Categories
Green Power Insulation Renewable Energy Renewable Gas Renewable Hydrogen Renewable Methane

Not Just The Price

Gas storage is not just about price management – it’s about protecting the power grid when the sky is dark and motionless.

There is a plan to renovate and restore the UK gas storage facility at the Rough Field. There is the usual to-ing and fro-ing about whether central government should be underwriting or even directly financing this. It will be an energy storage facility of high strategic value to the nation, particularly because of the Great British Endeavour to knock back and lock out the Russians, through participating in a Europe-wide accord to sanction and deter energy imports from the east. Should it be considered a national asset, funded by the state ?

This discourse about ownership and costs misses a trick : it’s not just about the price of Natural Gas in international day-to-day and futures markets; and it’s not even just about the supply of Natural Gas in a tight winter scenario, or with unreliable trading partners.

Gas storage in an emerging era of high levels of renewable electricity generation is about compensating for variability of supply in green power.

It’s about using gas to balance solar and wind power when the sky grows dark and motionless, such as during high pressure weather systems in winter, solar eclipses, and long winter nights.

It’s about when there is a sudden need for gas-fired power generation across a wide geographical area, where the intensity of renewable energy resources hits a lull, and gas power is needed to brige the gap across the whole region.

Suddenly, there could be a massive demand for gas, on a scale that’s something like ten times the size of gas consumption on a bright summer’s day with a light-to-moderate breeze, or stormy autumn evening, across the whole of the European region. There is no market that could adapt that fast to increase provision of gas at speed : gas storage is basically a power grid survival mechanism, as batteries all have a finite size.

Without gas storage, we simply cannot increase the percentage levels of renewable electricity power generation in the grid supply, for there will always be calm, dark hours, days, or even weeks.

Without gas storage, we will rapidly hit a solar and wind power ceiling; no higher can we go, in percentage terms of supply, if we do not have reliable, voluminous, immediate quantities of power generation backup, dispatched perhaps within minutes.

Yes, the gas storage could be the storage of Natural Gas – for now. Into the future, it would need to be Renewable Gas. It might be costly to replace all Natural Gas boilers with hydrogen boilers, and so some believe that Renewable Methane should the only Renewable Gas. However, any resource of Renewable Gas should form part of the nation’s emergency gas storage, saved for the purpose of power generation to bridge the natural variability gaps in renewable electricity supply.

Yes, gas use avoided is cheaper than gas storage. Yes, there should be a national programme of building insulation, as a national strategic policy, centrally-funded, as at the moment, nobody is taking key responsibility for implementing building insulation. Lowering consumption will help with household bills, protection from Russian blackmail, climate change. But lowering gas consumption does not mean that we can do without gas storage. Lower gas consumption in homes and offices and public buildings will help make sure the gas storage facilities of the country are used for their most high-value purpose – the support of the power grid.

It may seem paradoxical, but insulation will actually help provide more energy when it’s needed most.

And in addition, increasing insulation, in order to lower individual building gas consumption, will actually prevent winter power blackouts.

Categories
Academic Freedom Acid Ocean Babykillers Big Picture Carbon Capture Climate Change Dead Zone Deal Breakers Disturbing Trends Economic Implosion Energy Autonomy Energy Change Energy Disenfranchisement Energy Insecurity Evil Opposition Feed the World Fossilised Fuels Global Warming Incalculable Disaster Mad Mad World Marine Gas Mass Propaganda Methane Management Military Invention Modern Myths Natural Gas No Blood For Oil Orwells Peace not War Policy Warfare Political Nightmare Regulatory Ultimatum Renewable Energy Renewable Gas Renewable Hydrogen Renewable Methane Renewable Resource Resource Curse Stop War The Data The Power of Intention The Price of Gas The Price of Oil The Right Chemistry The War on Error Toxic Hazard Unconventional Foul Western Hedge

Russia Sours

I have a theory. But I don’t have access to the data to confirm or deny it. The data is in the hands of the oil and gas companies, and private oil industry data concerns, who charge a lot of money for access to the data. Some data might become public soon, as the International Energy Agency, the IEA, have made a commitment to opening up their databases, but I don’t know when this will be.

The data I would need to assess my theory regards the chemical composition of Natural Gas from a range of fields and wells, and its evolution over time. Although some data about chemical quality exists in the public domain, such as crude assays for various petroleum oils, and is published in various places, such as Eni’s annual review, and a handful of academic research papers regarding prospects for gas in some regions or countries, there is little to go on for a global view from gas analyses.

The European Union has announced a plan to “get off” Russian fossil fuel dependency (addiction), but I would contend that they would need to do it anyway, regardless of the incentive to “cancel” Russian oil and gas in sanction over Russia’s unspeakable acts of terror and aggression in their invasion of Ukraine. My view is that the rationale for an early exit from Russian fossil fuel supplies is all to do with the chemistry.

Gas fields and oil basins deplete, that we all know. The easy, good stuff gets emptied out first, and then the clever engineers are commissioned to suck out the last remaining dregs. So-called “sweet spots”, where easy, good stuff has accumulated over the ages, are quickly pumped dry, and investors and management push for the assets to be sweated, but it’s a game of diminishing returns.

If you look for a mention of problem contaminants, such as sulfur compounds and heavy metals, the publicly, freely-available literature is quite thin on the ground – even general discussion of the global overview – in other words, it is noticeable by its absence.

Natural Gas with high levels of inherent carbon dioxide has started to merit explicit mention, because of climate change mitigation efforts, but even there, there is not much in terms of basins, fields and wells by numbers and locations, and over timespans.

There was quite a lot of discussion about the procedure of reinjection of acid and sour gases, starting in the early 1990s or so, pumping unwanted molecules from contaminated or sub-standard Natural Gas back underground, after separation at or close to the well head. This was partly to answer climate change concerns, but also to enhance further oil and gas recovery from emptying wells. This has been known mostly by the term EOR – enhanced oil recovery. Bad gas was being pumped, then filtered, and the bad fraction was being pumped back down to build up pressure to get more gas and oil out.

There has also been a lot of very public discussion of the project to mitigate gas venting and gas flaring, as a potentially easy win against environmental damage – including climate change burden. Unburned Natural Gas has been routinely vented to the atmosphere from locations where gas was not the principal product from wells, or where it has been costly to install gas capture equipment. Unburned Natural Gas vented to air leeches methane, carbon dioxide and hydrogen sulfide, two of which are climate change-sparking greenhouse gases, and the other, a local toxin to all forms of life. But flaring unwanted Natural Gas is only marginally less dangerous, as it still emits carbon dioxide to air, as well as sulfur dioxide, and potentially some nitrogen oxides (and sometimes, still, some hydrogen sulfide) : and sulfur dioxide interferes with local temperatures through localised greenhouse cooling; sulfur dioxide is also a local environmental pollutant; and both sulfur dioxide and nitrogen oxides, in addition to the carbon dioxide, lead to acidification of air, water and soils. Obviously, it would be better to capture any currently unwanted Natural Gas, and make use of it in the economy, processing it somewhere in a way that can reduce the environmental disbenefits that would have come from venting or flaring it in the field.

However, discussion about venting and flaring of Natural Gas and the attempts to stem it centre on the potency of emissions of fossil methane as a short-term greenhouse gas, and there is little discussion of the emissions of fossil carbon dioxide and fossil sulfur compounds that are part of that unwanted Natural Gas.

Trying to drill down into the geography and localised basin- and field-specific gas composition is near-nigh impossible without insider access to data, or some kind of large budget for data. Public reports, such as the financial and annual reports of companies, focus on levels of Natural Gas production, but not the amounts of rejected molecules from the production yield – the molecules of hydrogen sulfide, carbon dioxide and nitrogen and so on that don’t make it into the final gas product. Keeping up production is discussed in terms of sales revenue and investment in exploration and production, but not in terms of the economic costs of bad chemistry.

Over time, oil and gas production companies must explore for new reserves that they can bring to production – often within their already-tapped resource base – because old fields empty, until well production starts slowing down, and become uneconomic to continue pumping. But running down the reserves, and having to find new locations within basins and fields to drill new wells is not the only issue. Oil and gas are not monolithic : resources vary in terms of accessibility, temperature, pressure, geology, but also chemistry – even within fields; and over time and operating conditions – which can even be seasonal.

Contaminants can be concentrated in one particular area, or at one particular pre-historic geological stratum or layer : the formation of the sediments. Not only that, but over time, oil and gas wells can sour, that is, production can experience increasing levels of hydrogen sulfide and other sulfur compounds. They can also show increasing production levels of inert non-combustible or acid-producing chemical species, mainly carbon dioxide and nitrogen.

As drilling goes deeper, the more likely inert, sour and acid gases are to occur, as the deposits will have had more time to mature, and reach temperatures where gas generation from organic matter is more likely than oil generation : the “gas window” depends on such things as temperature, pressure and time. And more gas can signal more non-useful molecules.

The deeper you go, the higher the risk of your Natural Gas being contaminated with hydrogen sulfide, carbon dioxide and nitrogen; as the deposits have cooked for too long. The presence of significant levels of sulfur compounds is credited to rock-oil and rock-gas chemical interactions known as TSR – thermochemical sulfate reduction – between hydrocarbons and sulfate-bearing rocks.

In addition, drilling a well can lead to BSR – bacterial sulfate reduction – where bacterial life starts to work on sulfate present in any water as the hydrocarbons are raised from the depths and depressurise and cool.

