbon Pricing

I was at a very interesting meeting this morning, entitled “Next Steps for Carbon Capture and Storage in the UK”, hosted by the Westminster Energy, Environment and Transport Forum :-

https://www.westminsterforumprojects.co.uk/forums/event.php?eid=713
https://www.westminsterforumprojects.co.uk/forums/agenda/CCS-2014-agenda.pdf

During the proceedings, there were liberal doses of hints at that the Chancellor of the Exchequer is about to freeze the Carbon Price Floor – the central functioning carbon pricing policy in the UK (since the EU Emissions Trading Scheme “isn’t working”).

All of the more expensive low carbon energy technologies rely on a progressively heavier price for carbon emissions to make their solutions more attractive.

Where does this leave the prospects for Carbon Capture and Storage in the 2030s ? Initial technology-launching subsidies will have been dropped, and the Contracts for Difference will have been ground down into obscurity. So how will CCS keep afloat ? It’s always going to remain more expensive than other technology options to prevent atmospheric carbon dioxide emissions, so it needs some prop.

What CCS needs is some Added Value. It will come partly from EOR – Enhanced Oil Recovery, as pumping carbon dioxide down depleting oil and gas fields will help stimulate a few percent of extra production.

But what will really make the difference is using carbon dioxide to make new fuel. That’s the wonder of Renewable Gas – it will be able to provide a valued product for capturing carbon dioxide.

This wasn’t talked about this morning. The paradigm is still “filter out the CO2 and flush it down a hole”. But it won’t stay that way forever. Sooner or later, somebody’s going to start mining carbon dioxide from CCS projects to make new chemicals and gas fuels. Then, who cares if there’s negative charging for emissions ? Or at what price ? The return on investment in carbon capture will simply bypass assumptions about needing to create a carbon market or set a carbon tax.

Categories
Academic Freedom Assets not Liabilities Baseload is History Carbon Capture Carbon Commodities Carbon Recycling Climate Change Climate Damages Corporate Pressure Design Matters Energy Crunch Energy Insecurity Energy Revival Engineering Marvel Feel Gooder Gamechanger Gas Storage Geogingerneering Green Power Hydrogen Economy Low Carbon Life Major Shift Marine Gas Marvellous Wonderful Methane Management Military Invention National Energy Nuclear Nuisance Nuclear Shambles Optimistic Generation Paradigm Shapeshifter Peak Natural Gas Realistic Models Renewable Gas Renewable Resource Solar Sunrise Solution City Stirring Stuff Technofix The Power of Intention The Price of Gas The Right Chemistry Transport of Delight Unconventional Foul Wasted Resource Western Hedge Wind of Fortune Zero Net

Gain in Transmission #2

Here is further email exchange with Professor Richard Sears, following on from a previous web log post.


From: Richard A. Sears
Date: 24 February 2014
To: Jo Abbess
Subject: Question from your TED talk

Jo,

I was looking back over older emails and saw that I had never responded to your note. It arrived as I was headed to MIT to teach for a week and then it got lost. Sorry about that.

Some interesting questions. I don’t know anybody working specifically on wind power to gas options. At one time Shell had a project in Iceland using geothermal to make hydrogen. Don’t know what its status is but if you search on hydrogen and Iceland on the Shell website I’m sure there’s something. If the Germans have power to gas as a real policy option I’d poke around the web for information on who their research partners are for this.

Here are a couple of high level thoughts. Not to discourage you because real progress comes from asking new questions, but there are some physical fundamentals that are important.

Direct air capture of anything using current technology is prohibitively expensive to do at scale for energy. More energy will be expended in capture and synthesis than the fuels would yield.

Gaseous fuels are problematic on their own. Gas doesn’t travel well and is difficult to contain at high energy densities as that means compressing or liquefying it. That doesn’t make anything impossible, but it raises many questions about infrastructure and energy balance. If we take the energy content of a barrel of oil as 1.0, then a barrel of liquefied natural gas is about 0.6, compressed natural gas which is typically at about 3600psi is around 0.3, and a barrel (as a measure of volume equal to 42 US gallons) of natural gas at room temperature and pressure is about 0.0015 (+/-). Also there’s a real challenge in storing and transporting gasses as fuel at scale, particularly motor fuel to replace gasoline and diesel.

While there is some spare wind power potential that doesn’t get utilized because of how the grid must be managed, I expect it is a modest amount of energy compared to what we use today in liquid fuels. I think what that means is that while possible, it’s more likely to happen in niche local markets and applications rather than at national or global scales.

If you haven’t seen it, a nice reference on the potential of various forms of sustainable energy is available free and online here. https://www.withouthotair.com/

Hope some of this helps.

Rich

Richard A. Sears
Consulting Professor
Department of Energy Resources Engineering
Stanford University


From: Jo Abbess
Date: 24 February 2014
To: Richard A. Sears

Dear Richard,

Many thanks for getting back to me. Responses are nice – even if they
are months late. As they say – better late than never, although with
climate change, late action will definitely be unwise, according to an
increasing number of people.

I have indeed seen the website, and bought and spilled coffee on the
book of Professor David MacKay’s “Sustainable Energy Without The Hot
Air” project. It is legendary. However, I have checked and he has only
covered alternative gas in a couple of paragraphs – in notes. By
contrast, he spent a long chapter discussing how to filter uranium out
of seawater and other nuclear pursuits.

Yet as a colleague of mine, who knows David better than I do, said to
me this morning, his fascination with nuclear power is rather naive,
and his belief in the success of Generation III and Generation IV
lacks evidence. Plus, if we get several large carbon dioxide
sequestration projects working in the UK – Carbon Capture and Storage
(CCS) – such as the Drax pipeline (which other companies will also
join) and the Shell Peterhead demonstration, announced today, then we
won’t need new nuclear power to meet our 4th Carbon Budget – and maybe
not even the 5th, either (to be negotiated in 2016, I hear) :-

https://www.heraldscotland.com/politics/referendum-news/peterhead-confirmed-for-carbon-capture-sitebut-its-not-a-bribe-says-ed-dave.1393232825

We don’t need to bury this carbon, however; we just need to recycle
it. And the number of ways to make Renewable Hydrogen, and
energy-efficiently methanate carbon monoxide and carbon dioxide with
hydrogen, is increasing. People are already making calculations on how
much “curtailed” or spare wind power is likely to be available for
making gas in 10 years’ time, and if solar power in the UK is
cranked/ramped up, then there will be lots of juicy cost-free power
ours for the taking – especially during summer nights.

Direct Air Capture of carbon dioxide is a nonsensical proposition.
Besides being wrong in terms of the arrow of entropy, it also has the
knock-on effect of causing carbon dioxide to come back out of the
ocean to re-equilibrate. I recently read a paper by climate scientists
that estimated that whatever carbon dioxide you take out of the air,
you will need to do almost all of it again.

Instead of uranium, we should be harvesting carbon dioxide from the
oceans, and using it to make gaseous and liquid fuels.

Gaseous fuels and electricity complement each other very well –
particularly in storage and grid balancing terms – there are many
provisions for the twins of gas and power in standards, laws, policies
and elsewhere. Regardless of the limitations of gas, there is a huge
infrastructure already in place that can store, pipe and use it, plus
it is multi-functional – you can make power, heat, other fuels and
chemicals from gas. In addition, you can make gas from a range of
resources and feedstocks and processing streams – the key quartet of
chemical gas species keep turning up : hydrogen, methane, carbon
monoxide and carbon dioxide – whether you are looking at the exhaust
from combustion, Natural Gas, industrial furnace producer gas,
biological decomposition, just about everywhere – the same four gases.

Energy transition must include large amounts of renewable electricity
– because wind and solar power are quick to build yet long nuclear
power lead times might get extended in poor economic conditions. The
sun does not always shine and the wind does not always blow (and the
tide is not always in high flux). Since demand profiles will never be
able to match supply profiles exactly, there will always be spare
power capacity that grids cannot use. So Power to Gas becomes the
optimal solution. At least until there are ways to produce Renewable
Hydrogen at plants that use process heat from other parts of the
Renewable Gas toolkit. So the aims are to recycle carbon dioxide from
gas combustion to make more gas, and recycle gas production process
heat to make hydrogen to use in the gas production process, and make
the whole lot as thermally balanced as possible. Yes. We can do that.
Lower the inputs of fresh carbon of any form, and lower the energy
requirements to make manufactured gas.

I met somebody working with Jacobs who was involved in the Carbon
Recycling project in Iceland. Intriguing, but an order of magnitude
smaller than I think is possible.

ITM Power in the UK are doing a Hydrogen-to-gas-grid and methanation
project in Germany with one of the regions. They have done several
projects with Kiwa and Shell on gas options in Europe. I know of the
existence of feasibility reports on the production of synthetic
methane, but I have not had the opportunity to read them yet…

I feel quite encouraged that Renewable Gas is already happening. It’s
a bit patchy, but it’s inevitable, because the narrative of
unconventional fossil fuels has many flaws. I have been looking at
issues with reserves growth and unconventionals are not really
commensurate with conventional resources. There may be a lot of shale
gas in the ground, but getting it out could be a long process, so
production volumes might never be very good. In the USA you’ve had
lots of shale gas – but that’s only been supported by massive drilling
programmes – is this sustainable ?

