Categories
Academic Freedom Advertise Freely Alchemical Artistic Licence Bait & Switch Be Prepared Big Society Bioeffigy Biofools Carbon Commodities Carbon Recycling Change Management Climate Change Climate Chaos Climate Damages Corporate Pressure Delay and Deny Delay and Distract Demoticratica Direction of Travel Divest and Survive Divide & Rule Emissions Impossible Energy Autonomy Energy Change Energy Crunch Energy Insecurity Energy Revival Engineering Marvel Evil Opposition Extreme Energy Fossilised Fuels Freshwater Stress Gamechanger Gas Storage Global Warming Green Gas Green Investment Green Power Health Impacts Human Nurture Hydrocarbon Hegemony Incalculable Disaster Low Carbon Life Major Shift Methane Management Modern Myths Money Sings National Energy National Power Natural Gas Near-Natural Disaster Neverending Disaster Nudge & Budge Oil Change Paradigm Shapeshifter Peak Coal Peak Emissions Peak Energy Peak Natural Gas Peak Oil Petrolheads Policy Warfare Political Nightmare Protest & Survive Public Relations Pure Hollywood Regulatory Ultimatum Renewable Gas Renewable Resource Resource Wards Science Rules Shale Game Social Capital Social Democracy Stirring Stuff Sustainable Deferment Tarred Sands Technofix The Power of Intention The Right Chemistry Toxic Hazard Transport of Delight Tree Family Unconventional Foul Ungreen Development Wind of Fortune Zero Net

Jumping off Mount Gideon

[Friends, I have suffered a little writer’s block, so I resolved to spark some creativity in myself by joining a little local writers group. The leader of the group suggested a title, I Googled the allegedly fictional location and found it existed, and that it was near a wind farm; and Google Maps led me to the rest of my research and inspiration for this piece. Caveat Lector : it’s fictional, even though a lot of it is factual. Also, it’s only a draft, but it needs to settle for a while before I can refine/sift it. ]

Jumping Off Mount Gideon [1]
by Jo Abbess
DRAFT

In the blue-green sun-kissed uplands, west of the sediment-spewing Chocolate River sprung at Petitcodiac village, and north of the shrunken Shepody Lake, its feeder tributaries re-engineered hundreds of years ago; north still of the shale flats jutting out into the Bay of Fundy, rises Mount Gideon, shrouded in managed native Canadian spruce, pine and fir. Part of the ranging, half-a-billion-year-old craton of the Caledonian Highlands of New Brunswick, it is solid ground, and its first European inhabitants must have been hardy. Looking up, the early settlers must have seen the once-bare hinterland looming over the mudstone and sandstone shoreline, with its steep gullied waterways carved by the receding pre-historic icesheets, and it must have been redolent of the mountainous “encampments of the just” [2] where the Biblical Gideon of the Book of Judges [3] trained his elite crack troops and plotted his revenge against the hordes of ravaging Midianites. The fur-trappers and gravel miners on the eve of the 18th Century built a community by the bay, and drove a winding road up through Mount Gideon’s ravines and over its heights, a byway long since eroded and erased and replaced by a functional forestry access track. Ethnic cleansing of the first-come Acadians in the summer of 1755 destroyed much of the larger settlements in the region of Chipoudy, henceforth anglicised to Shepody. Two groups of deportation vigilantes, originally tasked with taking prisoners, burned down the infrastructure and put to death those who hadn’t fled to the woods, and since that day, nobody really lives up on the mount, aside from the occasional lumberjack in his trailer home cached off New Ireland Road, and the odd temporary bivouac of touring hippy couples, en route from Hopewell Rocks to Laverty Falls on the Moosehorn Trail in the national park, via the Caledonia Gorge and Black Hole on the Upper Salmon River. These days there is no risk of social crisis, but an insidious slow-moving environmental crisis is underway. Streams falling from Mount Gideon, spider lines scratched on early parish maps, the West River and Beaver Brook, no longer flow year-round, and there’s very little freshwater locally, apart from a few scattered tarns, cradled in the impervious igneous, plutonic rock of the hinterland. Rainwater does support the timber plantations, for now, but drought and beetle are a rising threat, brought on by creeping climate change. Humans may no longer be setting fires, but Nature is, because human beings have interfered with the order of things.

Mount Gideon isn’t really a proper peak : from its summit it’s clear it’s only a local undulation like other protruding spine bones in the broad back of the hills. Its cap sprouts industrial woodland, planted in regular patterns visible from space, reached by gravel-bordered runnelled dirt track. The former ancient water courses that fall away sharply from the highest point on the weald are filled with perilously-rooted trees, leaning haphazardly out from the precipitous banks of the ravines. The plantations and roadside thickets obscure the view of Chignecto Bay and the strong-tided Minas Passage, where the tidal turbine energy project is still being developed. With no coastal horizon, this could be hundreds of kilometres from anywhere, in the centre of an endless Avalonian Terrane. A silvicultural and latterly agroforestry economy that grew from the wealth of wood eventually developed a dependence on fossil fuels, but what thin coal seams locally have long been exhausted, and the metamorphic mass underfoot salts no petroleum oil or gas beneath. Tanker ship and truck brought energy for tractor and homestead for decades, but seeing little future in the black stuff, local sparsely-populated Crown Land was designated for renewable energy. Just to the north of Mount Gideon lie the Kent Hills, a scene of contention and social protest when the wind farm was originally proposed. For some, wind turbines would mechanise the landscape, cause frequency vibration sickness, spark forest fires from glinting blades, induce mass migraine from flickering sweeps of metal. Windmills were seen as monsters, but sense prevailed, through the normal processes of local democracy and municipal authority, and even a wind farm expansion came about. It is true that engineering giants have cornered the market in the first development sweep of wind power – those hoping for small-scale, locally-owned new energy solutions to the carbon crisis have had to relent and accept that only big players have the economic power to kickstart new technologies at scale. There are some who suspect that the anti-turbine groups were sponsored secretly by the very firms who wanted to capitalise on the ensuing vacuum in local energy supply; and that this revolt went too far. There was speculation about sabotage when one of the wind turbine nacelles caught fire a while back and became a sneering viral internet sensation. When the shale gas 1970s extraction technology revival circus came to Nova Scotia, the wind power companies were thought to have been involved in the large protest campaign that resulted in a New Brunswick moratorium on hydraulic fracturing in the coastal lowlands. The geology was anyways largely against an expansion in meaningful fossil fuel mining in the area, and the central Precarboniferous massif would have held no gas of any kind, so this was an easily-won regulation, especially considering the risks to the Chignecto Bay fisheries from mining pollution.

TransAlta, they of “Clean Power, Today and Tomorrow”, sensed an prime moment for expansion. They had already forged useful alliances with the local logging companies during the development of Kent Hills Wind Farm, and so they knew that planning issues could be overcome. However, they wanted to appease the remnant of anti-technologists, so they devised a creative social engagement plan. They invited energy and climate change activists from all over Nova Scotia, Newfoundland, and the rest of Quebec to organise a pro-wind power camp and festival on the top of Mount Gideon. The idea was to celebrate wind power in a creative and co-operative way. The Crown Land was clearcut of trees as the first stage of the wind farm expansion, so the location was ideal. To enable the festival to function, water was piped to the summit, teepees and yurts were erected, and a local food delivery firm was hired to supply. The ambition of the cultural committee was to create an open, welcoming space with plenty of local colour and entertainment, inviting visitors and the media to review plans for the new wind farm. The festival was an international Twitter success, and attracted many North American, European and even Australasian revellers, although a small anarchist group from the French national territory in St Pierre et Miquelon created a bit of a diplomatic incident by accidentally setting fire to some overhanging trees in a ravine during a hash-smoking party.

Unbeknownst to the festival committee, a small and dedicated group of activists used the cover of the camp to plan a Gideon-style resistance to the Energy East pipeline plan. TransCanada wanted to bring heavy tar sands oil, blended with American light petroleum condensate, east from Alberta. The recent history of onshore oil pipelines and rail consignments was not encouraging – major spills had already taken place – and several disastrous accidents, such as the derailment and fireball at Plaster Rock, where the freight was routed by track to Irving Refinery. The original Energy East plan was to bring oil to the Irving Oil Canaport facility at Saint John, but a proposal had been made to extend the pipeline to the Atlantic coast. The new route would have to either make its circuitous way through Moncton, or cross under the Bay of Fundy, in order to be routed to Canso on the eastern side of Nova Scotia. The Energy East pipeline was already being criticised because of its planned route near important waterways and sensitive ecological sites. And the activist group had discovered that TransCanada had contracted a site evaluation at Cape Enrage on the western shore of the bay. Land jutted out into the water from here, making it the shortest crossing point to Nova Scotia. To route a pipeline here would mean it would have to cross Fundy National Park, sensitive fish and bird wading areas on the marshes and mudflats of the Waterside and Little Ridge, and cross over into the Raven Head Wilderness Area.

Gideon’s campaign had succeeded because of three things. His army had been whittled down to a compact, focused, elite force; they had used the element of surprise, and they had used the power of the enemy against itself. The activist group decided on a high level of secrecy about their alliance, but part of their plan was very public. They were divided into three groups : the Wasps, the Eagles and the Hawks. The Wasps would be the hidden force. They would construct and test drones, jumping off Mount Gideon, and flown out at night down the old river gullies, their route hidden by the topography, to spy on the TransCanada surface works. The plan was that when they had had enough practice the team would be ready to do this on a regular basis in future. If TransCanada did start building a pipeline here, the Wasps would be able to come back periodically and transport mudballs by drone to drop in the area. These squidgy payloads of dirt would contain special cultures of bacteria, including methanogens, that produce methane and other volatile chemicals. The environmental monitoring teams at the site would pick up spikes in hydrocarbon emissions, and this would inevitably bring into question the integrity of the pipeline. The Eagles would start a nationwide campaign for legal assistance, asking for lawyers to work pro bono to countermand the Energy East pipeline route, deploying the most recent scientific research on the fossil fuel industry, and all the factors that compromise oil and gas infrastructure. The Hawks would develop relationships with major energy investors, such as pension funds and insurance firms, and use public relations to highlight the risks of fossil fuel energy development, given the risks of climate change and the geological depletion of high quality resources. Nobody should be mining tar sands – the dirtiest form of energy ever devised. If TransCanada wanted to pipeline poisonous, toxic, air-damaging, climate-changing gloop all across the pristine biomes of precious Canada, the Mount Gideon teams were going to resist it in every way possible.

What the Mount Gideon teams did not know, but we know now, was that some of the activists at the camp were actually employees of the New Brunswick dynasties Irving and McCain. These families and their firms had saved the post-Confederation economy of the Maritime Provinces in the 20th Century, through vertical integration. Internally, within the Irving conglomerate, many recognised that fossil fuels had a limited future, even though some of the firms were part of the tar sands oil pipeline project. They were intending to take full advantage of the suspension of the light oil export ban from the United States for the purpose of liquefying Canadian heavy oils to make a more acceptable consumer product, as well as being something that could actually flow through pipes. They had held secret negotiations between their forestry units and the McCain family farming businesses. Research done for the companies had revealed that synthetic, carbon-neutral gas could be made from wood, grains and grasses, and that this would appeal to potential investors more than tar sands projects. They realised that if the Energy East project failed, they could step in to fill the gap in the energy market with their own brand of biomass-sourced renewables. They calculated that the potential for Renewable Gas was an order of magnitude larger than that of wind power, so they stood to profit as low carbon energy gained in popularity. Once again, in energy, big business intended to succeed, but they needed to do so in a way that was not confrontational. What better than to have a bunch of activists direct attention away from carbon-heavy environmentally-damaging energy to allow your clean, green, lean solutions to emerge victorious and virtuous ?

Notes

[1] This is a fictional, marginally futuristic account, but contains a number of factual, current accuracies.
[2] Bible, Psalm 34
[3] Bible, Judges 6-8

Categories
Academic Freedom Alchemical Assets not Liabilities Baseload is History Be Prepared Big Number Big Picture Bioeffigy Biofools Biomess British Biogas Burning Money Carbon Capture Carbon Commodities Carbon Pricing Carbon Recycling Carbon Taxatious Change Management Coal Hell Corporate Pressure Cost Effective Design Matters Direction of Travel Dreamworld Economics Efficiency is King Electrificandum Emissions Impossible Energy Autonomy Energy Change Energy Insecurity Energy Revival Energy Socialism Engineering Marvel Foreign Investment Fossilised Fuels Gamechanger Gas Storage Geogingerneering Green Gas Green Investment Green Power Grid Netmare Growth Paradigm Hydrocarbon Hegemony Hydrogen Economy Insulation Low Carbon Life Marine Gas Methane Management National Energy National Power Natural Gas Nuclear Nuisance Nuclear Shambles Oil Change Optimistic Generation Paradigm Shapeshifter Peak Natural Gas Petrolheads Policy Warfare Political Nightmare Price Control Public Relations Realistic Models Regulatory Ultimatum Renewable Gas Shale Game Solar Sunrise Solution City Technofix Technomess The Power of Intention The Price of Gas The Right Chemistry Tree Family Unconventional Foul Ungreen Development Unnatural Gas Wasted Resource Wind of Fortune Zero Net

A Partial Meeting of Engineering Minds

So I met somebody last week, at their invitation, to talk a little bit about my research into Renewable Gas.

I can’t say who it was, as I didn’t get their permission to do so. I can probably (caveat emptor) safely say that they are a fairly significant player in the energy engineering sector.

I think they were trying to assess whether my work was a bankable asset yet, but I think they quickly realised that I am nowhere near a full proposal for a Renewable Gas system.

Although there were some technologies and options over which we had a meeting of minds, I was quite disappointed by their opinions in connection with a number of energy projects in the United Kingdom.

Categories
Academic Freedom Alchemical Assets not Liabilities Baseload is History Big Number Big Picture Bioeffigy Biofools Biomess British Biogas Carbon Capture Carbon Commodities Carbon Pricing Carbon Recycling Change Management Corporate Pressure Demoticratica Direction of Travel Efficiency is King Electrificandum Energy Autonomy Energy Calculation Energy Change Energy Revival Engineering Marvel Fossilised Fuels Gamechanger Green Gas Green Investment Green Power Growth Paradigm Hydrocarbon Hegemony Hydrogen Economy Major Shift Marvellous Wonderful Methane Management National Energy National Power Natural Gas Nuclear Nuisance Nuclear Shambles Oil Change Optimistic Generation Peak Emissions Peak Natural Gas Realistic Models Regulatory Ultimatum Renewable Gas Renewable Resource Revolving Door Social Capital Social Change Social Democracy Solution City Tarred Sands Technofix The Data The Myth of Innovation The Power of Intention The Price of Gas The Right Chemistry Transport of Delight Tree Family Ungreen Development Unnatural Gas Wasted Resource Western Hedge Wind of Fortune Zero Net

DECC Dungeons and Dragnets

Out of the blue, I got an invitation to a meeting in Whitehall.

I was to join industrial developers and academic researchers at the Department of Energy and Climate Change (DECC) in a meeting of the “Green Hydrogen Standard Working Group”.

The date was 12th June 2015. The weather was sunny and hot and merited a fine Italian lemonade, fizzing with carbon dioxide. The venue was an air-conditioned grey bunker, but it wasn’t an unfriendly dungeon, particularly as I already knew about half the people in the room.

The subject of the get-together was Green Hydrogen, and the work of the group is to formulate a policy for a Green Hydrogen standard, navigating a number of issues, including the intersection with other policy, and drawing in a very wide range of chemical engineers in the private sector.

My reputation for not putting up with any piffle clearly preceded me, as somebody at the meeting said he expected I would be quite critical. I said that I would not be saying anything, but that I would be listening carefully. Having said I wouldn’t speak, I must admit I laughed at all the right places in the discussion, and wrote copious notes, and participated frequently in the way of non-verbal communication, so as usual, I was very present. At the end I was asked for my opinion about the group’s work and I was politely congratulational on progress.

So, good. I behaved myself. And I got invited back for the next meeting. But what was it all about ?

Most of what it is necessary to communicate is that at the current time, most hydrogen production is either accidental output from the chemical industry, or made from fossil fuels – the main two being coal and Natural Gas.

Hydrogen is used extensively in the petroleum refinery industry, but there are bold plans to bring hydrogen to transport mobility through a variety of applications, for example, hydrogen for fuel cell vehicles.

Clearly, the Green Hydrogen standard has to be such that it lowers the bar on carbon dioxide (CO2) emissions – and it could turn out that the consensus converges on any technologies that have a net CO2 emissions profile lower than steam methane reforming (SMR), or the steam reforming of methane (SRM), of Natural Gas.

[ It’s at this very moment that I need to point out the “acronym conflict” in the use of “SMR” – which is confusingly being also used for “Small Modular Reactors” of the nuclear fission kind. In the context of what I am writing here, though, it is used in the context of turning methane into syngas – a product high in hydrogen content. ]

Some numbers about Carbon Capture and Storage (CCS) used in the manufacture of hydrogen were presented in the meeting, including the impact this would have on CO2 emissions, and these were very intriguing.

I had some good and useful conversations with people before and after the meeting, and left thinking that this process is going to be very useful to engage with – a kind of dragnet pulling key players into low carbon gas production.

Here follow my notes from the meeting. They are, of course, not to be taken verbatim. I have permission to recount aspects of the discussion, in gist, as it was an industrial liaison group, not an internal DECC meeting. However, I should not say who said what, or which companies or organisations they are working with or for.

Categories
Academic Freedom Advertise Freely Alchemical Assets not Liabilities Be Prepared Behaviour Changeling Big Number Biofools British Biogas Burning Money Carbon Capture Carbon Commodities Carbon Pricing Carbon Taxatious Change Management Climate Change Conflict of Interest Corporate Pressure Cost Effective Dead End Delay and Deny Divest and Survive Divide & Rule Dreamworld Economics Drive Train Economic Implosion Efficiency is King Emissions Impossible Energy Calculation Energy Change Energy Crunch Energy Denial Energy Insecurity Energy Revival Engineering Marvel Evil Opposition Extreme Energy Financiers of the Apocalypse Fossilised Fuels Freemarketeering Gamechanger Geogingerneering Global Warming Green Gas Green Power Hydrocarbon Hegemony Hydrogen Economy Insulation Low Carbon Life Mad Mad World Major Shift Mass Propaganda Methane Management Money Sings National Energy National Power Natural Gas Nuclear Shambles Oil Change Optimistic Generation Orwells Paradigm Shapeshifter Peak Coal Peak Emissions Policy Warfare Political Nightmare Price Control Public Relations Realistic Models Regulatory Ultimatum Renewable Gas Renewable Resource Revolving Door Shale Game Solution City Stirring Stuff The Data The Power of Intention The Right Chemistry The Science of Communitagion The War on Error Unnatural Gas Unutterably Useless Utter Futility Vain Hope Voluntary Behaviour Change Vote Loser Western Hedge

Only Just Getting Started

In the last couple of years I have researched and written a book about the technologies and systems of Renewable Gas – gas energy fuels that are low in net carbon dioxide emissions. From what I have learned so far, it seems that another energy world is possible, and that the transition is already happening. The forces that are shaping this change are not just climate or environmental policy, or concerns about energy security. Renewable Gas is inevitable because of a range of geological, economic and industrial reasons.