The closer to the source rocks drilling goes, the black shales, high in organic matter, from which all hydrocarbon oils and gases originate, the higher the risk of pumping up heavy metals where there are metal sulfides clustered.

Although wells can sour over time, especially if acid gas is reinjected to dispose of it, fields can even be highly acid or sour right from the get-go. For decades, some sour and acid resources were listed as proven reserves, but were considered too uneconomic to mine. But during the last decade or so, increasing numbers of sour gas projects have commenced.

The engineering can be incredible, but the chemistry is still wrong. With new international treaties, sulfur cannot be retained in fuels, so where does it end up ? Rejected sulfur atoms largely end up in abandoned pyramids of yellow granules, or on the sulfur market, and a lot is used to make sulfuric acid, a key industrial chemical, used for such things as the production of fertilisers, explosives, and petrochemicals. But after the sulfuric acid is used, where does the sulfur end up ? As sulfate in water, that drains to the sea ? And what about the granulated sulfur from the mega sour gas projects ? Some of that is used as soil treatment, as a fertiliser, either directly, or as part of ammonium sulfate. But after it is used, what happens to the sulfur ? Does it become sulfate in water, that courses to the ocean ? And what happens to it there ? How much is fossil sulfur going to contribute to ocean anoxia through BSR generation of hydrogen sulfide ?

Sulfur atoms don’t just disappear. It will take many millenia for the mined fossil sulfur to be incorporated back into sedimentary sulfides or rocks. As increasingly sour oils and gases are increasingly used, the question of the perturbation of the global sulfur cycle (as well as the global sulfur market) becomes relevant.

At what point will the balance tip, and high sulfur deposits of fossil fuels become untenable ?

In addition to management of the fossil sulfur mined during the exploitation of chemically-challenged Natural Gas, there are other important considerations about emissions.

Satellite monitoring of “trace” greenhouse and environmentally-damaging gases, such as sulfur dioxide and methane, is constantly evolving to support international calls for emissions reduction and control. For example, analyses of methane emissions from the oil and gas industry have pinpointed three geographical areas of concern for the locations of “ultra-emitters” : the United States, the Russian Federation and Turkmenistan. A lot of methane emissions from the oil and gas industry could be stemmed, but the question needs to be asked : is it worth opening up new gas fields, with all the infrastructure and risks of increased methane and other emissions ? And if the major explanation for methane emissions in gas drilling are connected to end-of-life fields, what incentives could be offered to cap those emissions, given the lack of an economic case, at so late a stage in the exploitation of assets ?

And so, to Russia.

A great variety of commentators have been working hard to put forward their theories about why Russia chose to launch a violent, cruel and destructive military assault on Ukraine in early 2022. Some suppose that Russia is looking to build out its empire, occupying lands for grain production and transportation routes, gaining control over peoples for slave labour, removing the irritant of social or political threat. Arguments about the ownership of territory, rightfully or wrongfully. Historically revisionist or revanchist philosophies are identified in the output from Russian voices and political narrative. However, there does not appear to be a truly justifying rationale for a war arising from these pseudo-historical caricatures. Even if the territory of Ukraine could be deemed, by some internal Russian legal process, to belong to some concocted Greater Russian Federation, it would require a lot of magical thinking to believe it would gain traction in the wider sphere.

Some see Russia’s actions as vindictive or retaliatory, but to assert this with any validity would require explaining what has really changed to justify the recent major escalation in one-sided aggression from Russia, action that has lasted for some time, principally since 2014.

What can really be driving Russia’s murderous marauding, the bombing of civilian districts, wanton infrastructure destruction, people snatching, torture basements and all forms of intimate, personal aggression and attack ?

I decided to do some reading, and I went back to 2004/2005 to do so, and then realised I should have gone back further, to the time of Vladimir Putin’s “ascension” to the Presidency of the Russian Federation.

Putin appears to have control issues, and seems to want to impress his will on absolutely any person and any organisation he comes across, up to and including whole countries. The means are various, and the medium also. There is continual “hybrid” warfare; and the evidence suggests that Russia has interfered with foreign democracy, for example, by playing the joker in the memetic transfer of ideologies and “fake news” through social media; used blackmail in “diplomacy”; used strong-arm tactics in trade and investment; and locked international energy companies into corrupting, compromising deals.

By far the most injurious behaviour, however, has been the outright military assaults he has ordered to be launched on lands and people groups, both inside and around the outside of Russia. I will leave the details to expert military historians and human rights organisations, but the pattern of the annihilation visited on many areas of Ukraine since early in 2022 is not new. There appears to be no dialogue possible to restrain Putin’s sadistic army of Zombies (Z) and Vampires (V).

But just what made this happen ? What was really behind Putin’s decision to launch an invasion on Ukraine ? It wasn’t to de-Nazify. That’s just weak and quite bizarre propaganda, that cannot hold together. He knows there are far fewer ultra-right wing cultists in Ukraine than in Moscow. The “war” wasn’t to protect Russian speakers. Many people in Ukraine speak several languages, and none of them have been safe from the rampaging hordes of Russian “orcs”. The invasion wasn’t to defend the Putin-styled Republics of Donetsk and Luhansk, as people there don’t feel defended from anything nasty the Russians seem to visit on everybody they invade, or the military responses of the Ukrainian forces, something the Russians could have anticipated. If Russia really cared about the people in the Donbas, they wouldn’t have brought troops there. The warfare isn’t benefitting or supporting any pro-Russian factions or Russian-speakers in Ukraine, and the only thing that looks like Nazis are the Russian Nasties.

It has come into focus for me from my reading that there seem to be three major, real, potential or probable reasons for Russia seeking to have overt, administrative, and if necessary, military control of the southern, littoral part of Ukraine; and my reading suggests that this is an outworking of the maritime policy of the Russian Federation going back at least 20 years.

I intend to give a list of my resources for reading later on, but for now, let’s begin with a Tweet thread from Dmitri Alperovitch, which really resonated for me :-

https://mobile.twitter.com/DAlperovitch/status/1520333220964933632

https://threadreaderapp.com/thread/1520333220964933632.html

He makes the point that with Russian forces control the coastal area of Ukraine, and its ports and seafaring routes, they will have a stranglehold on the economy of Ukraine. If the Russians deny grain and other agricultural exports, or deny the proceeds from export sales, then the Ukrainian economy will be seriously damaged. In addition, the continual bombing and mining of agricultural lands means that crops are already at risk this year in Ukraine, which will add to these woes. There is already some discussion about the effects on the importers of Ukrainian grain in particular, as it has been a “bread basket of the world”.

It is easy to see from maps of the fighting that controlling the coastal ports must have been a major part of the reason for the Russian invasion, but the triggering of conflict is surely not just about control of the trade routes in and out of Ukraine, as a means to squeeze the country into submission.

It’s clear from my reading so far that Russia has an historical and significant ambition to control more of the maritime routes in that region. Russia clearly didn’t like the awkwardness of having to share the Black Sea and the Sea of Azov. They’d rather just run all of it, apparently. Russia appears to regard rulership of the “warm seas” to the south of Federation lands as vital to their aims. There are mentions of improving the waterway routes from the Caspian, through the Black Sea, out to the Mediterranean, to permit military vessels to exert control in the region, and to enable Russian trade. The Russians built a contested bridge to Crimea, but they may end up building vast new canals as well. Are you listening yet, Turkey ?

This is grandiose enough, but this is still not the end of Russia’s aims in taking over the coast of Ukraine, it could transpire.

What floats on top of the Black Sea, the Sea of Azov, the Mediterranean Sea and the Caspian Sea is important enough, but what lies beneath is far more important, I am beginning to find in my reading.

There has been a couple of decades or so of development of newly-discovered oil and gas resources around the Caspian Sea. Russia even acted quite collaboratively initially with the other countries bordering co-littorally. Although it hasn’t been very happy since in some parts of the region. Due to Russian military carpet-bombing and martial illegalities, in some cases.

But despite oil- and gas-aplenty, for example, in the Kashagan, fossil fuel deposits there are really rather sour, that is, loaded with sulfur compounds; particularly hydrogen sulfide, which is corrosive, explosive and needs to be removed before the fossil fuels can be utilised. That, coupled with the anoxic and difficult conditions of the undersea mining, mean that Russia has looked elsewhere to build up new proved resources, as they have become necessary.

There was much talk of Russia going to drill in the Arctic; but even with melting ice from global warming, conditions north of the Arctic Circle are tough, and the offshore prospects are likely to be costly. Yes, they might end up trying to keep their rights to trade LNG from the far North, but the “cold seas” make for harsh economic conditions.

After years of stagnating Natural Gas production in Russia, more gas fields have been opened up in the Yamal Peninsula, but they only have a half life of approximately ten to fifteen years, perhaps. And judging by other gas fields, some parts of them could be extremely contaminated with sulfur compounds, which would lead to extra costs in cleaning the products up for sale and piping out for export.

And then came the Mediterranean and Black Sea seismic surveys and gas prospecting. What was found ? Sweet, sweet gas. Little in the way of sulfur contamination, and continental sea conditions, as opposed to stormy oceans. There are many countries that border both bodies of water that have been rapidly developing Natural Gas projects, eager to jump right in and tap as much as they can from fields, presumably before other countries tap into the same fields from another entry point.

