Categories
Academic Freedom Alchemical Assets not Liabilities Baseload is History Be Prepared Big Number Big Picture Bioeffigy Biofools Biomess British Biogas Burning Money Carbon Capture Carbon Commodities Carbon Pricing Carbon Recycling Carbon Taxatious Change Management Coal Hell Corporate Pressure Cost Effective Design Matters Direction of Travel Dreamworld Economics Efficiency is King Electrificandum Emissions Impossible Energy Autonomy Energy Change Energy Insecurity Energy Revival Energy Socialism Engineering Marvel Foreign Investment Fossilised Fuels Gamechanger Gas Storage Geogingerneering Green Gas Green Investment Green Power Grid Netmare Growth Paradigm Hydrocarbon Hegemony Hydrogen Economy Insulation Low Carbon Life Marine Gas Methane Management National Energy National Power Natural Gas Nuclear Nuisance Nuclear Shambles Oil Change Optimistic Generation Paradigm Shapeshifter Peak Natural Gas Petrolheads Policy Warfare Political Nightmare Price Control Public Relations Realistic Models Regulatory Ultimatum Renewable Gas Shale Game Solar Sunrise Solution City Technofix Technomess The Power of Intention The Price of Gas The Right Chemistry Tree Family Unconventional Foul Ungreen Development Unnatural Gas Wasted Resource Wind of Fortune Zero Net

A Partial Meeting of Engineering Minds

So I met somebody last week, at their invitation, to talk a little bit about my research into Renewable Gas.

I can’t say who it was, as I didn’t get their permission to do so. I can probably (caveat emptor) safely say that they are a fairly significant player in the energy engineering sector.

I think they were trying to assess whether my work was a bankable asset yet, but I think they quickly realised that I am nowhere near a full proposal for a Renewable Gas system.

Although there were some technologies and options over which we had a meeting of minds, I was quite disappointed by their opinions in connection with a number of energy projects in the United Kingdom.

Categories
Academic Freedom Alchemical Assets not Liabilities Baseload is History Big Number Big Picture Bioeffigy Biofools Biomess British Biogas Carbon Capture Carbon Commodities Carbon Pricing Carbon Recycling Change Management Corporate Pressure Demoticratica Direction of Travel Efficiency is King Electrificandum Energy Autonomy Energy Calculation Energy Change Energy Revival Engineering Marvel Fossilised Fuels Gamechanger Green Gas Green Investment Green Power Growth Paradigm Hydrocarbon Hegemony Hydrogen Economy Major Shift Marvellous Wonderful Methane Management National Energy National Power Natural Gas Nuclear Nuisance Nuclear Shambles Oil Change Optimistic Generation Peak Emissions Peak Natural Gas Realistic Models Regulatory Ultimatum Renewable Gas Renewable Resource Revolving Door Social Capital Social Change Social Democracy Solution City Tarred Sands Technofix The Data The Myth of Innovation The Power of Intention The Price of Gas The Right Chemistry Transport of Delight Tree Family Ungreen Development Unnatural Gas Wasted Resource Western Hedge Wind of Fortune Zero Net

DECC Dungeons and Dragnets

Out of the blue, I got an invitation to a meeting in Whitehall.

I was to join industrial developers and academic researchers at the Department of Energy and Climate Change (DECC) in a meeting of the “Green Hydrogen Standard Working Group”.

The date was 12th June 2015. The weather was sunny and hot and merited a fine Italian lemonade, fizzing with carbon dioxide. The venue was an air-conditioned grey bunker, but it wasn’t an unfriendly dungeon, particularly as I already knew about half the people in the room.

The subject of the get-together was Green Hydrogen, and the work of the group is to formulate a policy for a Green Hydrogen standard, navigating a number of issues, including the intersection with other policy, and drawing in a very wide range of chemical engineers in the private sector.

My reputation for not putting up with any piffle clearly preceded me, as somebody at the meeting said he expected I would be quite critical. I said that I would not be saying anything, but that I would be listening carefully. Having said I wouldn’t speak, I must admit I laughed at all the right places in the discussion, and wrote copious notes, and participated frequently in the way of non-verbal communication, so as usual, I was very present. At the end I was asked for my opinion about the group’s work and I was politely congratulational on progress.

So, good. I behaved myself. And I got invited back for the next meeting. But what was it all about ?

Most of what it is necessary to communicate is that at the current time, most hydrogen production is either accidental output from the chemical industry, or made from fossil fuels – the main two being coal and Natural Gas.

Hydrogen is used extensively in the petroleum refinery industry, but there are bold plans to bring hydrogen to transport mobility through a variety of applications, for example, hydrogen for fuel cell vehicles.

Clearly, the Green Hydrogen standard has to be such that it lowers the bar on carbon dioxide (CO2) emissions – and it could turn out that the consensus converges on any technologies that have a net CO2 emissions profile lower than steam methane reforming (SMR), or the steam reforming of methane (SRM), of Natural Gas.

[ It’s at this very moment that I need to point out the “acronym conflict” in the use of “SMR” – which is confusingly being also used for “Small Modular Reactors” of the nuclear fission kind. In the context of what I am writing here, though, it is used in the context of turning methane into syngas – a product high in hydrogen content. ]

Some numbers about Carbon Capture and Storage (CCS) used in the manufacture of hydrogen were presented in the meeting, including the impact this would have on CO2 emissions, and these were very intriguing.

I had some good and useful conversations with people before and after the meeting, and left thinking that this process is going to be very useful to engage with – a kind of dragnet pulling key players into low carbon gas production.

Here follow my notes from the meeting. They are, of course, not to be taken verbatim. I have permission to recount aspects of the discussion, in gist, as it was an industrial liaison group, not an internal DECC meeting. However, I should not say who said what, or which companies or organisations they are working with or for.

Categories
Academic Freedom Big Number Bioeffigy Biomess Nuclear Nuisance Nuclear Shambles Peak Coal Peak Emissions Protest & Survive Regulatory Ultimatum Resource Curse Revolving Door Science Rules Sustainable Deferment Technological Fallacy Technological Sideshow The Data The War on Error Tree Family Wind of Fortune

Man Who Eats Data

A key thing to know about Professor David MacKay is that he likes data. Lots of data. He said so in a public meeting last week, and I watched him draw a careful draft diagram on paper, specifying for a project engineer the kind of data he would like to see on Combined Heat and Power (CHP) with District Heating (DH). There have been a number of complaints about communal heating projects in the UK, but accurate information is often commercially sensitive, so urging the collection and publication of data is the way forward.

MacKay has been working on very large data indeed – with his 2050 Pathways Calculator. Although people may complain, in fact, they do complain, that the baseline assumptions about nuclear power seem designed to give the recommended outcome of more nuclear power, other parts of The Calculator are more realistic, showing that a high level of new, quick-to-build largescale wind power is practically non-negotiable for guaranteeing energy security.

Last year, there were some rumours circulating that MacKay’s work on biomass for The Calculator showed that biomass combustion for electricity generation was a non-starter for lowering net greenhouse gas emissions to the atmosphere. We were told to wait for these results. And wait again. And now it appears (according to Private Eye, see below), that these were suppressed by DECC, engaged as they were with rubberstamping biomass conversions of coal-fired power plants – including Drax.

“Old Sparky” at Private Eye thinks that Professor MacKay will not be permitted to publish this biomass data – but as MacKay said last week, The Calculator is open source, and all volunteers are welcome to take part in its design and development…


Private Eye, Number 1365, 2 May 2014 – 15 May 2014

Keeping the Lights On
by “Old Sparky”

The company that owns the gigantic Drax power station in Yorkshire is cheekily suing the government for not giving it quite as much subsidy as it would like. But it should be careful : the government is suppressing a publication that would question its right to any subsidy at all.

Drax, built as a coalf-fired plant, is converting its six generating units to burn 15m tonnes of wood a year (see Eye 1325). Amazingly, electricity generated from “biomass” like this qualifies as “renewable energy”. It is thus in line for hefty subsidies and Treasury guarantees – several hundred million pounds a year of electricit billpayers’ money once all six units have been converted.

Having seen the even greater bungs proposed for EDF’s two new nuclear power plants, however, Drax thinks it deserves a similar deal and is suing for precisely that (which is what happens when firms subsidy-farming as their main line of business).

Drax’s greed is unlikely to be rewarded. In the Energy Act passed last year, ministers gave themselves remarkable powers to intervene in the electricity industry, project by project, and to do pretty much whatever takes their fancy.