I didn’t train as a chemist or chemical process engineer, and I haven’t had a background in the fossil fuel energy industry, so I’ve had to look at a number of very basic areas of engineering, for example, the distillation and fractionation of crude petroleum oil, petroleum refinery, gas processing, and the thermodynamics of gas chemistry in industrial-scale reactors. Why did I need to look at the fossil fuel industry and the petrochemical industry when I was researching Renewable Gas ? Because that’s where a lot of the change can come from. Renewable Gas is partly about biogas, but it’s also about industrial gas processes, and a lot of them are used in the petrorefinery and chemicals sectors.

In addition, I researched energy system technologies. Whilst assessing the potential for efficiency gains in energy systems through the use of Renewable Electricity and Renewable Gas, I rekindled an interest in fuel cells. For the first time in a long time, I began to want to build something – a solid oxide fuel cell which switches mode to an electrolysis unit that produces hydrogen from water. Whether I ever get to do that is still a question, but it shows how involved I’m feeling that I want to roll up my sleeves and get my hands dirty.

Even though I have covered a lot of ground, I feel I’m only just getting started, as there is a lot more that I need to research and document. At the same time, I feel that I don’t have enough data, and that it will be hard to get the data I need, partly because of proprietary issues, where energy and engineering companies are protective of developments, particularly as regards actual numbers. Merely being a university researcher is probably not going to be sufficient. I would probably need to be an official within a government agency, or an industry institute, in order to be permitted to reach in to more detail about the potential for Renewable Gas. But there are problems with these possible avenues.

You see, having done the research I have conducted so far, I am even more scornful of government energy policy than I was previously, especially because of industrial tampering. In addition, I am even more scathing about the energy industry “playing both sides” on climate change. Even though there are some smart and competent people in them, the governments do not appear to be intelligent enough to see through expensive diversions in technology or unworkable proposals for economic tweaking. These non-solutions are embraced and promoted by the energy industry, and make progress difficult. No, carbon dioxide emissions taxation or pricing, or a market in carbon, are not going to make the kind of changes we need on climate change; and in addition they are going to be extremely difficult and slow to implement. No, Carbon Capture and Storage, or CCS, is never going to become relatively affordable in any economic scenario. No, nuclear power is too cumbersome, slow and dodgy – a technical term – to ever make a genuine impact on the total of carbon emissons. No, it’s not energy users who need to reduce their consumption of energy, it’s the energy companies who need to reduce the levels of fossil fuels they utilise in the energy they sell. No, unconventional fossil fuels, such as shale gas, are not the answer to high emissions from coal. No, biofuels added to petrofuels for vehicles won’t stem total vehicle emissions without reducing fuel consumption and limiting the number of vehicles in use.

I think that the fossil fuel companies know these proposals cannot bring about significant change, which is precisely why they lobby for them. They used to deny climate change outright, because it spelled the end of their industry. Now they promote scepticism about the risks of climate change, whilst at the same time putting their name to things that can’t work to suppress major amounts of emissions. This is a delayer’s game.

Because I find the UK Government energy and climate policy ridiculous on many counts, I doubt they will ever want me to lead with Renewable Gas on one of their projects. And because I think the energy industry needs to accept and admit that they need to undergo a major change, and yet they spend most of their public relations euros telling the world they don’t need to, and that other people need to make change instead, I doubt the energy industry will ever invite me to consult with them on how to make the Energy Transition.

I suppose there is an outside chance that the major engineering firms might work with me, after all, I have been an engineer, and many of these companies are already working in the Renewable Gas field, although they’re normally “third party” players for the most part – providing engineering solutions to energy companies.

Because I’ve had to drag myself through the equivalent of a “petro degree”, learning about the geology and chemistry of oil and gas, I can see more clearly than before that the fossil fuel industry contains within it the seeds of positive change, with its use of technologies appropriate for manufacturing low carbon “surface gas”. I have learned that Renewable Gas would be a logical progression for the oil and gas industry, and also essential to rein in their own carbon emissions from processing cheaper crude oils. If they weren’t so busy telling governments how to tamper with energy markets, pushing the blame for emissions on others, and begging for subsidies for CCS projects, they could instead be planning for a future where they get to stay in business.

The oil and gas companies, especially the vertically integrated tranche, could become producers and retailers of low carbon gas, and take part in a programme for decentralised and efficient energy provision, and maintain their valued contribution to society. At the moment, however, they’re still stuck in the 20th Century.

I’m a positive person, so I’m not going to dwell too much on how stuck-in-the-fossilised-mud the governments and petroindustry are. What I’m aiming to do is start the conversation on how the development of Renewable Gas could displace dirty fossil fuels, and eventually replace the cleaner-but-still-fossil Natural Gas as well.

Categories
Academic Freedom Alchemical Arctic Amplification Assets not Liabilities Big Number Biofools Carbon Capture Carbon Commodities Carbon Pricing Carbon Rationing Carbon Taxatious Change Management China Syndrome Climate Change Climate Damages Coal Hell Conflict of Interest Corporate Pressure Cost Effective Dead End Deal Breakers Delay and Deny Demoticratica Direction of Travel Dreamworld Economics Economic Implosion Efficiency is King Emissions Impossible Energy Change Energy Denial Energy Insecurity Extreme Energy Financiers of the Apocalypse Foreign Investment Fossilised Fuels Freemarketeering Green Investment Growth Paradigm Hydrocarbon Hegemony Insulation Marine Gas Mass Propaganda Modern Myths Money Sings Natural Gas Nuclear Nuisance Nuclear Shambles Oil Change Optimistic Generation Orwells Peak Emissions Peak Natural Gas Peak Oil Petrolheads Policy Warfare Political Nightmare Price Control Public Relations Realistic Models Regulatory Ultimatum Shale Game Social Change Solar Sunrise Solution City Stirring Stuff Tarred Sands The Price of Oil The Right Chemistry Unnatural Gas Wind of Fortune

Shell Shirks Carbon Responsibility

I was in a meeting today held at the Centre for European Reform in which Shell’s Chief Financial Officer, Simon Henry, made two arguments to absolve the oil and gas industry of responsibility for climate change. He painted coal as the real enemy, and reiterated the longest hand-washing argument in politics – that Shell believes that a Cap and Trade system is the best way to suppress carbon dioxide emissions. In other words, it’s not up to Shell to do anything about carbon. He argued that for transportation and trade the world is going to continue to need highly energy-dense liquid fuels for some time, essentially arguing for the continuation of his company’s current product slate. He did mention proudly in comments after the meeting that Shell are the world’s largest bioethanol producers, in Brazil, but didn’t open up the book on the transition of his whole company to providing the world with low carbon fuels. He said that Shell wants to be a part of the global climate change treaty process, but he gave no indication of what Shell could bring to the table to the negotiations, apart from pushing for carbon trading. Mark Campanale of the Carbon Tracker Initiative was sufficiently convinced by the “we’re not coal” argument to attempt to seek common cause with Simon Henry after the main meeting. It would be useful to have allies in the oil and gas companies on climate change, but it always seems to be that the rest of the world has to adopt Shell’s and BP’s view on everything from policy to energy resources before they’ll play ball.

During the meeting, Mark Campanale pointed out in questions that Deutsche Bank and Goldman Sachs are going to bring Indian coal to trade on the London Stock Exchange and that billions of dollars of coal stocks are to be traded in London, and that this undermines all climate change action. He said he wanted to understand Shell’s position, as the same shareholders that hold coal (shares), hold Shell. I think he was trying to get Simon Henry to call for a separation in investment focus – to show that investment in oil and gas is not the same as investing in Big Bad Coal. But Simon Henry did not bite. According to the Carbon Tracker Initiative’s report of 2013, Unburnable Carbon, coal listed on the London Stock Exchange is equivalent to 49 gigatonnes of Carbon Dioxide (gtCO2), but oil and gas combined trade shares for stocks equivalent to 64 gtCO2, so there’s currently more emissions represented by oil and gas on the LSX than there is for coal. In the future, the emissions held in the coal traded in London have the potential to amount to 165 gtCO2, and oil and gas combined at 125 gtCO2. Despite the fact that the United Kingdom is only responsible for about 1.6% of direct country carbon dioxide emissions (excluding emissions embedded in traded goods and services), the London Stock Exchange is set to be perhaps the world’s third largest exchange for emissions-causing fuels.

Here’s a rough transcript of what Simon Henry said. There are no guarantees that this is verbatim, as my handwriting is worse than a GP’s.

[Simon Henry] I’m going to break the habit of a lifetime and use notes. Building a long-term sustainable energy system – certain forces shaping that. 7 billion people will become 9 billion people – [many] moving from off-grid to on-grid. That will be driven by economic growth. Urbanisation [could offer the possibility of] reducing demand for energy. Most economic growth will be in developing economies. New ways fo consuming energy. Our scenarios – in none do we see energy not growing materially – even with efficiencies. The current ~200 billion barrels of oil equivalent per day today of energy demand will rise to ~400 boe/d by 2050 – 50% higher than today. This will be demand-driven – nothing to do with supply…

[At least one positive-sounding grunt from the meeting – so there are some Peak Oil deniers in the room, then.]

[Simon Henry] …What is paramount for governments – if a threat, then it gets to the top of the agenda. I don’t think anybody seriously disputes climate change…

[A few raised eyebrows and quizzical looks around the table, including mine]

[Simon Henry] …in the absence of ways we change the use of energy […] Any approach to climate change has got to embrace science, policy and technology. All three levers must be pulled. Need a long-term stable policy that enables technology development. We think this is best in a market mechanism. […] Energy must be affordable at the point of use. What we call Triple A – available, acceptable and affordable. No silver bullet. Develop in a responsible way. Too much of it is soundbite – that simplifies what’s not a simple problem. It’s not gas versus coal. [Although, that appeared to be one of his chief arguments – that it is gas versus coal – and this is why we should play nice with Shell.]

1. Economy : About $1.5 to $2 trillion of new money must be invested in the energy industry each year, and this must be sustained until 2035 and beyond. A [few percent] of the world economy. It’s going to take time to make [massive changes]. […] “Better Growth : Better Climate” a report on “The New Climate Economy” by the Global Commission on the Economy and Climate, the Calderon Report. [The world invested] $700 billion last year on oil and gas [or rather, $1 trillion] and $220 – $230 billion on wind power and solar power. The Calderon Report showed that 70% of energy is urban. $6 trillion is being spent on urban infrastructure [each year]. $90 trillion is available. [Urban settings are] more compact, more connected, there’s public transport, [can build in efficiencies] as well as reducing final energy need. Land Use is the other important area – huge impact on carbon emissions. Urbanisation enables efficiency in distributed generation [Combined Heat and Power (CHP)], [local grids]. Eye-popping costs, but the money will be spent anyway. If it’s done right it will [significantly] reduce [carbon emissions and energy demand]…

2. Technology Development : Governments are very bad at picking winners. Better to get the right incentives in and let the market players decide [optimisation]. They can intervene, for example by [supporting] Research and Development. But don’t specify the means to an end…The best solution is a strong predictable carbon price, at $40 a tonne or more or it won’t make any difference. We prefer Cap and Trade. Taxes don’t actually decrease carbon [emissions] but fundamentally add cost to the consumer. As oil prices rose [in 2008 – 2009] North Americans went to smaller cars…Drivers [set] their behaviour from [fuel] prices…

[An important point to note here : one of the reasons why Americans used less motor oil during the “Derivatives Bubble” recession between 2006 and 2010 was because the economy was shot, so people lost their employment, and/or their homes and there was mass migration, so of course there was less commuter driving, less salesman driving, less business driving. This wasn’t just a response to higher oil prices, because the peak in driving miles happened before the main spike in oil prices. In addition, not much of the American fleet of cars overturned in this period, so Americans didn’t go to smaller cars as an adaptation response to high oil prices. They probably turned to smaller cars when buying new cars because they were cheaper. I think Simon Henry is rather mistaken on this. ]

[Simon Henry] …As regards the Carbon Bubble : 65% of the Unburnable fossil fuels to meet the 2 degrees [Celsius] target is coal. People would stuggle to name the top five coal companies [although they find it easy to name the top five oil and gas companies]. Bearing in mind that you have to [continue to] transport stuff [you are going to need oil for some time to come.] Dealing with coal is the best way of moving forward. Coal is used for electricity – but there are better ways to make electricity – petcoke [petroleum coke – a residue from processing heavy and unconventional crude oil] for example…

[The climate change impact of burning (or gasifying) petroleum coke for power generation is possibly worse than burning (or gasifying) hard coal (anthracite), especially if the pet coke is sourced from tar sands, as emissions are made in the production of the pet coke before it even gets combusted.]

[Simon Henry] …It will take us 30 years to get away entirely from coal. Even if we used all the oil and gas, the 2 degrees [Celsius] target is still possible…

3. Policy : We tested this with the Dutch Government recently – need to create an honest dialogue for a long-term perspective. Demand for energy needs to change. It’s not about supply…

[Again, some “hear hears” from the room from the Peak Oil and Peak Natural Gas deniers]

[Simon Henry] …it’s about demand. Our personal wish for [private] transport. [Not good to be] pushing the cost onto the big bad energy companies and their shareholders. It’s taxes or prices. [Politicians] must start to think of their children and not the next election…

…On targets and subsidies : India, Indonesia, Brazil […] to move on fossil fuel subsidies – can’t break the Laws of Economics forever. If our American friends drove the same cars we do, they’d reduce their oil consumption equivalent to all of the shale [Shale Gas ? Or Shale Oil ?]… Targets are an emotive issue when trying to get agreement from 190 countries. Only a few players that really matter : USA, China, EU, India – close to 70% of current emissions and maybe more in future. The EPA [Environmental Protection Agency in the United States of America] [announcement] on power emissions. China responded in 24 hours. The EU target on 27% renewables is not [country-specific, uniform across-the-board]. Last week APEC US deal with China on emissions. They switched everything off [and banned traffic] and people saw blue sky. Coal with CCS [Carbon Capture and Storage] we see as a good idea. We would hope for a multi-party commitment [from the United Nations climate talks], but [shows doubt]… To close : a couple of words on Shell – have to do that. We have only 2% [of the energy market], but we [hope we] can punch above our weight [in policy discussions]. We’re now beginning to establish gas as a transport fuel. Brazil – low carbon [bio]fuels. Three large CCS projects in Canada, EU… We need to look at our own energy use – pretty trivial, but [also] look at helping our customers look at theirs. Working with the DRC [China]. Only by including companies such as ourselves in [climate and energy policy] debate can we get the [global deal] we aspire to…

[…]

[Question from the table, Ed Wells (?), HSBC] : Green Bonds : how can they provide some of the finance [for climate change mitigation and adaptation] ? The first Renminbi denominated Green Bond from [?]. China has committed to non-fossil fuels. The G20 has just agreed the structure on infrastructure – important – not just for jobs and growth – parallel needs on climate change. [Us at HSBC…] Are people as excited about Green Bonds as we are ?

[Stephen Tindale] Yes.

[Question from the table, Anthony Cary, Commonwealth Scholarship Commission] …The key seems to be pricing carbon into the economy. You said you preferred Cap and Trade. I used to but despite reform the EU Emissions Trading Scheme (EU ETS) – [failures and] gaming the system. Tax seems to be a much more solid basis.

[Simon Henry] [The problem with the ETS] too many credits and too many exemptions. Get rid of the exemptions. Bank reserve of credits to push the price up. Degress the number of credits [traded]. Tax : if people can afford it, they pay the tax, doesn’t stop emissions. In the US, no consumption tax, they are very sensitive to the oil price going up and down – 2 to 3 million barrels a day [swing] on 16 million barrels a day. All the political impact on the US from shale could be done in the same way on efficiency [fuel standards and smaller cars]. Green Bonds are not something on top of – investment should be financed by Green Bonds, but investment is already being done today – better to get policy right and then all investment directed.

[…]

[Question from the table, Kirsten Gogan, Energy for Humanity] The role of nuclear power. By 2050, China will have 500 gigawatts (GW) of nuclear power. Electricity is key. Particularly coal. Germany is building new coal as removing nuclear…

[My internal response] It’s at this point that my ability to swallow myths was lost. I felt like shouting, politely, across the table : ACTUALLY KIRSTEN, YOU, AND A LOT OF OTHER PEOPLE IN THE ROOM ARE JUST PLAIN WRONG ON GERMANY AND COAL.

“Germany coal power generation at 10-year low in August”, 9th September 2014

And the only new coal-fired plants being built are those that were planned up to five years ago. No new coal-fired capacity is now being agreed.

[Kirsten Gogan]…German minister saying in public that you can’t phase out nuclear and coal at the same time. Nuclear is not included in that conversation. Need to work on policy to scale up nuclear to replace coal. Would it be useful to have a clear sectoral target on decarbonising – 100% on electricity ?

[Stephen Tindale] Electricity is the least difficult of the energy sectors to decarbonise. Therefore the focus should be on electricity. If a target would help (I’m not a fan) nuclear certainly needs to be a part of the discussions. Angela Merkel post-Fukushima has been crazy, in my opinion. If want to boost renewable energy, nuclear power will take subsidies away from that. But targets for renewable energy is the wrong objective.. If the target is keeping the climate stable then it’s worth subsidising nuclear. Subsidising is the wrong word – “risk reduction”.

[Simon Henry] If carbon was properly priced, nuclear would become economic by definition…

[My internal response] NO IT WOULDN’T. A LOT OF NUCLEAR CONSTRUCTION AND DECOMMISSIONING AND SPENT FUEL PROCESSING REQUIRES CARBON-BASED ENERGY.

[Simon Henry] …Basically, all German coal is exempted (from the EU ETS). If you have a proper market-based system then the right things will happen. The EU – hypocrisy at country level. Only [a couple of percent] of global emissions. The EU would matter if it was less hypocritical. China are more rational – long-term thinking. We worked with the DRC. Six differing carbon Cap and Trade schemes in operation to find the one that works best. They are effectively supporting renewable energy – add 15 GW each of wind and solar last year. They don’t listen to NIMBYs [they also build in the desert]. NIMBYism [reserved for] coal – because coal was built close to cities. [Relationship to Russia] – gas replacing coal. Not an accident. Five year plan. They believe in all solutions. Preferably Made in China so we can export to the rest of the world. [Their plans are for a range of aims] not just climate.

[…]
[…]

[Simon Henry] [in answer to a question about the City of London] We don’t rely on them to support our activities [my job security depends on a good relationship with them]]. We have to be successful first and develop [technological opportunities] [versus being weakened by taxes]. They can support change in technology. Financing coal may well be new money. Why should the City fund new coal investments ?

[Question from the table, asking about the “coal is 70% of the problem” message from Simon Henry] When you talk to the City investors, do you take the same message to the City ?

[Simon Henry] How much of 2.7 trillion tonnes of “Unburnable Carbon” is coal, oil and gas ? Two thirds of carbon reserves is coal. [For economic growth and] transport you need high density liquid fuels. Could make from coal [but the emissions impact would be high]. We need civil society to have a more serious [understanding] of the challenges.

After the discussion, I asked Simon Henry to clarify his words about the City of London.

[Simon Henry] We don’t use the City as a source of capital. 90% is equity finance. We don’t go to the market to raise equity. For every dollar of profit, we invest 75 cents, and pay out 25 cents as dividend to our shareholders. Reduces [problems] if we can show we can reinvest. [ $12 billion a year is dividend. ]

I asked if E&P [Exploration and Production] is working – if there are good returns on investment securing new reserves of fossil fuels – I know that the company aims for a 10 or 11 year Reserves to Production ratio (R/P) to ensure shareholder confidence.

