It constantly amazes and intrigues me how human individuals operate in networks to formulate, clarify and standardise ideas, tools, machines, procedures and systems. Several decades ago, Renewable Electricity from sources such as wind power was considered idealistic vapourware, esoteric, unworkable and uncertain, and now it’s a mainstream generator of reliable electricity in the UK’s National Grid. Who would have thought that invisible, odourless, tasteless gas phase chemicals would heat our homes ? It’s now just so normal, it’s impossible to imagine that Natural Gas was once considered to be so insignificant that it was vented – not even flared – from oil wells.
Judging by the sheer number of people working on aspects of Renewable Gas, I expect this too to be mainstream in the energy sector within a decade. What do others think ? I have begun the process of asking, for example, see below.
=x=x=x=x=x=x=x=x=
from: Jo Abbess
to: Richard A. Sears
date: Mon, May 2, 2011 at 11:59 PM
subject: Question from your TED talk
Dear [Professor] Sears,
I was intrigued by your TED talk that I recently viewed :-
https://www.ted.com/talks/richard_sears_planning_for_the_end_of_oil.html
Yes, I am interested in the idea of “printing” solar cells, which is what I think you might be alluding to with your reference to abalone shells.
But I am more interested in what you base your estimate of “Peak Gas” on. I recently did some very basic modelling of hydrocarbon resources and electricity, which look somewhat different from the IEA and EIA work and reports from BP and Royal Dutch Shell. My conclusion was that Peak Oil is roughly now, Peak Natural Gas will be around 2030, and Peak Electricity around 2060 :-
https://www.joabbess.com/2011/02/11/future-energy-tipping-points/
I am going to try to improve these charts before I submit my MSc Masters Thesis, so I am trying to find out what other people base their projections on. Could you help me by pointing me at the basis of your assessment of Peak Natural Gas ?
Thank you,
jo.
=x=x=x=x=x=x=
from: Richard A. Sears
to: Jo Abbess
date: Thu, Oct 24, 2013 at 5:30 PM
Jo,
I am just now finding a number of old emails that got archived (and ignored) when I moved from MIT to Stanford a few years ago. A quick answer is that I did about what Hubbert did in 1956. No detailed statistical modeling, just look at the trends, think about what’s happening in the industry, and make what seem like reasonable statements about it.
A number of interesting things have happened just in the last two years since you wrote to me. Significantly, US oil production is on the rise. When you count all hydrocarbon liquids, the US is or will soon be, the world largest producer. This just goes to one of my points from TED. Don’t expect oil and gas to go away any time soon. There are plenty of molecules out there. I first said this internally at Shell in the mid 1980’s when I was Manager of Exploration Economics and since then I’ve felt that I got it about right.
I did just look at your website and would caution you about extrapolating very recent trends into the future. The rate of growth in shale gas production has slowed, but there’s an important economic factor driving that. Gas prices in the US are very low compared to oil. With the development of fraccing technology to enable oil and liquids production from shale formations, the industry has shifted their effort to the liquids-rich plays. A few statistics. Gas is currently around $3.50/mcf. On an energy equivalent basis, this equates to an oil price of about $20/barrel. Brent currently sells for $110/barrel and the light oils produced from the shale plays in the US are getting between $90 and $100/barrel, depending on where they can be delivered. As a consequence, in the 3rd quarter of 2013, compared to one year ago, oil well completions are up 18% while natural gas well completions declined 30%.
Yes, you are right. Printing solar cells is an example of what I was talking about with Abalone shells. Similarly, what if you had paint that as it dried would self assemble into linked solar cells and your entire house is now generating electricity. I was totally amazed at the number of people that didn’t actually think about what I was saying and called me an !d!*t for imagining that I was going to transform coal itself into some magical new molecule. […]
In any case, I think it’s good that you’re thinking about these problems, and importantly it appears from your website that you’re thinking about the system and its complexity.