BP have just finished building lots of dollars of kit at Whiting to
process sour Natural Gas. If they had installed Renewable Gas kit
instead of the usual acid gas and sulfur processing, they could have
been preparing for the future. As I understand it, it is possible to
methanate carbon dioxide without first removing it from the rest of
the gas it comes in – so methanating sour gas to uprate it is a viable
option as far as I can see. The hydrogen sulfide would still need to
be washed out, but the carbon dioxide needn’t be wasted – it can be
made part of the fuel. And when the sour gas eventually thins out,
those now methanating sour gas can instead start manufacturing gas
from low carbon emissions feedstocks and recycled carbon.

I’m thinking very big.

Regards,

jo.

Categories
Academic Freedom Assets not Liabilities Be Prepared Big Picture British Biogas Carbon Capture Carbon Commodities Carbon Pricing Carbon Taxatious Change Management Climate Change Corporate Pressure Cost Effective Design Matters Direction of Travel Energy Autonomy Energy Change Energy Insecurity Energy Revival Environmental Howzat Extreme Energy Extreme Weather Fossilised Fuels Fuel Poverty Gamechanger Green Investment Hydrocarbon Hegemony Low Carbon Life Major Shift National Energy Nudge & Budge Optimistic Generation Orwells Paradigm Shapeshifter Peak Emissions Peak Energy Peak Natural Gas Peak Oil Price Control Public Relations Pure Hollywood Realistic Models Renewable Gas Renewable Resource Resource Wards Shale Game Solution City Sustainable Deferment Technofix Technological Sideshow The Price of Gas The Price of Oil Unconventional Foul Unnatural Gas Wasted Resource Western Hedge

In Confab : Paul Elsner

Dr Paul Elsner of Birkbeck College at the University of London gave up some of his valuable time for me today at his little bijou garret-style office in Bloomsbury in Central London, with an excellent, redeeming view of the British Telecom Tower. Leader of the Energy and Climate Change module on Birkbeck’s Climate Change Management programme, he offered me tea and topical information on Renewable Energy, and some advice on discipline in authorship.

He unpacked the recent whirlwind of optimism surrounding the exploitation of Shale Gas and Shale Oil, and how Climate Change policy is perhaps taking a step back. He said that we have to accept that this is the way the world is at the moment.

I indicated that I don’t have much confidence in the “Shale Bubble”. I consider it mostly as a public relations exercise – and that there are special conditions in the United States of America where all this propaganda comes from. I said that there are several factors that mean the progress with low carbon fuels continues to be essential, and that Renewable Gas is likely to be key.

1. First of all, the major energy companies, the oil and gas companies, are not in a healthy financial state to make huge investment. For example, BP has just had the legal ruling that there will be no limit to the amount of compensation claims they will have to face over the Deepwater Horizon disaster. Royal Dutch Shell meanwhile has just had a serious quarterly profit warning – and if that is mostly due to constrained sales (“Peak Oil Demand”) because of economic collapse, that doesn’t help them with the kind of aggressive “discovery” they need to continue with to keep up their Reserves to Production ratio (the amount of proven resources they have on their books). These are not the only problems being faced in the industry. This problem with future anticipated capitalisation means that Big Oil and Gas cannot possibly look at major transitions into Renewable Electricity, so it would be pointless to ask, or try to construct a Carbon Market to force it to happen.

2. Secondly, despite claims of large reserves of Shale Gas and Shale Oil, ripe for the exploitation of, even major bodies are not anticipating that Peak Oil and Peak Natural Gas will be delayed by many years by the “Shale Gale”. The reservoir characteristics of unconventional fossil fuel fields do not mature in the same way as conventional ones. This means that depletion scenarios for fossil fuels are still as relevant to consider as the decades prior to horizontal drilling and hydraulic fracturing (“fracking”).

3. Thirdly, the reservoir characteristics of conventional fossil fuel fields yet to exploit, especially in terms of chemical composition, are drifting towards increasingly “sour” conditions – with sigificant levels of hydrogen sulfide and carbon dioxide in them. The sulphur must be removed for a variety of reasons, but the carbon dioxide remains an issue. The answer until recently from policy people would have been Carbon Capture and Storage or CCS. Carbon dioxide should be washed from acid Natural Gas and sequestered under the ocean in salt caverns that previously held fossil hydrocarbons. It was hoped that Carbon Markets and other forms of carbon pricing would have assisted with the payment for CCS. However, recently there has been reduced confidence that this will be significant.

Renewable Gas is an answer to all three of these issues. It can easily be pursued by the big players in the current energy provision system, with far less investment than wholesale change would demand. It can address concerns of gas resource depletion at a global scale, the onset of which could occur within 20 to 25 years. And it can be deployed to bring poor conventional fossil fuels into consideration for exploitation in the current time – answering regional gas resource depletion.

Outside, daffodils were blooming in Tavistock Square. In January, yes. The “freaky” weather continues…

Categories
Acid Ocean Assets not Liabilities Baseload is History Be Prepared Big Number Big Picture Biofools British Biogas British Sea Power Carbon Capture Carbon Recycling China Syndrome Climate Change Climate Chaos Climate Damages Coal Hell Design Matters Direction of Travel Disturbing Trends Efficiency is King Electrificandum Energy Autonomy Energy Calculation Energy Crunch Energy Denial Energy Insecurity Energy Revival Engineering Marvel Environmental Howzat Extreme Energy Extreme Weather Fair Balance Feel Gooder Fossilised Fuels Freshwater Stress Gamechanger Gas Storage Green Investment Green Power Hydrocarbon Hegemony Hydrogen Economy Insulation Low Carbon Life Major Shift Marine Gas Marvellous Wonderful Methane Management Military Invention National Energy National Power Nuclear Nuisance Nuclear Shambles Optimistic Generation Peak Emissions Policy Warfare Political Nightmare Realistic Models Regulatory Ultimatum Renewable Gas Resource Curse Resource Wards Shale Game Solar Sunrise Solution City The Power of Intention The Right Chemistry Transport of Delight Unconventional Foul Ungreen Development Unnatural Gas Utter Futility Vain Hope Wind of Fortune

But Uh-Oh – Those Summer Nights

A normal, everyday Monday morning at Energy Geek Central. Yes, this is a normal conversation for me to take part in on a Monday morning. Energy geekery at breakfast. Perfect.

Nuclear Flower Power

This whole UK Government nuclear power programme plan is ridiculous ! 75 gigawatts (GW) of Generation III nuclear fission reactors ? What are they thinking ? Britain would need to rapidly ramp up its construction capabilities, and that’s not going to happen, even with the help of the Chinese. (And the Americans are not going to take too kindly to the idea of China getting strongly involved with British energy). And then, we’d need to secure almost a quarter of the world’s remaining reserves of uranium, which hasn’t actually been dug up yet. And to cap it all, we’d need to have 10 more geological disposal repositories for the resulting radioactive spent fuel, and we haven’t even managed to negotiate one yet. That is, unless we can burn a good part of that spent fuel in Generation IV nuclear fission reactors – which haven’t even been properly demonstrated yet ! Talk about unconscionable risk !

Baseload Should Be History By Now, But…

Whatever the technological capability for nuclear power plants to “load follow” and reduce their output in response to a chance in electricity demand, Generation III reactors would not be run as anything except “baseload” – constantly on, and constantly producing a constant amount of power – although they might turn them off in summer for maintenance. You see, the cost of a Generation III reactor and generation kit is in the initial build – so their investors are not going to permit them to run them at low load factors – even if they could.

There are risks to running a nuclear power plant at partial load – mostly to do with potential damage to the actual electricity generation equipment. But what are the technology risks that Hinkley Point C gets built, and all that capital is committed, and then it only runs for a couple of years until all that high burn up fuel crumbles and the reactors start leaking plutonium and they have to shut it down permanently ? Who can guarantee it’s a sound bet ?

If they actually work, running Generation III reactors at constant output as “baseload” will also completely mess with the power market. In all of the scenarios, high nuclear, high non-nuclear, or high fossil fuels with Carbon Capture and Storage (CCS), there will always need to be some renewables in the mix. In all probability this will be rapidly deployed, highly technologically advanced solar power photovoltaics (PV). The amount of solar power that will be generated will be high in summer, but since you have a significant change in energy demand between summer and winter, you’re going to have a massive excess of electricity generation in summer if you add nuclear baseload to solar. Relative to the demand for energy, you’re going to get more Renewable Energy excess in summer and under-supply in winter (even though you get more offshore wind in winter), so it’s critical how you mix those two into your scenario.

The UK Government’s maximum 75 GW nuclear scenario comprises 55 GW Generation III and 20 GW Generation IV. They could have said 40 GW Gen III to feed Gen IV – the spent fuel from Gen III is needed to kick off Gen IV. Although, if LFTR took off, if they had enough fluoride materials there could be a Thorium way into Gen IV… but this is all so technical, no MP [ Member of Parliament ] is going to get their head round this before 2050.

The UK Government are saying that 16 GW of nuclear by 2030 should be seen as a first tranche, and that it could double or triple by 2040 – that’s one heck of a deployment rate ! If they think they can get 16 GW by 2030 – then triple that by 10 years later ? It’s not going to happen. And even 30 GW would be horrific. But it’s probably more plausible – if they can get 16 GW by 2030, they can arguably get double that by 2040.