Meanwhile, the chief scientific adviser [sic] at the Department of Energy and Climate Change (DECC), the upright Professor David MacKay, is coming to the end of his five-year term. For more than a year he has been agitating for DECC to publish his “biomass calculator” which proves it is (in his words) “fantastically easy” to show that burning trees on the scale planned by Drax and other converted coal plants is likely to INCREASE CO2 emissions in the timeframe that matters.

Knowing the rumpus this will cause, DECC suppressed it last summer (Eye, 1348) and continues to do so while several large biomass projects get off the ground. Will the scrupulous professor simply return to academia and publish it anyway ? Perhaps : but don’t bank on it : it is usual for employment contracts to stipulate that the EMPLOYER retains intellectual property rights in ideas developed while “on the job”. Although MacKay did some work on the impact of biomass-burning before becoming chief adviser [sic], the “calculator” dates from his time at DECC.

This is just as well for Drax. But perhaps its owners should take the hint and wind in their necks.

Categories
Academic Freedom Alchemical Artistic Licence Baseload is History Be Prepared Behaviour Changeling Big Number Big Picture Big Society Bioeffigy Biofools Biomess British Biogas Burning Money Carbon Army Change Management Climate Change Cool Poverty Cost Effective Deal Breakers Design Matters Efficiency is King Electrificandum Emissions Impossible Energy Change Energy Insecurity Fossilised Fuels Fuel Poverty Gamechanger Global Heating Green Gas Green Power Heatwave Human Nurture Hydrogen Economy Insulation Major Shift National Energy Nudge & Budge Optimistic Generation Paradigm Shapeshifter Peak Emissions Policy Warfare Political Nightmare Realistic Models Regulatory Ultimatum Renewable Gas Renewable Resource Social Capital Solution City Technofix The Data The Power of Intention The Right Chemistry Voluntary Behaviour Change Wasted Resource Wind of Fortune

David MacKay : Heating London

I took some notes from remarks made by Professor David MacKay, the UK Government’s Chief Scientific Advisor, yesterday, 1st May 2014, at an event entitled “How Will We Heat London ?”, held by Max Fordhams as part of the Green Sky Thinking, Open City week. I don’t claim to have recorded his words perfectly, but I hope I’ve captured the gist.


[David MacKay] : [Agreeing with others on the panel – energy] demand reduction is really important. [We have to compensate for the] “rebound effect”, though [where people start spending money on new energy services if they reduce their demand for their current energy services].

SAP is an inaccurate tool and not suitable for the uses we put it too :-
https://www.eden.gov.uk/planning-and-development/building-control/building-control-guidance-notes/sap-calculations-explained/
https://www.dimplex.co.uk/products/renewable_solutions/building_regulations_part_l.htm

Things seem to be under-performing [for example, Combined Heat and Power and District Heating schemes]. It would be great to have data. A need for engineering expertise to get in.

I’m not a Chartered Engineer, but I’m able to talk to engineers. I know a kilowatt from a kilowatt hour [ (Laughter from the room) ]. We’ve [squeezed] a number of engineers into DECC [the Department of Energy and Climate Change].

I’m an advocate of Heat Pumps, but the data [we have received from demonstration projects] didn’t look very good. We hired two engineers and asked them to do the forensic analysis. The heat pumps were fine, but the systems were being wrongly installed or used.

Now we have a Heat Network team in DECC – led by an engineer. We’ve published a Heat Strategy. I got to write the first three pages and included an exergy graph.

[I say to colleagues] please don’t confuse electricity with energy – heat is different. We need not just a green fluffy solution, not just roll out CHP [Combined Heat and Power] [without guidance on design and operation].

Sources of optimism ? Hopefully some of the examples will be available – but they’re not in the shop at the moment.

For example, the SunUp Heat Battery – works by having a series of chambers of Phase Change Materials, about the size of a fridge that you would use to store heat, made by electricity during the day, for use at night, and meet the demand of one home. [Comment from Paul Clegg, Senior Partner at Feilden Clegg Bradley Studios : I first heard about Phase Change Materials back in the 1940s ? 1950s ? And nothing’s come of it yet. ] Why is that a good idea ? Well, if you have a heat pump and a good control system, you can use electricity when it’s cheapest… This is being trialled in 10 homes.

Micro-CHP – [of those already trialled] definitely some are hopeless, with low temperature and low electricity production they are just glorified boilers with a figleaf of power.

Maybe Fuel Cells are going to deliver – power at 50% efficiency [of conversion] – maybe we’ll see a Fuel Cell Micro-Combined Heat and Power unit ?

Maybe there will be hybrid systems – like the combination of a heat pump and a gas boiler – with suitable controls could lop off peaks of demand (both in power and gas).

We have designed the 2050 Pathways Calculator as a tool in DECC. It was to see how to meet the Carbon Budget. You can use it as an energy security calculator if you want. We have helped China, Korea and others to write their own calculators.

A lot of people think CHP is green and fluffy as it is decentralised, but if you’re using Natural Gas, that’s still a Fossil Fuel. If you want to run CHP on biomass, you will need laaaaaarge amounts of land. You can’t make it all add up with CHP. You would need many Wales’-worth of bioenergy or similar ways to make it work.

Maybe we should carry on using boilers and power with low carbon gas – perhaps with electrolysis [A “yay !” from the audience. Well, me, actually]. Hydrogen – the the 2050 Calculator there is no way to put it back into the beginning of the diagram – but it could provide low carbon heat, industry and transport. At the moment we can only put Hydrogen into Transport [in the 2050 Calculator. If we had staff in DECC to do that… It’s Open Source, so if any of you would like to volunteer…

Plan A of DECC was to convert the UK to using lots of electricity [from nuclear power and other low carbon technologies, to move to a low carbon economy], using heat pumps at the consumer end, but there’s a problem in winter [Bill Watts of Max Fordham had already shown a National Grid or Ofgem chart of electricity demand and gas demand over the year, day by day. Electricity demand (in blue) fluctuates a little, but it pretty regular over the year. Gas demand (in red) however, fluctuates a lot, and is perhaps 6 to 10 times larger in winter than in summer.]

If [you abandon Plan A – “electrification of everything”] and do it the other way, you will need a large amount of Hydrogen, and a large Hydrogen store. Electrolysers are expensive, but we are doing/have done a feasibility study with ITM Power – to show the cost of electrolysers versus the cost of your wind turbines [My comment : but you’re going to need your wind turbines to run your electrolysers with their “spare” or “curtailed” kilowatt hours.]

[David Mackay, in questions from the floor] We can glue together [some elements]. Maybe the coming smart controls will help…can help save a load of energy. PassivSystems – control such things as your return temperature [in your Communal or District Heating]…instead of suing your heat provider [a reference to James Gallagher who has problems with his communal heating system at Parkside SE10], maybe you could use smart controls…

[Question] Isn’t using smart controls like putting a Pirelli tyre on a Ford Cortina ? Legacy of poor CHP/DH systems…

[David MacKay in response to the question of insulation] If insulation were enormously expensve, we wouldn’t have to be so enthusastic about it…We need a well-targeted research programme looking at deep retrofitting, instead of letting it all [heat] out.

[Adrian Gault, Committee on Climate Change] We need an effective Government programme to deliver that. Don’t have it in the Green Deal. We did have it [in the previous programmes of CERT and CESP], but since they were cancelled in favour of the Green Deal, it’s gone off a cliff [levels of insulation installations]. We would like to see an initiative on low cost insulation expanded. The Green Deal is not producing a response.

[Bill Watts, Max Fordham] Agree that energy efficiency won’t run on its own. But it’s difficult to do. Not talking about automatons/automation. Need a lot of pressure on this.

[Adrian Gault] Maybe a street-by-street approach…

[Michael Trousdell, Arup] Maybe a rule like you can’t sell a house unless you’ve had the insulation done…

[Peter Clegg] … We can do heat recovery – scavenging the heat from power stations, but we must also de-carbonise the energy supply – this is a key part of the jigsaw.

Categories
Bioeffigy Biofools Biomess Breathe Easy Renewable Gas Renewable Resource

Biomass : Chainsaw of Destruction

This evening I was at a very interesting meeting hosted by BiofuelWatch in the fabulous Lumen Centre near King’s Cross, London.

The new report “Biomass : Chain of Destruction” was launched with public Skype interviews with colleagues in Brazil and the United States. All very 2013, but the biomass combustion technologies of concern are mostly all so last century.

Ordinary combustion of any biological material, whether ancient trees, such as coal, or modern trees, in the form of compressed wood pellets, is generally inefficient. But to burn biomass to create heat to vapourise water to make steam to turn electrical turbines to make power is scandalously wasteful.