There is some evidence that the primary goal for Russia in invading Crimea in 2014 was to secure control of Ukraine’s Natural Gas production projects in the Black Sea. Ukraine had been at the mercy of Russia’s energy “policy” for decades (which seems to consist mostly of what looks like : threat, supply cuts, blackmail, extortion, compromise, false accusation, unjustifiable price hikes), and now it was about to start developing a new sizeable domestic resource, and could conceivably become energy-independent. It could have been too much for Vladimir Putin to bear, thinking that Ukraine could become the masters and mistresses of their own energy destiny. He wanted the sales of that Natural Gas for himself, and deny Ukraine control over their own economy. Hence what has been described as the “theft” of energy company, oil and gas rigs, other utility holdings and the EEZ maritime exclusive exploitation zone out at sea. Oh Chornomornaftogaz !

If Russia establish control of the whole of Southern Ukraine, recognised or no, they will almost inevitably be seeking to exploit as much of the Black Sea Natural Gas as they can. It will be cleaner than Caspian gas, cheaper than Arctic gas, and easier to export as ship-laden LNG.

So, I ask again, why did Russia invade Ukraine ? To take advantage of ten to fifteen years of sweet, cheap Black Sea Natural Gas ? Is that really what this is actually about ?

The European Union has declared that they will wind down their use of Natural Gas, and develop Renewable Gas instead over the next decade. There will be a divorce from Russian gas, because of this policy, and as a reaction to the invasion of Ukraine.

I would argue however, that this policy is needed not just because of climate change, and not simply as a reaction to unjustifiable horrors of aggression. The future of gas sourced from Russia is either sour or stolen, and so the European Union has no choice but to wean itself away.

To support my theory, I would need to have access to gas composition analysis by the major oil and gas companies of Russia, and the countries surrounding the Caspian, Black Sea, Sea of Azov and Mediterranean Sea, and the companies working on oil and gas projects onshore and offshore in the region.

I have made a few enquiries, but nothing has emerged as yet.

Categories
Academic Freedom Battery Ramp Carbon Capture Change Management Clean Burn Climate Change Divest and Survive Efficiency is King Energy Calculation Energy Change Energy Revival Energy Storage Gas Storage Green Gas Hydrogen Economy Introduction Natural Gas Objectives Realistic Models Regulatory Ultimatum Renewable Energy Renewable Gas Renewable Hydrogen Renewable Methane Science Rules The Data The Myth of Innovation The Price of Gas The Right Chemistry The Science of Communitagion

Clean Burn : Introduction and Objectives

From my studies, I conclude that humanity will continue to use gas energy fuels for a long time to come.

In that case, we need to know how to burn it cleanly, so I am starting a new phase of research and publication on this topic – “Clean Burn”.

Anybody is welcome to comment, feedback, review and contribute. It will all be Open Access.

Here is a draft version of the Introduction and Objectives.

Categories
Academic Freedom Advertise Freely Alchemical Artistic Licence Bait & Switch Be Prepared Big Society Bioeffigy Biofools Carbon Commodities Carbon Recycling Change Management Climate Change Climate Chaos Climate Damages Corporate Pressure Delay and Deny Delay and Distract Demoticratica Direction of Travel Divest and Survive Divide & Rule Emissions Impossible Energy Autonomy Energy Change Energy Crunch Energy Insecurity Energy Revival Engineering Marvel Evil Opposition Extreme Energy Fossilised Fuels Freshwater Stress Gamechanger Gas Storage Global Warming Green Gas Green Investment Green Power Health Impacts Human Nurture Hydrocarbon Hegemony Incalculable Disaster Low Carbon Life Major Shift Methane Management Modern Myths Money Sings National Energy National Power Natural Gas Near-Natural Disaster Neverending Disaster Nudge & Budge Oil Change Paradigm Shapeshifter Peak Coal Peak Emissions Peak Energy Peak Natural Gas Peak Oil Petrolheads Policy Warfare Political Nightmare Protest & Survive Public Relations Pure Hollywood Regulatory Ultimatum Renewable Gas Renewable Resource Resource Wards Science Rules Shale Game Social Capital Social Democracy Stirring Stuff Sustainable Deferment Tarred Sands Technofix The Power of Intention The Right Chemistry Toxic Hazard Transport of Delight Tree Family Unconventional Foul Ungreen Development Wind of Fortune Zero Net

Jumping off Mount Gideon

[Friends, I have suffered a little writer’s block, so I resolved to spark some creativity in myself by joining a little local writers group. The leader of the group suggested a title, I Googled the allegedly fictional location and found it existed, and that it was near a wind farm; and Google Maps led me to the rest of my research and inspiration for this piece. Caveat Lector : it’s fictional, even though a lot of it is factual. Also, it’s only a draft, but it needs to settle for a while before I can refine/sift it. ]

Jumping Off Mount Gideon [1]
by Jo Abbess
DRAFT

In the blue-green sun-kissed uplands, west of the sediment-spewing Chocolate River sprung at Petitcodiac village, and north of the shrunken Shepody Lake, its feeder tributaries re-engineered hundreds of years ago; north still of the shale flats jutting out into the Bay of Fundy, rises Mount Gideon, shrouded in managed native Canadian spruce, pine and fir. Part of the ranging, half-a-billion-year-old craton of the Caledonian Highlands of New Brunswick, it is solid ground, and its first European inhabitants must have been hardy. Looking up, the early settlers must have seen the once-bare hinterland looming over the mudstone and sandstone shoreline, with its steep gullied waterways carved by the receding pre-historic icesheets, and it must have been redolent of the mountainous “encampments of the just” [2] where the Biblical Gideon of the Book of Judges [3] trained his elite crack troops and plotted his revenge against the hordes of ravaging Midianites. The fur-trappers and gravel miners on the eve of the 18th Century built a community by the bay, and drove a winding road up through Mount Gideon’s ravines and over its heights, a byway long since eroded and erased and replaced by a functional forestry access track. Ethnic cleansing of the first-come Acadians in the summer of 1755 destroyed much of the larger settlements in the region of Chipoudy, henceforth anglicised to Shepody. Two groups of deportation vigilantes, originally tasked with taking prisoners, burned down the infrastructure and put to death those who hadn’t fled to the woods, and since that day, nobody really lives up on the mount, aside from the occasional lumberjack in his trailer home cached off New Ireland Road, and the odd temporary bivouac of touring hippy couples, en route from Hopewell Rocks to Laverty Falls on the Moosehorn Trail in the national park, via the Caledonia Gorge and Black Hole on the Upper Salmon River. These days there is no risk of social crisis, but an insidious slow-moving environmental crisis is underway. Streams falling from Mount Gideon, spider lines scratched on early parish maps, the West River and Beaver Brook, no longer flow year-round, and there’s very little freshwater locally, apart from a few scattered tarns, cradled in the impervious igneous, plutonic rock of the hinterland. Rainwater does support the timber plantations, for now, but drought and beetle are a rising threat, brought on by creeping climate change. Humans may no longer be setting fires, but Nature is, because human beings have interfered with the order of things.

Mount Gideon isn’t really a proper peak : from its summit it’s clear it’s only a local undulation like other protruding spine bones in the broad back of the hills. Its cap sprouts industrial woodland, planted in regular patterns visible from space, reached by gravel-bordered runnelled dirt track. The former ancient water courses that fall away sharply from the highest point on the weald are filled with perilously-rooted trees, leaning haphazardly out from the precipitous banks of the ravines. The plantations and roadside thickets obscure the view of Chignecto Bay and the strong-tided Minas Passage, where the tidal turbine energy project is still being developed. With no coastal horizon, this could be hundreds of kilometres from anywhere, in the centre of an endless Avalonian Terrane. A silvicultural and latterly agroforestry economy that grew from the wealth of wood eventually developed a dependence on fossil fuels, but what thin coal seams locally have long been exhausted, and the metamorphic mass underfoot salts no petroleum oil or gas beneath. Tanker ship and truck brought energy for tractor and homestead for decades, but seeing little future in the black stuff, local sparsely-populated Crown Land was designated for renewable energy. Just to the north of Mount Gideon lie the Kent Hills, a scene of contention and social protest when the wind farm was originally proposed. For some, wind turbines would mechanise the landscape, cause frequency vibration sickness, spark forest fires from glinting blades, induce mass migraine from flickering sweeps of metal. Windmills were seen as monsters, but sense prevailed, through the normal processes of local democracy and municipal authority, and even a wind farm expansion came about. It is true that engineering giants have cornered the market in the first development sweep of wind power – those hoping for small-scale, locally-owned new energy solutions to the carbon crisis have had to relent and accept that only big players have the economic power to kickstart new technologies at scale. There are some who suspect that the anti-turbine groups were sponsored secretly by the very firms who wanted to capitalise on the ensuing vacuum in local energy supply; and that this revolt went too far. There was speculation about sabotage when one of the wind turbine nacelles caught fire a while back and became a sneering viral internet sensation. When the shale gas 1970s extraction technology revival circus came to Nova Scotia, the wind power companies were thought to have been involved in the large protest campaign that resulted in a New Brunswick moratorium on hydraulic fracturing in the coastal lowlands. The geology was anyways largely against an expansion in meaningful fossil fuel mining in the area, and the central Precarboniferous massif would have held no gas of any kind, so this was an easily-won regulation, especially considering the risks to the Chignecto Bay fisheries from mining pollution.