As a rule of thumb, you would need around 10 tonnes of fissionable fuel to kickstart a Gen IV reactor. They’ve got 106 tonnes of Plutonium, plus 3 or 4 tonnes they recently acquired – from France or Germany (I forget which). So they could start 11 GW of Gen IV – possibly the PRISM – the Hitachi thing – sodium-cooled. They’ve been trying them since the Year Dot – these Fast Reactors – the Breeders – Dounreay. People are expressing more confidence in them now – “Pandora’s Promise” hangs around the narrative that the Clinton administration stopped research into Fast Reactors – Oak Ridge couldn’t be commercial. Throwing sodium around a core 80 times hotter than current core heats – you can’t throw water at it easily. You need something that can carry more heat out. It’s a high technological risk. But then get some French notable nuclear person saying Gen IV technologies – “they’re on the way and they can be done”.

Radioactive Waste Disposal Woes

The point being is – if you’re commissioning 30 GW of Gen III in the belief that Gen IV will be developed – then you are setting yourself up to be a hostage to technological fortune. That is a real ethical consideration. Because if you can’t burn the waste fuel from Gen III, you’re left with up to 10 radioactive waste repositories required when you can’t even get one at the moment. The default position is that radioactive spent nuclear fuel will be left at the power stations where they’re created. Typically, nuclear power plants are built on the coast as they need a lot of cooling water. If you are going for 30 GW you will need a load of new sites – possibly somewhere round the South East of England. This is where climate change comes in – rising sea levels, increased storm surge, dissolving, sinking, washed-away beaches, more extreme storms […] The default spent fuel scenario with numerous coastal decommissioned sites with radioactive interim stores which contain nearly half the current legacy radioactive waste […]

Based on the figures from the new Greenpeace report, I calculate that the added radioactive waste and radioactive spent fuel arisings from a programme of 16 GW of nuclear new build would be 244 million Terabequerel (TBq), compared to the legacy level of 87 million TBq.

The Nuclear Decommissioning Authority (NDA) are due to publish their Radioactive Waste Inventory and their Report on Radioactive Materials not in the Waste Inventory at the end of January 2014. We need to keep a watch out for that, because they may have adapted their anticipated Minimum and Maxmium Derived Inventory.

Politics Is Living In The Past

What you hear from politicians is they’re still talking about “baseload”, as if they’ve just found the Holy Grail of Energy Policy. And failed nuclear power. Then tidal. And barrages. This is all in the past. Stuff they’ve either read – in an article in a magazine at the dentist’s surgery waiting room, and they think, alright I’ll use that in a TV programme I’ve been invited to speak on, like Question Time. I think that perhaps, to change the direction of the argument, we might need to rubbish their contribution. A technological society needs to be talking about gasification, catalysis. If you regard yourselves as educated, and have a technological society – your way of living in the future is not only in manufacturing but also ideas – you need to be talking about this not that : low carbon gas fuels, not nuclear power. Ministers and senior civil servants probably suffer from poor briefing – or no briefing. They are relying on what is literally hearsay – informal discussions, or journalists effectively representing industrial interests. Newspapers are full of rubbish and it circulates, like gyres in the oceans. Just circulates around and around – full of rubbish.

I think part of the problem is that the politicians and chief civil servants and ministers are briefed by the “Old Guard” – very often the ex-nuclear power industry guard. They still believe in big construction projects, with long lead times and massive capital investment, whereas Renewable Electricity is racing ahead, piecemeal, and private investors are desperate to get their money into wind power and solar power because the returns are almost immediate and risk-free.

Together in Electric Dreams

Question : Why are the UK Government ploughing on with plans for so much nuclear power ?

1. They believe that a lot of transport and heat can be made to go electric.
2. They think they can use spent nuclear fuel in new reactors.
3. They think it will be cheaper than everything else.
4. They say it’s vital for UK Energy Security – for emissions reductions, for cost, and for baseload. The big three – always the stated aim of energy policy, and they think nuclear ticks all those three boxes. But it doesn’t.

What they’ll say is, yes, you have to import uranium, but you’ve got a 4 year stock. Any war you’re going to get yourselves involved in you can probably resolve in 4 days, or 4 weeks. If you go for a very high nuclear scenario, you would be taking quite a big share of the global resource of uranium. There’s 2,600 TWh of nuclear being produced globally. And global final energy demand is around 100,000 TWh – so nuclear power currently produces around 2.6% of global energy supply. At current rates of nuclear generation, according to the World Nuclear Association, you’ve got around 80 years of proven reserves and probably a bit more. Let’s say you double nuclear output by 2050 or 2040 – but in the same time you might just have enough uranium – and then find a bit more. But global energy demand rises significantly as well – so nuclear will still only provide around 3% of global energy demand. That’s not a climate solution – it’s just an energy distraction. All this guff about fusion. Well.

Cornering The Market In Undug Uranium

A 75 GW programme would produce at baseload 590 TWh a year – divide by 2,600 – is about 23% of proven global uranium reserves. You’re having to import, regardless of what other countries are doing, you’re trying to corner the market – roughly a quarter. Not even a quarter of the market – a quarter of all known reserves – it’s not all been produced yet. It’s still in the ground. So could you be sure that you could actually run these power stations if you build them ? Without global domination of the New British Empire […]. The security issues alone – defending coastal targets from a tweeb with a desire to blow them up. 50 years down the line they’re full of radioactive spent fuel that won’t have a repository to go to – we don’t want one here – and how much is it going to cost ?

My view is that offshore wind will be a major contributor in a high or 100% Renewable Electricity scenario by 2050 or 2060. Maybe 180 GW, that will also be around 600 TWh a year – comparable to that maximum nuclear programme. DECC’s final energy demand 2050 – several scenarios – final energy demand from 6 scenarios came out as between roughly 1,500 TWh a year and the maximum 2,500 TWh. Broadly speaking, if you’re trying to do that just with Renewable Electricity, you begin to struggle quite honestly, unless you’re doing over 600 TWh of offshore wind, and even then you need a fair amount of heat pump stuff which I’m not sure will come through. The good news is that solar might – because of the cost and technology breakthroughs. That brings with it a problem – because you’re delivering a lot of that energy in summer. The other point – David MacKay would say – in his book his estimate was 150 TWh from solar by 2050, on the grounds that that’s where you south-facing roofs are – you need to use higher efficiency triple junction cells with more than 40% efficiency and this would be too expensive for a rollout which would double or triple that 150 TWh – that would be too costly – because those cells are too costly. But with this new stuff, you might get that. Not only the cost goes down, but the coverage goes down. Not doing solar across swathes of countryside. There have always been two issues with solar power – cost and where it’s being deployed.

Uh-Oh, Summer Days. Uh-Oh, Summer Nights

With the solar-wind headline, summer days and summer nights are an issue.

With the nuclear headline, 2040 – they would have up to 50 GW, and that would need to run at somewhere between 75% and 95% capacity – to protect the investment and electric generation turbines.

It will be interesting to provide some figures – this is how much over-capacity you’re likely to get with this amount of offshore wind. But if you have this amount of nuclear power, you’ll get this amount […]

Energy demand is strongly variable with season. We have to consider not just power, but heat – you need to get that energy out in winter – up to 4 times as much during peak in winter evenings. How are you going to do that ? You need gas – or you need extensive Combined Heat and Power (CHP) (which needs gas). Or you need an unimaginable deployment of domestic heat pumps. Air source heat pumps won’t work at the time you need them most. Ground source heat pumps would require the digging up of Britain – and you can’t do that in most urban settings.

District Heat Fields

The other way to get heat out to everyone in a low carbon world – apart from low carbon gas – is having a field-based ground source heat pump scheme – just dig up a field next to a city – and just put in pipes and boreholes in a field. You’re not disturbing anybody. You could even grow crops on it next season. Low cost and large scale – but would need a District Heating (DH) network. There are one or two heat pump schemes around the world. Not sure if they are used for cooling in summer or heat extraction in the winter. The other thing is hot water underground. Put in an extra pipe in the normal channels to domestic dwellings. Any excess heat from power generation or electrolysis or whatever is put down this loop and heats the sub-ground. Because heat travels about 1 metre a month in soil, that heat should be retained for winter. A ground source heat sink. Geothermal energy could come through – they’re doing a scheme in Manchester. If there’s a nearby heat district network – it makes it easier. Just want to tee it into the nearest DH system. The urban heat demand is 150 TWh a year. You might be able to put DH out to suburban areas as well. There are 9 million gas-connected suburban homes – another about 150 TWh there as well – or a bit more maybe. Might get to dispose of 300 TWh in heat through DH. The Green Deal insulation gains might not be what is claimed – and condensing gas boiler efficiencies are not that great – which feeds into the argument that in terms of energy efficiency, you not only want to do insulation, but also DH – or low carbon gas. Which is the most cost-effective ? Could argue reasonable energy efficiency measures are cheapest – but DH might be a better bet. That involves a lot of digging.

Gas Is The Logical Answer

But everything’s already laid for gas. (…but from the greatest efficiency first perspective, if you’re not doing DH, you’re not using a lot of Renewable Heat you could otherwise use […] )

The best package would be the use of low carbon gases and sufficient DH to use Renewable Heat where it is available – such as desalination, electrolysis or other energy plant. It depends where the electrolysis is being done.