In the Executive Summary of the report (downloaded from this website), these demands were made :-

“1. Large­scale industrial bioenergy to be removed
from definitions of “renewable energy”. The term
“renewable” must be formalized to reflect the real
costs to the environment and public health.”

“2. An end to subsidies, including targets and other
state incentives, for industrial bioenergy.”

“3. A major policy shift away from large­scale energy
generation through combustion, towards our energy
needs being satisfied through a combination of
genuinely climate­friendly renewable energy and a
substantial reduction in both energy generation and
use.”

A discussion arose in my corner of the room about where we should draw the line between “good” biomass applications, and “bad” biomass applications. It was generally agreed that burning local biomass for local heat in an efficient machine, would limit particulate emissions and be very energy efficient and sustainable.

And at the other end of the scale, I am looking at the potential for the highly-efficient gasification of biomass to make Renewable Gas – the higher temperatures mean that less carbon particulates, tars and poisons remain. For centralised Renewable Gas plants, air quality management would be necessary, through the capture and filtering of particulates and other unwanted by-products, but the cost of this is manageable at this scale.

If ordinary incineration or combustion is being done at the medium to large scale, this is likely to be the cause of major problems, in the event of sharply rising levels of biomass burning for electricity production. The inefficiency of the energy conversion will mean that full air quality protection may be too expensive to apply to the exhaust, and it will be simply vented to air.

Categories
Bioeffigy Biofools Biomess Forestkillers

Blink, and it’s logged





They took all the trees, and put ’em in a tree museum…“, or in this case – burned them in a biomass power plant.

Please read this very important report on global bioenergy strategy and ask yourself this question, “Who agreed to this ?”

And then, maybe consider coming to this meeting :-

“A Burning Issue – Biomass and its impacts on forests and communities”
29th October 2013
19:00 – 21:00
Lumen Centre, London

“At this event we are launching our new report “Biomass: the Chain of Destruction” which tracks the impacts of the rapidly growing industry using biomass for electricity generation – from the cleared forests of the Americas to the communities in the UK living in the shadow of it.”

“We will be hearing from speakers who will tell us about the thousands of hectares of eucalyptus plantations that have replaced diverse ecosystems and communities in the Brazillian state of Maranhão. We will also hear about the clear-felling of ancient wetland forests in the Southern US to fuel Drax and E-On’s switch to so-called “clean” biomass energy. Lastly we will hear about the struggles of communities in the UK fighting unfair planning, poor air quality and environmental injustice.”

“The event is free but please email us to let us know you are coming biofuelwatch@ymail.com

“For more details please see our website: https://www.biofuelwatch.org.uk/2013/burning_issue_public_event/

Categories
Assets not Liabilities Big Number Big Picture Big Society Biofools Biomess British Sea Power Burning Money Carbon Army Carbon Capture Carbon Pricing Change Management Climate Change Climate Chaos Climate Damages Coal Hell Conflict of Interest Corporate Pressure Cost Effective Dead End Dead Zone Demoticratica Design Matters Direction of Travel Disturbing Trends Dreamworld Economics Efficiency is King Electrificandum Emissions Impossible Energy Autonomy Energy Change Energy Denial Energy Insecurity Energy Revival Energy Socialism Engineering Marvel Environmental Howzat Food Insecurity Forestkillers Fossilised Fuels Genetic Modification Geogingerneering Green Investment Green Power Growth Paradigm Health Impacts Hide the Incline Human Nurture Incalculable Disaster Insulation Major Shift Mass Propaganda Media Money Sings National Energy National Power Neverending Disaster No Pressure Nuclear Nuisance Nuclear Shambles Optimistic Generation Peak Coal Policy Warfare Political Nightmare Price Control Protest & Survive Public Relations Realistic Models Regulatory Ultimatum Renewable Resource Resource Curse Resource Wards Solution City Technofix Technological Fallacy Technological Sideshow Technomess The Price of Gas The Price of Oil The War on Error Tree Family Ungreen Development Western Hedge Wind of Fortune

Mind the Gap : BBC Costing the Earth

I listened to an interesting mix of myth, mystery and magic on BBC Radio 4.

Myths included the notion that long-term, nuclear power would be cheap; that “alternative” energy technologies are expensive (well, nuclear power is, but true renewables are most certainly not); and the idea that burning biomass to create heat to create steam to turn turbines to generate electricity is an acceptably efficient use of biomass (it is not).

Biofuelwatch are hosting a public meeting on this very subject :-
https://www.biofuelwatch.org.uk/2013/burning_issue_public_event/
“A Burning Issue – biomass and its impacts on forests and communities”
Tuesday, 29th October 2013, 7-9pm
Lumen Centre, London (close to St Pancras train station)
https://www.lumenurc.org.uk/lumencontact.htm
Lumen Centre, 88 Tavistock Place, London WC1H 9RS

Interesting hints in the interviews I thought pointed to the idea that maybe, just maybe, some electricity generation capacity should be wholly owned by the Government – since the country is paying for it one way or another. A socialist model for gas-fired generation capacity that’s used as backup to wind and solar power ? Now there’s an interesting idea…




https://www.bbc.co.uk/programmes/b03cn0rb

“Mind the Gap”
Channel: BBC Radio 4
Series: Costing the Earth
Presenter: Tom Heap
First broadcast: Tuesday 15th October 2013

Programme Notes :

“Our energy needs are growing as our energy supply dwindles.
Renewables have not come online quickly enough and we are increasingly
reliant on expensive imported gas or cheap but dirty coal. Last year
the UK burnt 50% more coal than in previous years but this helped
reverse years of steadily declining carbon dioxide emissions. By 2015
6 coal fired power stations will close and the cost of burning coal
will increase hugely due to the introduction of the carbon price
floor. Shale gas and biomass have been suggested as quick and easy
solutions but are they really sustainable, or cheap?”

“Carbon Capture and Storage could make coal or gas cleaner and a new
study suggests that with CCS bio energy could even decrease global
warming. Yet CCS has stalled in the UK and the rest of Europe and the
debate about the green credentials of biomass is intensifying. So what
is really the best answer to Britain’s energy needs? Tom Heap
investigates.”

00:44 – 00:48
[ Channel anchor ]
Britain’s energy needs are top of the agenda in “Costing the Earth”…

01:17
[ Channel anchor ]
…this week on “Costing the Earth”, Tom Heap is asking if our
ambitions to go green are being lost to the more immediate fear of
blackouts and brownouts.

01:27
[ Music : Arcade Fire – “Neighbourhood 3 (Power Out)” ]

[ Tom Heap ]

Energy is suddenly big news – central to politics and the economy. The
countdown has started towards the imminent shutdown of many coal-fired
power stations, but the timetable to build their replacements has
barely begun.

It’ll cost a lot, we’ll have to pay, and the politicians are reluctant
to lay out the bill. But both the official regulator and industry are
warning that a crunch is coming.

So in this week’s “Costing the Earth”, we ask if the goal of clean,
green and affordable energy is being lost to a much darker reality.

02:14
[ Historical recordings ]

“The lights have started going out in the West Country : Bristol,
Exeter and Plymouth have all had their first power cuts this
afternoon.”

“One of the biggest effects of the cuts was on traffic, because with
the traffic lights out of commission, major jams have built up,
particularly in the town centres. One of the oddest sights I saw is a
couple of ladies coming out of a hairdressers with towels around their
heads because the dryers weren’t working.”

“Television closes down at 10.30 [ pm ], and although the cinemas are
carrying on more or less normally, some London theatres have had to
close.”

“The various [ gas ] boards on both sides of the Pennines admit to
being taken by surprise with today’s cold spell which brought about
the cuts.”

“And now the major scandal sweeping the front pages of the papers this
morning, the advertisement by the South Eastern Gas Board recommending
that to save fuel, couples should share their bath.”

[ Caller ]
“I shall write to my local gas board and say don’t do it in
Birmingham. It might be alright for the trendy South, but we don’t
want it in Birmingham.”

03:13
[ Tom Heap ]

That was 1974.

Some things have changed today – maybe a more liberal attitude to
sharing the tub. But some things remain the same – an absence of
coal-fired electricity – threatening a blackout.

Back then it was strikes by miners. Now it’s old age of the power
plants, combined with an EU Directive obliging them to cut their
sulphur dioxide and nitrous oxide emissions by 2016, or close.

Some coal burners are avoiding the switch off by substituting wood;
and mothballed gas stations are also on standby.

But Dieter Helm, Professor of Energy Policy at the University of
Oxford, now believes power cuts are likely.