TransAlta, they of “Clean Power, Today and Tomorrow”, sensed an prime moment for expansion. They had already forged useful alliances with the local logging companies during the development of Kent Hills Wind Farm, and so they knew that planning issues could be overcome. However, they wanted to appease the remnant of anti-technologists, so they devised a creative social engagement plan. They invited energy and climate change activists from all over Nova Scotia, Newfoundland, and the rest of Quebec to organise a pro-wind power camp and festival on the top of Mount Gideon. The idea was to celebrate wind power in a creative and co-operative way. The Crown Land was clearcut of trees as the first stage of the wind farm expansion, so the location was ideal. To enable the festival to function, water was piped to the summit, teepees and yurts were erected, and a local food delivery firm was hired to supply. The ambition of the cultural committee was to create an open, welcoming space with plenty of local colour and entertainment, inviting visitors and the media to review plans for the new wind farm. The festival was an international Twitter success, and attracted many North American, European and even Australasian revellers, although a small anarchist group from the French national territory in St Pierre et Miquelon created a bit of a diplomatic incident by accidentally setting fire to some overhanging trees in a ravine during a hash-smoking party.

Unbeknownst to the festival committee, a small and dedicated group of activists used the cover of the camp to plan a Gideon-style resistance to the Energy East pipeline plan. TransCanada wanted to bring heavy tar sands oil, blended with American light petroleum condensate, east from Alberta. The recent history of onshore oil pipelines and rail consignments was not encouraging – major spills had already taken place – and several disastrous accidents, such as the derailment and fireball at Plaster Rock, where the freight was routed by track to Irving Refinery. The original Energy East plan was to bring oil to the Irving Oil Canaport facility at Saint John, but a proposal had been made to extend the pipeline to the Atlantic coast. The new route would have to either make its circuitous way through Moncton, or cross under the Bay of Fundy, in order to be routed to Canso on the eastern side of Nova Scotia. The Energy East pipeline was already being criticised because of its planned route near important waterways and sensitive ecological sites. And the activist group had discovered that TransCanada had contracted a site evaluation at Cape Enrage on the western shore of the bay. Land jutted out into the water from here, making it the shortest crossing point to Nova Scotia. To route a pipeline here would mean it would have to cross Fundy National Park, sensitive fish and bird wading areas on the marshes and mudflats of the Waterside and Little Ridge, and cross over into the Raven Head Wilderness Area.

Gideon’s campaign had succeeded because of three things. His army had been whittled down to a compact, focused, elite force; they had used the element of surprise, and they had used the power of the enemy against itself. The activist group decided on a high level of secrecy about their alliance, but part of their plan was very public. They were divided into three groups : the Wasps, the Eagles and the Hawks. The Wasps would be the hidden force. They would construct and test drones, jumping off Mount Gideon, and flown out at night down the old river gullies, their route hidden by the topography, to spy on the TransCanada surface works. The plan was that when they had had enough practice the team would be ready to do this on a regular basis in future. If TransCanada did start building a pipeline here, the Wasps would be able to come back periodically and transport mudballs by drone to drop in the area. These squidgy payloads of dirt would contain special cultures of bacteria, including methanogens, that produce methane and other volatile chemicals. The environmental monitoring teams at the site would pick up spikes in hydrocarbon emissions, and this would inevitably bring into question the integrity of the pipeline. The Eagles would start a nationwide campaign for legal assistance, asking for lawyers to work pro bono to countermand the Energy East pipeline route, deploying the most recent scientific research on the fossil fuel industry, and all the factors that compromise oil and gas infrastructure. The Hawks would develop relationships with major energy investors, such as pension funds and insurance firms, and use public relations to highlight the risks of fossil fuel energy development, given the risks of climate change and the geological depletion of high quality resources. Nobody should be mining tar sands – the dirtiest form of energy ever devised. If TransCanada wanted to pipeline poisonous, toxic, air-damaging, climate-changing gloop all across the pristine biomes of precious Canada, the Mount Gideon teams were going to resist it in every way possible.

What the Mount Gideon teams did not know, but we know now, was that some of the activists at the camp were actually employees of the New Brunswick dynasties Irving and McCain. These families and their firms had saved the post-Confederation economy of the Maritime Provinces in the 20th Century, through vertical integration. Internally, within the Irving conglomerate, many recognised that fossil fuels had a limited future, even though some of the firms were part of the tar sands oil pipeline project. They were intending to take full advantage of the suspension of the light oil export ban from the United States for the purpose of liquefying Canadian heavy oils to make a more acceptable consumer product, as well as being something that could actually flow through pipes. They had held secret negotiations between their forestry units and the McCain family farming businesses. Research done for the companies had revealed that synthetic, carbon-neutral gas could be made from wood, grains and grasses, and that this would appeal to potential investors more than tar sands projects. They realised that if the Energy East project failed, they could step in to fill the gap in the energy market with their own brand of biomass-sourced renewables. They calculated that the potential for Renewable Gas was an order of magnitude larger than that of wind power, so they stood to profit as low carbon energy gained in popularity. Once again, in energy, big business intended to succeed, but they needed to do so in a way that was not confrontational. What better than to have a bunch of activists direct attention away from carbon-heavy environmentally-damaging energy to allow your clean, green, lean solutions to emerge victorious and virtuous ?

Notes

[1] This is a fictional, marginally futuristic account, but contains a number of factual, current accuracies.
[2] Bible, Psalm 34
[3] Bible, Judges 6-8

Categories
Academic Freedom Alchemical Assets not Liabilities Baseload is History British Biogas Change Management Climate Change Cost Effective Design Matters Direction of Travel Energy Autonomy Energy Change Energy Revival Engineering Marvel Gas Storage Green Gas Growth Paradigm Hide the Incline Low Carbon Life Major Shift Natural Gas Optimistic Generation Paradigm Shapeshifter Renewable Gas Solar Sunrise Solution City The Price of Gas The Right Chemistry Unnatural Gas Wasted Resource Wind of Fortune Zero Net

The Delta, The Ramp, The Stretch and The Duck #1

I gave a guest lecture at Birkbeck College, of the University of London on the evening of 22nd February 2017 in the evening, as part of the Energy and Climate Change module. I titled it, “Renewable Gas for Energy Storage : Scaling up the ‘Gas Battery’ to balance Wind and Solar Power and provide Low Carbon Heat and Transport”.

The basic concept is that since wind and solar power are variable in output, there has to be some support from other energy technologies. Some talk of batteries to store electrical energy as a chemical potential, and when they talk of batteries they think of large Lithium ion piles, or flow batteries, or other forms of liquid electrolyte with cathodes and anodes. When I talk about batteries, I think of electrical energy stored in the form of a gas. This gas battery doesn’t need expensive metal cathodes or anodes, and it doesn’t need an acid liquid electrolyte to operate. Gas that is synthesised from excess solar or wind power can be a fuel that can be used in chemical reactions, such as combustion, or burning, to generate electricity and heat when desired at some point in the future. It could be burned in a gas turbine, a gas boiler or a fuel cell, or in a vehicle engine. Or instead, a chemically inert gas can be stored under pressure, and this compressed gas can also be used to generate power on demand at a later date by harnessing energy from decompression. Another option would be holding a chemically reactive gas under pressure, allowing two stages of energy recovery.

As expected, the Birkbeck audience was very diverse, and had different social and educational backgrounds, and so there was little that could be assumed as common knowledge, especially since the topic was energy, which is normally only an interest for engineers, or at a stretch, economists.

I decided when preparing that I would attempt to use symbolism as a tool to build a narrative in the presentation. A bold move, perhaps, but I found it created an emblematic thread that ran through the slides quite nicely, and helped me tell the story. I used Mathematical and Physical notation, but I didn’t do any Mathematics or Physics.

I introduced the first concept : the Delta, or change. I explained this delta was not the same as a river delta, which gave me the excuse to show a fabulous night sky image of the Nile Delta taken from the International Space Station. I demonstrated the triangle shape that emerges from charting data that changes over time, and calculating its gradient, such as the temperature of the Earth’s surface.

I explained that the change in temperature of the Earth’s surface over the recent decades is an important metric to consider, not just in terms of scale, but in terms of speed. I showed that this rate of change appears in all the independent data sets.

I then went on to explain that the overall trend in the change in the temperature of the Earth’s surface is not the only phenomenon. Within regions, and within years and seasons, even between months and days, there are smaller scale changes that may not look like the overall delta. A lot of these changes give the appearance of cyclic phenomena, and they can have a periodicity of up to several decades, for example, “oscillations” in the oceans.

These discrete deltas and cycles could, to a casual observer, mask underlying trends, especially as the deltas can be larger than the trends; so climatologists look at a large set of measurements of all kinds, and have shown that some deltas are one way only, and are not cycling.

Teasing out the trends in all of the observations is a major enterprise that has been accomplished by thousands of scientists who have reported to the IPCC, the Intergovernmental Panel on Climate Change, part of the UNFCCC, the United Nations Framework Convention on Climate Change. The Fifth Assessment Report is the most comprehensive yet, and shows that global warming is almost certainly ramping up – in other words, global warming is getting faster, or accelerating.

Many projections for the future of temperature changes at the Earth’s surface have been done, with the overall view that temperatures are likely to carry on rising for hundreds of years without an aggressive approach to curtail net greenhouse gas emissions to the atmosphere – principally carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O).

From observations, it is clear that global warming causes climate change, and that the rate of temperature change is linked to the rate of climate change. In symbols, this reads : delta T for temperature over t for time leads to, or implies, a delta C for climate over t for time. The fact that global warming and its consequential climate change are able to continue worsening under the current emissions profile means that climate change is going to affect humanity for a long stretch. It also means that efforts to rein in emissions will also need to extend over time.