The Age of Your Carbon

It also depends on which carbon atoms you’re using. If you are recycling carbon from the combustion of fossil fuels into Renewable Gas, that’s OK. But you can’t easily recapture carbon emissions from the built environment (although you could effectively do that with heat storage). You can’t do carbon capture from transport either. So your low carbon gas has to come from biogenic molecules. Your Renewable Gas has to be synthesised using biogenic carbon molecules rather than fossil ones.

[…] I’m using the phrase “Young Carbon”. Young Carbon doesn’t have to be from plants – biological things that grow.

Well, there’s Direct Air Capture (DAC). It’s simple. David Sevier, London-based, is working on this. He’s using heat to capture carbon dioxide. You could do it from exhaust in a chimney or a gasification process – or force a load of air through a space. He would use heat and cooling to create an updraft. It would enable the “beyond capture” problem to be circumvented. Cost is non-competitive. Can be done technically. Using reject heat from power stations for the energy to do it. People don’t realise you can use a lot of heat to capture carbon, not electricity.

Young Carbon from Seawater

If you’re playing around with large amounts of seawater anyway – that is, for desalination for irrigation, why not also do Renewable Hydrogen, and pluck the Carbon Dioxide out of there too to react with the Renewable Hydrogen to make Renewable Methane ? I’m talking about very large amounts of seawater. Not “Seawater Greenhouses” – condensation designs mainly for growing exotic food. If you want large amounts of desalinated water – and you’re using Concentrated Solar Power – for irrigating deserts – you would want to grow things like cacti for biological carbon.

Say you had 40 GW of wind power on Dogger Bank, spinning at 40% load factor a year. You’ve also got electrolysers there. Any time you’re not powering the grid, you’re making gas – so capturing carbon dioxide from seawater, splitting water for hydrogen, making methane gas. Wouldn’t you want to use flash desalination first to get cleaner water for electrolysis ? Straight seawater electrolysis is also being done.

It depends on the relative quantities of gas concentrated in the seawater. If you’ve got oxygen, hydrogen and carbon dioxide, that would be nice. You might get loads of oxygen and hydrogen, and only poor quantities of carbon dioxide ?

But if you could get hydrogen production going from spare wind power. And even if you had to pipe the carbon dioxide from conventional thermal power plants, you’re starting to look at a sea-based solution for gas production. Using seawater, though, chlorine is the problem […]

Look at the relative density of molecules – that sort of calculation that will show if this is going to fly. Carbon dioxide is a very fixed, stable molecule – it’s at about the bottom of the energy potential well – you have to get that reaction energy from somewhere.

How Much Spare Power Will There Be ?

If you’ve got an offshore wind and solar system. At night, obviously, the solar’s not working (unless new cells are built that can run on infrared night-time Earthshine). But you could still have 100 GWh of wind power at night not used for the power grid. The anticipated new nuclear 40 GW nuclear by 2030 will produce about 140 GWh – this would just complicate problems – adding baseload nuclear to a renewables-inclusive scenario. 40 GW is arguably a reasonable deployment of wind power by 2030 – low if anything.

You get less wind in a nuclear-inclusive scenario, but the upshot is you’ve definitely got a lot of power to deal with on a summer night with nuclear power. You do have with Renewable Electricity as well, but it varies more. Whichever route we take we’re likely to end up with excess electricity generation on summer nights.

In a 70 GW wind power deployment (50 GW offshore, 20 GW onshore – 160 TWh a year), you might have something like 50 to 100 GWh per night of excess (might get up to 150 GWh to store on a windy night). But if you have a 16 GW nuclear deployment by 2030 (125 TWh a year), you are definitely going to have 140 GWh of excess per night (that’s 16 GW for 10 hours less a bit). Night time by the way is roughly between 9pm and 7am between peak demands.

We could be making a lot of Renewable Gas !

Can you build enough Renewable Gas or whatever to soak up this excess nuclear or wind power ?

The energy mix is likely to be in reality somewhere in between these two extremes of high nuclear or high wind.

But if you develop a lot of solar – so that it knocks out nuclear power – it will be the summer day excess that’s most significant. And that’s what Germany is experiencing now.

Choices, choices, choices

There is a big choice in fossil fuels which isn’t really talked about very often – whether the oil and gas industry should go for unconventional fossil fuels, or attempt to make use of the remaining conventional resources that have a lower quality. The unconventionals narrative – shale gas, coalbed methane, methane hydrates, deepwater gas, Arctic oil and gas, heavy oil, is running out of steam as it becomes clear that some of these choices are expensive, and environmentally damaging (besides their climate change impact). So the option will be making use of gas with high acid gas composition. And the technological solutions for this will be the same as needed to start major production of Renewable Gas.

Capacity Payments

But you still need to answer the balancing question. If you have a high nuclear power scenario, you need maybe 50 TWh a year of gas-fired power generation. If high Renewable Electricity, you will need something like 100 TWh of gas, so you need Carbon Capture and Storage – or low carbon gas.

Even then, the gas power plants could be running only 30% of the year, and so you will need capacity payments to make sure new flexible plants get built and stay available for use.

If you have a high nuclear scenario, coupled with gas, you can meet the carbon budget – but it will squeeze out Renewable Electricity. If high in renewables, you need Carbon Capture and Storage (CCS) or Carbon Capture and Recycling into Renewable Gas, but this would rule out nuclear power. It depends which sector joins up with which.

Carbon Capture, Carbon Budget

Can the Drax power plant – with maybe one pipeline 24 inches in diameter, carrying away 20 megatonnes of carbon dioxide per year – can it meet the UK’s Carbon Budget target ?

Categories
Assets not Liabilities Big Number Big Picture Big Society Biofools Biomess British Sea Power Burning Money Carbon Army Carbon Capture Carbon Pricing Change Management Climate Change Climate Chaos Climate Damages Coal Hell Conflict of Interest Corporate Pressure Cost Effective Dead End Dead Zone Demoticratica Design Matters Direction of Travel Disturbing Trends Dreamworld Economics Efficiency is King Electrificandum Emissions Impossible Energy Autonomy Energy Change Energy Denial Energy Insecurity Energy Revival Energy Socialism Engineering Marvel Environmental Howzat Food Insecurity Forestkillers Fossilised Fuels Genetic Modification Geogingerneering Green Investment Green Power Growth Paradigm Health Impacts Hide the Incline Human Nurture Incalculable Disaster Insulation Major Shift Mass Propaganda Media Money Sings National Energy National Power Neverending Disaster No Pressure Nuclear Nuisance Nuclear Shambles Optimistic Generation Peak Coal Policy Warfare Political Nightmare Price Control Protest & Survive Public Relations Realistic Models Regulatory Ultimatum Renewable Resource Resource Curse Resource Wards Solution City Technofix Technological Fallacy Technological Sideshow Technomess The Price of Gas The Price of Oil The War on Error Tree Family Ungreen Development Western Hedge Wind of Fortune

Mind the Gap : BBC Costing the Earth

I listened to an interesting mix of myth, mystery and magic on BBC Radio 4.

Myths included the notion that long-term, nuclear power would be cheap; that “alternative” energy technologies are expensive (well, nuclear power is, but true renewables are most certainly not); and the idea that burning biomass to create heat to create steam to turn turbines to generate electricity is an acceptably efficient use of biomass (it is not).

Biofuelwatch are hosting a public meeting on this very subject :-
https://www.biofuelwatch.org.uk/2013/burning_issue_public_event/
“A Burning Issue – biomass and its impacts on forests and communities”
Tuesday, 29th October 2013, 7-9pm
Lumen Centre, London (close to St Pancras train station)
https://www.lumenurc.org.uk/lumencontact.htm
Lumen Centre, 88 Tavistock Place, London WC1H 9RS

Interesting hints in the interviews I thought pointed to the idea that maybe, just maybe, some electricity generation capacity should be wholly owned by the Government – since the country is paying for it one way or another. A socialist model for gas-fired generation capacity that’s used as backup to wind and solar power ? Now there’s an interesting idea…




https://www.bbc.co.uk/programmes/b03cn0rb

“Mind the Gap”
Channel: BBC Radio 4
Series: Costing the Earth
Presenter: Tom Heap
First broadcast: Tuesday 15th October 2013

Programme Notes :

“Our energy needs are growing as our energy supply dwindles.
Renewables have not come online quickly enough and we are increasingly
reliant on expensive imported gas or cheap but dirty coal. Last year
the UK burnt 50% more coal than in previous years but this helped
reverse years of steadily declining carbon dioxide emissions. By 2015
6 coal fired power stations will close and the cost of burning coal
will increase hugely due to the introduction of the carbon price
floor. Shale gas and biomass have been suggested as quick and easy
solutions but are they really sustainable, or cheap?”

“Carbon Capture and Storage could make coal or gas cleaner and a new
study suggests that with CCS bio energy could even decrease global
warming. Yet CCS has stalled in the UK and the rest of Europe and the
debate about the green credentials of biomass is intensifying. So what
is really the best answer to Britain’s energy needs? Tom Heap
investigates.”

00:44 – 00:48
[ Channel anchor ]
Britain’s energy needs are top of the agenda in “Costing the Earth”…

01:17
[ Channel anchor ]
…this week on “Costing the Earth”, Tom Heap is asking if our
ambitions to go green are being lost to the more immediate fear of
blackouts and brownouts.