Simon Henry mentioned the price of oil. I asked if the oil price was the only determinant on the return on investment in new E&P ?

[Simon Henry] If the oil price is $90 a barrel, that’s good. At $100 a barrel or $120 a barrel [there’s a much larger profit]. Our aim is to ensure we can survive at $70 a barrel. [On exploration] we still have a lot of things in play – not known if they are working yet… Going into the Arctic [At which point I said I hope we are not going into the Arctic]… [We are getting returns] Upstream is fine [supply of gas and oil]. Deepwater is fine. Big LNG [Liquefied Natural Gas] is fine. Shale is a challenge. Heavy Oil returns could be better – profitable, but… [On new E&P] Iraq, X-stan, [work in progress]. Downstream [refinery] has challenges on return. Future focus – gas and deepwater. [On profitability of investment – ] “Gas is fine. Deepwater is fine.”

[My summary] So, in summary, I think all of this means that Shell believes that Cap and Trade is the way to control carbon, and that the Cap and Trade cost would be borne by their customers (in the form of higher bills for energy because of the costs of buying carbon credits), so their business will not be affected. Although a Cap and Trade market could possibly cap their own market and growth as the sales envelope for carbon would be fixed, since Shell are moving into lower carbon fuels – principally Natural Gas, their own business still has room for growth. They therefore support Cap and Trade because they believe it will not affect them. WHAT THEY DON’T APPEAR TO WANT PEOPLE TO ASK IS IF A CAP AND TRADE SYSTEM WILL ACTUALLY BE EFFECTIVE IN CURBING CARBON DIOXIDE EMISSIONS. They want to be at the negotiating table. They believe that they’re not the problem – coal is. They believe that the world will continue to need high energy-dense oil for transport for some time to come. It doesn’t matter if the oil market gets constrained by natural limits to expansion because they have gas to expand with. They don’t see a problem with E&P so they believe they can keep up their R/P and stay profitable and share prices can continue to rise. As long as the oil price stays above $70 a barrel, they’re OK.

However, there was a hint in what Simon Henry talked about that all is not completely well in Petro-land.

a. Downstream profit warning

Almost in passing, Simon Henry admitted that downstream is potentially a challenge for maintaining returns on investment and profits. Downstream is petrorefinery and sales of the products. He didn’t say which end of the downstream was the issue, but oil consumption has recovered from the recent Big Dip recession, so that can’t be his problem – it must be in petrorefinery. There are a number of new regulations about fuel standards that are going to be more expensive to meet in terms of petroleum refinery – and the chemistry profiles of crude oils are changing over time – so that could also impact refinery costs.

b. Carbon disposal problem

The changing profile of crude oils being used for petrorefinery is bound to cause an excess of carbon to appear in material flows – and Simon Henry’s brief mention of petcoke is more significant than it may first appear. In future there may be way too much carbon to dispose of (petcoke is mostly carbon rejected by thermal processes to make fuels), and if Shell’s plan is to burn petcoke to make power as a solution to dispose of this carbon, then the carbon dioxide emissions profile of refineries is going to rise significantly… where’s the carbon responsiblity in that ?

Categories
Academic Freedom Alchemical Artistic Licence Baseload is History Be Prepared Behaviour Changeling Big Number Big Picture Big Society Bioeffigy Biofools Biomess British Biogas Burning Money Carbon Army Change Management Climate Change Cool Poverty Cost Effective Deal Breakers Design Matters Efficiency is King Electrificandum Emissions Impossible Energy Change Energy Insecurity Fossilised Fuels Fuel Poverty Gamechanger Global Heating Green Gas Green Power Heatwave Human Nurture Hydrogen Economy Insulation Major Shift National Energy Nudge & Budge Optimistic Generation Paradigm Shapeshifter Peak Emissions Policy Warfare Political Nightmare Realistic Models Regulatory Ultimatum Renewable Gas Renewable Resource Social Capital Solution City Technofix The Data The Power of Intention The Right Chemistry Voluntary Behaviour Change Wasted Resource Wind of Fortune

David MacKay : Heating London

I took some notes from remarks made by Professor David MacKay, the UK Government’s Chief Scientific Advisor, yesterday, 1st May 2014, at an event entitled “How Will We Heat London ?”, held by Max Fordhams as part of the Green Sky Thinking, Open City week. I don’t claim to have recorded his words perfectly, but I hope I’ve captured the gist.


[David MacKay] : [Agreeing with others on the panel – energy] demand reduction is really important. [We have to compensate for the] “rebound effect”, though [where people start spending money on new energy services if they reduce their demand for their current energy services].

SAP is an inaccurate tool and not suitable for the uses we put it too :-
https://www.eden.gov.uk/planning-and-development/building-control/building-control-guidance-notes/sap-calculations-explained/
https://www.dimplex.co.uk/products/renewable_solutions/building_regulations_part_l.htm

Things seem to be under-performing [for example, Combined Heat and Power and District Heating schemes]. It would be great to have data. A need for engineering expertise to get in.

I’m not a Chartered Engineer, but I’m able to talk to engineers. I know a kilowatt from a kilowatt hour [ (Laughter from the room) ]. We’ve [squeezed] a number of engineers into DECC [the Department of Energy and Climate Change].

I’m an advocate of Heat Pumps, but the data [we have received from demonstration projects] didn’t look very good. We hired two engineers and asked them to do the forensic analysis. The heat pumps were fine, but the systems were being wrongly installed or used.

Now we have a Heat Network team in DECC – led by an engineer. We’ve published a Heat Strategy. I got to write the first three pages and included an exergy graph.

[I say to colleagues] please don’t confuse electricity with energy – heat is different. We need not just a green fluffy solution, not just roll out CHP [Combined Heat and Power] [without guidance on design and operation].

Sources of optimism ? Hopefully some of the examples will be available – but they’re not in the shop at the moment.

For example, the SunUp Heat Battery – works by having a series of chambers of Phase Change Materials, about the size of a fridge that you would use to store heat, made by electricity during the day, for use at night, and meet the demand of one home. [Comment from Paul Clegg, Senior Partner at Feilden Clegg Bradley Studios : I first heard about Phase Change Materials back in the 1940s ? 1950s ? And nothing’s come of it yet. ] Why is that a good idea ? Well, if you have a heat pump and a good control system, you can use electricity when it’s cheapest… This is being trialled in 10 homes.

Micro-CHP – [of those already trialled] definitely some are hopeless, with low temperature and low electricity production they are just glorified boilers with a figleaf of power.

Maybe Fuel Cells are going to deliver – power at 50% efficiency [of conversion] – maybe we’ll see a Fuel Cell Micro-Combined Heat and Power unit ?

Maybe there will be hybrid systems – like the combination of a heat pump and a gas boiler – with suitable controls could lop off peaks of demand (both in power and gas).

We have designed the 2050 Pathways Calculator as a tool in DECC. It was to see how to meet the Carbon Budget. You can use it as an energy security calculator if you want. We have helped China, Korea and others to write their own calculators.

A lot of people think CHP is green and fluffy as it is decentralised, but if you’re using Natural Gas, that’s still a Fossil Fuel. If you want to run CHP on biomass, you will need laaaaaarge amounts of land. You can’t make it all add up with CHP. You would need many Wales’-worth of bioenergy or similar ways to make it work.

Maybe we should carry on using boilers and power with low carbon gas – perhaps with electrolysis [A “yay !” from the audience. Well, me, actually]. Hydrogen – the the 2050 Calculator there is no way to put it back into the beginning of the diagram – but it could provide low carbon heat, industry and transport. At the moment we can only put Hydrogen into Transport [in the 2050 Calculator. If we had staff in DECC to do that… It’s Open Source, so if any of you would like to volunteer…

Plan A of DECC was to convert the UK to using lots of electricity [from nuclear power and other low carbon technologies, to move to a low carbon economy], using heat pumps at the consumer end, but there’s a problem in winter [Bill Watts of Max Fordham had already shown a National Grid or Ofgem chart of electricity demand and gas demand over the year, day by day. Electricity demand (in blue) fluctuates a little, but it pretty regular over the year. Gas demand (in red) however, fluctuates a lot, and is perhaps 6 to 10 times larger in winter than in summer.]

If [you abandon Plan A – “electrification of everything”] and do it the other way, you will need a large amount of Hydrogen, and a large Hydrogen store. Electrolysers are expensive, but we are doing/have done a feasibility study with ITM Power – to show the cost of electrolysers versus the cost of your wind turbines [My comment : but you’re going to need your wind turbines to run your electrolysers with their “spare” or “curtailed” kilowatt hours.]

[David Mackay, in questions from the floor] We can glue together [some elements]. Maybe the coming smart controls will help…can help save a load of energy. PassivSystems – control such things as your return temperature [in your Communal or District Heating]…instead of suing your heat provider [a reference to James Gallagher who has problems with his communal heating system at Parkside SE10], maybe you could use smart controls…

[Question] Isn’t using smart controls like putting a Pirelli tyre on a Ford Cortina ? Legacy of poor CHP/DH systems…

[David MacKay in response to the question of insulation] If insulation were enormously expensve, we wouldn’t have to be so enthusastic about it…We need a well-targeted research programme looking at deep retrofitting, instead of letting it all [heat] out.

[Adrian Gault, Committee on Climate Change] We need an effective Government programme to deliver that. Don’t have it in the Green Deal. We did have it [in the previous programmes of CERT and CESP], but since they were cancelled in favour of the Green Deal, it’s gone off a cliff [levels of insulation installations]. We would like to see an initiative on low cost insulation expanded. The Green Deal is not producing a response.

[Bill Watts, Max Fordham] Agree that energy efficiency won’t run on its own. But it’s difficult to do. Not talking about automatons/automation. Need a lot of pressure on this.

[Adrian Gault] Maybe a street-by-street approach…

[Michael Trousdell, Arup] Maybe a rule like you can’t sell a house unless you’ve had the insulation done…

[Peter Clegg] … We can do heat recovery – scavenging the heat from power stations, but we must also de-carbonise the energy supply – this is a key part of the jigsaw.

Categories
Acid Ocean Assets not Liabilities Baseload is History Be Prepared Big Number Big Picture Biofools British Biogas British Sea Power Carbon Capture Carbon Recycling China Syndrome Climate Change Climate Chaos Climate Damages Coal Hell Design Matters Direction of Travel Disturbing Trends Efficiency is King Electrificandum Energy Autonomy Energy Calculation Energy Crunch Energy Denial Energy Insecurity Energy Revival Engineering Marvel Environmental Howzat Extreme Energy Extreme Weather Fair Balance Feel Gooder Fossilised Fuels Freshwater Stress Gamechanger Gas Storage Green Investment Green Power Hydrocarbon Hegemony Hydrogen Economy Insulation Low Carbon Life Major Shift Marine Gas Marvellous Wonderful Methane Management Military Invention National Energy National Power Nuclear Nuisance Nuclear Shambles Optimistic Generation Peak Emissions Policy Warfare Political Nightmare Realistic Models Regulatory Ultimatum Renewable Gas Resource Curse Resource Wards Shale Game Solar Sunrise Solution City The Power of Intention The Right Chemistry Transport of Delight Unconventional Foul Ungreen Development Unnatural Gas Utter Futility Vain Hope Wind of Fortune

But Uh-Oh – Those Summer Nights

A normal, everyday Monday morning at Energy Geek Central. Yes, this is a normal conversation for me to take part in on a Monday morning. Energy geekery at breakfast. Perfect.

Nuclear Flower Power

This whole UK Government nuclear power programme plan is ridiculous ! 75 gigawatts (GW) of Generation III nuclear fission reactors ? What are they thinking ? Britain would need to rapidly ramp up its construction capabilities, and that’s not going to happen, even with the help of the Chinese. (And the Americans are not going to take too kindly to the idea of China getting strongly involved with British energy). And then, we’d need to secure almost a quarter of the world’s remaining reserves of uranium, which hasn’t actually been dug up yet. And to cap it all, we’d need to have 10 more geological disposal repositories for the resulting radioactive spent fuel, and we haven’t even managed to negotiate one yet. That is, unless we can burn a good part of that spent fuel in Generation IV nuclear fission reactors – which haven’t even been properly demonstrated yet ! Talk about unconscionable risk !

Baseload Should Be History By Now, But…

Whatever the technological capability for nuclear power plants to “load follow” and reduce their output in response to a chance in electricity demand, Generation III reactors would not be run as anything except “baseload” – constantly on, and constantly producing a constant amount of power – although they might turn them off in summer for maintenance. You see, the cost of a Generation III reactor and generation kit is in the initial build – so their investors are not going to permit them to run them at low load factors – even if they could.

There are risks to running a nuclear power plant at partial load – mostly to do with potential damage to the actual electricity generation equipment. But what are the technology risks that Hinkley Point C gets built, and all that capital is committed, and then it only runs for a couple of years until all that high burn up fuel crumbles and the reactors start leaking plutonium and they have to shut it down permanently ? Who can guarantee it’s a sound bet ?

If they actually work, running Generation III reactors at constant output as “baseload” will also completely mess with the power market. In all of the scenarios, high nuclear, high non-nuclear, or high fossil fuels with Carbon Capture and Storage (CCS), there will always need to be some renewables in the mix. In all probability this will be rapidly deployed, highly technologically advanced solar power photovoltaics (PV). The amount of solar power that will be generated will be high in summer, but since you have a significant change in energy demand between summer and winter, you’re going to have a massive excess of electricity generation in summer if you add nuclear baseload to solar. Relative to the demand for energy, you’re going to get more Renewable Energy excess in summer and under-supply in winter (even though you get more offshore wind in winter), so it’s critical how you mix those two into your scenario.

The UK Government’s maximum 75 GW nuclear scenario comprises 55 GW Generation III and 20 GW Generation IV. They could have said 40 GW Gen III to feed Gen IV – the spent fuel from Gen III is needed to kick off Gen IV. Although, if LFTR took off, if they had enough fluoride materials there could be a Thorium way into Gen IV… but this is all so technical, no MP [ Member of Parliament ] is going to get their head round this before 2050.

The UK Government are saying that 16 GW of nuclear by 2030 should be seen as a first tranche, and that it could double or triple by 2040 – that’s one heck of a deployment rate ! If they think they can get 16 GW by 2030 – then triple that by 10 years later ? It’s not going to happen. And even 30 GW would be horrific. But it’s probably more plausible – if they can get 16 GW by 2030, they can arguably get double that by 2040.

As a rule of thumb, you would need around 10 tonnes of fissionable fuel to kickstart a Gen IV reactor. They’ve got 106 tonnes of Plutonium, plus 3 or 4 tonnes they recently acquired – from France or Germany (I forget which). So they could start 11 GW of Gen IV – possibly the PRISM – the Hitachi thing – sodium-cooled. They’ve been trying them since the Year Dot – these Fast Reactors – the Breeders – Dounreay. People are expressing more confidence in them now – “Pandora’s Promise” hangs around the narrative that the Clinton administration stopped research into Fast Reactors – Oak Ridge couldn’t be commercial. Throwing sodium around a core 80 times hotter than current core heats – you can’t throw water at it easily. You need something that can carry more heat out. It’s a high technological risk. But then get some French notable nuclear person saying Gen IV technologies – “they’re on the way and they can be done”.

Radioactive Waste Disposal Woes

The point being is – if you’re commissioning 30 GW of Gen III in the belief that Gen IV will be developed – then you are setting yourself up to be a hostage to technological fortune. That is a real ethical consideration. Because if you can’t burn the waste fuel from Gen III, you’re left with up to 10 radioactive waste repositories required when you can’t even get one at the moment. The default position is that radioactive spent nuclear fuel will be left at the power stations where they’re created. Typically, nuclear power plants are built on the coast as they need a lot of cooling water. If you are going for 30 GW you will need a load of new sites – possibly somewhere round the South East of England. This is where climate change comes in – rising sea levels, increased storm surge, dissolving, sinking, washed-away beaches, more extreme storms […] The default spent fuel scenario with numerous coastal decommissioned sites with radioactive interim stores which contain nearly half the current legacy radioactive waste […]

Based on the figures from the new Greenpeace report, I calculate that the added radioactive waste and radioactive spent fuel arisings from a programme of 16 GW of nuclear new build would be 244 million Terabequerel (TBq), compared to the legacy level of 87 million TBq.

The Nuclear Decommissioning Authority (NDA) are due to publish their Radioactive Waste Inventory and their Report on Radioactive Materials not in the Waste Inventory at the end of January 2014. We need to keep a watch out for that, because they may have adapted their anticipated Minimum and Maxmium Derived Inventory.

Politics Is Living In The Past

What you hear from politicians is they’re still talking about “baseload”, as if they’ve just found the Holy Grail of Energy Policy. And failed nuclear power. Then tidal. And barrages. This is all in the past. Stuff they’ve either read – in an article in a magazine at the dentist’s surgery waiting room, and they think, alright I’ll use that in a TV programme I’ve been invited to speak on, like Question Time. I think that perhaps, to change the direction of the argument, we might need to rubbish their contribution. A technological society needs to be talking about gasification, catalysis. If you regard yourselves as educated, and have a technological society – your way of living in the future is not only in manufacturing but also ideas – you need to be talking about this not that : low carbon gas fuels, not nuclear power. Ministers and senior civil servants probably suffer from poor briefing – or no briefing. They are relying on what is literally hearsay – informal discussions, or journalists effectively representing industrial interests. Newspapers are full of rubbish and it circulates, like gyres in the oceans. Just circulates around and around – full of rubbish.

I think part of the problem is that the politicians and chief civil servants and ministers are briefed by the “Old Guard” – very often the ex-nuclear power industry guard. They still believe in big construction projects, with long lead times and massive capital investment, whereas Renewable Electricity is racing ahead, piecemeal, and private investors are desperate to get their money into wind power and solar power because the returns are almost immediate and risk-free.

Together in Electric Dreams

Question : Why are the UK Government ploughing on with plans for so much nuclear power ?

1. They believe that a lot of transport and heat can be made to go electric.
2. They think they can use spent nuclear fuel in new reactors.
3. They think it will be cheaper than everything else.
4. They say it’s vital for UK Energy Security – for emissions reductions, for cost, and for baseload. The big three – always the stated aim of energy policy, and they think nuclear ticks all those three boxes. But it doesn’t.

What they’ll say is, yes, you have to import uranium, but you’ve got a 4 year stock. Any war you’re going to get yourselves involved in you can probably resolve in 4 days, or 4 weeks. If you go for a very high nuclear scenario, you would be taking quite a big share of the global resource of uranium. There’s 2,600 TWh of nuclear being produced globally. And global final energy demand is around 100,000 TWh – so nuclear power currently produces around 2.6% of global energy supply. At current rates of nuclear generation, according to the World Nuclear Association, you’ve got around 80 years of proven reserves and probably a bit more. Let’s say you double nuclear output by 2050 or 2040 – but in the same time you might just have enough uranium – and then find a bit more. But global energy demand rises significantly as well – so nuclear will still only provide around 3% of global energy demand. That’s not a climate solution – it’s just an energy distraction. All this guff about fusion. Well.

Cornering The Market In Undug Uranium

A 75 GW programme would produce at baseload 590 TWh a year – divide by 2,600 – is about 23% of proven global uranium reserves. You’re having to import, regardless of what other countries are doing, you’re trying to corner the market – roughly a quarter. Not even a quarter of the market – a quarter of all known reserves – it’s not all been produced yet. It’s still in the ground. So could you be sure that you could actually run these power stations if you build them ? Without global domination of the New British Empire […]. The security issues alone – defending coastal targets from a tweeb with a desire to blow them up. 50 years down the line they’re full of radioactive spent fuel that won’t have a repository to go to – we don’t want one here – and how much is it going to cost ?