I finished this first section of my presentation by showing a list of what I call “Solution Principles” :-

1. Delays embed and extend the problem, making it harder to solve. So don’t delay.

2. Solve the problem at least as fast as creating it.

3. For maximum efficiency, minimum cost, and maximum speed, re-deploy agents of the problem in its solution.

In other words, make use of the existing energy, transport, agriculture, construction and chemical industries in approaching answers to the imperative to address global warming and climate change.

Categories
Academic Freedom Assets not Liabilities Baseload is History British Biogas Burning Money Change Management Climate Change Conflict of Interest Cost Effective Divest and Survive Electrificandum Energy Autonomy Energy Change Energy Insecurity Engineering Marvel Green Investment Green Power Growth Paradigm National Energy National Power Nuclear Nuisance Nuclear Shambles Optimistic Generation Paradigm Shapeshifter Peak Nuclear Political Nightmare Public Relations Regulatory Ultimatum Renewable Gas Revolving Door Solar Sunrise Solution City Stirring Stuff Wind of Fortune Zero Net

New Hands on DECC

So, the Department of Energy and Climate Change (DECC) have a new top dog – Alex Chisholm – formerly the attack beast in charge of putting pressure on the electricity utility companies over their pricing rip-offs when at the Competition and Markets Authority (CMA).

There’s a huge and dirty intray awaiting this poor fellow, including the demonstrable failings of the Energy Act that’s just been signed into law. I’d recommend that he call for the immediate separation of the department into two distinct and individually funded business units : Nuclear and The Rest. Why ? Because nuclear power in the UK has nothing to do with answering the risk of climate change, despite some public relations type people trying to assert its “low carbon” status. Plus, the financial liabilities of the nuclear section of DECC mean it’s just going to bring the rest of the department down unless there’s a divorce.

The UK Government have been pursuing new fission nuclear power with reams of policy manoeuvres. The call for new nuclear power is basically a tautological argument centring on a proposal to transition to meet all energy demand by power generation resources, and the presumption of vastly increasing energy independence. If you want to convert all heating and cooling and transport to electricity, and you want to have few energy imports, then you will need to have a high level of new nuclear power. If new nuclear power can be built, it will generate on a consistent basis, and so, to gain the benefit of self-sufficiency, you will want to transfer all energy demand to electricity. Because you assume that you will have lots of new nuclear power, you need to have new nuclear power. It’s a tautology. It doesn’t necessarily mean it’s a sensible or even practical way to proceed.

DECC evolved mostly from the need to have a government department exclusively involved in the decommissioning of old nuclear power plants and the disposal of radioactive nuclear power plant waste and waste nuclear fuel. The still existing fleet of nuclear power plants is set to diminish as leaking, creaking, cracking and barely secure reactors and their unreliable steam generation equipment need to be shut down. At which point, this department will lose its cachet of being an energy provider and start to be merely an energy user and cash consumer – since there’s not enough money in the pot for essential decommissioning and disposal and DECC will need to go cap in hand to the UK Treasury for the next few decades to complete its core mission of nuclear decommissioning. It doesn’t take too much of a stretch of the imagination to figure out why this department will remain committed to the concept of new nuclear power. It would certainly justify the continuing existence of the department.

The flagship DECC-driven nuclear power project for Hinkley Point C has run aground on a number of sharp issues – including the apparent financial suicide of the companies set to build it, the probably illegal restructuring loans and subsidy arrangements that various governments have made, what appears to be the outright engineering incompetency of the main construction firm, and the sheer waste of money involved. It would be cheaper by around 50% to 70% to construct lots of new wind power and some backup gas-fired power generation plant – and could potentially be lower carbon in total – especially if the gas is manufactured low carbon gas.

In order to stand a chance of making any new low carbon energy investment in the UK, the Department of Energy and Climate Change needs to split – much like the banks have. The risky, nuclear stuff in one team, and the securely certainly advantageous renewable energy stuff in the other team. We will have more wind power, more solar power and more of lots of other renewables in the next 10 years. We are unlikely to see an increase in nuclear power generation in the UK for the next 15. It’s time to split these business units to protect our chances of successful energy investment.

Categories
Academic Freedom Renewable Gas

Sour Push

The exact chemistry of Natural Gas as it comes out of the ground is data that is not always easily available – and industry watchers always seem to charge a lot just to access rudimentary information that was hastily published in trade journals.

But the exact chemistry of Natural Gas as it comes out of the ground is very important to know, especially as, over time, naturally-occurring gases collected from the sub-surface of the Earth are expected to change in their composition. This is due to a number of factors, including the depletion of major oil fields – where much Natural Gas comes from.

Changing Natural Gas chemistry will also arise because of changes in the choice of resources. Here’s a note from Lallemand et al. from PTQ magazine for Q4 2013, starting at page 81, “For decades to come, gas will be an energy source of choice to meet increasing energy demands. Oil and gas operators have always preferentially produced the gas from those reservoirs that are technically the easiest and the cheapest to develop, but they will have to develop fields with a higher acid gas content in the future. Effectively, over 40% of the world’s conventional gas resources currently identified as remaining reserves to be produced, representing over 2600 trillion cubic feet (tcf), are sour, with both [hydrogen sulfide] H2S and [carbon dioxide] CO2 present most of the time. Among these sour reserves, more than 350 tcf contain H2S in excess of 10%, and almost 700 tcf contain over 10% CO2. The Middle East, the Caspian Sea area and China have gas reserves with a high H2S content, while large amounts of gases with a high CO2 content are encountered in South East Asia and, to some extent, in South America and North Africa.”

Another Natural Gas contaminant to look out for is nitrogen, which can be present in very high percentages.

What’s astonishing to me is that there is not more discussion of the issues surrounding the attentuation or lessening of value of Natural Gas owing to this chemistry.

Not that I’m going to attend, but there is a conference up soon on this matter, “Sour Oil & Gas Advanced Technology 2016”, or SOGAT, being held in Abu Dhabi, and the blurb makes for interesting reading : “…The technologies involved in sour field management and production are always progressing and the latest developments across the whole management spectrum including observations on capturing CO2 from sour gas processing facilities for use in [Enhanced Oil Recovery] EOR will be included in the SOGAT Conference Programme…”

Now, admittedly, Enhanced Oil Recovery is a valid use for unwanted carbon dioxide in Natural Gas, and is widely in use to achieve this aim. Carbon dioxide and other inert gases are pumped into an oil field to create extra “lift” pressure, to increase the production of crude petroleum oil liquids. It’s a technique that can be fairly effective over some length of time.

It’s not always certain if the re-injected carbon dioxide stays put – so it’s not necessarily a recipe for permanent “sequestration” of that CO2 back underground. However, this was the original CCS – Carbon Capture and Sequestration, or Carbon Capture and Storage, method proposed by the oil and gas companies when the United Nations Framework Convention on Climate Change (UNFCCC) wanted to hear on carbon mitigation technologies.

But is there another way to deal with the carbon dioxide emerging in Natural Gas, rather than using it to pump up more oil ? After all, even if the re-injected CO2 stays re-buried, it assists in the liberation of more carbon dioxide overall, when the oil gets burned.

The answer is “yes”. The carbon dioxide that emerges with Natural Gas could be used to increase the overall volume of sweetened gas supplied to market. How is that possible ? Well, if the sour gas countries of the Middle East took to deploying desert plains full of solar panels, and then made Renewable Hydrogen from seawater using this solar electricity, then they could methanate the carbon dioxide from Natural Gas into high-methane gas that could be added back to the Natural Gas, increasing its volume.

This would make a better asset out of the carbon dioxide than using it for EOR.

None of this technology or chemistry is new. It just needs applying. And it’s important because a lot of the world’s remaining Natural Gas has a high level of carbon dioxide in it – and that can’t all be used for Enhanced Oil Recovery.

Categories
Academic Freedom Energy Change Renewable Gas

The Appliance of Trust

Although I don’t recommend it, considering things in the fevered daze of influenza is a great counterweight to thinking things through in my normal state of mind, a little bit like Herodutus’ “Persian Strategy”, but with the only alcohol involved being in the cough medicine.

I had the overpowering insight that I can get my mind inside anything I wanted, but the realisation that I don’t have the interest to get into that much, actually. What really interests me, apart from having my basic nutritional, shelter and socialisation needs met, is energy – more to the point – energy transition, from the fossil fuel-dominated energy systems of today, to the 100% renewable energy systems of tomorrow.

I’m less of a shaper in this Energy Change, more of a watcher and commentator. I don’t really know what I could do to effect or affect any significant part of Energy Change. I wouldn’t know where to try to place myself. I despair of the British Government’s lack of sanity in energy policy, and yet the UK are considered a major contributor to the process of Energy Change. Maybe the incestuous relationship between the academic community and the energy industry has a stronger influence on the government narrative than it should. I’m fairly scornful about the lack of attention the major energy companies are giving to the imperative of Energy Change, or at least in their public-facing personae, because they’ve got market share and shareholders to think about.

As for something more practical, it’s been a while since I did any proper hands-on engineering, so I’m not sure if I could play that role anywhere. The flow of money dictates most change, but I’m not sure if I could help people move money – it would involve a lot of public relations, which I hate.