01:27
[ Music : Arcade Fire – “Neighbourhood 3 (Power Out)” ]

[ Tom Heap ]

Energy is suddenly big news – central to politics and the economy. The
countdown has started towards the imminent shutdown of many coal-fired
power stations, but the timetable to build their replacements has
barely begun.

It’ll cost a lot, we’ll have to pay, and the politicians are reluctant
to lay out the bill. But both the official regulator and industry are
warning that a crunch is coming.

So in this week’s “Costing the Earth”, we ask if the goal of clean,
green and affordable energy is being lost to a much darker reality.

02:14
[ Historical recordings ]

“The lights have started going out in the West Country : Bristol,
Exeter and Plymouth have all had their first power cuts this
afternoon.”

“One of the biggest effects of the cuts was on traffic, because with
the traffic lights out of commission, major jams have built up,
particularly in the town centres. One of the oddest sights I saw is a
couple of ladies coming out of a hairdressers with towels around their
heads because the dryers weren’t working.”

“Television closes down at 10.30 [ pm ], and although the cinemas are
carrying on more or less normally, some London theatres have had to
close.”

“The various [ gas ] boards on both sides of the Pennines admit to
being taken by surprise with today’s cold spell which brought about
the cuts.”

“And now the major scandal sweeping the front pages of the papers this
morning, the advertisement by the South Eastern Gas Board recommending
that to save fuel, couples should share their bath.”

[ Caller ]
“I shall write to my local gas board and say don’t do it in
Birmingham. It might be alright for the trendy South, but we don’t
want it in Birmingham.”

03:13
[ Tom Heap ]

That was 1974.

Some things have changed today – maybe a more liberal attitude to
sharing the tub. But some things remain the same – an absence of
coal-fired electricity – threatening a blackout.

Back then it was strikes by miners. Now it’s old age of the power
plants, combined with an EU Directive obliging them to cut their
sulphur dioxide and nitrous oxide emissions by 2016, or close.

Some coal burners are avoiding the switch off by substituting wood;
and mothballed gas stations are also on standby.

But Dieter Helm, Professor of Energy Policy at the University of
Oxford, now believes power cuts are likely.

03:57
[ Dieter Helm ]

Well, if we take the numbers produced by the key responsible bodies,
they predict that there’s a chance that by the winter of 2-15 [sic,
meaning 2015] 2-16 [sic, meaning 2016], the gap between the demand for
electricity and the supply could be as low as 2%.

And it turns out that those forecasts are based on extremely
optimistic assumptions about how far demand will fall in that period
(that the “Green Deal” will work, and so on) and that we won’t have
much economic growth.

So basically we are on course for a very serious energy crunch by the
winter of 2-15 [sic, meaning 2015] 2-16 [sic, meaning 2016], almost
regardless of what happens now, because nobody can build any power
stations between now and then.

It’s sort of one of those slow motion car crashes – you see the whole
symptoms of it, and people have been messing around reforming markets
and so on, without addressing what’s immediately in front of them.

[ Tom Heap ]

And that’s where you think we are now ?

[ Dieter Helm ]

I think there’s every risk of doing so.

Fortunately, the [ General ] Election is a year and a half away, and
there’s many opportunities for all the political parties to get real
about two things : get real about the energy crunch in 2-15 [sic,
meaning 2015] 2-16 [sic, meaning 2016] and how they’re going to handle
it; and get real about creating the incentives to decarbonise our
electricity system, and deal with the serious environmental and
security and competitive issues which our electricity system faces.

And this is a massive investment requirement [ in ] electricity : all
those old stations retiring [ originally built ] back from the 1970s –
they’re all going to be gone.

Most of the nuclear power stations are coming to the end of their lives.

We need a really big investment programme. And if you really want an
investment programme, you have to sit down and work out how you’re
going to incentivise people to do that building.

[ Tom Heap ]

If we want a new energy infrastructure based on renewables and
carbon-free alternatives, then now is the time to put those incentives
on the table.

The problem is that no-one seems to want to make the necessary
investment, least of all the “Big Six” energy companies, who are
already under pressure about high bills.

[ “Big Six” are : British Gas / Centrica, EdF Energy (Electricite
de France), E.On UK, RWE npower, Scottish Power and SSE ]

Sam Peacock of the energy company SSE [ Scottish and Southern Energy ]
gives the commercial proof of Dieter’s prediction.

If energy generators can’t make money out of generating energy,
they’ll be reluctant to do it.

[ Sam Peacock ]

Ofgem, the energy regulator, has looked at this in a lot of detail,
and said that around 2015, 2016, things start to get tighter. The
reason for this is European Directives, [ is [ a ] ] closing down some
of the old coal plants. And also the current poor economics around [
or surround [ -ing ] ] both existing plant and potential new plant.

So, at the moment it’s very, very difficult to make money out of a gas
plant, or invest in a new one. So this leads to there being, you know,
something of a crunch point around 2015, 2016, and Ofgem’s analysis
looks pretty sensible to us.

[ Tom Heap ]

And Sam Peacock lays the blame for this crisis firmly at the Government’s door.

[ Sam Peacock ]

The trilemma, as they call it – of decarbonisation, security of supply
and affordability – is being stretched, because the Government’s
moving us more towards cleaner technologies, which…which are more
expensive.

However, if you were to take the costs of, you know, the extra costs
of developing these technologies off government [ sic, meaning
customer ] bills and into general taxation, you could knock about over
£100 off customer bills today, it’ll be bigger in the future, and you
can still get that much-needed investment going.

So, we think you can square the circle, but it’s going to take a
little bit of policy movement [ and ] it’s going to take shifting some
of those costs off customers and actually back where the policymakers
should be controlling them.

[ KLAXON ! Does he mean controlled energy prices ? That sounds a bit
centrally managed economy to me… ]

[ Tom Heap ]

No surprise that a power company would want to shift the pain of
rising energy costs from their bills to the tax bill.

But neither the Government nor the Opposition are actually proposing this.

Who pays the premium for expensve new energy sources is becoming like
a game of pass the toxic parcel.

[ Reference : https://en.wikipedia.org/wiki/Hot_potato_%28game%29 ]

I asked the [ UK Government Department of ] Energy and Climate Change
Secretary, Ed Davey, how much new money is required between now and
2020.

08:06

[ Ed Davey ]

About £110 billion – er, that’s critical to replace a lot of the coal
power stations that are closing, the nuclear power stations that are [
at the ] end of their lives, and replace a lot of the network which
has come to the end of its life, too.

So it’s a huge, massive investment task.

[ Tom Heap ]

So in the end we’re going to have to foot the bill for the £110 billion ?

[ Ed Davey ]

Yeah. Of course. That’s what happens now. People, in their bills that
they pay now, are paying for the network costs of investments made
several years, even several decades ago.

[ Yes – we’re still paying through our national nose to dispose of
radioactive waste and decommission old nuclear reactors. The liability
of it all weighs heavily on the country’s neck… ]

And there’s no escaping that – we’ve got to keep the lights on – we’ve
got to keep the country powered.

You have to look at both sides of the equation. If we’re helping
people make their homes more inefficient [ sic, meaning energy
efficient ], their product appliances more efficient, we’re doing
everything we possibly can to try to help the bills be kept down,

while we’re having to make these big investments to keep the lights
on, and to make sure that we don’t cook the planet, as you say.

[ Tom Heap ]

You mention the lights going out. There are predictions that we’re
headed towards just 2% of spare capacity in the system in a few years’
time.

Are you worried about the dangers of, I don’t know, maybe not lights
going out for some people, but perhaps big energy users being told
when and when [ sic, meaning where ] they can’t use power in the
winter ?

[ Ed Davey ]

Well, there’s no doubt that as the coal power stations come offline,
and the nuclear power plants, er, close, we’re going to have make sure
that new power plants are coming on to replace them.

And if we don’t, there will be a problem with energy security.

Now we’ve been working very hard over a long time now to make sure we
attract that investment. We’ve been working with Ofgem, the regulator;
with National Grid, and we’re…

[ Tom Heap ]

…Being [ or it’s being ] tough. I don’t see companies racing to come
and fill in the gap here and those coal power plants are going off
soon.

[ Ed Davey ]

…we’re actually having record levels of energy investment in the country.

The problem was for 13 years under the last Government
[ same old, same old Coalition argument ] we saw low levels of investment
in energy, and we’re having to race to catch up, but fortunately we’re
winning that race. And we’re seeing, you know, billions of pounds
invested but we’ve still got to do more. We’re not there. I’m not
pretending we’re there yet. [ Are we there, yet ? ] But we do have the
policies in place.

So, Ofgem is currently consulting on a set of proposals which will
enable it to have reserve power to switch on at the peak if it’s
needed.

We’re, we’ve, bringing forward proposals in the Energy Bill for what’s
called a Capacity Market, so we can auction to get that extra capacity
we need.

So we’ve got the policies in place.

[ Tom Heap ]

Some of Ed Davey’s policies, not least the LibDem [ Liberal Democrat
Party ] U-turn on nuclear, have been guided by DECC [ Department of
Energy and Climate Change ] Chief Scientist David MacKay, author of
the influential book “Renewable Energy without the Hot Air” [ sic,
actually “Sustainable Energy without the Hot Air” ].