03:57
[ Dieter Helm ]

Well, if we take the numbers produced by the key responsible bodies,
they predict that there’s a chance that by the winter of 2-15 [sic,
meaning 2015] 2-16 [sic, meaning 2016], the gap between the demand for
electricity and the supply could be as low as 2%.

And it turns out that those forecasts are based on extremely
optimistic assumptions about how far demand will fall in that period
(that the “Green Deal” will work, and so on) and that we won’t have
much economic growth.

So basically we are on course for a very serious energy crunch by the
winter of 2-15 [sic, meaning 2015] 2-16 [sic, meaning 2016], almost
regardless of what happens now, because nobody can build any power
stations between now and then.

It’s sort of one of those slow motion car crashes – you see the whole
symptoms of it, and people have been messing around reforming markets
and so on, without addressing what’s immediately in front of them.

[ Tom Heap ]

And that’s where you think we are now ?

[ Dieter Helm ]

I think there’s every risk of doing so.

Fortunately, the [ General ] Election is a year and a half away, and
there’s many opportunities for all the political parties to get real
about two things : get real about the energy crunch in 2-15 [sic,
meaning 2015] 2-16 [sic, meaning 2016] and how they’re going to handle
it; and get real about creating the incentives to decarbonise our
electricity system, and deal with the serious environmental and
security and competitive issues which our electricity system faces.

And this is a massive investment requirement [ in ] electricity : all
those old stations retiring [ originally built ] back from the 1970s –
they’re all going to be gone.

Most of the nuclear power stations are coming to the end of their lives.

We need a really big investment programme. And if you really want an
investment programme, you have to sit down and work out how you’re
going to incentivise people to do that building.

[ Tom Heap ]

If we want a new energy infrastructure based on renewables and
carbon-free alternatives, then now is the time to put those incentives
on the table.

The problem is that no-one seems to want to make the necessary
investment, least of all the “Big Six” energy companies, who are
already under pressure about high bills.

[ “Big Six” are : British Gas / Centrica, EdF Energy (Electricite
de France), E.On UK, RWE npower, Scottish Power and SSE ]

Sam Peacock of the energy company SSE [ Scottish and Southern Energy ]
gives the commercial proof of Dieter’s prediction.

If energy generators can’t make money out of generating energy,
they’ll be reluctant to do it.

[ Sam Peacock ]

Ofgem, the energy regulator, has looked at this in a lot of detail,
and said that around 2015, 2016, things start to get tighter. The
reason for this is European Directives, [ is [ a ] ] closing down some
of the old coal plants. And also the current poor economics around [
or surround [ -ing ] ] both existing plant and potential new plant.

So, at the moment it’s very, very difficult to make money out of a gas
plant, or invest in a new one. So this leads to there being, you know,
something of a crunch point around 2015, 2016, and Ofgem’s analysis
looks pretty sensible to us.

[ Tom Heap ]

And Sam Peacock lays the blame for this crisis firmly at the Government’s door.

[ Sam Peacock ]

The trilemma, as they call it – of decarbonisation, security of supply
and affordability – is being stretched, because the Government’s
moving us more towards cleaner technologies, which…which are more
expensive.

However, if you were to take the costs of, you know, the extra costs
of developing these technologies off government [ sic, meaning
customer ] bills and into general taxation, you could knock about over
£100 off customer bills today, it’ll be bigger in the future, and you
can still get that much-needed investment going.

So, we think you can square the circle, but it’s going to take a
little bit of policy movement [ and ] it’s going to take shifting some
of those costs off customers and actually back where the policymakers
should be controlling them.

[ KLAXON ! Does he mean controlled energy prices ? That sounds a bit
centrally managed economy to me… ]

[ Tom Heap ]

No surprise that a power company would want to shift the pain of
rising energy costs from their bills to the tax bill.

But neither the Government nor the Opposition are actually proposing this.

Who pays the premium for expensve new energy sources is becoming like
a game of pass the toxic parcel.

[ Reference : https://en.wikipedia.org/wiki/Hot_potato_%28game%29 ]

I asked the [ UK Government Department of ] Energy and Climate Change
Secretary, Ed Davey, how much new money is required between now and
2020.

08:06

[ Ed Davey ]

About £110 billion – er, that’s critical to replace a lot of the coal
power stations that are closing, the nuclear power stations that are [
at the ] end of their lives, and replace a lot of the network which
has come to the end of its life, too.

So it’s a huge, massive investment task.

[ Tom Heap ]

So in the end we’re going to have to foot the bill for the £110 billion ?

[ Ed Davey ]

Yeah. Of course. That’s what happens now. People, in their bills that
they pay now, are paying for the network costs of investments made
several years, even several decades ago.

[ Yes – we’re still paying through our national nose to dispose of
radioactive waste and decommission old nuclear reactors. The liability
of it all weighs heavily on the country’s neck… ]

And there’s no escaping that – we’ve got to keep the lights on – we’ve
got to keep the country powered.

You have to look at both sides of the equation. If we’re helping
people make their homes more inefficient [ sic, meaning energy
efficient ], their product appliances more efficient, we’re doing
everything we possibly can to try to help the bills be kept down,

while we’re having to make these big investments to keep the lights
on, and to make sure that we don’t cook the planet, as you say.

[ Tom Heap ]

You mention the lights going out. There are predictions that we’re
headed towards just 2% of spare capacity in the system in a few years’
time.

Are you worried about the dangers of, I don’t know, maybe not lights
going out for some people, but perhaps big energy users being told
when and when [ sic, meaning where ] they can’t use power in the
winter ?

[ Ed Davey ]

Well, there’s no doubt that as the coal power stations come offline,
and the nuclear power plants, er, close, we’re going to have make sure
that new power plants are coming on to replace them.

And if we don’t, there will be a problem with energy security.

Now we’ve been working very hard over a long time now to make sure we
attract that investment. We’ve been working with Ofgem, the regulator;
with National Grid, and we’re…

[ Tom Heap ]

…Being [ or it’s being ] tough. I don’t see companies racing to come
and fill in the gap here and those coal power plants are going off
soon.

[ Ed Davey ]

…we’re actually having record levels of energy investment in the country.

The problem was for 13 years under the last Government
[ same old, same old Coalition argument ] we saw low levels of investment
in energy, and we’re having to race to catch up, but fortunately we’re
winning that race. And we’re seeing, you know, billions of pounds
invested but we’ve still got to do more. We’re not there. I’m not
pretending we’re there yet. [ Are we there, yet ? ] But we do have the
policies in place.

So, Ofgem is currently consulting on a set of proposals which will
enable it to have reserve power to switch on at the peak if it’s
needed.

We’re, we’ve, bringing forward proposals in the Energy Bill for what’s
called a Capacity Market, so we can auction to get that extra capacity
we need.

So we’ve got the policies in place.

[ Tom Heap ]

Some of Ed Davey’s policies, not least the LibDem [ Liberal Democrat
Party ] U-turn on nuclear, have been guided by DECC [ Department of
Energy and Climate Change ] Chief Scientist David MacKay, author of
the influential book “Renewable Energy without the Hot Air” [ sic,
actually “Sustainable Energy without the Hot Air” ].

Does he think the lights will dim in the second half of this decade ?

[ David MacKay ]

I don’t think there’s going to be any problem maintaining the capacity
that we need. We just need to make clear where Electricity Market
Reform [ EMR, part of the Energy Bill ] is going, and the way in which
we will be maintaining capacity.

[ Tom Heap ]

But I don’t quite understand that, because it seems to me, you know,
some of those big coal-fired power stations are going to be going off.
What’s going to be coming in their place ?

[ David MacKay ]

Well, the biggest number of power stations that’s been built in the
last few years are gas power stations, and we just need a few more gas
power stations like that, to replace the coal
, and hopefully some
nuclear power stations will be coming on the bars, as well as the wind
farms that are being built at the moment.

[ Tom Heap ]

And you’re happy with that increase in gas-fired power stations, are
you ? I mean, you do care deeply, personally, about reducing our
greenhouse gases, and yet you’re saying we’re going to have to build
more gas-fired power stations.

[ David MacKay ]

I do. Even in many of the pathways that reach the 2050 target, there’s
still a role for gas in the long-term, because some power sources like
wind and solar power are intermittent, so if you want to be keeping
the lights on in 2050 when there’s no wind and there’s no sun, you’re
going to need some gas power stations there
. Maybe not operating so
much of the time as they do today, but there’ll still be a role in
keeping the lights on.

[ KLAXON ! If gas plants are used only for peak periods or for backup to
renewables, then the carbon emissions will be much less than if they are
running all the time. ]

[ Tom Heap ]

Many energy experts though doubt that enough new wind power or nuclear
capacity could be built fast enough to affect the sums in a big way by
2020.