When I raise questions of Energy Change – mostly centred on Renewable Gas – some people in government and industry can be very dismissive. Sometimes I wonder why I bother trying to make any contribution at all. I’m just observing – not dictating or showing anything revolutionary. It almost doesn’t matter if I do nothing – because Energy Change is inevitable.

My argument in a very condensed form :-

1. There are problems with continued fossil fuel production growth.

2. There are problems arising from the continued use of fossil fuels.

3. There must be a transition to renewable energy.

4. The timeframe for some of the major elements of the new configuration is around 25 years or less.

5. Major elements of Energy Change must be started now.

6. All expenditure in the economy must be a “carrier wave” enabling investment in and consumption of renewable energy. All economic decisions need to be guided towards placing trust in companies and organisations that have Energy Change as part of their business strategy.

It doesn’t need to be me who says these things.

On the other hand, it interests me.

So I have to apply trust – if it interests me, since my judgement is fairly sound, it must be interesting. And since I trust myself to my interests in Energy Change, I need to continue working in this area, although I’m not sure precisely where.

Categories
Academic Freedom Alchemical Assets not Liabilities Baseload is History Be Prepared British Biogas Change Management Corporate Pressure Cost Effective Design Matters Direction of Travel Divest and Survive Electrificandum Emissions Impossible Energy Autonomy Energy Calculation Energy Change Energy Crunch Energy Denial Energy Insecurity Energy Revival Environmental Howzat Extreme Energy Fossilised Fuels Gamechanger Gas Storage Green Gas Green Investment Green Power Grid Netmare Hydrogen Economy Low Carbon Life Marvellous Wonderful Methane Management Money Sings National Energy National Power Optimistic Generation Paradigm Shapeshifter Peak Emissions Price Control Realistic Models Regulatory Ultimatum Renewable Gas Solution City The Power of Intention The Price of Gas The Price of Oil The Right Chemistry Zero Net

Fields of Diesel Generators

Recently, I had a very helpful telephone conversation with somebody I shall call Ben – because that’s his name, obviously, so there’s no point in trying to camoflage that fact. It was a very positive conversation, with lots of personal energy from both parties – just the sort of constructive engagement I like.

Amongst a range of other things, we were batting about ideas for what could constitute a business model or economic case for the development of Renewable Gas production – whether Renewable Hydrogen or Renewable Methane. Our wander through the highways and byways of energy markets and energy policy led us to this sore point – that the National Grid is likely to resort to “fields of diesel generators” for some of its emergency backup for the power grid in the next few years – if new gas-fired power plants don’t get built. Various acronyms you might find in this space include STOR and BM.

Now, diesel is a very dirty fuel – so dirty that it appears to be impossible to build catalytic exhaust filters for diesel road vehicles that meet any of the air pollution standards and keep up fuel consumption performance. It’s not just VW that have had trouble meeting intention with faction – all vehicle manufacturers have difficulties balancing all the requirements demanded of them. Perhaps it’s time to admit that we need to ditch the diesel fuel itself, rather than vainly try to square the circle.

The last thing we really need is diesel being used as the fuel to prop up the thin margins in the power generation network – burned in essentially open cycle plant – incurring dirty emissions and a massive waste of heat energy. Maybe this is where the petrorefiners of Great Britain could provide a Renewable Gas alternative. Building new plant or reconfiguring existing plant for Renewable Gas production would obviously entail capital investment, which would create a premium price on initial operations. However, in the event of the National Grid requiring emergency electricity generation backup, the traded prices for that power would be high – which means that slightly more expensive Renewable Gas could find a niche use which didn’t undermine the normal economics of the market.

If there could be a policy mandate – a requirement that Renewable Gas is used in open cycle grid-balancing generation – for example when the wind dies down and the sun sets – then we could have fields of Renewable Gas generators and keep the overall grid carbon emissions lower than they would otherwise have been.

Both Ben and I enjoyed this concept and shared a cackle or two – a simple narrative that could be adopted very easily if the right people got it.

Renewable Gas – that’s the craic.

Categories
Academic Freedom Emissions Impossible Energy Change Energy Crunch Energy Denial Renewable Gas

Renewable Gas : Book Launch

So I’m in the wonderfully atmospheric wood-panelled Room 102 at 30 Russell Square in Bloomsbury trying to talk engineering to mostly business and communications students. Which is a challenge in itself. Yet I’m also trying not to do too much talking, but encourage the other people in the room to play with the information I’m presenting and do their own thinking.

It’s all about energy transition – or “Energy Change” – as I term it – that I argue is an essential response to Climate Change. I also argue that Energy Change is an essential response to discontinuities and emerging fractures in the current fossil fuel-dominated global energy system and the global economy.

But mostly I argue with a fair amount of positive personal energy that we already have all the technologies we need to move towards a very low carbon and 100% renewable energy system, where low carbon gas backs up variable renewable electricity generation.

During the discussion after my presentation, where the room became full of buzzing brain power, I ask people to break out into small groups to answer these not-too-simple policy questions :-

Q1. Can you design a policy support mechanism
for Renewable Gas that doesn’t involve subsidies
in any area of : electricity generation, heating &
cooling, transportation or energy storage ?

Q2. In whose short-term and long-term
interests would it be to begin to provide
Renewable Gas ? What should their strategy be ?

Q3. What barriers to the growth of Renewable
Gas production do you think there will be ?

There were some very interesting answers given to the room at the end before we had to open celebration bottles to complete the positive cheer. And then, of course, after all that jollity, I had to take in a pint of dry cider and some hot potato chips at the pub with my colleague Dr Paul Elsner and engage in a conversation, the upshot of which is that I now have a massive “to do” list.

Categories
Academic Freedom Climate Change Energy Change Renewable Gas

Happy New Renewable Gas Year

A new year, and a renewed mission of investigation into and communication about the need for and potential of Renewable Gas.

I need to prepare a presentation for discussion in February, so I started writing notes in December, and now I’m thinking about the images I would like to use for overhead slides and the things I’d like the audience to read before the event.

Proceedings will best be split into two parts, I think : the first part covering energy systems and energy technologies; and the second part opening up the issues in energy policy and energy investment.

As usual, I don’t like to do all the talking, so I hope to keep the presentation as short as possible to allow the maximum time for group conversation. With enough of the right kind of preparation, I feel, most groups of intelligent people can collectively approach the core of a problem and suggest ways out, and how to stimulate and monitor progress.

My point of entry, I think, should be considering the logic that Climate Change implies Energy Change – in other words, that global warming-induced climate alteration will both impact the way that energy systems operate, and will also require new energy technologies to be deployed, to prevent climate change becoming seriously dangerous.

Climate Change also means Economy Change – as the current high flow rates of raw resources and energy in trading and commerce contribute significantly to climate change, and trade and commerce are also being adversely affected by climate change.

Categories
Academic Freedom Carbon Capture Carbon Recycling Renewable Gas Renewable Resource

I Agree With George

For once, I agree with George Osborne.

Well, for twice, actually.

In his Autumn Statement of the state budget, he reversed a painful austerity measure aimed at the lowest paid workers, by performing a U-turn on removing tax credits.

And, perhaps more importantly, not in the Autumn Statement, he cancelled the Carbon Capture and Storage demonstration subsidy. I completely applaud this decision. Apart from the speed at which it was enacted.

George Osborne did a number of other things in his Autumn Statement that I definitely do not agree with – such as converting student nurse grants into loans – which shows the most appalling lack of judgement, as it will deter just the trainees the National Health Service really needs.

Without more nursing staff on the front line of hospital health care, nothing will improve, no matter how many middle managers you employ. But anyway, back to energy…

For some reason, the news that the Carbon Capture and Storage (CCS) “competition” money, formerly ringfenced, had been axed, was not included in the Autumn Statement. It was “snuck out” on the London Stock Exchange website, and I cannot find a mention of it yet on the Department of Energy and Climate Change website. Curious.

What’s not curious in the slightest is the racket of the complaints against this decision. Which is to be expected, as a great many engineers and researchers have been relying on this very cash injection for their careers in carbon capture.

Many politicos have been “captured” by CCS along the way, and their resentment is shrill today. Caroline Flint, in particular, should know better than to support CCS – she should look at the numbers, the history, and follow the money…

There is an almost desperate misunderstanding about exactly how poor “value for money” the current CCS technologies are. This is because they are being applied to power generation plant, where the thermodynamics are against the efficient capture of carbon dioxide, because capture would need to be done behind combustion in most configurations.

What is really needed is to go back to basics – chemistry and physics basics – and go back in time to the research done by earlier industrial gas engineers, terminated in the 1980s because of the discoveries of abundant (but not infinite) Natural Gas.

Carbon capture in industrial gas processing has options that are relatively efficient compared to capturing carbon dioxide at low temperatures and low pressures in a venting stack on the back of a power plant.

As one colleague of mine said (to paraphrase slightly), “The government have been pushing carbon capture in the power sector – but this is exactly the wrong place for it to be done. We in the gas industry, we want carbon capture back, please.”

However, carbon capture in gas-related industries, in order to make it truly efficient, both energy-efficient and resource-efficient, and also carbon-efficient too, it needs to be CCU, not CCS, in other words Carbon Capture and Utilisation.

Carbon recycling in integrated gas systems will allow us to manufacture very low carbon and sustainable Renewable Gas, even as fossil fuels deplete or become too chemically complex to permit us to burn them.