My view is that offshore wind will be a major contributor in a high or 100% Renewable Electricity scenario by 2050 or 2060. Maybe 180 GW, that will also be around 600 TWh a year – comparable to that maximum nuclear programme. DECC’s final energy demand 2050 – several scenarios – final energy demand from 6 scenarios came out as between roughly 1,500 TWh a year and the maximum 2,500 TWh. Broadly speaking, if you’re trying to do that just with Renewable Electricity, you begin to struggle quite honestly, unless you’re doing over 600 TWh of offshore wind, and even then you need a fair amount of heat pump stuff which I’m not sure will come through. The good news is that solar might – because of the cost and technology breakthroughs. That brings with it a problem – because you’re delivering a lot of that energy in summer. The other point – David MacKay would say – in his book his estimate was 150 TWh from solar by 2050, on the grounds that that’s where you south-facing roofs are – you need to use higher efficiency triple junction cells with more than 40% efficiency and this would be too expensive for a rollout which would double or triple that 150 TWh – that would be too costly – because those cells are too costly. But with this new stuff, you might get that. Not only the cost goes down, but the coverage goes down. Not doing solar across swathes of countryside. There have always been two issues with solar power – cost and where it’s being deployed.

Uh-Oh, Summer Days. Uh-Oh, Summer Nights

With the solar-wind headline, summer days and summer nights are an issue.

With the nuclear headline, 2040 – they would have up to 50 GW, and that would need to run at somewhere between 75% and 95% capacity – to protect the investment and electric generation turbines.

It will be interesting to provide some figures – this is how much over-capacity you’re likely to get with this amount of offshore wind. But if you have this amount of nuclear power, you’ll get this amount […]

Energy demand is strongly variable with season. We have to consider not just power, but heat – you need to get that energy out in winter – up to 4 times as much during peak in winter evenings. How are you going to do that ? You need gas – or you need extensive Combined Heat and Power (CHP) (which needs gas). Or you need an unimaginable deployment of domestic heat pumps. Air source heat pumps won’t work at the time you need them most. Ground source heat pumps would require the digging up of Britain – and you can’t do that in most urban settings.

District Heat Fields

The other way to get heat out to everyone in a low carbon world – apart from low carbon gas – is having a field-based ground source heat pump scheme – just dig up a field next to a city – and just put in pipes and boreholes in a field. You’re not disturbing anybody. You could even grow crops on it next season. Low cost and large scale – but would need a District Heating (DH) network. There are one or two heat pump schemes around the world. Not sure if they are used for cooling in summer or heat extraction in the winter. The other thing is hot water underground. Put in an extra pipe in the normal channels to domestic dwellings. Any excess heat from power generation or electrolysis or whatever is put down this loop and heats the sub-ground. Because heat travels about 1 metre a month in soil, that heat should be retained for winter. A ground source heat sink. Geothermal energy could come through – they’re doing a scheme in Manchester. If there’s a nearby heat district network – it makes it easier. Just want to tee it into the nearest DH system. The urban heat demand is 150 TWh a year. You might be able to put DH out to suburban areas as well. There are 9 million gas-connected suburban homes – another about 150 TWh there as well – or a bit more maybe. Might get to dispose of 300 TWh in heat through DH. The Green Deal insulation gains might not be what is claimed – and condensing gas boiler efficiencies are not that great – which feeds into the argument that in terms of energy efficiency, you not only want to do insulation, but also DH – or low carbon gas. Which is the most cost-effective ? Could argue reasonable energy efficiency measures are cheapest – but DH might be a better bet. That involves a lot of digging.

Gas Is The Logical Answer

But everything’s already laid for gas. (…but from the greatest efficiency first perspective, if you’re not doing DH, you’re not using a lot of Renewable Heat you could otherwise use […] )

The best package would be the use of low carbon gases and sufficient DH to use Renewable Heat where it is available – such as desalination, electrolysis or other energy plant. It depends where the electrolysis is being done.

The Age of Your Carbon

It also depends on which carbon atoms you’re using. If you are recycling carbon from the combustion of fossil fuels into Renewable Gas, that’s OK. But you can’t easily recapture carbon emissions from the built environment (although you could effectively do that with heat storage). You can’t do carbon capture from transport either. So your low carbon gas has to come from biogenic molecules. Your Renewable Gas has to be synthesised using biogenic carbon molecules rather than fossil ones.

[…] I’m using the phrase “Young Carbon”. Young Carbon doesn’t have to be from plants – biological things that grow.

Well, there’s Direct Air Capture (DAC). It’s simple. David Sevier, London-based, is working on this. He’s using heat to capture carbon dioxide. You could do it from exhaust in a chimney or a gasification process – or force a load of air through a space. He would use heat and cooling to create an updraft. It would enable the “beyond capture” problem to be circumvented. Cost is non-competitive. Can be done technically. Using reject heat from power stations for the energy to do it. People don’t realise you can use a lot of heat to capture carbon, not electricity.

Young Carbon from Seawater

If you’re playing around with large amounts of seawater anyway – that is, for desalination for irrigation, why not also do Renewable Hydrogen, and pluck the Carbon Dioxide out of there too to react with the Renewable Hydrogen to make Renewable Methane ? I’m talking about very large amounts of seawater. Not “Seawater Greenhouses” – condensation designs mainly for growing exotic food. If you want large amounts of desalinated water – and you’re using Concentrated Solar Power – for irrigating deserts – you would want to grow things like cacti for biological carbon.

Say you had 40 GW of wind power on Dogger Bank, spinning at 40% load factor a year. You’ve also got electrolysers there. Any time you’re not powering the grid, you’re making gas – so capturing carbon dioxide from seawater, splitting water for hydrogen, making methane gas. Wouldn’t you want to use flash desalination first to get cleaner water for electrolysis ? Straight seawater electrolysis is also being done.

It depends on the relative quantities of gas concentrated in the seawater. If you’ve got oxygen, hydrogen and carbon dioxide, that would be nice. You might get loads of oxygen and hydrogen, and only poor quantities of carbon dioxide ?

But if you could get hydrogen production going from spare wind power. And even if you had to pipe the carbon dioxide from conventional thermal power plants, you’re starting to look at a sea-based solution for gas production. Using seawater, though, chlorine is the problem […]

Look at the relative density of molecules – that sort of calculation that will show if this is going to fly. Carbon dioxide is a very fixed, stable molecule – it’s at about the bottom of the energy potential well – you have to get that reaction energy from somewhere.

How Much Spare Power Will There Be ?

If you’ve got an offshore wind and solar system. At night, obviously, the solar’s not working (unless new cells are built that can run on infrared night-time Earthshine). But you could still have 100 GWh of wind power at night not used for the power grid. The anticipated new nuclear 40 GW nuclear by 2030 will produce about 140 GWh – this would just complicate problems – adding baseload nuclear to a renewables-inclusive scenario. 40 GW is arguably a reasonable deployment of wind power by 2030 – low if anything.

You get less wind in a nuclear-inclusive scenario, but the upshot is you’ve definitely got a lot of power to deal with on a summer night with nuclear power. You do have with Renewable Electricity as well, but it varies more. Whichever route we take we’re likely to end up with excess electricity generation on summer nights.

In a 70 GW wind power deployment (50 GW offshore, 20 GW onshore – 160 TWh a year), you might have something like 50 to 100 GWh per night of excess (might get up to 150 GWh to store on a windy night). But if you have a 16 GW nuclear deployment by 2030 (125 TWh a year), you are definitely going to have 140 GWh of excess per night (that’s 16 GW for 10 hours less a bit). Night time by the way is roughly between 9pm and 7am between peak demands.

We could be making a lot of Renewable Gas !

Can you build enough Renewable Gas or whatever to soak up this excess nuclear or wind power ?

The energy mix is likely to be in reality somewhere in between these two extremes of high nuclear or high wind.

But if you develop a lot of solar – so that it knocks out nuclear power – it will be the summer day excess that’s most significant. And that’s what Germany is experiencing now.

Choices, choices, choices

There is a big choice in fossil fuels which isn’t really talked about very often – whether the oil and gas industry should go for unconventional fossil fuels, or attempt to make use of the remaining conventional resources that have a lower quality. The unconventionals narrative – shale gas, coalbed methane, methane hydrates, deepwater gas, Arctic oil and gas, heavy oil, is running out of steam as it becomes clear that some of these choices are expensive, and environmentally damaging (besides their climate change impact). So the option will be making use of gas with high acid gas composition. And the technological solutions for this will be the same as needed to start major production of Renewable Gas.

Capacity Payments

But you still need to answer the balancing question. If you have a high nuclear power scenario, you need maybe 50 TWh a year of gas-fired power generation. If high Renewable Electricity, you will need something like 100 TWh of gas, so you need Carbon Capture and Storage – or low carbon gas.

Even then, the gas power plants could be running only 30% of the year, and so you will need capacity payments to make sure new flexible plants get built and stay available for use.

If you have a high nuclear scenario, coupled with gas, you can meet the carbon budget – but it will squeeze out Renewable Electricity. If high in renewables, you need Carbon Capture and Storage (CCS) or Carbon Capture and Recycling into Renewable Gas, but this would rule out nuclear power. It depends which sector joins up with which.

Carbon Capture, Carbon Budget

Can the Drax power plant – with maybe one pipeline 24 inches in diameter, carrying away 20 megatonnes of carbon dioxide per year – can it meet the UK’s Carbon Budget target ?

Categories
Bioeffigy Biofools Biomess Breathe Easy Renewable Gas Renewable Resource

Biomass : Chainsaw of Destruction

This evening I was at a very interesting meeting hosted by BiofuelWatch in the fabulous Lumen Centre near King’s Cross, London.

The new report “Biomass : Chain of Destruction” was launched with public Skype interviews with colleagues in Brazil and the United States. All very 2013, but the biomass combustion technologies of concern are mostly all so last century.

Ordinary combustion of any biological material, whether ancient trees, such as coal, or modern trees, in the form of compressed wood pellets, is generally inefficient. But to burn biomass to create heat to vapourise water to make steam to turn electrical turbines to make power is scandalously wasteful.

In the Executive Summary of the report (downloaded from this website), these demands were made :-

“1. Large­scale industrial bioenergy to be removed
from definitions of “renewable energy”. The term
“renewable” must be formalized to reflect the real
costs to the environment and public health.”

“2. An end to subsidies, including targets and other
state incentives, for industrial bioenergy.”

“3. A major policy shift away from large­scale energy
generation through combustion, towards our energy
needs being satisfied through a combination of
genuinely climate­friendly renewable energy and a
substantial reduction in both energy generation and
use.”

A discussion arose in my corner of the room about where we should draw the line between “good” biomass applications, and “bad” biomass applications. It was generally agreed that burning local biomass for local heat in an efficient machine, would limit particulate emissions and be very energy efficient and sustainable.

And at the other end of the scale, I am looking at the potential for the highly-efficient gasification of biomass to make Renewable Gas – the higher temperatures mean that less carbon particulates, tars and poisons remain. For centralised Renewable Gas plants, air quality management would be necessary, through the capture and filtering of particulates and other unwanted by-products, but the cost of this is manageable at this scale.

If ordinary incineration or combustion is being done at the medium to large scale, this is likely to be the cause of major problems, in the event of sharply rising levels of biomass burning for electricity production. The inefficiency of the energy conversion will mean that full air quality protection may be too expensive to apply to the exhaust, and it will be simply vented to air.

Categories
Bioeffigy Biofools Biomess Forestkillers

Blink, and it’s logged





They took all the trees, and put ’em in a tree museum…“, or in this case – burned them in a biomass power plant.

Please read this very important report on global bioenergy strategy and ask yourself this question, “Who agreed to this ?”

And then, maybe consider coming to this meeting :-

“A Burning Issue – Biomass and its impacts on forests and communities”
29th October 2013
19:00 – 21:00
Lumen Centre, London

“At this event we are launching our new report “Biomass: the Chain of Destruction” which tracks the impacts of the rapidly growing industry using biomass for electricity generation – from the cleared forests of the Americas to the communities in the UK living in the shadow of it.”

“We will be hearing from speakers who will tell us about the thousands of hectares of eucalyptus plantations that have replaced diverse ecosystems and communities in the Brazillian state of Maranhão. We will also hear about the clear-felling of ancient wetland forests in the Southern US to fuel Drax and E-On’s switch to so-called “clean” biomass energy. Lastly we will hear about the struggles of communities in the UK fighting unfair planning, poor air quality and environmental injustice.”

“The event is free but please email us to let us know you are coming biofuelwatch@ymail.com

“For more details please see our website: https://www.biofuelwatch.org.uk/2013/burning_issue_public_event/

Categories
Assets not Liabilities Big Number Big Picture Big Society Biofools Biomess British Sea Power Burning Money Carbon Army Carbon Capture Carbon Pricing Change Management Climate Change Climate Chaos Climate Damages Coal Hell Conflict of Interest Corporate Pressure Cost Effective Dead End Dead Zone Demoticratica Design Matters Direction of Travel Disturbing Trends Dreamworld Economics Efficiency is King Electrificandum Emissions Impossible Energy Autonomy Energy Change Energy Denial Energy Insecurity Energy Revival Energy Socialism Engineering Marvel Environmental Howzat Food Insecurity Forestkillers Fossilised Fuels Genetic Modification Geogingerneering Green Investment Green Power Growth Paradigm Health Impacts Hide the Incline Human Nurture Incalculable Disaster Insulation Major Shift Mass Propaganda Media Money Sings National Energy National Power Neverending Disaster No Pressure Nuclear Nuisance Nuclear Shambles Optimistic Generation Peak Coal Policy Warfare Political Nightmare Price Control Protest & Survive Public Relations Realistic Models Regulatory Ultimatum Renewable Resource Resource Curse Resource Wards Solution City Technofix Technological Fallacy Technological Sideshow Technomess The Price of Gas The Price of Oil The War on Error Tree Family Ungreen Development Western Hedge Wind of Fortune

Mind the Gap : BBC Costing the Earth

I listened to an interesting mix of myth, mystery and magic on BBC Radio 4.

Myths included the notion that long-term, nuclear power would be cheap; that “alternative” energy technologies are expensive (well, nuclear power is, but true renewables are most certainly not); and the idea that burning biomass to create heat to create steam to turn turbines to generate electricity is an acceptably efficient use of biomass (it is not).

Biofuelwatch are hosting a public meeting on this very subject :-
https://www.biofuelwatch.org.uk/2013/burning_issue_public_event/
“A Burning Issue – biomass and its impacts on forests and communities”
Tuesday, 29th October 2013, 7-9pm
Lumen Centre, London (close to St Pancras train station)
https://www.lumenurc.org.uk/lumencontact.htm
Lumen Centre, 88 Tavistock Place, London WC1H 9RS

Interesting hints in the interviews I thought pointed to the idea that maybe, just maybe, some electricity generation capacity should be wholly owned by the Government – since the country is paying for it one way or another. A socialist model for gas-fired generation capacity that’s used as backup to wind and solar power ? Now there’s an interesting idea…




https://www.bbc.co.uk/programmes/b03cn0rb

“Mind the Gap”
Channel: BBC Radio 4
Series: Costing the Earth
Presenter: Tom Heap
First broadcast: Tuesday 15th October 2013

Programme Notes :

“Our energy needs are growing as our energy supply dwindles.
Renewables have not come online quickly enough and we are increasingly
reliant on expensive imported gas or cheap but dirty coal. Last year
the UK burnt 50% more coal than in previous years but this helped
reverse years of steadily declining carbon dioxide emissions. By 2015
6 coal fired power stations will close and the cost of burning coal
will increase hugely due to the introduction of the carbon price
floor. Shale gas and biomass have been suggested as quick and easy
solutions but are they really sustainable, or cheap?”

“Carbon Capture and Storage could make coal or gas cleaner and a new
study suggests that with CCS bio energy could even decrease global
warming. Yet CCS has stalled in the UK and the rest of Europe and the
debate about the green credentials of biomass is intensifying. So what
is really the best answer to Britain’s energy needs? Tom Heap
investigates.”

00:44 – 00:48
[ Channel anchor ]
Britain’s energy needs are top of the agenda in “Costing the Earth”…

01:17
[ Channel anchor ]
…this week on “Costing the Earth”, Tom Heap is asking if our
ambitions to go green are being lost to the more immediate fear of
blackouts and brownouts.

01:27
[ Music : Arcade Fire – “Neighbourhood 3 (Power Out)” ]

[ Tom Heap ]

Energy is suddenly big news – central to politics and the economy. The
countdown has started towards the imminent shutdown of many coal-fired
power stations, but the timetable to build their replacements has
barely begun.

It’ll cost a lot, we’ll have to pay, and the politicians are reluctant
to lay out the bill. But both the official regulator and industry are
warning that a crunch is coming.

So in this week’s “Costing the Earth”, we ask if the goal of clean,
green and affordable energy is being lost to a much darker reality.

02:14
[ Historical recordings ]

“The lights have started going out in the West Country : Bristol,
Exeter and Plymouth have all had their first power cuts this
afternoon.”

“One of the biggest effects of the cuts was on traffic, because with
the traffic lights out of commission, major jams have built up,
particularly in the town centres. One of the oddest sights I saw is a
couple of ladies coming out of a hairdressers with towels around their
heads because the dryers weren’t working.”

“Television closes down at 10.30 [ pm ], and although the cinemas are
carrying on more or less normally, some London theatres have had to
close.”

“The various [ gas ] boards on both sides of the Pennines admit to
being taken by surprise with today’s cold spell which brought about
the cuts.”

“And now the major scandal sweeping the front pages of the papers this
morning, the advertisement by the South Eastern Gas Board recommending
that to save fuel, couples should share their bath.”

[ Caller ]
“I shall write to my local gas board and say don’t do it in
Birmingham. It might be alright for the trendy South, but we don’t
want it in Birmingham.”

03:13
[ Tom Heap ]

That was 1974.

Some things have changed today – maybe a more liberal attitude to
sharing the tub. But some things remain the same – an absence of
coal-fired electricity – threatening a blackout.

Back then it was strikes by miners. Now it’s old age of the power
plants, combined with an EU Directive obliging them to cut their
sulphur dioxide and nitrous oxide emissions by 2016, or close.

Some coal burners are avoiding the switch off by substituting wood;
and mothballed gas stations are also on standby.

But Dieter Helm, Professor of Energy Policy at the University of
Oxford, now believes power cuts are likely.

03:57
[ Dieter Helm ]

Well, if we take the numbers produced by the key responsible bodies,
they predict that there’s a chance that by the winter of 2-15 [sic,
meaning 2015] 2-16 [sic, meaning 2016], the gap between the demand for
electricity and the supply could be as low as 2%.

And it turns out that those forecasts are based on extremely
optimistic assumptions about how far demand will fall in that period
(that the “Green Deal” will work, and so on) and that we won’t have
much economic growth.

So basically we are on course for a very serious energy crunch by the
winter of 2-15 [sic, meaning 2015] 2-16 [sic, meaning 2016], almost
regardless of what happens now, because nobody can build any power
stations between now and then.

It’s sort of one of those slow motion car crashes – you see the whole
symptoms of it, and people have been messing around reforming markets
and so on, without addressing what’s immediately in front of them.

[ Tom Heap ]

And that’s where you think we are now ?