But that isn’t the only critical date looming over our energy system.
Even more challenging, though more distant, is the legally binding
objective of cutting greenhouse gas emissions in 2050.

David MacKay wants that certainty to provide the foundation for energy
decisions, and he showed me the effect of different choices with the
“Ultimate Future Energy App”. I was in his office, but anyone can try it online.

[ David MacKay ]

It’s a 2050 calculator. It computes energy demand and supply in
response to your choices, and it computes multiple consequences of
your choices. It computes carbon consequences. It also computes for
you estimates of air quality, consequences of different choices;
security of supply, consequences; and the costs of your choices.

So with this 2050 calculator, it’s an open source tool, and anyone can
go on the web and use the levers to imagine different futures in 2050
of how much action we’ve taken in different demand sectors and in
different supply sectors.

The calculator has many visualisations of the pathway that you’re choosing
and helps people understand all the trade-offs… There’s no silver
bullet for any of this. If I dial up a pathway someone made earlier,
we can visualise the implications in terms of the area occupied for
the onshore wind farms, and the area in the sea for the offshore wind
farms, and the length of the wave farms that you’ve built, and the
land area required for energy crops.

And many organisations have used this tool and some of them have given
us their preferred pathway. So you can see here the Friends of the
Earth have got their chosen pathway, the Campaign to Protect Rural
England, and various engineers like National Grid and Atkins have got
their pathways.

So you can see alternative ways of achieving our targets, of keeping
the lights on and taking climate change action. All of those pathways
all meet the 2050 target, but they do so with different mixes.

[ Tom Heap ]

And your view of this is you sort of can’t escape from the scientific
logic and rigour of it. You might wish things were different or you
could do it differently, but you’re sort of saying “Look, it’s either
one thing or the other”. That’s the point of this.

[ David MacKay ]

That’s true. You can’t be anti-everything. You can’t be anti-wind and
anti-nuclear and anti-home insulation. You won’t end up with a plan
that adds up.

[ KLAXON ! But you can be rationally against one or two things, like
expensive new nuclear power, and carbon and particulate emissions-heavy
biomass for the generation of electricity. ]

[ Tom Heap ]

But isn’t that exactly kind of the problem that we’ve had, without
pointing political fingers, that people rather have been
anti-everything, and that’s why we’re sort of not producing enough new
energy sources ?

[ David MacKay ]

Yeah. The majority of the British public I think are in favour of many
of these sources, but there are strong minorities who are vocally
opposed to every one of the major levers in this calculator. So one
aspiration I have for this tool is it may help those people come to a
position where they have a view that’s actually consistent with the
goal of keeping the lights on.

[ Tom Heap ]

Professor MacKay’s calculator also computes pounds and pence,
suggesting that both high and low carbon electricity work out pricey
in the end.

[ David MacKay ]

The total costs of all the pathways are pretty much the same.
“Business as Usual” is cheaper in the early years, and then pays more,
because on the “Business as Usual”, you carry on using fossil fuels,
and the prices of those fossil fuels are probably going to go up.

All of the pathways that take climate change action have a similar
total cost, but they pay more in the early years, ’cause you have to
pay for things like building insulation and power stations, like
nuclear power stations, or wind power, which cost up-front, but then
they’re very cheap to run in the future.

[ KLAXON ! Will the cost of decommissioning nuclear reactors and the
costs of the waste disposal be cheap ? I think not… ]

So the totals over the 40 or 50 year period here, are much the same for these.

[ Tom Heap ]

The cheapest immediate option of all is to keep shovelling the coal.
And last year coal overtook gas to be our biggest electricity
generation source, pushing up overall carbon emissions along the way
by 4.5%

[ KLAXON ! This is not very good for energy security – look where the
coal comes from… ]

As we heard earlier, most coal-fired power stations are scheduled for
termination, but some have won a reprieve, and trees are their
unlikely saviour.

Burning plenty of wood chip [ actually, Tom, it’s not wood “chip”, it’s
wood “pellets” – which often have other things mixed in with the wood,
like coal… ] allows coal furnaces to cut the sulphur dioxide and nitrous
oxide belching from their chimneys to below the level that requires their
closure under European law.

But some enthusiasts see wood being good for even more.

16:19

[ Outside ]

It’s one of those Autumn days that promises to be warm, but currently
is rather moist. I’m in a field surrounded by those dew-laden cobwebs
you get at this time of year.

But in the middle of this field is a plantation of willow. And I’m at
Rothamsted Research with Angela Karp who’s one of the directors here.

Angela, tell me about this willow I’m standing in front of here. I
mean, it’s about ten foot high or so, but what are you seeing ?

[ Angela Karp ]

Well, I’m seeing one of our better varieties that’s on display here.
We have a demonstration trial of about ten different varieties. This
is a good one, because it produces a lot of biomass, quite easily,
without a lot of additional fertilisers or anything. And as you can
see it’s got lovely straight stems. It’s got many stems, and at the
end of three years, we would harvest all those stems to get the
biomass from it. It’s nice and straight – it’s a lovely-looking, it’s
got no disease, no insects on it, very nice, clean willow.

[ Tom Heap ]

So, what you’ve been working on here as I understand it is trying to
create is the perfect willow – the most fuel for the least input – and
the easiest to harvest.

[ Angela Karp ]

That’s absolutely correct, because the whole reason for growing these
crops is to get the carbon from the atmosphere into the wood, and to
use that wood as a replacement for fossil fuels. Without putting a lot
of inputs in, because as soon as you add fertilisers you’re using
energy and carbon to make them, and that kind of defeats the whole
purpose of doing this.

[ KLAXON ! You don’t need to use fossil fuel energy or petrochemicals or
anything with carbon emissions to make fertiliser ! … Hang on, these
are GM trees, right ? So they will need inputs… ]

[ Tom Heap ]

And how much better do you think your new super-variety is, than say,
what was around, you know, 10 or 15 years ago. ‘Cause willow as an
idea for burning has been around for a bit. How much of an improvement
is this one here ?

[ Angela Karp ]

Quite a bit. So, these are actually are some of the, if you like,
middle-term varieties. So we started off yielding about 8 oven-dry
tonnes per hectare, and now we’ve almost doubled that.

[ Tom Heap ]

How big a place do you think biomass can have in the UK’s energy
picture in the future ?

[ Angela Karp ]

I think that it could contribute between 10% and 15% of our energy. If
we were to cultivate willows on 1 million hectares, we would probably
provide about 3% to 4% of energy in terms of electricity, and I think
that’s kind of a baseline figure. We could cultivate them on up to 3
million hectares, so you can multiply things up, and we could use them
in a much more energy-efficient way.

[ KLAXON ! Is that 4% of total energy or 4% of total electricity ?
Confused. ]

[ Tom Heap ]

Do we really have 3 million hectares going a-begging for planting willow in ?

[ Angela Karp ]

Actually, surprisingly we do. So, people have this kind of myth
there’s not enough land, but just look around you and you will find
there’s lots of land that’s not used for cultivating food crops.

We don’t see them taking over the whole country. We see them being
grown synergistically with food crops.

[ KLAXON ! This is a bit different than the statement made in 2009. ]

[ Tom Heap ]

But I’d just like to dig down a little bit more into the carbon cycle
of the combustion of these things, because that’s been the recent
criticism of burning a lot of biomass, is that you put an early spike
in the amount of carbon in the atmosphere, if you start burning a lot
of biomass, because this [ sounds of rustling ], this plant is going
to be turned into, well, partly, CO2 in the atmosphere.

[ Angela Karp ]

Yes, I think that’s probably a simple and not totally correct way of
looking at it. ‘Cause a lot depends on the actual conversion process
you are using.

So some conversion processes are much more efficient at taking
everything and converting it into what you want.

Heat for example is in excess of 80%, 90% conversion efficiency.

Electricity is a little bit more of the problem. And there, what
they’re looking at is capturing some of the carbon that you lose, and
converting that back in, in carbon storage processes, and that’s why
there’s a lot of talk now about carbon storage from these power
stations.

That I think is the future. It’s a question of connecting up all parts
of the process, and making sure that’s nothing wasted.

20:02

[ Tom Heap ]

So, is wood a desirable greener fuel ?

Not according to Almuth Ernsting of Biofuelwatch, who objects to the
current plans for large-scale wood burning, its use to prop up coal,
and even its low carbon claims.