Categories
Energy Change Renewable Gas Zero Net

Renewable Gas : National Grid

The week before last, I attended the Parliamentary Renewable and Sustainable Energy Group (PRASEG) and Energy Networks Association (ENA) event entitled “Gas – Delivering for Customers and Supporting the Low Carbon Economy“.

There were a number of interesting presentations, but I was most encouraged by that from Lorna Millington, Design Manager in Network Strategy for National Grid. The title of her presentation was “Delivering Renewable Gas”, and at first I thought she was going to talk about what other companies are doing, and how National Grid can assist them. But as she talked, I realised she was talking about National Grid itself being an integral part of the projects. This kind of tears up the rulebook, I thought to myself, as officially, because of competition issues, National Grid cannot be involved in the production of gas or power, only the distribution of gas and the transmission of power. On reflection, I can see that it is inevitable that National Grid needs to be a central part of the development of the production of Renewable Gas, as it is the building of energy resource manufacturing capability that spans business sectors. Any substitute for Natural Gas injected into the gas grid would need close partnership with National Grid. Any gas waste that was being recycled into Renewable Gas intended for injection into the gas grid would need cooperation with National Grid. There must be some kind of problem defining where National Grid’s responsibilities cease, though, as they needed to spin off a company for the carbon dioxide pipeline plans for the White Rose project : National Grid Carbon Limited (NGC).

Lorna Millington began her presentation by answering a common question posed to her team – Renewable Gas – why is this renewable ? Well, although biogas and biomethane are sourced from biomass, some forms of manufactured gas have non-biomass waste as feedstocks, so this is a valid question. The answer, Lorna said, was to understand that manufactured gas is zero net carbon – in other words – zero additional carbon dioxide (and methane) emissions to the atmosphere. Plants grow, taking up carbon dioxide, and then die and are used as biomass, releasing carbon dioxide, but the net total additional emissions are zero. Of course, when you do a whole life cycle analysis, using some forms of non-biomass waste for gas manufacture are clearly not renewable or sustainable – particularly if they were originally derived from fossil fuels – for example, plastics. However, using non-biomass waste to make energy potentially displaces the use of fossil fuels for energy, so is useful as a step in the decarbonisation of energy, generally.

The other key part to the term “renewable”, Lorna explained, is that manufactured low carbon gas can use the same gas distribution network as Natural Gas. I interpreted this as meaning that since there is no need to replace gas pipelines and storage facilities in developing Renewable Gas, this makes the whole gas infrastructure renewable – or “re-usable”, and current gas grid use “sustainable”. Lorna said that she anticipated new consumers of gas in future – including high pressure ones – and that approximately 25 terawatt hours (TWh) of Biomethane would be gas grid connected by the end of 2015, comprising around 50 projects, bringing Renewable Gas to homes. She said that the only risk to this would be if the rate of return of plant operation was affected. She said there was some uncertainty about the Renewable Heat Incentive (RHI) policy and that this was “stifling markets”.

Lorna Millington said that National Grid is considering the next stage in production – scale. BioSNG – synthetic Natural Gas made from biomass – the difference with the other current techniques for producing gas is the amount of gas we can produce. She noted that the availability of suitable biomass is a key – these BioSNG techniques increase the range of possible feedstocks – they are not able to use some of these in traditional Anaerobic Digestion (AD – used to produce Biogas and Biomethane). Lorna said that with a combination of AD and gasification-based BioSNG production, there is a potential for roughly 100 TWh of gas that can be manufactured – a third of all residential/domestic demand in homes. She said, “We see this as a way of decarbonising heat”. She indicated that Renewable Gas could supply up to a half of residential/domestic gas demand in homes – which would be the case if there is a strong energy demand reduction programme – for example, to vastly increase insulation in buildings.

Lorna Millington emphasised that National Grid Gas is operating within the regulatory framework, and co-operating with Ofgem, in pursuing a BioSNG project, “GoGreenGas”, working with Swindon Council and other partners. She said that the anticipated cost of the first Renewable Gas would be £50 for each megawatt hour (MWh) in 2020, but reduce to £20/MWh within 5 years after that. She said that “This will make gasification the right choice for the UK”, as National Grid anticipate that Natural Gas will cost £24/MWh by then. She said that for this projection to become a reality, the industry needs clarity on the RHI now – providing short-term subsidies. Lorna Millington said that National Grid recognise that BioSNG is likely to be cost-competitive well within a couple of decades and be used for heating and transport in the same form as CNG – Compressed Natural Gas. She said that electric drive is the right choice for urban vehicles – but that there is no right choice for long haul, but that CNG would be helpful in reducing air and noise pollution.

Lorna Millington said that the ideal location for beginning the development of a Renewable Gas network is in the West Midlands – where access to the gas grid via different pressure sections is available. This is also where a large percentage of haulage passes through. She said that linking the development of Renewable Gas to transport will increase system capacity and reduce costs. She said that CNG can easily cope with all large transportation demand. She mentioned Leyland CNG high pressure filling station – the first CNG filling station – on Junction 28 of the M6 “if you’ve ever been that far north”. She also mentioned Birmingham City Council’s Low Carbon Blueprint, which also has transport in its sights.

For BioSNG development, Lorna Millington said that policy needs to create (or negotiate) a price differential to ensure investment. This is the case for all new technologies.

After Lorna Millington finished addressing the room, Tony Glover said that there is a sense of excitement about some of these projects, and that the Energy Networks Association (ENA) Energy Networks and Futures Group will be looking at energy mapping – in the light of Renewable Gas potential – but he wasn’t saying much more at that point…

Categories
Academic Freedom Natural Gas Nuclear Nuisance Nuclear Shambles Renewable Gas

Andrea Leadsom : Energy Quadrilemma #3

When answering questions at last week’s Energy Live News conference, Andrea Leadsom, Minister of State for Energy at the UK Government’s Department of Energy and Climate Change (DECC), openly declared her belief that nuclear power is “very, very cheap electricity; with a marginal cost of generation”, completely ignoring the two white elephants in the room : the UK’s continued public finance obligation to dispose of radioactive and toxic waste from the last 60 years of the nuclear power programme; and the immensely subsidised framework for developing new nuclear power that the UK Government has had to underwrite.

But there is also a third elephant walking into the room : the increasing unreliability of ageing nuclear power plants, not only in Britain, but also in France, and all across Europe, and anywhere, in fact, where the nuclear building boom took place 30 or so years ago. And one unplanned downed nuclear power plant requires an awful lot of backup to keep power grids from collapsing. And in a very short space of time.

So the question has to be asked – even if I am the only person in the room asking the question (and I’m not) – why does the UK Government continue to insist that a new nuclear power programme is vital ?

Government officials claim that new nuclear power plants will be more secure – which is a claim that deserves in-depth scrutiny; and that the cost of decommissioning and the disposal of radioactive and toxic waste has to be provided for in the financing of the project. Except it is highly likely to be undervalued. Because the UK Government is planning to build one (or more) Geological Disposal Facilities (GDFs), perhaps under a National Park near you. Furnished from the public purse. And when they have finally done so, they will buy back the obligation to dispose of nuclear waste from the private nuclear power plant companies. One can easily predict that the public will have to pay more to dispose of the waste than those contracts of waste disposal obligation transfer will be worth.

The companies that want to build new nuclear power plants know that the UK Government will buy back their duty to decommission and their duty to safely dispose of nuclear waste. So they have a free hand to undercost these obligations in their own accounts. If you don’t have an idea of what I’m talking about, Google “European Commission nuclear waste transfer contracts”, and you will find this from 9th October 2015.

Just another nuclear subsidy, you might think. We have to pay a bit up-front to get lovely, juicy, reliable, always on “baseload” nuclear electricity, you might think. Well think this : the UK could get an equivalent, reliable supply of power from a carefully balanced combination of wind power, solar power and low carbon gas-fired power, at a third of the cost. Or less. Without subsidies or sweeteners, or long lead times to new project power.

Andrea Leadsom was also off the money when she responded to questions about the economic value of new nuclear power (and Carbon Capture and Storage), “[In nuclear] there are new opportunities in low carbon energy – and sequestering – huge opportunities for growth and jobs. We’re doing a lot on building solutions – [for example] new nuclear colleges…” She ignored the fact that nuclear power and other large construction schemes such as Carbon Capture and Storage facilities will inevitably be “front-heavy” or frontloaded – all the capital and labour will be needed at the start of the projects, but employment will tail off rapidly after main construction ceases. How pitiful a promise is that ? Not a permanent strengthening of the UK economy, but a temporary glitch. By contrast, investment in renewable electricity and various forms of Renewable Gas could really bolster the economy – for decades or longer – enabling a phased transition to a fully low carbon economy – without massive engineering projects – the very thing we cannot currently afford.

More questions came from the floor. “[Question from Bloomberg] : Is the Government planning to phase out coal by 2023 ? [Answer] : As the Prime Minister has said, we don’t want to rely on unabated coal. [But] all fossil fuels will remain part of the mix, particularly Natural Gas – the cleanest and greenest fossil fuel.” What the Minister did not admit was that Natural Gas had saved the day only the day before, when several coal-fired power plants were unavailable, and one appeared to break down (by analysis of the data), and National Grid put out a call for extra generation. Natural Gas was responsible for generating upwards of 40% of power during the peak on that calm Wednesday evening (according to some figures I’ve seen). It’s time the UK Government admitted that we are dependent on Natural Gas and the flexibility it provides – it offers both energy security and de-carbonisation.