Best regards,
Rich Sears
Richard A. Sears
Visiting Scientist
MIT Energy Initiative
Massachusetts Institute of Technology
=x=x=x=x=x=x=x=x=x=
from: Jo Abbess
to: Richard A Sears
sent: Monday, May 02, 2011 3:59 PM
Dear [Professor] Sears,
Many thanks for your reply.
I had kinda given up of ever hearing back from you, so it’s lovely to
read your thoughts.
May I blog them ?
Regards,
jo.
=x=x=x=x=x=x=x=
from: Richard A Sears
date: Fri, Oct 25, 2013 at 5:03 PM
to: Jo Abbess
Jo,
I have personally avoided blogging because I don’t want to put up with people writing mean comments about me. But the data is worth sharing. You should also know the sources of that data otherwise you open yourself to more criticism.
The data on production comes from the International Energy Agency and a research firm PIRA. All of it was in recent press releases. The Energy Information Administration makes similar projections about future production. The data on well completions was recently released by API.
No need to reference me. The data is out there for all to see. But if you do, fair warning. You will get stupid comments about how I used to be a VP at Shell so of course these are the things I’m going to say. […]
By the way, there’s something else that’s very interesting in the world of peak oil and various peaks. I have long believed, as hinted in my TED talk that the most important aspect of peak oil is the demand driven phenomena, not the supply side. It’s worth noting in this context that US oil consumption peaked in 2005 and has declined about 10% since then. This data can be found easily in the BP Statistical Report on World Energy. This is real and is a result of economic shifts, greater efficiency, and the penetration of renewables. Future energy projections (references above) show that this trend continues. A big component of US energy consumption is gasoline, and US gasoline consumption peaked in 2007. I think that data can be found at https://www.eia.gov, although I haven’t looked for it lately. It’s a little factoid that I think I remember.
Rich
Richard A. Sears
Consulting Professor
Department of Energy Resources Engineering
Stanford University
=x=x=x=x=x=x=x=x=
from: Jo Abbess
to: Richard A Sears
date: Sun, Jan 12, 2014 at 11:47 AM
Dear Professor Sears,
HNY 2014 !
This year I am hoping to attempt the climb on my own personal K2 by writing an academic book on Renewable Gas – sustainable, low-to-zero carbon emissions gas phase fuels.
I am not a chemist, nor a chemical engineer, and so I would value any suggestions on who I should approach in the gas (and oil) industry to interview about projects that lean in this direction.
Examples would be :-
* Power-to-Gas : Using “spare” wind power to make Renewable Hydrogen – for example by electrolysis of water. Part of the German Power-to-Gas policy. Some hydrogen can be added to gas grids safely without changing regulations, pipework or end appliances.
* Methanation : Using Renewable Hydrogen and young or recycled carbon gas to make methane (using the energy from “spare” wind power, for example). Also part of the German Power-to-Gas policy.
NB “Young” carbon would be either carbon monoxide or carbon dioxide, and be sourced from biomass, Direct Air Capture, or from the ocean. “Old” carbon would come from the “deeper” geological carbon cycle, such as from fossil fuel, or industrial processes such as the manufacture of chemicals from minerals and/or rocks.
Precursors to Renewable Gas also interest me, as transitions are important – transitions from a totally fossil fuel-based gas system to a sustainable gas system. I have recently looked at some basic analysis on the chemistry of Natural Gas, and its refinery. It seems that methanation could be useful in making sour gas available as sweetened, as long as Renewable Hydrogen is developed for this purpose. It seems that there is a lot of sour gas in remaining reserves, and the kind of CCS (Carbon Capture and Storage) that would be required under emissions controls could make sour gas too expensive to use if it was just washed of acids.
I don’t think the future of energy will be completely electrified – it will take a very long time to roll out 100% Renewable Electricity and there will always be problems transitioning out of liquid fuels to electricity in vehicular transportation.
If you could suggest any names, organisations, university departments, companies, governance bodies that I should contact, or research papers that I should read, I would be highly grateful.
Many thanks,
jo.