[ Almuth Ernsting ]

The currently-announced industry plans, and by that I mean existing
power stations, but far more so, power stations which are in the
planning process [ and ] many of which have already been consented –
those [ biomass ] power stations, would, if they all go ahead,
require to burn around 82 million tonnes of biomass, primarily wood,
every year. Now by comparison, the UK in total only produces around
10 million tonnes, so one eighth of that amount, in wood, for all
industries and purposes, every year.

We are looking on the one hand at a significant number of proposed,
and in some cases, under-construction or operating new-build biomass
power stations, but the largest single investment so far going into
the conversion of coal power station units to biomass, the largest and
most advanced one of which at the moment is Drax, who are, have
started to move towards converting half their capacity to burning wood
pellets.

[ Tom Heap ]

Drax is that huge former, or still currently, coal-fired power station
in Yorkshire, isn’t it ?

[ Almuth Ernsting ]

Right, and they still want to keep burning coal as well. I mean, their
long-term vision, as they’ve announced, would be for 50:50 coal and
biomass.

[ Tom Heap ]

What do you think about that potential growth ?

[ Almuth Ernsting ]

Well, we’re seriously concerned. We believe it’s seriously bad news
for climate change, it’s seriously bad news for forests, and it’s
really bad news for communities, especially in the Global South, who
are at risk of losing their land for further expansion of monoculture
tree plantations, to in future supply new power stations in the UK.

A really large amount, increasingly so, of the wood being burned,
comes from slow-growing, whole trees that are cut down for that
purpose, especially at the moment in temperate forests in North
America. Now those trees will take many, many decades to grow back
and potentially re-absorb that carbon dioxide, that’s if they’re
allowed and able to ever grow back.

[ Tom Heap ]

There’s another technology desperate for investment, which is critical
to avoiding power failure, whilst still hitting our mid-century carbon
reduction goals – CCS – Carbon Capture and Storage, the ability to
take the greenhouse gases from the chimney and bury them underground.

It’s especially useful for biomass and coal, with their relatively
high carbon emissions, but would also help gas be greener.

The Chancellor has approved 30 new gas-fired power stations, so long
as they are CCS-ready [ sic, should be “capture ready”, or
“carbon capture ready” ].

Jon Gibbons is the boss of the UK CCS Research Centre, based in an
industrial estate in Sheffield.

[ Noise of processing plant ]

Jon’s just brought me up a sort of 3D maze of galvanized steel and
shiny metal pipes to the top of a tower that must be 20 or so metres
high.

Jon, what is this ?

[ Jon Gibbons ]

OK, so this is our capture unit, to take the CO2 out of the combustion
products from gas or coal. In the building behind us, in the test rigs
we’ve got, the gas turbine or the combustor rig, we’re burning coal or
gas, or oil, but mainly coal or gas.

We’re taking the combustion products through the green pipe over
there, bringing it into the bottom of the unit, and then you can see
these big tall columns we’ve got, about 18 inches diameter, half a
metre diameter, coming all the way up from the ground up to the level
we’re at.

It goes into one of those, it gets washed clean with water, and it
goes into this unit over here, and there it meets an amine solvent, a
chemical that will react reversibly with CO2, coming in the opposite
direction, over packing. So, it’s like sort of pebbles, if you can
imagine it, there’s a lot of surface area. The gas flows up, the
liquid flows down, and it picks up the CO2, just mainly the CO2.

[ Tom Heap ]

And that amine, that chemical as you call it, is stripping the CO2 out
of that exhaust gas. This will link to a storage facility.

What would then happen to the CO2 ?

[ Jon Gibbons ]

What would then happen is that the CO2 would be compressed up to
somewhere in excess of about 100 atmospheres. And it would turn from
being a gas into something that looks like a liquid, like water, about
the same density as water. And then it would be taken offshore in the
UK, probably tens or hundreds of kilometres offshore, and it would go
deep, deep down, over a kilometre down into the ground, and basically
get squeezed into stuff that looks like solid rock. If you go and look
at a sandstone building – looks solid, but actually, maybe a third of
it is little holes. And underground, where you’ve got cubic kilometres
of space, those little holes add up to an awful lot of free space. And
the CO2 gets squeezed into those, over time, and it spreads out, and
it just basically sits there forever, dissolves in the water, reacts
with the rocks, and will stay there for millions of years.

[ Tom Heap ]

Back in his office, I asked Jon why CCS seemed to be stuck in the lab.

[ Jon Gibbons ]

We’re doing enough I think on the research side, but what we really
need to do, is to do work on a full-scale deployment. Because you
can’t work on research in a vacuum. You need to get feedback –
learning by doing – from actual real projects.

And a lot of the problems we’ve got on delivering CCS, are to do with
how you handle the regulation for injecting CO2, and again, you can
only do that in real life.

So what we need to do is to see the commercialisation projects that
are being run by the Department of Energy and Climate Change actually
going through to real projects that can be delivered.

[ Tom Heap ]

Hmm. When I talk to engineers, they’re always very passionate and
actually quite optimistic about Carbon Capture and Storage. And when
I talk to people in industry, or indeed read the headlines, not least
a recent cancellation in Norway, it always seems like a very bleak picture.

[ Jon Gibbons ]

I think people are recognising that it’s getting quite hard to get
money for low carbon technologies.

So – recent presentation we had at one of our centre meetings, was
actually a professor from the United States, Howard Herzog. And he
said “You think you’re seeing a crisis in Carbon Capture and Storage.
But what you’re actually seeing is a crisis in climate change
mitigation.”

[ KLAXON ! Priming us for a scaling back of commitment to the
Climate Change Act ? I do hope not. ]

Now, Carbon Capture and Storage, you do for no other purpose than
cutting CO2 emissions to the atmosphere, and it does that extremely
effectively. It’s an essential technology for cutting emissions. But
until you’ve got a global process that says – actually we’re going to
get on top of this problem; we’re going to cut emissions – get them to
safe level before we actually see people dying in large numbers from
climate change effects – ’cause, certainly, if people start dying,
then we will see a response – but ideally, you’d like to do it before
then. But until you get that going, then actually persuading people to
spend money for no other benefit than sorting out the climate is
difficult.

There’s just no point, you know, no country can go it alone, so you
have to get accommodation. And there, we’re going through various
processes to debate that. Maybe people will come to an accommodation.
Maybe the USA and China will agree to tackle climate change. Maybe
they won’t.

What I am fairly confident is that you won’t see huge, you know,
really big cuts in CO2 emissions without that global agreement. But
I’m also confident that you won’t see big cuts in CO2 emissions
without CCS deployment.

And my guess is there’s about a 50:50 chance that we do CCS before we
need to, and about a 50:50 chance we do it after we have to. But I’m
pretty damn certain we’re going to do it.

[ Tom Heap ]

But we can’t wait for a global agreement that’s already been decades
in the making, with still no end in sight.

We need decisions now to provide more power with less pollution.

[ Music lyrics : “What’s the plan ? What’s the plan ?” ]

[ Tom Heap ]

Dieter Helm, Professor of Energy Policy at the University of Oxford
believes we can only deliver our plentiful green energy future if we
abandon our attitude of buy-now pay-later.

[ KLAXON ! Does he mean a kind of hire purchase energy economy ?
I mean, we’re still paying for nuclear electricity from decades ago,
in our bills, and through our taxes to the Department of Energy and
Climate Change. ]

[ Dieter Helm ]

There’s a short-term requirement and a long-term requirement. The
short-term requirement is that we’re now in a real pickle. We face
this energy crunch. We’ve got to try to make the best of what we’ve
got. And I think it’s really like, you know, trying to get the
Spitfires back up again during the Battle of Britain. You know, you
patch and mend. You need somebody in command. You need someone
in control. And you do the best with what you’ve got.

In that context, we then have to really stand back and say, “And this
is what we have to do to get a serious, long-term, continuous, stable
investment environment, going forward.” In which, you know, we pay the
costs, but of course, not any monopoly profits, not any excess
profits, but we have a world in which the price of electricity is
related to the cost.”

[ KLAXON ! Is Dieter Helm proposing state ownership of energy plant ? ]

29:04

[ Programme anchor ]

“Costing the Earth” was presented by Tom Heap, and made in Bristol by
Helen Lennard.

[ Next broadcast : 16th October 2013, 21:00, BBC Radio 4 ]

Categories
Biomess

Chris Huhne : Chicken Litter

Proving that he is every centimetre the man, Chris Huhne “disgraced” former UK Member of Parliament, and “besmirched” former UK Government Minister, the Secretary of State for Energy and Climate Change, proves he’s no chicken by taking up an appointment with American firm Zilkha Biomass Energy :-

https://www.bbc.co.uk/news/uk-politics-23655994
https://www.publicservice.co.uk/news_story.asp?id=23672
https://uk.reuters.com/article/2013/08/12/uk-britain-huhne-idUKBRE97B0BL20130812

What is this company ? And what is it about ? On it’s website it says “BIOMASS is jobs”. Well it certainly is for Chris Huhne. To land such a role, he clearly has no chip on his shoulder, although now he’s got a wood chip as a permanent companion.