Does he think the lights will dim in the second half of this decade ?

[ David MacKay ]

I don’t think there’s going to be any problem maintaining the capacity
that we need. We just need to make clear where Electricity Market
Reform [ EMR, part of the Energy Bill ] is going, and the way in which
we will be maintaining capacity.

[ Tom Heap ]

But I don’t quite understand that, because it seems to me, you know,
some of those big coal-fired power stations are going to be going off.
What’s going to be coming in their place ?

[ David MacKay ]

Well, the biggest number of power stations that’s been built in the
last few years are gas power stations, and we just need a few more gas
power stations like that, to replace the coal
, and hopefully some
nuclear power stations will be coming on the bars, as well as the wind
farms that are being built at the moment.

[ Tom Heap ]

And you’re happy with that increase in gas-fired power stations, are
you ? I mean, you do care deeply, personally, about reducing our
greenhouse gases, and yet you’re saying we’re going to have to build
more gas-fired power stations.

[ David MacKay ]

I do. Even in many of the pathways that reach the 2050 target, there’s
still a role for gas in the long-term, because some power sources like
wind and solar power are intermittent, so if you want to be keeping
the lights on in 2050 when there’s no wind and there’s no sun, you’re
going to need some gas power stations there
. Maybe not operating so
much of the time as they do today, but there’ll still be a role in
keeping the lights on.

[ KLAXON ! If gas plants are used only for peak periods or for backup to
renewables, then the carbon emissions will be much less than if they are
running all the time. ]

[ Tom Heap ]

Many energy experts though doubt that enough new wind power or nuclear
capacity could be built fast enough to affect the sums in a big way by
2020.

But that isn’t the only critical date looming over our energy system.
Even more challenging, though more distant, is the legally binding
objective of cutting greenhouse gas emissions in 2050.

David MacKay wants that certainty to provide the foundation for energy
decisions, and he showed me the effect of different choices with the
“Ultimate Future Energy App”. I was in his office, but anyone can try it online.

[ David MacKay ]

It’s a 2050 calculator. It computes energy demand and supply in
response to your choices, and it computes multiple consequences of
your choices. It computes carbon consequences. It also computes for
you estimates of air quality, consequences of different choices;
security of supply, consequences; and the costs of your choices.

So with this 2050 calculator, it’s an open source tool, and anyone can
go on the web and use the levers to imagine different futures in 2050
of how much action we’ve taken in different demand sectors and in
different supply sectors.

The calculator has many visualisations of the pathway that you’re choosing
and helps people understand all the trade-offs… There’s no silver
bullet for any of this. If I dial up a pathway someone made earlier,
we can visualise the implications in terms of the area occupied for
the onshore wind farms, and the area in the sea for the offshore wind
farms, and the length of the wave farms that you’ve built, and the
land area required for energy crops.

And many organisations have used this tool and some of them have given
us their preferred pathway. So you can see here the Friends of the
Earth have got their chosen pathway, the Campaign to Protect Rural
England, and various engineers like National Grid and Atkins have got
their pathways.

So you can see alternative ways of achieving our targets, of keeping
the lights on and taking climate change action. All of those pathways
all meet the 2050 target, but they do so with different mixes.

[ Tom Heap ]

And your view of this is you sort of can’t escape from the scientific
logic and rigour of it. You might wish things were different or you
could do it differently, but you’re sort of saying “Look, it’s either
one thing or the other”. That’s the point of this.

[ David MacKay ]

That’s true. You can’t be anti-everything. You can’t be anti-wind and
anti-nuclear and anti-home insulation. You won’t end up with a plan
that adds up.

[ KLAXON ! But you can be rationally against one or two things, like
expensive new nuclear power, and carbon and particulate emissions-heavy
biomass for the generation of electricity. ]

[ Tom Heap ]

But isn’t that exactly kind of the problem that we’ve had, without
pointing political fingers, that people rather have been
anti-everything, and that’s why we’re sort of not producing enough new
energy sources ?

[ David MacKay ]

Yeah. The majority of the British public I think are in favour of many
of these sources, but there are strong minorities who are vocally
opposed to every one of the major levers in this calculator. So one
aspiration I have for this tool is it may help those people come to a
position where they have a view that’s actually consistent with the
goal of keeping the lights on.

[ Tom Heap ]

Professor MacKay’s calculator also computes pounds and pence,
suggesting that both high and low carbon electricity work out pricey
in the end.

[ David MacKay ]

The total costs of all the pathways are pretty much the same.
“Business as Usual” is cheaper in the early years, and then pays more,
because on the “Business as Usual”, you carry on using fossil fuels,
and the prices of those fossil fuels are probably going to go up.

All of the pathways that take climate change action have a similar
total cost, but they pay more in the early years, ’cause you have to
pay for things like building insulation and power stations, like
nuclear power stations, or wind power, which cost up-front, but then
they’re very cheap to run in the future.

[ KLAXON ! Will the cost of decommissioning nuclear reactors and the
costs of the waste disposal be cheap ? I think not… ]

So the totals over the 40 or 50 year period here, are much the same for these.

[ Tom Heap ]

The cheapest immediate option of all is to keep shovelling the coal.
And last year coal overtook gas to be our biggest electricity
generation source, pushing up overall carbon emissions along the way
by 4.5%

[ KLAXON ! This is not very good for energy security – look where the
coal comes from… ]

As we heard earlier, most coal-fired power stations are scheduled for
termination, but some have won a reprieve, and trees are their
unlikely saviour.

Burning plenty of wood chip [ actually, Tom, it’s not wood “chip”, it’s
wood “pellets” – which often have other things mixed in with the wood,
like coal… ] allows coal furnaces to cut the sulphur dioxide and nitrous
oxide belching from their chimneys to below the level that requires their
closure under European law.

But some enthusiasts see wood being good for even more.

16:19

[ Outside ]

It’s one of those Autumn days that promises to be warm, but currently
is rather moist. I’m in a field surrounded by those dew-laden cobwebs
you get at this time of year.

But in the middle of this field is a plantation of willow. And I’m at
Rothamsted Research with Angela Karp who’s one of the directors here.

Angela, tell me about this willow I’m standing in front of here. I
mean, it’s about ten foot high or so, but what are you seeing ?

[ Angela Karp ]

Well, I’m seeing one of our better varieties that’s on display here.
We have a demonstration trial of about ten different varieties. This
is a good one, because it produces a lot of biomass, quite easily,
without a lot of additional fertilisers or anything. And as you can
see it’s got lovely straight stems. It’s got many stems, and at the
end of three years, we would harvest all those stems to get the
biomass from it. It’s nice and straight – it’s a lovely-looking, it’s
got no disease, no insects on it, very nice, clean willow.

[ Tom Heap ]

So, what you’ve been working on here as I understand it is trying to
create is the perfect willow – the most fuel for the least input – and
the easiest to harvest.

[ Angela Karp ]

That’s absolutely correct, because the whole reason for growing these
crops is to get the carbon from the atmosphere into the wood, and to
use that wood as a replacement for fossil fuels. Without putting a lot
of inputs in, because as soon as you add fertilisers you’re using
energy and carbon to make them, and that kind of defeats the whole
purpose of doing this.

[ KLAXON ! You don’t need to use fossil fuel energy or petrochemicals or
anything with carbon emissions to make fertiliser ! … Hang on, these
are GM trees, right ? So they will need inputs… ]

[ Tom Heap ]

And how much better do you think your new super-variety is, than say,
what was around, you know, 10 or 15 years ago. ‘Cause willow as an
idea for burning has been around for a bit. How much of an improvement
is this one here ?

[ Angela Karp ]

Quite a bit. So, these are actually are some of the, if you like,
middle-term varieties. So we started off yielding about 8 oven-dry
tonnes per hectare, and now we’ve almost doubled that.

[ Tom Heap ]

How big a place do you think biomass can have in the UK’s energy
picture in the future ?

[ Angela Karp ]

I think that it could contribute between 10% and 15% of our energy. If
we were to cultivate willows on 1 million hectares, we would probably
provide about 3% to 4% of energy in terms of electricity, and I think
that’s kind of a baseline figure. We could cultivate them on up to 3
million hectares, so you can multiply things up, and we could use them
in a much more energy-efficient way.

[ KLAXON ! Is that 4% of total energy or 4% of total electricity ?
Confused. ]

[ Tom Heap ]

Do we really have 3 million hectares going a-begging for planting willow in ?

[ Angela Karp ]

Actually, surprisingly we do. So, people have this kind of myth
there’s not enough land, but just look around you and you will find
there’s lots of land that’s not used for cultivating food crops.

We don’t see them taking over the whole country. We see them being
grown synergistically with food crops.

[ KLAXON ! This is a bit different than the statement made in 2009. ]

[ Tom Heap ]

But I’d just like to dig down a little bit more into the carbon cycle
of the combustion of these things, because that’s been the recent
criticism of burning a lot of biomass, is that you put an early spike
in the amount of carbon in the atmosphere, if you start burning a lot
of biomass, because this [ sounds of rustling ], this plant is going
to be turned into, well, partly, CO2 in the atmosphere.

[ Angela Karp ]

Yes, I think that’s probably a simple and not totally correct way of
looking at it. ‘Cause a lot depends on the actual conversion process
you are using.

So some conversion processes are much more efficient at taking
everything and converting it into what you want.