[ Dieter Helm ]

I think there’s every risk of doing so.

Fortunately, the [ General ] Election is a year and a half away, and
there’s many opportunities for all the political parties to get real
about two things : get real about the energy crunch in 2-15 [sic,
meaning 2015] 2-16 [sic, meaning 2016] and how they’re going to handle
it; and get real about creating the incentives to decarbonise our
electricity system, and deal with the serious environmental and
security and competitive issues which our electricity system faces.

And this is a massive investment requirement [ in ] electricity : all
those old stations retiring [ originally built ] back from the 1970s –
they’re all going to be gone.

Most of the nuclear power stations are coming to the end of their lives.

We need a really big investment programme. And if you really want an
investment programme, you have to sit down and work out how you’re
going to incentivise people to do that building.

[ Tom Heap ]

If we want a new energy infrastructure based on renewables and
carbon-free alternatives, then now is the time to put those incentives
on the table.

The problem is that no-one seems to want to make the necessary
investment, least of all the “Big Six” energy companies, who are
already under pressure about high bills.

[ “Big Six” are : British Gas / Centrica, EdF Energy (Electricite
de France), E.On UK, RWE npower, Scottish Power and SSE ]

Sam Peacock of the energy company SSE [ Scottish and Southern Energy ]
gives the commercial proof of Dieter’s prediction.

If energy generators can’t make money out of generating energy,
they’ll be reluctant to do it.

[ Sam Peacock ]

Ofgem, the energy regulator, has looked at this in a lot of detail,
and said that around 2015, 2016, things start to get tighter. The
reason for this is European Directives, [ is [ a ] ] closing down some
of the old coal plants. And also the current poor economics around [
or surround [ -ing ] ] both existing plant and potential new plant.

So, at the moment it’s very, very difficult to make money out of a gas
plant, or invest in a new one. So this leads to there being, you know,
something of a crunch point around 2015, 2016, and Ofgem’s analysis
looks pretty sensible to us.

[ Tom Heap ]

And Sam Peacock lays the blame for this crisis firmly at the Government’s door.

[ Sam Peacock ]

The trilemma, as they call it – of decarbonisation, security of supply
and affordability – is being stretched, because the Government’s
moving us more towards cleaner technologies, which…which are more
expensive.

However, if you were to take the costs of, you know, the extra costs
of developing these technologies off government [ sic, meaning
customer ] bills and into general taxation, you could knock about over
£100 off customer bills today, it’ll be bigger in the future, and you
can still get that much-needed investment going.

So, we think you can square the circle, but it’s going to take a
little bit of policy movement [ and ] it’s going to take shifting some
of those costs off customers and actually back where the policymakers
should be controlling them.

[ KLAXON ! Does he mean controlled energy prices ? That sounds a bit
centrally managed economy to me… ]

[ Tom Heap ]

No surprise that a power company would want to shift the pain of
rising energy costs from their bills to the tax bill.

But neither the Government nor the Opposition are actually proposing this.

Who pays the premium for expensve new energy sources is becoming like
a game of pass the toxic parcel.

[ Reference : https://en.wikipedia.org/wiki/Hot_potato_%28game%29 ]

I asked the [ UK Government Department of ] Energy and Climate Change
Secretary, Ed Davey, how much new money is required between now and
2020.

08:06

[ Ed Davey ]

About £110 billion – er, that’s critical to replace a lot of the coal
power stations that are closing, the nuclear power stations that are [
at the ] end of their lives, and replace a lot of the network which
has come to the end of its life, too.

So it’s a huge, massive investment task.

[ Tom Heap ]

So in the end we’re going to have to foot the bill for the £110 billion ?

[ Ed Davey ]

Yeah. Of course. That’s what happens now. People, in their bills that
they pay now, are paying for the network costs of investments made
several years, even several decades ago.

[ Yes – we’re still paying through our national nose to dispose of
radioactive waste and decommission old nuclear reactors. The liability
of it all weighs heavily on the country’s neck… ]

And there’s no escaping that – we’ve got to keep the lights on – we’ve
got to keep the country powered.

You have to look at both sides of the equation. If we’re helping
people make their homes more inefficient [ sic, meaning energy
efficient ], their product appliances more efficient, we’re doing
everything we possibly can to try to help the bills be kept down,

while we’re having to make these big investments to keep the lights
on, and to make sure that we don’t cook the planet, as you say.

[ Tom Heap ]

You mention the lights going out. There are predictions that we’re
headed towards just 2% of spare capacity in the system in a few years’
time.

Are you worried about the dangers of, I don’t know, maybe not lights
going out for some people, but perhaps big energy users being told
when and when [ sic, meaning where ] they can’t use power in the
winter ?

[ Ed Davey ]

Well, there’s no doubt that as the coal power stations come offline,
and the nuclear power plants, er, close, we’re going to have make sure
that new power plants are coming on to replace them.

And if we don’t, there will be a problem with energy security.

Now we’ve been working very hard over a long time now to make sure we
attract that investment. We’ve been working with Ofgem, the regulator;
with National Grid, and we’re…

[ Tom Heap ]

…Being [ or it’s being ] tough. I don’t see companies racing to come
and fill in the gap here and those coal power plants are going off
soon.

[ Ed Davey ]

…we’re actually having record levels of energy investment in the country.

The problem was for 13 years under the last Government
[ same old, same old Coalition argument ] we saw low levels of investment
in energy, and we’re having to race to catch up, but fortunately we’re
winning that race. And we’re seeing, you know, billions of pounds
invested but we’ve still got to do more. We’re not there. I’m not
pretending we’re there yet. [ Are we there, yet ? ] But we do have the
policies in place.

So, Ofgem is currently consulting on a set of proposals which will
enable it to have reserve power to switch on at the peak if it’s
needed.

We’re, we’ve, bringing forward proposals in the Energy Bill for what’s
called a Capacity Market, so we can auction to get that extra capacity
we need.

So we’ve got the policies in place.

[ Tom Heap ]

Some of Ed Davey’s policies, not least the LibDem [ Liberal Democrat
Party ] U-turn on nuclear, have been guided by DECC [ Department of
Energy and Climate Change ] Chief Scientist David MacKay, author of
the influential book “Renewable Energy without the Hot Air” [ sic,
actually “Sustainable Energy without the Hot Air” ].

Does he think the lights will dim in the second half of this decade ?

[ David MacKay ]

I don’t think there’s going to be any problem maintaining the capacity
that we need. We just need to make clear where Electricity Market
Reform [ EMR, part of the Energy Bill ] is going, and the way in which
we will be maintaining capacity.

[ Tom Heap ]

But I don’t quite understand that, because it seems to me, you know,
some of those big coal-fired power stations are going to be going off.
What’s going to be coming in their place ?

[ David MacKay ]

Well, the biggest number of power stations that’s been built in the
last few years are gas power stations, and we just need a few more gas
power stations like that, to replace the coal
, and hopefully some
nuclear power stations will be coming on the bars, as well as the wind
farms that are being built at the moment.

[ Tom Heap ]

And you’re happy with that increase in gas-fired power stations, are
you ? I mean, you do care deeply, personally, about reducing our
greenhouse gases, and yet you’re saying we’re going to have to build
more gas-fired power stations.

[ David MacKay ]

I do. Even in many of the pathways that reach the 2050 target, there’s
still a role for gas in the long-term, because some power sources like
wind and solar power are intermittent, so if you want to be keeping
the lights on in 2050 when there’s no wind and there’s no sun, you’re
going to need some gas power stations there
. Maybe not operating so
much of the time as they do today, but there’ll still be a role in
keeping the lights on.

[ KLAXON ! If gas plants are used only for peak periods or for backup to
renewables, then the carbon emissions will be much less than if they are
running all the time. ]

[ Tom Heap ]

Many energy experts though doubt that enough new wind power or nuclear
capacity could be built fast enough to affect the sums in a big way by
2020.

But that isn’t the only critical date looming over our energy system.
Even more challenging, though more distant, is the legally binding
objective of cutting greenhouse gas emissions in 2050.

David MacKay wants that certainty to provide the foundation for energy
decisions, and he showed me the effect of different choices with the
“Ultimate Future Energy App”. I was in his office, but anyone can try it online.

[ David MacKay ]

It’s a 2050 calculator. It computes energy demand and supply in
response to your choices, and it computes multiple consequences of
your choices. It computes carbon consequences. It also computes for
you estimates of air quality, consequences of different choices;
security of supply, consequences; and the costs of your choices.

So with this 2050 calculator, it’s an open source tool, and anyone can
go on the web and use the levers to imagine different futures in 2050
of how much action we’ve taken in different demand sectors and in
different supply sectors.

The calculator has many visualisations of the pathway that you’re choosing
and helps people understand all the trade-offs… There’s no silver
bullet for any of this. If I dial up a pathway someone made earlier,
we can visualise the implications in terms of the area occupied for
the onshore wind farms, and the area in the sea for the offshore wind
farms, and the length of the wave farms that you’ve built, and the
land area required for energy crops.

And many organisations have used this tool and some of them have given
us their preferred pathway. So you can see here the Friends of the
Earth have got their chosen pathway, the Campaign to Protect Rural
England, and various engineers like National Grid and Atkins have got
their pathways.

So you can see alternative ways of achieving our targets, of keeping
the lights on and taking climate change action. All of those pathways
all meet the 2050 target, but they do so with different mixes.

[ Tom Heap ]

And your view of this is you sort of can’t escape from the scientific
logic and rigour of it. You might wish things were different or you
could do it differently, but you’re sort of saying “Look, it’s either
one thing or the other”. That’s the point of this.

[ David MacKay ]

That’s true. You can’t be anti-everything. You can’t be anti-wind and
anti-nuclear and anti-home insulation. You won’t end up with a plan
that adds up.

[ KLAXON ! But you can be rationally against one or two things, like
expensive new nuclear power, and carbon and particulate emissions-heavy
biomass for the generation of electricity. ]

[ Tom Heap ]

But isn’t that exactly kind of the problem that we’ve had, without
pointing political fingers, that people rather have been
anti-everything, and that’s why we’re sort of not producing enough new
energy sources ?

[ David MacKay ]

Yeah. The majority of the British public I think are in favour of many
of these sources, but there are strong minorities who are vocally
opposed to every one of the major levers in this calculator. So one
aspiration I have for this tool is it may help those people come to a
position where they have a view that’s actually consistent with the
goal of keeping the lights on.

[ Tom Heap ]

Professor MacKay’s calculator also computes pounds and pence,
suggesting that both high and low carbon electricity work out pricey
in the end.

[ David MacKay ]

The total costs of all the pathways are pretty much the same.
“Business as Usual” is cheaper in the early years, and then pays more,
because on the “Business as Usual”, you carry on using fossil fuels,
and the prices of those fossil fuels are probably going to go up.

All of the pathways that take climate change action have a similar
total cost, but they pay more in the early years, ’cause you have to
pay for things like building insulation and power stations, like
nuclear power stations, or wind power, which cost up-front, but then
they’re very cheap to run in the future.

[ KLAXON ! Will the cost of decommissioning nuclear reactors and the
costs of the waste disposal be cheap ? I think not… ]

So the totals over the 40 or 50 year period here, are much the same for these.

[ Tom Heap ]

The cheapest immediate option of all is to keep shovelling the coal.
And last year coal overtook gas to be our biggest electricity
generation source, pushing up overall carbon emissions along the way
by 4.5%

[ KLAXON ! This is not very good for energy security – look where the
coal comes from… ]

As we heard earlier, most coal-fired power stations are scheduled for
termination, but some have won a reprieve, and trees are their
unlikely saviour.

Burning plenty of wood chip [ actually, Tom, it’s not wood “chip”, it’s
wood “pellets” – which often have other things mixed in with the wood,
like coal… ] allows coal furnaces to cut the sulphur dioxide and nitrous
oxide belching from their chimneys to below the level that requires their
closure under European law.

But some enthusiasts see wood being good for even more.

16:19

[ Outside ]

It’s one of those Autumn days that promises to be warm, but currently
is rather moist. I’m in a field surrounded by those dew-laden cobwebs
you get at this time of year.

But in the middle of this field is a plantation of willow. And I’m at
Rothamsted Research with Angela Karp who’s one of the directors here.

Angela, tell me about this willow I’m standing in front of here. I
mean, it’s about ten foot high or so, but what are you seeing ?

[ Angela Karp ]

Well, I’m seeing one of our better varieties that’s on display here.
We have a demonstration trial of about ten different varieties. This
is a good one, because it produces a lot of biomass, quite easily,
without a lot of additional fertilisers or anything. And as you can
see it’s got lovely straight stems. It’s got many stems, and at the
end of three years, we would harvest all those stems to get the
biomass from it. It’s nice and straight – it’s a lovely-looking, it’s
got no disease, no insects on it, very nice, clean willow.

[ Tom Heap ]

So, what you’ve been working on here as I understand it is trying to
create is the perfect willow – the most fuel for the least input – and
the easiest to harvest.

[ Angela Karp ]

That’s absolutely correct, because the whole reason for growing these
crops is to get the carbon from the atmosphere into the wood, and to
use that wood as a replacement for fossil fuels. Without putting a lot
of inputs in, because as soon as you add fertilisers you’re using
energy and carbon to make them, and that kind of defeats the whole
purpose of doing this.

[ KLAXON ! You don’t need to use fossil fuel energy or petrochemicals or
anything with carbon emissions to make fertiliser ! … Hang on, these
are GM trees, right ? So they will need inputs… ]

[ Tom Heap ]

And how much better do you think your new super-variety is, than say,
what was around, you know, 10 or 15 years ago. ‘Cause willow as an
idea for burning has been around for a bit. How much of an improvement
is this one here ?

[ Angela Karp ]

Quite a bit. So, these are actually are some of the, if you like,
middle-term varieties. So we started off yielding about 8 oven-dry
tonnes per hectare, and now we’ve almost doubled that.

[ Tom Heap ]

How big a place do you think biomass can have in the UK’s energy
picture in the future ?

[ Angela Karp ]

I think that it could contribute between 10% and 15% of our energy. If
we were to cultivate willows on 1 million hectares, we would probably
provide about 3% to 4% of energy in terms of electricity, and I think
that’s kind of a baseline figure. We could cultivate them on up to 3
million hectares, so you can multiply things up, and we could use them
in a much more energy-efficient way.

[ KLAXON ! Is that 4% of total energy or 4% of total electricity ?
Confused. ]

[ Tom Heap ]

Do we really have 3 million hectares going a-begging for planting willow in ?

[ Angela Karp ]

Actually, surprisingly we do. So, people have this kind of myth
there’s not enough land, but just look around you and you will find
there’s lots of land that’s not used for cultivating food crops.

We don’t see them taking over the whole country. We see them being
grown synergistically with food crops.

[ KLAXON ! This is a bit different than the statement made in 2009. ]

[ Tom Heap ]

But I’d just like to dig down a little bit more into the carbon cycle
of the combustion of these things, because that’s been the recent
criticism of burning a lot of biomass, is that you put an early spike
in the amount of carbon in the atmosphere, if you start burning a lot
of biomass, because this [ sounds of rustling ], this plant is going
to be turned into, well, partly, CO2 in the atmosphere.

[ Angela Karp ]

Yes, I think that’s probably a simple and not totally correct way of
looking at it. ‘Cause a lot depends on the actual conversion process
you are using.

So some conversion processes are much more efficient at taking
everything and converting it into what you want.

Heat for example is in excess of 80%, 90% conversion efficiency.

Electricity is a little bit more of the problem. And there, what
they’re looking at is capturing some of the carbon that you lose, and
converting that back in, in carbon storage processes, and that’s why
there’s a lot of talk now about carbon storage from these power
stations.

That I think is the future. It’s a question of connecting up all parts
of the process, and making sure that’s nothing wasted.

20:02

[ Tom Heap ]

So, is wood a desirable greener fuel ?

Not according to Almuth Ernsting of Biofuelwatch, who objects to the
current plans for large-scale wood burning, its use to prop up coal,
and even its low carbon claims.

[ Almuth Ernsting ]

The currently-announced industry plans, and by that I mean existing
power stations, but far more so, power stations which are in the
planning process [ and ] many of which have already been consented –
those [ biomass ] power stations, would, if they all go ahead,
require to burn around 82 million tonnes of biomass, primarily wood,
every year. Now by comparison, the UK in total only produces around
10 million tonnes, so one eighth of that amount, in wood, for all
industries and purposes, every year.

We are looking on the one hand at a significant number of proposed,
and in some cases, under-construction or operating new-build biomass
power stations, but the largest single investment so far going into
the conversion of coal power station units to biomass, the largest and
most advanced one of which at the moment is Drax, who are, have
started to move towards converting half their capacity to burning wood
pellets.

[ Tom Heap ]

Drax is that huge former, or still currently, coal-fired power station
in Yorkshire, isn’t it ?

[ Almuth Ernsting ]

Right, and they still want to keep burning coal as well. I mean, their
long-term vision, as they’ve announced, would be for 50:50 coal and
biomass.

[ Tom Heap ]

What do you think about that potential growth ?

[ Almuth Ernsting ]

Well, we’re seriously concerned. We believe it’s seriously bad news
for climate change, it’s seriously bad news for forests, and it’s
really bad news for communities, especially in the Global South, who
are at risk of losing their land for further expansion of monoculture
tree plantations, to in future supply new power stations in the UK.

A really large amount, increasingly so, of the wood being burned,
comes from slow-growing, whole trees that are cut down for that
purpose, especially at the moment in temperate forests in North
America. Now those trees will take many, many decades to grow back
and potentially re-absorb that carbon dioxide, that’s if they’re
allowed and able to ever grow back.

[ Tom Heap ]

There’s another technology desperate for investment, which is critical
to avoiding power failure, whilst still hitting our mid-century carbon
reduction goals – CCS – Carbon Capture and Storage, the ability to
take the greenhouse gases from the chimney and bury them underground.

It’s especially useful for biomass and coal, with their relatively
high carbon emissions, but would also help gas be greener.

The Chancellor has approved 30 new gas-fired power stations, so long
as they are CCS-ready [ sic, should be “capture ready”, or
“carbon capture ready” ].

Jon Gibbons is the boss of the UK CCS Research Centre, based in an
industrial estate in Sheffield.

[ Noise of processing plant ]

Jon’s just brought me up a sort of 3D maze of galvanized steel and
shiny metal pipes to the top of a tower that must be 20 or so metres
high.

Jon, what is this ?

[ Jon Gibbons ]

OK, so this is our capture unit, to take the CO2 out of the combustion
products from gas or coal. In the building behind us, in the test rigs
we’ve got, the gas turbine or the combustor rig, we’re burning coal or
gas, or oil, but mainly coal or gas.

We’re taking the combustion products through the green pipe over
there, bringing it into the bottom of the unit, and then you can see
these big tall columns we’ve got, about 18 inches diameter, half a
metre diameter, coming all the way up from the ground up to the level
we’re at.

It goes into one of those, it gets washed clean with water, and it
goes into this unit over here, and there it meets an amine solvent, a
chemical that will react reversibly with CO2, coming in the opposite
direction, over packing. So, it’s like sort of pebbles, if you can
imagine it, there’s a lot of surface area. The gas flows up, the
liquid flows down, and it picks up the CO2, just mainly the CO2.

[ Tom Heap ]

And that amine, that chemical as you call it, is stripping the CO2 out
of that exhaust gas. This will link to a storage facility.

What would then happen to the CO2 ?