ZBE produce a water-proof, “safer” black pellet, for use in biomass power stations. What can give it such properties ? The Zilkha black pellets look really quite shiny and tough.

One thing we know for certain is that Zilkha black pellets do not contain chicken litter.

https://raw-torrefactiontechnology.blogspot.co.uk/2012/01/just-when-you-thought-you-had-it-all.html

“[…] I received a call from a very upset man – who was one of the principles of Zilkha Biomass. He was quite upset at the comment I made in a previous blog – where he indicated that he didn’t think it was right for me to compare his fuel to Chicken S**t. Well, I reviewed the blog, and in fact – I DID NOT say that Zilkha Black pellets were chicken s**t at all. What I said was – that they were no more torrefied pellets – than Chicken SOUP was Chicken S**T”. He reiterated to me that NO WHERE, at NO TIME, did they EVER say that their pellets were torrefied. That is blatantly obvious. Now – in discussion with him – he said that he was going to be very nice – and ASK me to print a retraction. IF I refused to do so – then the next people I would hear from were his Lawyers. (Apparently – in his view – I had Slandered them and Libelled them and was an all around not-nice person). Yet again – I offered to tell the WHOLE story of their product – and requested samples in order to undertake a peer review. The Risk of this, of course, was that as a scientist – it would be a very factual and un-compromised analysis – and that isn’t something that is always particularly flattering. For the record: Zilkha Black pellets are in NO WAY, SHAPE or FORM Torrefied fuel, and have never been promoted as such.”

Chicken litter in wood pellets ? Surely not ? Er, yes, sometimes :-

https://biomassmagazine.com/articles/2465/the-art-of-biomass-pelletizing

“Because wood pellets compete with fiberboard, particleboard and oriented strand board for raw materials, there have been recent reports of wood pellet shortages in the U.S. To satisfy demand for pellet fuels, agricultural residues and industrial food byproducts are being pelletized for fuel, although on a much smaller scale. According to Robert Hubener, sales manager for pelletizing equipment supplier Freedom Equipment LLC of Rockford, Ill., more customers are pelletizing products for fuel. “An interesting one is manure mixed in with wood pellets, basically [used] animal bedding,” Hubener says. “It’s a product that a lot of people [want] to get rid of.” ”

Commenters to the raw torrefaction weblog made the following contributions :-

[Anonymous7 February 2012 02:28] “IF Zilkha Black pellets are in NO WAY, SHAPE or FORM Torrefied fuel, What the h3ck are they promoting??”

[Unknown24 February 2012 05:05] “The Zilkha Black pellet web-site doesn’t describe their process. However, the US patent application contains the following description of a black pellet. “The term “black pellet” may refer to a pellet with a lignin binder and/or coating induced by processing the biomass feedstock prior to introducing the biomass into the pellet machine or press. Steam explosion may be used in manufacturing densified fuel as a means to free lignin from cellular structures of biomass, thereby allowing the lignin to commingle with the fiber portion of the biomass and, when compacted by the pellet machine or press, forming both a waterproof or water-resistant internal binder as well as a waterproof or water-resistant protective surface coating that enhances the durability of pellets and briquettes. As a result, pellets and briquettes may have improved abrasion properties and may be stored outdoors in a manner similar to outdoor storage of coal. Having physical characteristics similar to coal may facilitate the introduction of pellets into coal handling processes of conventional coal plants, resulting in both capital cost and operating cost savings as compared to the use of white pellets.”

And, it seems, some wood pellet manufacturers stoop as low as to include plastics in their products :-

https://www.mainewoodspelletco.com/
“We pre-screen our wood before processing it and we use no debris or additives of any kind. Many pellet manufacturers will use vegetable or soybean oil and some even use plastics. Our pellets are made with 100% wood – no additives, no oils, no plastics, no polystyrene. ”

This was kind of intriguing, so I looked up the patent :-

https://www.google.com/patents/EP2580307A2

“[…] SUMMARY OF THE INVENTION : [0015] The present invention relates to a method for producing fuel pellets and a pellet used as a fuel source prepared by a process. Lignocellulosic biomass having a moisture content of less than about 30% by weight is introduced into a reactor. The moisture content of the lignocellulosic biomass may be less than about 15% by weight. Less than about 50 weight% of a carbon source may be added to the biomass. The carbon sources is coal dust, coke powder, or unprocessed biomass. A vacuum of less than 500 torr, preferably less than 200 torr, is applied to the reactor. Steam having a temperature of between about 180°C and about 235°C is injected into the reactor. The biomass is maintained in the reactor between about 1 and about 12 minutes. The treated biomass having a moisture content less than about 30% by weight is removed from the reactor. The treated biomass is formed into a pellet or briquette such that forming may be pelletizing, extruding, briquetting, or the like. [0016] Optionally, a catalyst is introduced into the reactor. The catalyst is a fatty acid, ester, or triglyceride. The catalyst is introduced prior to or together with the steam into the reactor. […]”

We’re told that black pellets are wood, but if I’ve found the correct patent, it would suggest they could have coal or coke in them, plus some kind of oil. In fact, from this brief outline, they could be less than 50% wood, and up to 50% fossil fuel. But how could we know ? It all arrives with much heavy public relations. Even the pellets are glossy.

Why does this matter ? Because the UK is in the throes of investing in new biomass power plant – and subsidising it.

https://www.northblythproject.co.uk/about-the-project/fuel-supply.aspx
https://www.northblythproject.co.uk/about-the-project/planning-process.aspx
https://www.northblythproject.co.uk/about-the-project/faqs.aspx#burned

“[…] For the purpose of calculating how much CO2 the North Blyth Biomass Power Station will displace, we have taken a very conservative approach of assuming that all of the fuel for the project is imported woodchip that is delivered to site using large ocean going vessels from sources that are over 8,000km away. In reality, and given the strong commercial incentive to minimise shipping distances, the fuel supply to the project is much more likely to be a mix of UK sourced fuel, some fuel sourced from within Europe (within, say, 2000km) and other fuel that is sourced from elsewhere (for example, the eastern seaboard of North America would have an estimated shipping distance of approximately 5,000-6,000km). This more realistic scenario would have a lower greenhouse gas impact than that presented here. : WILL THIS BE A COMBINED HEAT AND POWER (CHP) PROJECT? : We are keen to maximise the overall efficiency of our North Blyth Biomass Power Station, and recognise that the use of heat, as well as the generation of renewable electricity, will help us achieve this goal. We are actively exploring ways to use the heat generated from the project in nearby domestic or industrial applications, and will design the process plant to be able to provide heat to such users wherever practicable. A study has been conducted (which formed part of our application to the Planning Inspectorate) which examined the opportunities for district heating in the Blyth Estuary area, but unfortunately at this stage it is not seen as a viable option. RES also contributed and participated in a further district heating study with Northumberland County Council and other key stakeholders in the area. The study came to a similar conclusion. RES proposes to continue exploring the CHP opportunities in the Blyth Estuary area by the inclusion of a requirement in the DCO to update the CHP study every 5 years for the lifetime of the project. […]”

https://processengineering.theengineer.co.uk/power-and-water/100mw-biomass-project-approved/1016796.article

https://biofuelsandbiomass.energy-business-review.com/news/stobart-biomass-secures-75m-fuel-supply-contract-for-evermore-renewable-energy-310713

“Biofuels & Biomass News : Stobart Biomass secures £75m fuel supply contract for Evermore Renewable Energy : EBR Staff Writer Published 31 July 2013 : UK-based biomass fuels supplier Stobart Biomass has secured a £75m long-term contract to supply fuel to the Evermore Renewable Energy project planned to be constructed in Derry/Londonderry. As per the contract, Stobart will supply over 115,000 tons of recycled wood every year for nearly 15 years to fuel the combined heat and power (CHP) station, which has an estimated power generation capacity of 5.8MWe. […]”

https://www.businessgreen.com/bg/analysis/2286031/decc-scientist-takes-green-groups-to-task-over-biomass-claims