Heat for example is in excess of 80%, 90% conversion efficiency.

Electricity is a little bit more of the problem. And there, what
they’re looking at is capturing some of the carbon that you lose, and
converting that back in, in carbon storage processes, and that’s why
there’s a lot of talk now about carbon storage from these power
stations.

That I think is the future. It’s a question of connecting up all parts
of the process, and making sure that’s nothing wasted.

20:02

[ Tom Heap ]

So, is wood a desirable greener fuel ?

Not according to Almuth Ernsting of Biofuelwatch, who objects to the
current plans for large-scale wood burning, its use to prop up coal,
and even its low carbon claims.

[ Almuth Ernsting ]

The currently-announced industry plans, and by that I mean existing
power stations, but far more so, power stations which are in the
planning process [ and ] many of which have already been consented –
those [ biomass ] power stations, would, if they all go ahead,
require to burn around 82 million tonnes of biomass, primarily wood,
every year. Now by comparison, the UK in total only produces around
10 million tonnes, so one eighth of that amount, in wood, for all
industries and purposes, every year.

We are looking on the one hand at a significant number of proposed,
and in some cases, under-construction or operating new-build biomass
power stations, but the largest single investment so far going into
the conversion of coal power station units to biomass, the largest and
most advanced one of which at the moment is Drax, who are, have
started to move towards converting half their capacity to burning wood
pellets.

[ Tom Heap ]

Drax is that huge former, or still currently, coal-fired power station
in Yorkshire, isn’t it ?

[ Almuth Ernsting ]

Right, and they still want to keep burning coal as well. I mean, their
long-term vision, as they’ve announced, would be for 50:50 coal and
biomass.

[ Tom Heap ]

What do you think about that potential growth ?

[ Almuth Ernsting ]

Well, we’re seriously concerned. We believe it’s seriously bad news
for climate change, it’s seriously bad news for forests, and it’s
really bad news for communities, especially in the Global South, who
are at risk of losing their land for further expansion of monoculture
tree plantations, to in future supply new power stations in the UK.

A really large amount, increasingly so, of the wood being burned,
comes from slow-growing, whole trees that are cut down for that
purpose, especially at the moment in temperate forests in North
America. Now those trees will take many, many decades to grow back
and potentially re-absorb that carbon dioxide, that’s if they’re
allowed and able to ever grow back.

[ Tom Heap ]

There’s another technology desperate for investment, which is critical
to avoiding power failure, whilst still hitting our mid-century carbon
reduction goals – CCS – Carbon Capture and Storage, the ability to
take the greenhouse gases from the chimney and bury them underground.

It’s especially useful for biomass and coal, with their relatively
high carbon emissions, but would also help gas be greener.

The Chancellor has approved 30 new gas-fired power stations, so long
as they are CCS-ready [ sic, should be “capture ready”, or
“carbon capture ready” ].

Jon Gibbons is the boss of the UK CCS Research Centre, based in an
industrial estate in Sheffield.

[ Noise of processing plant ]

Jon’s just brought me up a sort of 3D maze of galvanized steel and
shiny metal pipes to the top of a tower that must be 20 or so metres
high.

Jon, what is this ?

[ Jon Gibbons ]

OK, so this is our capture unit, to take the CO2 out of the combustion
products from gas or coal. In the building behind us, in the test rigs
we’ve got, the gas turbine or the combustor rig, we’re burning coal or
gas, or oil, but mainly coal or gas.

We’re taking the combustion products through the green pipe over
there, bringing it into the bottom of the unit, and then you can see
these big tall columns we’ve got, about 18 inches diameter, half a
metre diameter, coming all the way up from the ground up to the level
we’re at.

It goes into one of those, it gets washed clean with water, and it
goes into this unit over here, and there it meets an amine solvent, a
chemical that will react reversibly with CO2, coming in the opposite
direction, over packing. So, it’s like sort of pebbles, if you can
imagine it, there’s a lot of surface area. The gas flows up, the
liquid flows down, and it picks up the CO2, just mainly the CO2.

[ Tom Heap ]

And that amine, that chemical as you call it, is stripping the CO2 out
of that exhaust gas. This will link to a storage facility.

What would then happen to the CO2 ?

[ Jon Gibbons ]

What would then happen is that the CO2 would be compressed up to
somewhere in excess of about 100 atmospheres. And it would turn from
being a gas into something that looks like a liquid, like water, about
the same density as water. And then it would be taken offshore in the
UK, probably tens or hundreds of kilometres offshore, and it would go
deep, deep down, over a kilometre down into the ground, and basically
get squeezed into stuff that looks like solid rock. If you go and look
at a sandstone building – looks solid, but actually, maybe a third of
it is little holes. And underground, where you’ve got cubic kilometres
of space, those little holes add up to an awful lot of free space. And
the CO2 gets squeezed into those, over time, and it spreads out, and
it just basically sits there forever, dissolves in the water, reacts
with the rocks, and will stay there for millions of years.

[ Tom Heap ]

Back in his office, I asked Jon why CCS seemed to be stuck in the lab.

[ Jon Gibbons ]

We’re doing enough I think on the research side, but what we really
need to do, is to do work on a full-scale deployment. Because you
can’t work on research in a vacuum. You need to get feedback –
learning by doing – from actual real projects.

And a lot of the problems we’ve got on delivering CCS, are to do with
how you handle the regulation for injecting CO2, and again, you can
only do that in real life.

So what we need to do is to see the commercialisation projects that
are being run by the Department of Energy and Climate Change actually
going through to real projects that can be delivered.

[ Tom Heap ]

Hmm. When I talk to engineers, they’re always very passionate and
actually quite optimistic about Carbon Capture and Storage. And when
I talk to people in industry, or indeed read the headlines, not least
a recent cancellation in Norway, it always seems like a very bleak picture.

[ Jon Gibbons ]

I think people are recognising that it’s getting quite hard to get
money for low carbon technologies.

So – recent presentation we had at one of our centre meetings, was
actually a professor from the United States, Howard Herzog. And he
said “You think you’re seeing a crisis in Carbon Capture and Storage.
But what you’re actually seeing is a crisis in climate change
mitigation.”

[ KLAXON ! Priming us for a scaling back of commitment to the
Climate Change Act ? I do hope not. ]

Now, Carbon Capture and Storage, you do for no other purpose than
cutting CO2 emissions to the atmosphere, and it does that extremely
effectively. It’s an essential technology for cutting emissions. But
until you’ve got a global process that says – actually we’re going to
get on top of this problem; we’re going to cut emissions – get them to
safe level before we actually see people dying in large numbers from
climate change effects – ’cause, certainly, if people start dying,
then we will see a response – but ideally, you’d like to do it before
then. But until you get that going, then actually persuading people to
spend money for no other benefit than sorting out the climate is
difficult.

There’s just no point, you know, no country can go it alone, so you
have to get accommodation. And there, we’re going through various
processes to debate that. Maybe people will come to an accommodation.
Maybe the USA and China will agree to tackle climate change. Maybe
they won’t.

What I am fairly confident is that you won’t see huge, you know,
really big cuts in CO2 emissions without that global agreement. But
I’m also confident that you won’t see big cuts in CO2 emissions
without CCS deployment.

And my guess is there’s about a 50:50 chance that we do CCS before we
need to, and about a 50:50 chance we do it after we have to. But I’m
pretty damn certain we’re going to do it.

[ Tom Heap ]

But we can’t wait for a global agreement that’s already been decades
in the making, with still no end in sight.

We need decisions now to provide more power with less pollution.

[ Music lyrics : “What’s the plan ? What’s the plan ?” ]

[ Tom Heap ]

Dieter Helm, Professor of Energy Policy at the University of Oxford
believes we can only deliver our plentiful green energy future if we
abandon our attitude of buy-now pay-later.

[ KLAXON ! Does he mean a kind of hire purchase energy economy ?
I mean, we’re still paying for nuclear electricity from decades ago,
in our bills, and through our taxes to the Department of Energy and
Climate Change. ]

[ Dieter Helm ]

There’s a short-term requirement and a long-term requirement. The
short-term requirement is that we’re now in a real pickle. We face
this energy crunch. We’ve got to try to make the best of what we’ve
got. And I think it’s really like, you know, trying to get the
Spitfires back up again during the Battle of Britain. You know, you
patch and mend. You need somebody in command. You need someone
in control. And you do the best with what you’ve got.

In that context, we then have to really stand back and say, “And this
is what we have to do to get a serious, long-term, continuous, stable
investment environment, going forward.” In which, you know, we pay the
costs, but of course, not any monopoly profits, not any excess
profits, but we have a world in which the price of electricity is
related to the cost.”

[ KLAXON ! Is Dieter Helm proposing state ownership of energy plant ? ]

29:04

[ Programme anchor ]

“Costing the Earth” was presented by Tom Heap, and made in Bristol by
Helen Lennard.