[ Jon Gibbons ]

What would then happen is that the CO2 would be compressed up to
somewhere in excess of about 100 atmospheres. And it would turn from
being a gas into something that looks like a liquid, like water, about
the same density as water. And then it would be taken offshore in the
UK, probably tens or hundreds of kilometres offshore, and it would go
deep, deep down, over a kilometre down into the ground, and basically
get squeezed into stuff that looks like solid rock. If you go and look
at a sandstone building – looks solid, but actually, maybe a third of
it is little holes. And underground, where you’ve got cubic kilometres
of space, those little holes add up to an awful lot of free space. And
the CO2 gets squeezed into those, over time, and it spreads out, and
it just basically sits there forever, dissolves in the water, reacts
with the rocks, and will stay there for millions of years.

[ Tom Heap ]

Back in his office, I asked Jon why CCS seemed to be stuck in the lab.

[ Jon Gibbons ]

We’re doing enough I think on the research side, but what we really
need to do, is to do work on a full-scale deployment. Because you
can’t work on research in a vacuum. You need to get feedback –
learning by doing – from actual real projects.

And a lot of the problems we’ve got on delivering CCS, are to do with
how you handle the regulation for injecting CO2, and again, you can
only do that in real life.

So what we need to do is to see the commercialisation projects that
are being run by the Department of Energy and Climate Change actually
going through to real projects that can be delivered.

[ Tom Heap ]

Hmm. When I talk to engineers, they’re always very passionate and
actually quite optimistic about Carbon Capture and Storage. And when
I talk to people in industry, or indeed read the headlines, not least
a recent cancellation in Norway, it always seems like a very bleak picture.

[ Jon Gibbons ]

I think people are recognising that it’s getting quite hard to get
money for low carbon technologies.

So – recent presentation we had at one of our centre meetings, was
actually a professor from the United States, Howard Herzog. And he
said “You think you’re seeing a crisis in Carbon Capture and Storage.
But what you’re actually seeing is a crisis in climate change
mitigation.”

[ KLAXON ! Priming us for a scaling back of commitment to the
Climate Change Act ? I do hope not. ]

Now, Carbon Capture and Storage, you do for no other purpose than
cutting CO2 emissions to the atmosphere, and it does that extremely
effectively. It’s an essential technology for cutting emissions. But
until you’ve got a global process that says – actually we’re going to
get on top of this problem; we’re going to cut emissions – get them to
safe level before we actually see people dying in large numbers from
climate change effects – ’cause, certainly, if people start dying,
then we will see a response – but ideally, you’d like to do it before
then. But until you get that going, then actually persuading people to
spend money for no other benefit than sorting out the climate is
difficult.

There’s just no point, you know, no country can go it alone, so you
have to get accommodation. And there, we’re going through various
processes to debate that. Maybe people will come to an accommodation.
Maybe the USA and China will agree to tackle climate change. Maybe
they won’t.

What I am fairly confident is that you won’t see huge, you know,
really big cuts in CO2 emissions without that global agreement. But
I’m also confident that you won’t see big cuts in CO2 emissions
without CCS deployment.

And my guess is there’s about a 50:50 chance that we do CCS before we
need to, and about a 50:50 chance we do it after we have to. But I’m
pretty damn certain we’re going to do it.

[ Tom Heap ]

But we can’t wait for a global agreement that’s already been decades
in the making, with still no end in sight.

We need decisions now to provide more power with less pollution.

[ Music lyrics : “What’s the plan ? What’s the plan ?” ]

[ Tom Heap ]

Dieter Helm, Professor of Energy Policy at the University of Oxford
believes we can only deliver our plentiful green energy future if we
abandon our attitude of buy-now pay-later.

[ KLAXON ! Does he mean a kind of hire purchase energy economy ?
I mean, we’re still paying for nuclear electricity from decades ago,
in our bills, and through our taxes to the Department of Energy and
Climate Change. ]

[ Dieter Helm ]

There’s a short-term requirement and a long-term requirement. The
short-term requirement is that we’re now in a real pickle. We face
this energy crunch. We’ve got to try to make the best of what we’ve
got. And I think it’s really like, you know, trying to get the
Spitfires back up again during the Battle of Britain. You know, you
patch and mend. You need somebody in command. You need someone
in control. And you do the best with what you’ve got.

In that context, we then have to really stand back and say, “And this
is what we have to do to get a serious, long-term, continuous, stable
investment environment, going forward.” In which, you know, we pay the
costs, but of course, not any monopoly profits, not any excess
profits, but we have a world in which the price of electricity is
related to the cost.”

[ KLAXON ! Is Dieter Helm proposing state ownership of energy plant ? ]

29:04

[ Programme anchor ]

“Costing the Earth” was presented by Tom Heap, and made in Bristol by
Helen Lennard.

[ Next broadcast : 16th October 2013, 21:00, BBC Radio 4 ]

Categories
Academic Freedom Advertise Freely Assets not Liabilities Bait & Switch Be Prepared Big Picture Biofools Burning Money Carbon Capture Change Management Climate Change Climate Chaos Climate Damages Contraction & Convergence Corporate Pressure Cost Effective Delay and Deny Design Matters Direction of Travel Divide & Rule Drive Train Efficiency is King Emissions Impossible Energy Autonomy Energy Change Energy Denial Energy Disenfranchisement Energy Insecurity Engineering Marvel Environmental Howzat Financiers of the Apocalypse Fossilised Fuels Freemarketeering Fuel Poverty Green Investment Hydrocarbon Hegemony Hydrogen Economy Incalculable Disaster Low Carbon Life Major Shift Marine Gas Mass Propaganda Money Sings Near-Natural Disaster Neverending Disaster No Pressure Nudge & Budge Oil Change Paradigm Shapeshifter Peak Emissions Peak Energy Peak Natural Gas Peak Oil Petrolheads Protest & Survive Public Relations Pure Hollywood Renewable Gas Social Change Social Democracy Technofix Technological Sideshow The Science of Communitagion Toxic Hazard Unconventional Foul Ungreen Development Unnatural Gas

Carbon Bubble : Unburnable Assets



[ Image Credit : anonymous ]


Yet again, the fossil fuel companies think they can get away with uncommented public relations in my London neighbourhood. Previously, it was BP, touting its green credentials in selling biofuels, at the train station, ahead of the Olympic Games. For some reason, after I made some scathing remarks about it, the advertisement disappeared, and there was a white blank board there for weeks.

This time, it’s Esso, and they probably think they have more spine, as they’ve taken multiple billboard spots. In fact, the place is saturated with this advertisement. And my answer is – yes, fuel economy is important to me – that’s why I don’t have a car.

And if this district is anything to go by, Esso must be pouring money into this advertising campaign, and so my question is : why ? Why aren’t they pouring this money into biofuels research ? Answer : because that’s not working. So, why aren’t they putting this public relations money into renewable gas fuels instead, sustainable above-surface gas fuels that can be used in compressed gas cars or fuel cell vehicles ?

Are Esso retreating into their “core business” like BP, and Shell, concentrating on petroleum oil and Natural Gas, and thereby exposing all their shareholders to the risk of an implosion of the Carbon Bubble ? Or another Deepwater Horizon, Macondo-style blowout ?

Meanwhile, the movement for portfolio investors to divest from fossil fuel assets continues apace…

Categories
Academic Freedom Bad Science Bait & Switch Be Prepared Big Picture Biofools Climate Change Climate Chaos Climate Damages Coal Hell Corporate Pressure Delay and Deny Demoticratica Direction of Travel Divide & Rule Emissions Impossible Energy Change Energy Denial Energy Insecurity Evil Opposition Financiers of the Apocalypse Freak Science Freemarketeering Gamechanger Global Heating Global Singeing Global Warming Green Investment Growth Paradigm Hide the Incline Hydrocarbon Hegemony Incalculable Disaster Low Carbon Life Mad Mad World Major Shift Mass Propaganda Media Neverending Disaster No Blood For Oil Not In My Name Nudge & Budge Obamawatch Oil Change Paradigm Shapeshifter Peace not War Peak Natural Gas Peak Oil Policy Warfare Political Nightmare Protest & Survive Public Relations Regulatory Ultimatum Scientific Fallacy Social Capital Social Chaos Stop War Sustainable Deferment Tarred Sands Technological Sideshow The War on Error Toxic Hazard Unconventional Foul Unnatural Gas Unutterably Useless Utter Futility Vain Hope Western Hedge Zero Net

A Question of Resilience

Again, the evil and greedy oil, gas and mining companies have proved their wickedness by manipulating public opinion, by directly financing conspiracy theorists who deny climate change science. The irony is tangibly acidic. The paranoid have actually been duped by a genuine conspiracy. They have drunk the Kool Aid; they have believed the lies; they have continued to communicate doubt. They think they are challenging corruption in high places, but what they are really doing is reinforcing apathy in the face of genuine risk.

The questions posed so unrelentingly by the climate change deniers have sewn a patchwork tapestry of disinformation, which continues to poison genuine dialogue and is undermining political progress. We cannot take these people with us into constructive engagement, and ask them to help us forge a broad consensus. It is as if they exist in a parallel universe. Some of us will continue to attempt to conduct dialogue, but will end up wasting our time. The documentation by the media is faulty, and perpetuates the success of the denier strategy of divide and rule.

But hold on a minute. There are problems with the stance of climate change denial, but what about the positioning of climate change activists ? Let’s try that first paragraph one more time :-

[ Again, the “evil” and “greedy” oil, gas and mining companies have proved their “wickedness” by manipulating public opinion, by directly financing conspiracy theorists who deny climate change science. The irony is tangibly acidic. The paranoid have actually been duped by a genuine conspiracy. They have drunk the Kool Aid; they have believed the lies; they have continued to communicate doubt. They think they are challenging corruption in high places, but what they are really doing is reinforcing apathy in the face of genuine risk. ]

By casting the fossil fuel and mining corporations as wrongly motivated, by using negative emotive labels, the dominant narrative of political activists has failed, once again, to move us all forward. These kinds of revelations about underhand corporate public relations activities are by now unsurprising. The news cannot shock, although it may disgust. Yet, since nothing is offered to counter-balance or correct the inappropriate behaviour of the “fossil fuellers”, they win the game they invented, the game they wrote the rules for. Protesting at a petrol station achieves nothing of any note, not even when there’s a camera-friendly polar bear. We hear the message of pain, but there is no ointment. There is a disconnect between the gruesome discovery and any way out of this mess. The revelation of intent of the carbon dinosaurs, the recounting of the anti-democratic activities, does not result in change.

Environmental pollution is a “victimless” crime – no matter how much we sympathise or empathise with the plight of poisoned floating fish, dying bees, asthmatic kids, or cancer-laden people. Fines and taxes cannot rectify the scourge of environmental pollution, because there is no ultimate accountability. Regulation cannot be enforced. The misbehaviour just carries on, because there is systemic momentum. There is no legal redress (“due process” in Americanese) for those who are suffering the worsening effects of climate change, and there is no treaty that can be made to curb greenhouse gas emissions that anybody can be bound to by international sanctions.

And so when we hear the same old story – that the energy industry is propagandising – we cannot respond. We don’t know what we can do. We are paralysed. This narrative is so tired, it snores.

Truth may have been a victim, but the energy industry are also vulnerable – they are acting in self-defence mode. Let’s take the big vista in : there is stress in the global production of fossil fuel energy, and all routes to an easy fix, even if it’s only a short-term fix, are choked.

So let’s ask the question – why do the energy companies deceive ? Do they think they are being deceptive ? Why do fossil fuel miners seek to massage public opinion ? This is a question of resilience, of Darwinian survival – seeking advantage by altering policy by tampering with public assent. They believe in their product, they construct their mission – they are protecting their future profits, they’re making a living. They’re humans in human organisations. They’re not “evil”, “greedy” or “lying” – as a rule. There are no demons here, nor can we convincingly summon them.

Look at the activist game plan – we announce the deliberate actions of the fossil fuel companies to influence the political mandate. But these scandals are only ever voiced, never acted upon. They cannot be acted upon because those who care have no power, no agency, to correct or prevent the outcomes. And those who should care, do not care, because they themselves have rationalised the misdemeanours of the fossil fuellers. They too have drunk from the goblet of doubt. Amongst English-speaking politicians, I detect a good number who consider climate change to be a matter for wait-and-see rather than urgent measures. Besides those who continue to downplay the seriousness of climate change.

Look also at the difference between the covert nature of the support for climate change deniers, and the open public relations activities of the fossil fuel and mining companies. They speak in the right way for their audiences. That’s smart.

In time, the end of the fossil fuel age will become apparent, certain vague shapes on the horizon will come out of the blur and into sharp focus. But in the meantime, the carbon dinosaurs are taking action to secure market share, maintain the value of their stock, prop up the value of their shareholders’ assets. The action plan for survival of the oil, gas, coal and mining operations now includes the promotion of extreme energy – so-called unconventional fossil fuels, the once-dismissed lower quality resources such as tight gas, shale gas, shale oil and coalbed methane (coal seam methane). Why are the energy industry trying to gild the rotten lily ? Is the support for unconventional fossil fuels a move for certain countries, such as the United States of America, to develop more indigenous sources of energy – more homegrown energy to make them independent of foreign influence ? This could be the main factor – most of the public relations for shale gas, for example, seems to come from USA.

The answer could come by responding to another question. Could it be that the production of petroleum oil has in fact peaked – that decline has set in for good ? Could it be that the Saudis are not “turning off the taps” to force market prices, because in actual fact the taps are being turned off for them, by natural well depletion ? The Arab Spring is a marvellous distraction – the economic sanctions and military and democratic upheaval are excellent explanations for the plateau in global oil production.

It seems possible from what I have looked at that Peak Oil is a reality, that decline in the volumes of produced petroleum is inevitable. The fossil fuel producers, the international corporations who have their shareholders and stock prices to maintain, have been pushing the narrative that the exploitation of unconventional fossil fuels can replace lost conventional production. They have been painting a picture of the horn of plenty – a cornucopia of unconventional fossil fuels far exceeding conventional resources. To please their investors, the fossil fuel companies are lying about the future.

Sure, brute force and some new technology are opening up “unconventionals” but this will not herald the “golden age” of shale gas or oils from shale. Shale gas fields deplete rapidly, and tar sands production is hugely polluting and likely to be unsustainable in several ways because of that. There might be huge reserves – but who knows how quickly heavy oils can be produced ? And how much energy input is required to create output energy from other low grade fossil strata ? It is simply not possible to be certain that the volumes of unconventional fossil fuel production can match the decline in conventionals.

The facts of the matter need admitting – there is no expansion of sweet crude oil production possible. There’s no more crude – there’s only crud. And slow crud, at that.

Peak Oil is a geological fact, not a market artefact. The production levels of crude and condensate may not recover, even if military-backed diplomacy wins the day for the energy industry in the Middle East and North Africa.

Peak Oil has implications for resilience of the whole global economy – the conversion of social and trade systems to use new forms of energy will take some considerable time – and their integrity is at risk if Peak Oil cannot be navigated smoothly. Peak Oil is dangerous – it seems useful to deny it as long as possible.

It’s pretty clear that we’ve been handed lots of unreliable sops over the years. The energy industry promised us that biofuels could replace gasoline and diesel – but the realisation of this dream has been blocked at every turn by inconvenient failings. The energy industry has, to my mind, been deploying duds in order to build in a delay while they attempt to research and develop genuine alternatives to conventional fossil fuels – but they are failing. The dominant narrative of success is at risk – will all of this continue to hold together ? Can people continue to believe in the security of energy systems – the stability of trade and economic wealth creation ? Oh yes, people raise concerns – for example about disruption in the Middle East and North Africa, and then propose “solutions” – regime change, military support for opposition forces, non-invasive invasions. But overall, despite these all too evident skirmishes, the impression of resilience is left intact. The problem is being framed as one of “edge issues” – not systemic. It’s not clear how long they can keep up with this game.

The facade is cracking. The mask is slipping. BP and Centrica in a bout of hyper-realism have said that the development of shale gas in the UK will not be a “game changer”. It may be that their core reasoning is to drag down the market value of Cuadrilla, maybe in order to purchase it. But anyway, they have defied the American energy industry public relations – hurrah ! Shale gas is not the milk of a honey-worded mother goddess after all – but what’s their alternative story ? That previously under-developed gas in Iran and Iraq will be secured ? And what about petroleum ? Will the public relations bubble about that be punctured too ? Telling people about Peak Oil – how useful is that ? They won’t do it because it has to be kept unbelievable and unbelieved in order to save face and keep global order. Academics talk about Peak Oil, but it is not just a dry, technical question confined to ivory towers. Attention is diverted, but the issue remains. Looking at it doesn’t solve it, so we are encouraged not to look at it.

So, why do the energy industry purposely set out to manipulate public opinion ? Well, the reason for their open advertising strategy is clear – to convince investors, governments, customers, that all is well in oil and gas – that there is a “gas glut” – that the world is still awash in petroleum and Natural Gas – that the future will be even more providential than the past – that the only way is up. All the projections of the oil and gas industry and the national, regional and international agencies are that energy demand will continue to rise – the underlying impression you are intended to be left with is that, therefore, global energy supply will also continue to rise. Business has never been better, and it can only get more profitable. We will need to turn to unconventional resources, but hey, there’s so much of the stuff, we’ll be swimming in it.

But what is the purpose of the covert “public relations” of the energy industry ? Why do they seek to put out deception via secretly-funded groups ? When the truth emerges, as it always does in the end, the anger and indignation of the climate change activists is guaranteed. And angry and indignant activists can easily be ignored. So, the purpose in funding climate change deniers is to emotionally manipulate climate change activists – rattle their cages, shake their prison bars. Let them rail – it keeps the greens busy, too occupied with their emotional disturbance. By looking at these infractions in depth are we being distracted from the bigger picture ? Can we make any change in global governance by bringing energy industry deception to light ?

Even as commentators peddle conspiracy theories about the science and politics of a warming planet, the “leader of the free world” is inaugurated into a second term and announces action on climate change. Although progressives around the world applaud this, I’m not sure what concrete action the President and his elite colleague team of rich, mostly white, middle-aged men can take. I am listening to the heartbeat of the conversation, and my take away is this : by announcing action on climate change, Barack Obama is declaring war on the sovereignty of the oil and gas producing nations of the Middle East and North Africa.

You see, the Middle East and North Africa are awash in Natural Gas. Untapped Natural Gas. The seismic surveys are complete. The secret services have de-stabilised democracy in a number of countries now, and this “soft power” will assist in constructing a new narrative – that unruliness in the Middle East and North Africa is preventing progress – that the unstable countries are withholding Natural Gas from the world – the fossil fuel that can replace petroleum oil in vehicles when chemically processed, the fossil fuel that has half the carbon emissions of coal when generating electricity. Resources of Natural Gas need “protecting”, securing, “liberating”, to save the world’s economy from collapse.

Obama stands up and declares “war” on climate change. And all I hear is a klaxon alarm for military assault on Iran.

But even then, if the world turns to previously untapped Natural Gas, I believe this is only a short-term answer to Peak Oil. Because waiting in the wings, about ten years behind, is Peak Natural Gas. And there is no answer to Peak Natural Gas, unless it includes a genuine revolution in energy production away from what lies beneath. And that threatens the sustenance of the oil and gas industry.