“DECC scientist takes green groups to task over biomass claims : Greenpeace, Friends of the Earth and RSPB under fire from government for using unfinished research to campaign against carbon impact of biomass power : By Jessica Shankleman : 01 Aug 2013 : Tension between the government and green groups over the environmental impact of biomass has cranked up a notch, after it emerged DECC’s chief scientist has written to three of the UK’s leading NGOs to criticise their publication of unfinished research as part of their campaign against biomass subsidies. Earlier this year, Greenpeace, RSBP, and Friends of the Earth (FoE) unveiled a factsheet claiming biomass generation in some instances produces more emissions than burning coal. Under the government’s current plans biomass energy will have to show lifecycle reduction in emissions of at least 60 per cent compared to emissions of the EU fossil fuel grid average, such as cutting down trees and transporting fuel. The government is expected to confirm the new sustainability standards for biomass this month, with the rules likely to come into effect next year. But green groups fear the new standard will not fully take account of the full lifecycle emissions associated with growing, harvesting and distributing biomass for fuel and have been lobbying for stricter sustainability standards on generators. They believe rising subsidies could cause a huge surge in demand for the UK’s forestry harvest over the next four years, potentially having an adverse impact on biodiversity and leading to greater reliance on imported biomass. The RSPB, Greenpeace and FoE factsheet Burning Wood for Power Generation, revealed preliminary findings of a nine-month research project by David Mackay, DECC’s chief scientific adviser, that was presented to them at a stakeholder meeting in March. […]”

https://www.businessgreen.com/bg/news/2288386/tilbury-power-station-powers-down-as-biomass-row-rumbles-on
“Tilbury Power Station powers down as biomass row rumbles on : Npower confirms coal plant converted to burn biomass is to close today : By BusinessGreen staff : 13 Aug 2013 : Npower has announced today will be the last day of generation at its Tilbury B biomass power station, after its controversial decision to halt plans to develop a new biomass power plant at the site. Since 2011, the original coal-fired power station has been converted to run solely on sustainable certified biomass, making it one of the largest sources of renewable energy in the UK providing up to 10 per cent of the country’s renewable power. However, the 750MW plant, which was originally came online in 1967, is still scheduled to close today under the EU’s Large Combustion Plant (LCPD) Directive, which under air pollution rules limits the number of hours of operation for older coal-fired power plants. Npower’s parent company, RWE, had been pursuing plans to redevelop the site as a dedicated biomass plant capable of meeting the relevant EU environmental standards. But it announced recently that it was shelving the plans, after the government confirmed the project would not be viable for support through the contracts for difference regime enabled by the new Energy Bill. “In light of this, RWE has taken the difficult decision not to proceed with the project as it is no longer economically viable under the existing Renewable Obligation (RO) mechanism,” the company said in a statement. […]”

A few more links…

https://www.zilkha.com/our-waterproof-pellet/

https://www.woodbioenergymagazine.com/magazine/2013/0213/article-state%20of%20pellets.php

“UK Decision : In 2012, a big impact on North America’s industrial pellet industry came from the United Kingdom’s Dept. of Energy and Climate Change (DECC), which published a “consultation” decision on the direction of British renewable energy policy for the near future. Concerning the growth of the UK’s renewable energy utilization and the role of biomass as fuel, the decision was long-awaited and added to uncertainty on both sides of the Atlantic for pellet and power producers alike. Ultimately, the DECC decision cut both ways: halting some projects in the UK, but providing the certainty to allow multiple pellet mill projects in the U.S. to go forward. In essence, the DECC’s decision going forward favors the continued growth of biomass co-firing and biomass conversion at existing UK coal-burning power plants, while placing a cap on generating capacity coming on line for new, dedicated biomass power plants. The non-legislative cap, which covers the next five years, is set at 400 MW for new, dedicated biomass generating capacity that will be supported under the country’s Renewable Obligation Certificate (ROC) system. […] After the DECC proposals were published, Drax officials (see interview page 8) announced the company was shelving plans to build three new dedicated biomass generating plants in the UK and would instead go with a project to convert half of its existing massive 4,000 MW plant at Selby (Western Europe’s largest coal-burning plant) to burn wood pellets. First of the three-phase conversion project will go on line this year, and will be completed by 2017. Afterward, the company plans to make a decision on converting the remainder of the plant to wood pellets. Meanwhile, on this side of the Atlantic in December, Drax Biomass International announced projects to build large pellet plants at Gloster, Miss. (Amite BioEnergy) and Morehouse Parish, La. (Morehouse BioEnergy), with a combined annual production of 900,000 metric tons. Drax Biomass is beginning construction on the two plants the first half of this year, and both are scheduled to come on line in 2014. Drax Biomass is also developing a pellet storage and loading facility on property leased from the Port of Greater Baton Rouge that can store up to 80,000 metric tons of pellets. […]”

https://www.greenpowerconferences.com/EF/?sEventCode=BP1305NL&sSessionID=285viqlhoui8fmmvs1dsrnpm40-896144&sDocument=Spex

https://www.forestbusinessnetwork.com/29681/pellet-plant-project-to-create-175-jobs-in-selma-al/

https://www.al.com/business/index.ssf/2013/08/pellet_plant_project_to_create.html

https://www.zilkha.com/wp3/wp-content/uploads/2012/09/LW_Argus-London_20120419.pdf

“[…] Unloading Black Pellets in Europe : Full-scale combustion tests in five power plants : One complete in The Netherlands, second in-progress : Three more full scale tests scheduled in next 60 days […]”

https://www.zilkha.com/wp3/wp-content/uploads/2012/09/Zilkha_Seoul-2012Sep-12-13_v2-On-Website.pdf
“[…] Several full scale tests complete in European coal units […]”

https://www.vattenfall.com/en/biomass-renewable-energy.htm

“R&D: Biomass energy : Thermally treated wood in pellet form, or “black pellets”, is a promising type of biomass which can be used for cost effective co-firing in existing coal power stations. The fuel handling properties alone are enough to make black pellets one of the main contributors to increased future volumes of renewable fuels for Vattenfall. Vattenfall’s new strategic direction is to replace more than half of the hard coal used today with biomass by 2020. Therefore, finding answers to the most critical questions that remain about the utilisation of black pellets is a major R&D focus. Small-scale tests indicate that black pellets offer similar properties to hard coal, and using them as a fuel would therefore require a fraction of the investment that wood pellets would necessitate. First large-scale tests in the world : The summer of 2011, the first large-scale storage and combustion tests ever, are performed in the Reuter West CHP hard-coal-fired plant in Berlin, using several thousand tonnes of black pellets.”

https://pennwell.websds.net/2013/vienna/rewe/papers/T2S6O3-paper.pdf

https://www.apsaf.org/meetings/2013/ppt/2013-02-01-0915-Sontag-Slides.pdf

https://forestindustries.eu/content/swedes-look-black-pellet-production-bc

“Swedes look into black pellet production in B.C. : Issue date: Oct 7, 2010”

https://foresttalk.com/index.php/2010/10/07/swedes-look-into-biomass-production-in-b-c

“Vattenfall, a company owned by the government of Sweden, is exploring the idea of turning wood from British Columbia’s northwest, into pellets to burn in European power plants. Officials from Vattenfall toured the Terrace area with a Finnish consulting and engineering company called Pöyry. Rather than making the traditional wood pellet, Vattenfall is interested in making black pellets. Black pellets are made of wood that has been heated until it is more of a charcoal-like substance. Sweden is looking to reduce the amount of coal it is burning in its power generating plants by replace the coal with an underutilized wood, or waste wood, source. Vattenfall aims to identify a fibre source, then build pellet plants in the area with the goal of producing 250,000 tonnes of black pellets, per plant, per year. Approximately 600,000 cubic metres of fibre is required to produce that amount of pellets, employing at least 30-40 people in the plant, with additional employment for harvesters and drivers. Vattenfall does not want to get into the logging business to obtain its fibre source. It would rather use the waste that is left behind, or that is under utilized. British Columbia is not the only place Vattenfall is investigating for its source of fibre. The company is also looking at the fibre potential in Russia, the U.S., South America, and in West Africa. Other areas in eastern Canada are also being considered. It is likely that more than one area will be used to fill Sweden’s need for 10 million tonnes of black pellets by 2010. This goal would require 24 million cubic metres of fibre.”

https://news.yahoo.com/east-texas-plant-create-wood-pellet-fuel-european-191023222.html
“A Houston based company called Zilkha Biomass Fuels in manufacturing a product called black pellets. Black pellets are produced by compressing the wood and drying out the moisture content as much as possible. The process increases energy density and decreases transportation costs. Black pellets are also impervious to dust and rain, unlike conventional wood pellets, and thus can even be store outdoors. Black pellets can also be burned in former coal fired plants with a minimum of modifications […]”

https://www.expobioenergia.com/en/noticias/wood-pellet-instead-coal