[ Next broadcast : 16th October 2013, 21:00, BBC Radio 4 ]

Categories
Assets not Liabilities Be Prepared Behaviour Changeling Big Number Big Picture Big Society Burning Money Carbon Capture Carbon Commodities Carbon Pricing Carbon Rationing Carbon Taxatious Change Management Climate Change Coal Hell Contraction & Convergence Cost Effective Dead End Demoticratica Direction of Travel Disturbing Trends Dreamworld Economics Eating & Drinking Efficiency is King Electrificandum Energy Autonomy Energy Change Energy Denial Energy Insecurity Energy Revival Extreme Energy Feed the World Financiers of the Apocalypse Freemarketeering Fuel Poverty Gamechanger Green Investment Green Power Growth Paradigm Human Nurture Hydrocarbon Hegemony Incalculable Disaster Insulation Low Carbon Life Major Shift Money Sings National Energy National Power National Socialism Nuclear Nuisance Nuclear Shambles Nudge & Budge Optimistic Generation Paradigm Shapeshifter Peak Energy Peak Natural Gas Policy Warfare Political Nightmare Price Control Regulatory Ultimatum Solution City Stirring Stuff Sustainable Deferment The Price of Gas Ungreen Development Voluntary Behaviour Change

Birdcage Walk : Cheesestick Rationing


Yesterday…no, it’s later than I think…two days ago, I attended the 2013 Conference of PRASEG, the Parliamentary Renewable and Sustainable Energy Group, at the invitation of Rhys Williams, the long-suffering Coordinator. “…Sorry…Are you upset ?” “No, look at my face. Is there any emotion displayed there ?” “No, you look rather dead fish, actually”, etc.

At the prestigious seat of the Institute of Mechanical Engineers (IMechE), One Birdcage Walk, we were invited down into the basement for a “drinks reception”, after hearing some stirring speeches and intriguing panel discussions. Despite being promised “refreshments” on the invitation, there had only been beverages and a couple of bikkies up until now, and I think several of the people in the room were starting to get quite hypoglycemic, so were grateful to see actual food being offered.

A market economy immediately sprang up, as there was a definite scarcity in the resources of cheesesticks, and people jostled amiably, but intentionally, so they could cluster closest to the long, crispy cow-based snacks. The trading medium of exchange was conversation. “Jo, meet Mat Hope from Carbon Brief, no Maf Smith from Renewable UK. You’ve both been eviscerated by Delingpole online”, and so on.

“Welcome to our own private pedestal”, I said to somebody, who it turned out had built, probably in the capacity of developer, a sugarcane bagasse Combined Heat and Power plant. The little table in the corner had only got room around it for three or at most four people, and yet had a full complement of snack bowls. Bonus. I didn’t insist on memorising what this fellow told me his name was. OK, I didn’t actually hear it above the hubbub. And he was wearing no discernible badge, apart from what appeared to be the tinge of wealth. He had what looked like a trailing truculent teenager with him, but that could have been a figment of my imagination, because the dark ghost child spoke not one word. But that sullenness, and general anonymity, and the talkative gentleman’s lack of a necktie, and his slightly artificial, orange skin tone, didn’t prevent us from engaging wholeheartedly in a discussion about energy futures – in particular the default options for the UK, since there is a capacity crunch coming very soon in electricity generation, and new nuclear power reactors won’t be ready in time, and neither will Carbon Capture and Storage-fitted coal-fired power plants.

Of course, the default options are basically Natural Gas and wind power, because large amounts can be made functional within a five year timeframe. My correspondent moaned that gas plants are closing down in the UK. We agreed that we thought that new Combined Cycle Gas Turbine plant urgently needs to be built as soon as possible – but he despaired of seeing it happen. He seemed to think it was essential that the Energy Bill should be completed as soon as possible, with built-in incentives to make Gas Futures a reality.

I said, “Don’t wait for the Energy Bill”. I said, “Intelligent people have forecast what could happen to Natural Gas prices within a few years from high European demand and UK dependence, and are going to build gas plant for themselves. We simply cannot have extensions on coal-fired power plants…” He agreed that the Large Combustion Plant Directive would be closing the coal. I said that there was still something like 20 gigawatts of permissioned gas plant ready to build – and with conditions shaping up like they are, they could easily get financed.

Earlier, Nigel Cornwall, of Cornwall Energy had put it like this :-

“Deliverability and the trilemma [meeting all three of climate change, energy security and end-consumer affordability concerns] [are key]. Needs to be some joined-up thinking. […] There is clearly a deteriorating capacity in output – 2% to 5% reduction. As long as I’ve worked in the sector it’s been five minutes to midnight, [only assuaged by] creative thinking from National Grid.”

However, the current situation is far from bog standard. As Paul Dickson of Glennmont Partners said :-

“£110 billion [is needed] to meet the [electricity generation] gap. We are looking for new sources of capital. Some of the strategic institutional capital – pension funds [for example] – that’s who policy needs to be directed towards. We need to look at sources of capital.”

Alistair Buchanan, formerly of Ofgem, the power sector regulator, and now going to KPMG, spent the last year or so of his Ofgem tenure presenting the “Crunch Winter” problem to as many people as he could find. His projections were based on a number of factors, including Natural Gas supply questions, and his conclusion was that in the winter of 2015/2016 (or 2016/2017) power supply could get thin in terms of expansion capacity – for moments of peak demand. Could spell crisis.

The Government might be cutting it all a bit fine. As Jenny Holland of the Association for the Conservation of Energy said :-

“[Having Demand Reduction in the Capacity Mechanism] Not our tip-top favourite policy outcome […] No point to wait for “capacity crunch” to start [Energy Demand Reduction] market.”

It does seem that people are bypassing the policy waiting queue and getting on with drawing capital into the frame. And it is becoming more and more clear the scale of what is required. Earlier in the afternoon, Caroline Flint MP had said :-

“In around ten years time, a quarter of our power supply will be shut down. Decisions made in the next few years. Consequences will last for decades. Keeping the lights on, and [ensuring reasonably priced] energy bills, and preventing dangerous climate change.”

It could come to pass that scarcity, not only in cheesesticks, but in electricity generation capacity, becomes a reality. What would policy achieve then ? And how should Government react ? Even though Lord Deben (John Gummer) decried in the early afternoon a suggestion implying carbon rationing, proposed to him by Professor Mayer Hillman of the Policy Studies Institute, it could yet turn out that electricity demand reduction becomes a measure that is imposed in a crisis of scarcity.

As I put it to my sugarcane fellow discussionee, people could get their gas for heating cut off at home in order to guarantee the lights and banks and industry stay on, because UK generation is so dependent on Natural Gas-fired power.

Think about it – the uptake of hyper-efficient home appliances has turned down owing to the contracting economy, and people are continuing to buy and use electronics, computers, TVs and other power-sucking gadgets. Despite all sizes of business having made inroads into energy management, electricity consumption is not shifting downwards significantly overall.

We could beef up the interconnectors between the UK and mainland Europe, but who can say that in a Crunch Winter, the French and Germans will have any spare juice for us ?

If new, efficient gas-fired power plants are not built starting now, and wind farms roll out is not accelerated, the Generation Gap could mean top-down Energy Demand Reduction measures.

It would certainly be a great social equaliser – Fuel Poverty for all !

Categories
Academic Freedom Advertise Freely Assets not Liabilities Bait & Switch Be Prepared Big Picture Biofools Burning Money Carbon Capture Change Management Climate Change Climate Chaos Climate Damages Contraction & Convergence Corporate Pressure Cost Effective Delay and Deny Design Matters Direction of Travel Divide & Rule Drive Train Efficiency is King Emissions Impossible Energy Autonomy Energy Change Energy Denial Energy Disenfranchisement Energy Insecurity Engineering Marvel Environmental Howzat Financiers of the Apocalypse Fossilised Fuels Freemarketeering Fuel Poverty Green Investment Hydrocarbon Hegemony Hydrogen Economy Incalculable Disaster Low Carbon Life Major Shift Marine Gas Mass Propaganda Money Sings Near-Natural Disaster Neverending Disaster No Pressure Nudge & Budge Oil Change Paradigm Shapeshifter Peak Emissions Peak Energy Peak Natural Gas Peak Oil Petrolheads Protest & Survive Public Relations Pure Hollywood Renewable Gas Social Change Social Democracy Technofix Technological Sideshow The Science of Communitagion Toxic Hazard Unconventional Foul Ungreen Development Unnatural Gas

Carbon Bubble : Unburnable Assets



[ Image Credit : anonymous ]


Yet again, the fossil fuel companies think they can get away with uncommented public relations in my London neighbourhood. Previously, it was BP, touting its green credentials in selling biofuels, at the train station, ahead of the Olympic Games. For some reason, after I made some scathing remarks about it, the advertisement disappeared, and there was a white blank board there for weeks.

This time, it’s Esso, and they probably think they have more spine, as they’ve taken multiple billboard spots. In fact, the place is saturated with this advertisement. And my answer is – yes, fuel economy is important to me – that’s why I don’t have a car.

And if this district is anything to go by, Esso must be pouring money into this advertising campaign, and so my question is : why ? Why aren’t they pouring this money into biofuels research ? Answer : because that’s not working. So, why aren’t they putting this public relations money into renewable gas fuels instead, sustainable above-surface gas fuels that can be used in compressed gas cars or fuel cell vehicles ?

Are Esso retreating into their “core business” like BP, and Shell, concentrating on petroleum oil and Natural Gas, and thereby exposing all their shareholders to the risk of an implosion of the Carbon Bubble ? Or another Deepwater Horizon, Macondo-style blowout ?

Meanwhile, the movement for portfolio investors to divest from fossil fuel assets continues apace…