No wonder, then, that those who fund climate change denial – who stand to profit from access to untapped fossil fuels, secured by military aggresssion in the Middle East and North Africa – also fund opposition to renewable energy. The full details of this are still emerging. Will we continue to express horror and distaste when the strategy becomes more transparent ? Will that achieve anything ? Or will we focus on ways to bring about the only possible future – a fossil-fuel-free energy economy ? This will always take more action than words, but messaging will remain key. The central message is one that will sound strange to most people, but it needs to be said : fossil fuels will not continue to sustain the global economy : all will change.

Funnily enough, that is exactly the summary of the statements from the World Economic Forum in Davos – only the world’s administration are still not admitting to Peak Fossil Fuels. Instead, they are using climate change as the rationale for purposeful decarbonisation.

Well, whichever way it comes, let’s welcome it – as long as it comes soon. It’s not just the survival of individual oil and gas companies that is at stake – the whole global economy is at risk from Peak Fossil Fuels – and climate change. I use the word “economy”, because that is the word used by MBAs. What I mean is, the whole of human civilisation and life on Earth is at risk from Peak Fossil Fuels and climate change. Unconventional fossil fuels are the most polluting answer to any question, and expansion of their use will undoubtedly set off “climate bombs“.

Don’t get me wrong – Natural Gas is a good bridge to the future, but it is only a transition fuel, not a destination. Please, can we not have war against Iran. Please let’s have some peaceful trade instead. And some public admissions of the seriousness of both Peak Fossil Fuels and climate change by all the key players in governance and energy.

Categories
Academic Freedom Assets not Liabilities Be Prepared Big Picture Big Society Bioeffigy Biofools British Biogas Change Management Climate Change Conflict of Interest Demoticratica Direction of Travel Divide & Rule Economic Implosion Efficiency is King Electrificandum Energy Autonomy Energy Change Energy Denial Energy Disenfranchisement Energy Insecurity Energy Nix Energy Revival Energy Socialism Extreme Weather Feel Gooder Fossilised Fuels Fuel Poverty Global Heating Global Warming Green Investment Green Power Health Impacts Heatwave Hide the Incline Human Nurture Hydrocarbon Hegemony Incalculable Disaster Insulation Low Carbon Life Major Shift Mass Propaganda Media National Energy National Power National Socialism Optimistic Generation Paradigm Shapeshifter Peak Coal Peak Emissions Peak Energy Peak Natural Gas Peak Oil Petrolheads Policy Warfare Political Nightmare Regulatory Ultimatum Renewable Gas Renewable Resource Resource Curse Resource Wards Social Capital Social Change Social Chaos Social Democracy Solar Sunrise Solution City Stirring Stuff Sustainable Deferment Technological Fallacy The Data The Power of Intention Vote Loser Wasted Resource Western Hedge Wind of Fortune

A Referendum for Energy

As I dodged the perfunctory little spots of snow yesterday, on my way down to Highbury and Islington underground train station, I passed a man who appeared to have jerky muscle control attempting to punch numbers on the keypad of a cash machine in the wall. He was missing, but he was grinning. A personal joke, perhaps. The only way he could get his money out of the bank to buy a pint of milk and a sliced loaf for his tea was to accurately tap his PIN number. But he wasn’t certain his body would let him. I threw him an enquiring glance, but he seemed too involved in trying to get control of his arms and legs to think of accepting help.

This, I felt, was a metaphor for the state of energy policy and planning in the United Kingdom – everybody in the industry and public sector has focus, but nobody appears to have much in the way of overall control – or even, sometimes, direction. I attended two meetings today setting out to address very different parts of the energy agenda : the social provision of energy services to the fuel-poor, and the impact that administrative devolution may have on reaching Britain’s Renewable Energy targets.

At St Luke’s Centre in Central Street in Islington, I heard from the SHINE team on the progress they are making in providing integrated social interventions to improve the quality of life for those who suffer fuel poverty in winter, where they need to spend more than 10% of their income on energy, and are vulnerable to extreme temperatures in both summer heatwaves and winter cold snaps. The Seasonal Health Interventions Network was winning a Community Footprint award from the National Energy Action charity for success in their ability to reach at-risk people through referrals for a basket of social needs, including fuel poverty. It was pointed out that people who struggle to pay energy bills are more likely to suffer a range of poverty problems, and that by linking up the social services and other agencies, one referral could lead to multiple problem-solving.

In an economy that is suffering signs of contraction, and with austerity measures being imposed, and increasing unemployment, it is clear that social services are being stretched, and yet need is still great, and statutory responsibility for handling poverty is still mostly a publicly-funded matter. By offering a “one-stop shop”, SHINE is able to offer people a range of energy conservation and efficiency services alongside fire safety and benefits checks and other help to make sure those in need are protected at home and get what they are entitled to. With 1 in 5 households meeting the fuel poverty criteria, there is clearly a lot of work to do. Hackney and Islington feel that the SHINE model could be useful to other London Boroughs, particularly as the Local Authority borders are porous.

We had a presentation on the Cold Weather Plan from Carl Petrokovsky working for the Department of Health, explaining how national action on cold weather planning is being organised, using Met Office weather forecasts to generate appropriate alert levels, in a similar way to heatwave alerts in summer – warnings that I understand could become much more important in future owing to the possible range of outcomes from climate change.

By way of some explanation – more global warming could mean significant warming for the UK. More UK warming could mean longer and, or, more frequent heated periods in summer weather, perhaps with higher temperatures. More UK warming could also mean more disturbances in an effect known as “blocking” where weather systems lock into place, in any season, potentially pinning the UK under a very hot or very cold mass of air for weeks on end. In addition, more UK warming could mean more precipitation – which would mean more rain in summer and more snow in winter.

Essentially, extremes in weather are public health issues, and particularly in winter, more people are likely to suffer hospitalisation from the extreme cold, or falls, or poor air quality from boiler fumes – and maybe end up in residential care. Much of this expensive change of life is preventable, as are many of the excess winter deaths due to cold. The risks of increasing severity in adverse conditions due to climate change are appropriately dealt with by addressing the waste of energy at home – targeting social goals can in effect contribute to meeting wider adaptational goals in overall energy consumption.

If the UK were to be treated as a single system, and the exports and imports of the most significant value analysed, the increasing net import of energy – the yawning gap in the balance of trade – would be seen in its true light – the country is becoming impoverished. Domestic, indigenously produced sources of energy urgently need to be developed. Policy instruments and measured designed to reinvigorate oil and gas exploration in the North Sea and over the whole UKCS – UK Continental Shelf – are not showing signs of improving production significantly. European-level policy on biofuels did not revolutionise European agriculture as regards energy cropping – although it did contribute to decimating Indonesian and Malaysian rainforest. The obvious logical end point of this kind of thought process is that we need vast amounts of new Renewable Energy to retain a functioning economy, given global financial, and therefore, trade capacity, weakness.

Many groups, both with the remit for public service and private enterprise oppose the deployment of wind and solar power, and even energy conservation measures such as building wall cladding. Commentators with access to major media platforms spread disinformation about the ability of Renewable Energy technologies to add value. In England, in particular, debates rage, and many hurdles are encountered. Yet within the United Kingdom as a whole, there are real indicators of progressive change, particularly in Scotland and Wales.

I picked up the threads of some of these advances by attending a PRASEG meeting on “Delivering Renewable Energy Under Devolution”, held at the Institution of Mechanical Engineers in Westminster, London; a tour to back up the launch of a new academic report that analyses performance of the devolved administrations and their counterpart in the English Government in Westminster. The conclusions pointed to something that I think could be very useful – if Scotland takes the referendum decision for independence, and continues to show strong leadership and business and community engagement in Renewable Energy deployment, the original UK Renewable Energy targets could be surpassed.

I ended the afternoon exchanging some perceptions with an academic from Northern Ireland. We shared that Eire and Northern Ireland could become virtually energy-independent – what with the Renewable Electricity it is possible to generate on the West Coast, and the Renewable Gas it is possible to produce from the island’s grass (amongst other things). We also discussed the tendency of England to suck energy out of its neighbour territories. I suggested that England had appropriated Scottish hydrocarbon resources, literally draining the Scottish North Sea dry of fossil fuels in exchange for token payments to the Western Isles, and suchlike. If Scotland leads on Renewable Energy and becomes independent, I suggested, the country could finally make back the wealth it lost to England. We also shared our views about the Republic of Ireland and Northern Ireland being asked to wire all their new Renewable Electricity to England, an announcement that has been waiting to happen for some time. England could also bleed Wales of green power with the same lines being installed to import green juice from across the Irish Sea.

I doubt that politics will completely nix progress on Renewable Energy deployment – the economics are rapidly becoming clear that clean, green power and gas are essential for the future. However, I would suggest we could expect some turbulence in the political sphere, as the English have to learn the hard way that they have a responsibility to rapidly increase their production of low carbon energy.

Asking the English if they want to break ties with the European Union, as David Cameron has suggested with this week’s news on a Referendum, is the most unworkable idea, I think. England, and in fact, all the individual countries of the United Kingdom, need close participation in Europe, to join in with the development of new European energy networks, in order to overcome the risks of economic collapse. It may happen that Scotland, and perhaps Wales, even, separate themselves from any increasing English isolation and join the great pan-Europe energy projects in their own right. Their economies may stabilise and improve, while the fortunes of England may tumble, as those with decision-making powers, crony influence and web logs in the Daily Telegraph and Daily Mail, resist the net benefits of the low carbon energy revolution.

[ Many thanks to Simon and all at the Unity Kitchen at St Luke’s Centre, and the handsomely reviving Unity Latte, and a big hi to all the lunching ladies and gents with whom I shared opinions on the chunkiness of the soup of the day and the correct identification of the vegetables in it. ]

Other Snapshots of Yesterday #1 : Approached by short woman with a notebook in Parliament Square, pointing out to me a handwritten list that included the line “Big Ben”. I pointed at the clock tower and started to explain. The titchy tourist apologised for non-comprehension by saying, “French”, so then I explained the feature attraction to her in French, which I think quite surprised her. We are all European.

Other Snapshots of Yesterday #2 : Spoke with an Austrian academic by the fire for coffee at IMechE, One Birdcage Walk, about the odd attitudes as regards gun ownership in the United States, and the American tendency to collective, cohort behaviour. I suggested that this tendency could be useful, as the levels of progressive political thinking, for instance about drone warfare, could put an end to the practice. When aerial bombardment was first conducted, it should have been challenged in law at that point. We are all Europeans.

Other Snapshots of Yesterday #3 : Met a very creative Belgian from Gent, living in London. We are all European.

Other Snapshots of Yesterday #4 : We Europeans, we are all so civilised. We think that we need to heat venues for meetings, so that people feel comfortable. Levels of comfort are different for different people, but the lack of informed agreement means that the default setting for temperature always ends up being too high. The St Luke’s Centre meeting room was at roughly 23.5 degrees C when I arrived, and roughly 25 degrees C with all the visitors in the room. I shared with a co-attendee that my personal maximum operating temperature is around 19 degrees C. She thought that was fine for night-time. The IMechE venue on the 2nd floor was roughly 19 – 20 degrees C, but the basement was roughly 24 degrees C. Since one degree Celsius of temperature reduction can knock about 10% of the winter heating bill, why are public meetings about energy not more conscious of adjusting their surroundings ?

Categories
Assets not Liabilities Big Picture Bioeffigy Biofools British Biogas British Sea Power Carbon Capture Carbon Commodities Change Management Coal Hell Dead End Direction of Travel Disturbing Trends Efficiency is King Electrificandum Energy Insecurity Forestkillers Fossilised Fuels Geogingerneering Green Power Low Carbon Life Mad Mad World National Energy National Power Renewable Gas Solar Sunrise Solution City Technofix Toxic Hazard Tree Family Ungreen Development Unutterably Useless Western Hedge Wind of Fortune

Herşeyi Yak : Burn Everything

There’s good renewable energy and poorly-choiced renewable energy. Converting coal-burning power stations to burn wood is Double Plus Bad – it’s genuiunely unsustainable in the long-term to plan to combust the Earth’s boreal forests just to generate electricity. This idea definitely needs incinerating.

Gaynor Hartnell, chief executive of the Renewable Energy Association recently said, “Right now the government seems to have an institutional bias against new biomass power projects.” And do you know, from my point of view, that’s a very fine thing.

Exactly how locally-sourced would the fuel be ? The now seemingly abandoned plan to put in place a number of new biomass burning plants would rely on wood chip from across the Atlantic Ocean. That’s a plan that has a number of holes in it from the point of view of the ability to sustain this operation into the future. Plus, it’s not very efficient to transport biomass halfway across the world.

And there’s more to the efficiency question. We shouldn’t be burning premium wood biomass. Trees should be left standing if at all possible – or used in permanent construction – or buried so that they don’t decompose – if new trees need to be grown. Rather than burning good wood that could have been used for carbon sequestration, it would be much better, if we have to resort to using wood as fuel, to gasify wood waste and other wood by-products in combination with other fuels, such as excavated landfill, food waste and old rubber tyres.

Co-gasifying of mixed fuels and waste would allow cheap Carbon Capture and Storage (CCS) or Carbon Capture and (Re)Utilisation (CCU) options – and so if we have to top up the gasifiers with coal sometimes, at least it wouldn’t be leaking greenhouse gas to the atmosphere.

No, we shouldn’t swap out burning coal for incinerating wood, either completely or co-firing with coal. We should build up different ways to produce Renewable Gas, including the gasification of mixed fuels and waste, if we need fuels to store for later combustion. Which we will, to back up Renewable Electricity from wind, solar, geothermal, hydropower and marine resources – and Renewable Gas will be exceptionally useful for making renewable vehicle fuels.

Bioenergy with Carbon Capture and Storage : the wrong way :-
https://www.biofuelwatch.org.uk/wp-content/uploads/BECCS-report.pdf

Bioenergy with Carbon Capture and Storage : the right way :-
https://www.ecolateral.org/Technology/gaseifcation/gasificationnnfc090609.pdf
“The potential ability of gasifiers to accept a wider range of biomass feedstocks than biological routes. Thermochemical routes can use lignocellulosic (woody) feedstocks, and wastes, which cannot be converted by current biofuel production technologies. The resource availability of these feedstocks is very large compared with potential resource for current biofuels feedstocks. Many of these feedstocks are also lower cost than current biofuel feedstocks, with some even having negative costs (gate fees) for their use…”
https://www.uhde.eu/fileadmin/documents/brochures/gasification_technologies.pdf
https://www.gl-group.com/pdf/BGL_Gasifier_DS.pdf
https://www.energy.siemens.com/fi/en/power-generation/power-plants/carbon-capture-solutions/pre-combustion-carbon-capture/pre-combustion-carbon-capture.htm

Categories
Academic Freedom Bioeffigy Biofools Carbon Commodities Corporate Pressure Feed the World Food Insecurity Foreign Investment Forestkillers Freshwater Stress Genetic Modification Genetic Muddyfixation Green Investment Green Power Mass Propaganda Media Near-Natural Disaster Public Relations Pure Hollywood Social Capital Social Change Social Chaos Solution City Technofix Technomess The Myth of Innovation The War on Error Toxic Hazard Tree Family Unconventional Foul Ungreen Development Unutterably Useless Utter Futility Vain Hope Water Wars Western Hedge

BP Biofuels : Murders & Acquisitions ?

[ The empty billboard at Highams Park train station, that had previously boasted an advertisement for BP’s Olympic public relations mission, after I complained about it. ]

I can see it now – a shimmering summer London afternoon – the heat radiating from the newly constructed sports track, and all television eyes on the shiny BP Biofuels filling station.

Oh, you’ll have choice. Which “green” fuel shall we choose for the Olympic village van ? Bioethanol, biodiesel or biobutanol ? The bright white and metal filling station will be glowing like an saving angel in a storm, with the friendly, homely green and yellow BP star flower tattooed across it.

But while you’re drinking in the public relations, “Oh look ! BP goes green !”, you will be living a distraction, like a child hypnotised by glinting gemstones. You will not be looking further than the pump station podium, to the full context, where lies a narrative rich in troubling complexity, harrowing tales that somehow never quite make it to the bread-and-circus mainstream media.

1. BP Biofuels is growing by acquisition, not in-house development

It is clear from the outset that BP Biofuels is a greenwash mirage – the “world class” fossil fuel oil and gas company are not tending to dirty their engineers’ hands with actually making biofuels themselves. What BP Biofuels has been doing is leveraging their ecological reputation by making purchases of already-existing companies – for example, Tropical Bioenergia in Brazil.

Where they have entered into a more joint venture, things are a bit rocky, for example, at Vivergo Fuels in Hull, England, which was due to open in early 2012, no, I mean “late spring”, no actually “later in the year”.

And where they have been unable to acquire or merger, they’ve been taking to the law courts to suppress the competition, as with Gevo in Minnesota in the United States of America.

2. Land grabbing in the Brazilian Cerrado and the socioeconomic fallout

Although BP Biofuels are claiming that they are developing advanced biofuels with due care for sustainability, there are continuing problems with land use change in the Brazilian Cerrado, which is documented as displacing indigenous people, and perhaps even partly behind the murder of social activists in the region.

BP Biofuels is making use of the highly unequal Brazilian economy by using low-skilled or unskilled landless people in the area. As usual, the BP company reports focus on the safety of their employees – they claim that mechanisation of sugarcane harvesting is improving the wellbeing of their workers – but they are not addressing the economic disadvantage that forces people to work for extremely low wages in this business.

3. Ecosystem destruction by agrifuel/agrofuel farming

Sugarcane plantations have been highlighted as causing detrimental effects to soils, even causing stress on local water supplies.

4. The GM crop menace

At least one company specialising in the sale of agrochemicals, I mean genetically modified crops adapted for use with patented agrochemicals, is active alongside the BP Biofuels concerns. It is possible that there will be extensive crossover between the energy and GM crops companies – not only in the ownership of the genome of energy crops such as GM sugarcane, but also GM trees – to be used to build carbon credits for the large international companies growing plantations in Brazil.

5. Buggy biofuels will remain a niche in the vehicle fuel market

Biofuels made by any process that involves microorganisms suffer from one unique problem – speed – or rather, lack of it. There does not appear to be much evidence that any bio-activated production of biofuels – whether it be fermentation for ethanol, or algae grown for oil – can be sped up. This indicates that biofuels grown from bugs are likely to remain relatively small-scale in the global fuels markets – adding weight to the arguments from companies such as BP for drilling for fossil fuels in the Arctic Ocean and offshore in Africa, South America and Asia.

[ NOTE WELL : Before you mentino it, yes, this post does not have much in the way of links, in fact, none at all. That’s because I’m still compiling sources on this subject and hope to write it up properly later on. If you’re keen to find out more, Google knows everything, just about. ]

Categories
Academic Freedom Alchemical Assets not Liabilities Bait & Switch Biofools British Biogas Burning Money Carbon Capture Carbon Commodities Carbon Pricing Carbon Taxatious Climate Change Conflict of Interest Corporate Pressure Delay and Deny Dreamworld Economics Emissions Impossible Energy Autonomy Energy Change Energy Denial Energy Insecurity Energy Revival Engineering Marvel Fossilised Fuels Geogingerneering Global Warming Green Investment Green Power Hydrocarbon Hegemony Hydrogen Economy Low Carbon Life Major Shift Marvellous Wonderful Mass Propaganda Methane Madness Methane Management National Energy National Power Oil Change Paradigm Shapeshifter Peak Emissions Peak Natural Gas Peak Oil Petrolheads Policy Warfare Political Nightmare Price Control Public Relations Renewable Gas Renewable Resource Sustainable Deferment Technofix The Power of Intention The War on Error Western Hedge Zero Net

Carbon Captured #2 : Socialising Cost, Privatising Profits


Image Credit : Michael Sterner

Carbon dioxide is a fuel. And I don’t mean plant food.

As petroleum oil and Natural Gas production hit peaks that cannot be surpassed, and the world begins to realise that depletion is inevitable, the world’s energy producers will turn to alternatives, including various forms of fuel and gas made from carbon dioxide, chemically adjusted with hydrogen derived from renewable resources.

It seems to me hypocritical for the large oil and gas companies to pitch for public funds to support their investment in Carbon Capture and Storage. Why ? Because this public funding will get converted into private profits the day they start to pump the carbon dioxide back out of storage to make Renewable Gas.

From a personal perspective, I find the argument for public financing of Carbon Capture and Storage particularly toxic when it is proposed to raise the revenue by placing an artificial price or tax on carbon. This would mean that the taxpaper-consumer pays for the emissions burden of hydrocarbon fossil fuel energy, and then gets to pay again for alternative energy, produced using the stored waste gases that they already paid for.

Charge energy customers twice. What a great bailout for fossil fuels !

I suspect that the only reason that Royal Dutch Shell and BP admit to climate change is so they can push their Carbon Capture and Storage schemes – bid tendering for public subsidy.

Forget the subsidies currently in place around the world for wind and solar power. Global carbon finance pushed at Carbon Capture and Storage will be of a much higher order of expenditure.

If the oil and gas companies want to build Carbon Capture and Storage facilities – let them pay for them themselves. After all, in many cases, they have been able to economically justify them by using carbon dioxide pumping to increase oil production – what’s known as Enhanced Oil Recovery.

Or if they insist on public finance for geo-sequestration of carbon dioxide in Carbon Capture and Storage projects, let them give us the carbon dioxide back for free when we need it for Renewable Gas production in the coming decades.

Categories
Advancing Africa Advertise Freely Alchemical Animal Kingdoom Bee Prepared Behaviour Changeling Big Picture Big Society Biofools Climate Damages Corporate Pressure Dead Zone Demoticratica Direction of Travel Droughtbowl Eating & Drinking Emissions Impossible Environmental Howzat Extreme Weather Faithful God Feed the World Feel Gooder Food Insecurity Foreign Investment Forestkillers Fossilised Fuels Freemarketeering Freshwater Stress Genetic Muddyfixation Geogingerneering Growth Paradigm Health Impacts Human Nurture Low Carbon Life Major Shift Marvellous Wonderful Media Nudge & Budge Oil Change Paradigm Shapeshifter Peak Emissions Peak Energy Peak Natural Gas Public Relations Social Change Solution City Sustainable Deferment Technological Fallacy Technological Sideshow Technomess Toxic Hazard Tree Family Ungreen Development Virtually Vegan Water Wars

Living Life and LOAFing It

CHRISTIAN ECOLOGY LINK
PRESS RELEASE

Living Life and LOAFing It – Green Christians ask churches to “Use your LOAF !” on sourcing sustainable food

In the run up to Easter, Christian Ecology Link is asking supporters to think and act on how they source food for their church communities, with the aim of reducing the impact of unsustainable agriculture on their local area, and the wider world.

CEL have launched a new colour leaflet on the LOAF programme principles in time for Shrove Tuesday (Mardi Gras), or Pancake Day, on 21st February 2012.

Categories
Advancing Africa Bioeffigy Biofools Breathe Easy Burning Money Coal Hell Corporate Pressure Cost Effective Demoticratica Direction of Travel Disturbing Trends Divide & Rule Eating & Drinking Efficiency is King Electrificandum Energy Insecurity Feed the World Food Insecurity Foreign Interference Foreign Investment Forestkillers Freemarketeering Green Power Health Impacts Money Sings National Energy National Power Policy Warfare Political Nightmare Protest & Survive The War on Error Tree Family Wasted Resource

Biomassacre : Agrofuels Aggro

Stop Biomassacre Subsidies from You and I Films on Vimeo.

The UK Government has a neat plan – meet a considerable proportion of the nation’s electricity needs by burning biomass and biofuels : wood, waste wood, agricultural residues, palm oil, maize ethanol and such-like.

They are even considering setting up a generous subsidy, the kind of subsidy that would encourage massive imports of biomass and bioliquids.

Without care and regulatory checks and balances, the net effect will almost certainly be rainforest deforestation, land grabbing in under-developed nations, and economic problems for the growing biomass heat movement in the UK.

Most people probably think burning wood, wood waste and plant-derived fuels to make power sounds like a good energy idea – stop burning coal and start burning trees – has to be better for the planet, surely ?

There are a number of really deep problems with this agenda. Almuth Ernsting of Biofuelwatch told me this weekend that burning biomass for electricity generation is incredibly inefficient.

She said the UK Government has apparently heard concerns about the burning of bioliquids such as the biofuel bioethanol for power generation, and it shouldn’t be included in the subsidy arrangement.

However, biomass-fired power generation is still set to receive support – although it is still being depicted as making use of agroforestry residues, and all sourced within the country – judging by a recent permission for a biomass burning plant in Yorkshire.

Generous subsidies for burning biofuels to generate electricity will encourage the combustion of food-quality oils, imported from across the world, exacerbating the existing problems with the destruction of tropical rainforest for commercial gain.

Offering significant subsidies for burning biomass for power generation will most probably trigger further logging of virgin rainforest, as it would be cheap to produce and export to Britain.

Even if biomass were sourced in the United Kingdom – with restrictions on imports from areas of the world where there is extensive land grabbing and deforestation occurring – the subsidy would encourage the burning of wood products for generating power instead of being used in the most efficient way – to heat homes.

Almuth Ernsting said, “the big energy companies are going to burn that much wood, small heat providers won’t be able to compete.” The same would be true of street-scale biomass combined heat and power (CHP) proposals.

Almuth Ernsting and others have pointed out that the UK Government public consultation on the subsidy ends on 12th January 2012, but that even after that date, people are being encouraged to write to their Member of Parliament to express views.

Another group, nope, is also calling for citizen action :-

https://nope.org.uk/

In an e-mail to joabbess.com, Almuth Ernsting offered extra resources :-

“All the materials related to our campaign against subsidies for biomass and biofuel electricity can be found here :-”

https://www.biofuelwatch.org.uk/uk-campaign/rocs_overview/

“A briefing about the impacts of ROCs for biomass, biofuels and waste incineration :-”
https://www.biofuelwatch.org.uk/2011/rocs_impacts/

“A briefing to hand or send to MPs :-”
https://www.biofuelwatch.org.uk/2011/rocs_mps/

“A guide to lobbying MPs on this :-” https://www.biofuelwatch.org.uk/2011/mp_guidance_rocs/

“We have got two email alerts on one page just now (https://www.biofuelwatch.org.uk/2011/rocs-alerts/), though we will take down the one to respond to the DECC Consultation when that closes next Thursday, while keeping the one to MPs. However, we very much encourage people to write personal letters or, even better, visit their MPs, which will have much more impact than taking part in a standard email alert.”

Categories
Babykillers Be Prepared Big Number Big Picture Biofools British Biogas British Sea Power Carbon Capture Climate Change Climate Damages Corporate Pressure Cost Effective Delay and Deny Demoticratica Direction of Travel Energy Change Energy Insecurity Energy Revival Foreign Interference Fossilised Fuels Geogingerneering Green Investment Green Power Hydrocarbon Hegemony Incalculable Disaster National Energy National Power No Blood For Oil Not In My Name Nuclear Nuisance Nuclear Shambles Oil Change Peace not War Peak Energy Peak Oil Petrolheads Policy Warfare Political Nightmare Regulatory Ultimatum Renewable Gas Renewable Resource Resource Curse Resource Wards Solar Sunrise Solution City Stop War Sustainable Deferment Technofix Technological Fallacy Technological Sideshow The Power of Intention The War on Error Transport of Delight Unnatural Gas Western Hedge

Solar FIT to Bust #5

Germany can do it, but not the British. The Collected Republic of the People can install solar power with great will and nerve, but not Johnny English.

Let’s be clear here – the people in Scotland have a vision for future Renewable Energy, and so do many people in Wales and Ireland, but it appears English governance listens to fuddy duddy landowners too readily, and remains wedded to the fossil fuel industry and major construction projects like nuclear power, and carbon capture and storage.

What precisely is wrong with the heads of policy travel in Westminster ? Do they not understand the inevitable future of “conventional” energy – of decline, decimation and fall ?

It really is of no use putting off investment in truly sustainable and renewable power and gas. There are only two paths we can take in the next few decades, and their destination is the same.

Here’s how it goes. Path A will take the United Kingdom into continued dodgy skirmishes in the Middle East and North Africa. Oil production will dance like a man with a stubbed toe, but then show its true gradient of decline. Once everybody gets over the panic of the impending lack of vehicle fuel, and the failure of alternatives like algal biodiesel, and the impacts of a vastly contracted liquid fuel supply on globalised trade, then we shall move on to the second phase – the exploitation of gas. At first, it will be Natural Gas. But that too will decline. And then it will be truly natural gases. As gas is exploited for vehicles, electricity will have to come from coal. But coal, too, is suffering a precipitous decline. So renewable energy will be our salvation. By the year 2100, the world will run on renewable electricity and renewable gas, or not at all.

Categories
Bait & Switch Big Picture Biofools British Biogas British Sea Power Conflict of Interest Corporate Pressure Delay and Deny Demoticratica Direction of Travel Divide & Rule Drive Train Electrificandum Energy Change Energy Revival Engineering Marvel Environmental Howzat Feel Gooder Financiers of the Apocalypse Fossilised Fuels Gamechanger Gas Storage Green Investment Green Power Hydrocarbon Hegemony Hydrogen Economy Major Shift Marvellous Wonderful Mass Propaganda Media Methane Management National Energy National Power Not In My Name Nuclear Nuisance Nuclear Shambles Oil Change Optimistic Generation Peak Emissions Peak Energy Peak Oil Policy Warfare Political Nightmare Public Relations Regulatory Ultimatum Renewable Gas Renewable Resource Resource Wards Shale Game Social Capital Social Change Solar Sunrise Solution City Stirring Stuff The Power of Intention The War on Error Toxic Hazard Transport of Delight Wind of Fortune Zero Net

Renewable Gas : Balanced Power

People who know very little about renewable and sustainable energy continue to buzz like flies in the popular media. They don’t believe wind power economics can work. They don’t believe solar power can provide a genuine contribution to grid capacity. They don’t think marine power can achieve. They would rather have nuclear power. They would rather have environmentally-destructive new oil and gas drilling. They have friends and influence in Government. They have financial clout that enables them to keep disseminating their inaccuracies.

It’s time to ditch the pundits, innuendo artists and insinuators and consult the engineers.

Renewable Gas can stand in the gap – when the wind doesn’t blow or the sun doesn’t shine and the grid is not sufficiently widespread and interconnected enough to be able to call on other wind or solar elsewhere.

Renewable Gas is the storing of biologically-derived and renewably-created gases, and the improving of the gases, so that they can be used on-demand in a number of applications.

This field of chemical engineering is so old, yet so new, it doesn’t have a fixed language yet.

However, the basic chemistry, apart from dealing with contaminants, is very straight-forward.

When demand for grid electricity is low, renewable electricity can be used to make renewable hydrogen, from water via electrolysis, and in other ways. Underused grid capacity can also be used to methanate carbon-rich biologically-derived gas feedstocks – raising its stored energy.

Then when demand for grid electricity is high, renewable gas can be used to generate power, to fill the gap. And the flue gases from this combustion can be fed back into the gas storage.

Renewable gas can also be biorefined into vehicle fuels and other useful chemicals. This application is likely to be the most important in the short term.

In the medium-term, the power generation balance that renewable gas can offer is likely to be the most important application.

Researchers are working on optimising all aspects of renewable gas and biorefinery, and businesses are already starting to push towards production.

We can have a fully renewable energy future, and we will.

Categories
Be Prepared Big Picture Biofools Burning Money Cost Effective Deal Breakers Delay and Deny Demoticratica Direction of Travel Economic Implosion Efficiency is King Energy Change Energy Insecurity Energy Revival Financiers of the Apocalypse Fossilised Fuels Freemarketeering Green Investment Green Power Growth Paradigm Major Shift Media Money Sings National Energy National Power Peak Energy Peak Oil Policy Warfare Political Nightmare Social Capital Social Change Social Chaos Western Hedge Wind of Fortune

The European Union Question

David Cameron was on one screen, and CBeebies was on another. I was on the treadmill at the gym, interval training, pacing at the same rhythm as the blaring RnB, and reading the teletext translation of the Parliamentary debate.

I smiled at Ed Miliband’s nasally-charged bluster. I rolled my eyes at the interventions from the Conservative dinosaurs.

The Tories are the living example of the Bad Apple Theory, I thought to myself. One bad apple, or in their case, a clutch of Eurosceptics, spoils the crop.

The Conservative Party of the United Kingdom harbours a number of corporatists and the stooge friends of corporatists, and this is their basic argument – deregulate and private companies will be more productive and save the economy from implosion. It’s the same argument that nursed the financial services market that went ahead and created derivatives of risk, and produced toxic credit progeny in abundance and caused the collapse of the banks which caused the current economic doldrums. Great job !

We’ve got the Coalition Government’s Red Tape (Cutting Of) initiative in full-swing, as well as the Eurosceptics. Their argument is – the European Union is a hyperquagmire and over-regulates and stifles business and innovation, so the United Kingdom should secede. What they fail to acknowledge is that European Union legislation and regulation have created excellent conditions for trade, unifying the standards of production across the Common Market, and drawing on skillsets and technologies from across the region, has advanced productivity and standards of living for all.

Categories
Bait & Switch Biofools Delay and Deny Disturbing Trends Divide & Rule Drive Train Emissions Impossible Environmental Howzat Food Insecurity Fossilised Fuels Gamechanger Genetic Modification Hydrocarbon Hegemony Low Carbon Life Marvellous Wonderful Mass Propaganda Media Oil Change Petrolheads Protest & Survive Public Relations Pure Hollywood Regulatory Ultimatum Social Change Stirring Stuff Technofix Technological Sideshow Toxic Hazard Tree Family

The New Sciontist : BP Subvertisers

Image Credit : Liberate Tate (Event Flyer)

The New Scientist magazine must be hard up. They’ve already bowed to economic pressure and taken the “king’s shilling” from the oil and gas industry by running Statoil advertisements, at least one made to look like a normal New Scientist article, giving Natural Gas a makeover as desirable as washing powder – all clean and reliable and loved by obsessives everywhere. Now they appear to have lost their power for critical reasoning and sunk to being suckers as billboards for BP spin, taking a front cover foldout for biofuels, with what I think is a completely deceitful portrayal of BP’s business.

Categories
Biofools British Biogas Direction of Travel Drive Train Energy Change Energy Revival Gamechanger Low Carbon Life Major Shift Marvellous Wonderful Methane Management Oil Change Peak Oil Regulatory Ultimatum Renewable Gas

Energy Poll #8 : Renewable Gas

Question 1    Have you heard reports about how vehicles can run on compressed Renewable Gas made from animal and plant waste ?







Question 2    Do you think we will need to give up using petrol and diesel burning cars in cities for air quality reasons ?







Question 3    Are you keen to see cleaner-burning engines in vehicles ?







Question 4    Would you be ready to save money to buy a new compressed gas car ?







Question 5    Do you think that compressed gas cars could have the same performance and economy as diesel and petrol cars ?






Background Information : please give a few brief details about what kind of person you are, to help us check that a representative sample of people have answered the survey.

What region are you living in ?
How old are you ?
What gender are you ?
How do you prefer to keep up to date with science ?

Is Climate Change really happening ?
Is Peak Oil really happening ?
Do you know a lot about energy  ?
Enter your e-mail address if you want the final results










Categories
Big Number Big Picture Biofools British Biogas Carbon Capture Coal Hell Design Matters Direction of Travel Drive Train Energy Change Energy Revival Engineering Marvel Fossilised Fuels Fuel Poverty Green Investment Green Power Hydrocarbon Hegemony Major Shift Marvellous Wonderful National Energy National Power Nuclear Nuisance Nuclear Shambles Optimistic Generation Peak Emissions Policy Warfare Realistic Models Renewable Gas Renewable Resource Solar Sunrise Solution City The War on Error Tree Family Unnatural Gas Wasted Resource Wind of Fortune

Renewable Gas #5 : Beyond Biogas

I was speaking to a nuclear power “waverer” the other day. They said that George Monbiot or Mark Lynas was saying that since Germany has cancelled its nuclear power programme, Germany’s Carbon Dioxide emissions will increase, because they will be using coal and Natural Gas power stations :-

https://www.davidstrahan.com/blog/?p=1130
https://www.newscientist.com/article/dn20665-germany-will-use-fossil-fuels-to-plug-nuclear-gap.html
https://www.marklynas.org/2011/06/germany-italy-greens-nukes-and-climate-change/
https://www.guardian.co.uk/environment/blog/2011/jun/15/italy-nuclear-referendum
https://www.guardian.co.uk/commentisfree/2011/jul/04/nuclear-industry-stinks-cleaner-energy
https://www.monbiot.com/2011/07/04/corporate-power-no-thanks/

I explained that this was a common misconception, and that Germany is still planning to meet their carbon targets, and that it can be done even with coal and gas power plants because in a few decades’ time the coal and Natural Gas power plants will only be used a couple of weeks a year in total to back up all the renewables, such as wind power and solar power, that Germany is building.

This is not the end of the story, however.

Categories
Bait & Switch Big Picture Biofools British Biogas Conflict of Interest Corporate Pressure Dead End Design Matters Direction of Travel Drive Train Efficiency is King Energy Change Energy Insecurity Energy Revival Energy Socialism Engineering Marvel Freemarketeering Human Nurture Incalculable Disaster Libertarian Liberalism Low Carbon Life Major Shift Mass Propaganda National Energy Neverending Disaster Non-Science Nuclear Nuisance Nuclear Shambles Nudge & Budge Oil Change Optimistic Generation Policy Warfare Political Nightmare Public Relations Realistic Models Renewable Gas Science Rules Scientific Fallacy Social Change Solar Sunrise Technofix Technological Fallacy Technological Sideshow Technomess The Myth of Innovation The Power of Intention The War on Error Transport of Delight Unutterably Useless Utter Futility Vain Hope Vote Loser Wind of Fortune

George Monbiot : New Clear

It is a newer, clearer tone that George Monbiot uses in his piece The nuclear industry stinks. But that is not a reason to ditch nuclear power. He seems to have lost his dirty annoyance with filthy anti-nuclear activists and moved onto a higher plane of moral certitude, where the air is cleaner and more refined.

He is pro-technology, but anti-industry. For him, the privately owned enterprises of atomic energy are the central problem that has led to accidents both of a radioactive and an accountancy nature. “Corporate power ?”, he asks, “No thanks.” The trouble is, you can’t really separate the failings of nuclear power from the failings of human power. It’s such a large, complex and dangerous enterprise that inevitably, human power systems compromise the use of the technology, regardless of whether they are publicly or privately owned. For a small amount of evidence, just look at the history of publicly-managed nuclear power in the United Kingdom. Not exactly peachy. And as for those who claimed that a “free” market approach to managing nuclear power would improve matters – how wrong they were. In my view, on the basis of the evidence so far, nobody can claim that nuclear power can be run as an efficient, safe, profit-making venture.