“[Question from E1] : [Is the Government] considering an equivalent of Silicon Valley in the UK ? What is our core competency ? [Answer] : Our creative and engineering [competencies] are second to none… The National Nuclear Laboratory… Thorium reactors…”.

It was at this point that I had my second urge to leave the hall. Thorium ? Have you any idea how much time it will take to make and perfect higher generation nuclear reactor designs ? We just don’t have that time. We have about ten years to firm up energy security – not just of electricity, but heating and transport too. We don’t have time for fancy nuclear gizmo research to come to fruition – if it ever does.

Andrea Leadsom continued, “…new blade factory at Hull…”

I’m always amazed when a Minister cannot bring themselves to actually say the words WIND TURBINE.

“…We’ve got the shale…”

No, actually, you don’t have any shale gas yet.

“… onshore oil and gas college. The UK will lead the world on small scale… small [profile] pumps… Different initiatives in different areas. In DECC we keep a close eye on these technologies. When you want a mix, you don’t want to pick winners…”

But you already have picked winners : shale, coal-to-biomass conversion and nuclear.

“…see which become most useful to our consumers.”

“[Question from David Porter] In the power industry, decisions appear to be micro-managed by Government. […] like decisions to do with de-carbonisation. Wouldn’t it be better to have a European Union carbon price and leave things alone after that and let industry decide what to put in place ? [Answer] : We are committed to reform of the ETS [European Trading Scheme]. It hasn’t worked so far. […] make a level playing field… You’re obviously right : the ETS is a large part of that. Ofgem and National Grid are making decisions – not DECC – to power up and down plant. We’re not micro-managing daily electricity supply.”

So, it’s National Grid’s fault there have been few new Natural Gas-fired power plants and no new nuclear power plants to call on in the last five years ?

“You won’t see DECC saying ‘outsource it’. [Key direction] always stays with Government. [Question from Chartered Builders] : [Will there be] a coherent plan on energy efficiency ? [Answer] : Well, certainly, energy efficiency [is important to] the DECC and governemnt… DCLG [Department of Communities and Local Government]… hospitals and schools… Will there be a national efficiency framework ? [We] always keep [that option] under consideration.”

So there you have it. DECC are not in control of which electricity generation plant gets built, are only willing to push nuclear power and shale gas, and not pay the relatively much smaller costs of a national building insulation programme, and will blame National Grid if they don’t choose the correct low carbon mix of electricity generation – which won’t be available because DECC can’t bring themselves to properly support renewable energy.

Is the Government actually in charge of the direction of energy ? Well, they don’t appear to have a functioning energy policy, and they’ve “devolved” a lot of decision-making and responsibilities.

The new Infrastructure Commission will find it easier to build roads and airport runways than new power generation plant.

Now they’re committed to avoid spending any money on energy, I don’t have much hope that DECC can achieve much in terms of influencing decarbonisation, because persuasion is the tool they have left in the box, and they aren’t convincing me.

Categories
Academic Freedom Nuclear Shambles Nudge & Budge Policy Warfare Political Nightmare Realistic Models Regulatory Ultimatum Renewable Gas Solar Sunrise Solution City Wind of Fortune

DECCimation

Into the valley of career death rode the junior 200… As Adam Vaughan reported on 10th November 2015, the UK Government Department of Energy and Climate Change (DECC) is to shed 200 of its 1,600 staff as a result of the Spending Review, ordered by George Osborne, Chancellor of the Exchequer, Second Lord of the Treasury. I wonder just where the jobs will be disappearing from.

Obviously, the work on nuclear power plant decommissioning and the disposal of radioactive nuclear waste and radioactive nuclear fuel needs to continue, and it needs to be government-led, as the experiment in privatisation of these functions went spectactularly over-budget, so it had to be brought back into public hands. But would all this work be best handled by a government agency, rather than DECC ? We already have the Nuclear Decommissioning Authority – should all work on decommissioning and waste disposal be delegated to them ? Shouldn’t DECC be concentrating on energy technologies of the future, instead of trying to fix problems from our nuclear past ? Should not the “policy reset” that many are hinting at address the advancement of renewable energies ? That, surely, should be DECC’s core activity.

There are many items of work that DECC could undertake, that don’t cost a penny in subsidy, that would advance the deployment of renewable energy technologies. Developing a model of energy transition that people believe in would be a good first move. Instead of depending heavily on new nuclear power, with its huge price tag, complex support arrangements, heavy public subsidy and long and ill-determined lead times for construction, DECC modelling could show the present reality, and the gradual dropping off of coal-fired power generation and nuclear power plants – revealing an integrated balance of variable renewable energy and flexible Natural Gas for both heating and backup/stopgap/topup electricity generation. New DECC modelling could show what a progressive transition from Natural Gas to Renewable Gas would look like, and how it would meet the climate change carbon emissions reductions budgets. DECC models of the future of UK energy could include the appearance of integrated gas systems – recycling carbon dioxide emissions into new gas fuels. When the wind is blowing and the sun is shining and not all renewable power is consumed, the UK could then be making gas to store for when the sun sets and the sky is becalmed.

It may take a few years before DECC finally realises that there is no future for coal and nuclear power. Massive projects will fail, or go slow. Financing will be uncertain and backers will run away screaming. Coal-fired power plants are already being left aside in National Grid planning for electricity markets. It will not be long before coal goes the way of the dinosaurs. What we will be left with, if we are clever, is a massive improved network of solar and wind power assets, and Natural Gas-fired power generation to back them up – even if these need to be renationalised because they are required to run flexibly – so shareholders cannot be sure of their dividends. The loan guarantees that DECC tried to throw at new nuclear power will be diverted to Natural Gas power plant investment, possibly; but even then, building and operating a gas-fired power plant could not make an economic case.

It is time to recognise that “baseload” always-on power generation is dead, just as the departing chief of National Grid, Steve Holliday, has indicated. Hopefully, he’s not departing National Grid because he doesn’t believe in the future of coal or nuclear. The plain facts, as the data shows, existing coal and nuclear power plants are unreliable and insecure. Investment into new coal and nuclear plants is at best, uncertain, and for many, dubious. It is possible that gas assets will need to be renationalised. We must resort to a gas-and-power future, for transport as well as heating and power generation. And within 20 years, we must transition to low carbon gas. If only DECC could admit this.

Categories
Academic Freedom Assets not Liabilities Baseload is History Be Prepared British Biogas Burning Money Change Management Climate Change Energy Change Energy Crunch Energy Insecurity Energy Revival Policy Warfare Political Nightmare Price Control Realistic Models Regulatory Ultimatum Renewable Gas Renewable Resource Wind of Fortune

Andrea Leadsom : Energy Quadrilemma #1

The energy “trilemma” is the dilemma of three dimensions : how to decarbonise the energy system, whilst continuing to provide affordable energy to consumers, at a high security of supply. The unspoken fourth dimension is that of investment : just who is going to invest in British energy, particularly if green energy booster subsidies and regulatory measures are binned ? The UK Government have in the past few years believed that they need to support new investment in new technologies, but it looks likely that this drive is about to lose all its incentives.

Today, Amber Rudd, Secretary of State for Energy and Climate Change, faces an inquiry into Department of Energy and Climate Change (DECC) accounts and budgetary spending, and some say this could be a prelude for the closure or severe contraction of the whole department. If all Climate Change measures were put into abeyance, or passed over to the new Infrastructure Commission, the only remaining function of DECC could be nuclear power plant and nuclear waste decommissioning. It might have to change its name, even.

At last week’s Energy Live News conference, Andrea Leadsom, Minister of State for Energy at the UK Government’s Department of Energy and Climate Change (DECC), headed up the morning, with a bit of a lead in from ELN Editor Sumit Bose. He said that continuing challenges arose from the optimisation of balancing reserves and demand side management in electricity generation. He said that policy had perhaps swung away from the projection of 100% electrification of British energy, as this would require at least 15% more committed capital expenditure – although there would be savings to be had in operational expenditure. He also said that there is an ongoing budgetary conflict going on in government departments about the public money available to spend on investment in infrastructure (including that for energy). Obviously, the announcement of the Infrastructure Commission is going to help in a number of areas – including reaching for full electrification of the railways – a vital project. Then he introduced the Minister.

Andrea Leadsom said, “This government is determined to resolve the energy trilemma, decarbonising at the lowest cost to the consumer whilst keeping the lights on. In the past we did tend to have crazes on different technologies….”. At this point I wondered if she included nuclear power in that set of crazes, but her later remarks confirmed she is still entrenched in that fad.

Leadsom said, “There’s been a big move to renewable energy technologies, and quite rightly too. We need a wide diversity of electricity sources. We need to try and improve the new nuclear programme…”, at which point I thought to myself, “Good luck with that !”. She said, “Renewable energy has trebled. We need [to fund] that transition from unabated coal, [turn on to] gas and renewables. [But] as we saw yesterday – there is an intermittency of renewables.”

Andrea Leadsom was referring to the previous day, when National Grid has issued their first call for surplus top-up power generation since 2012. Owing to a confluence of weather systems over the UK, the atmosphere was becalmed, and wind power output was close to zero. However, this had already been predicted to happen. The lack of wind power was not the problem.

The problem lay in two other areas. Of the completely inflexible nuclear power plants, three generators were out of action for scheduled maintenance (Hunterston B, Reactor 3; Heysham 1, Reactor 1 and Hartlepool Reactor 1). And so when two coal-fired power plants which normally would have been operational were out of action, and one failed apparently between 12:45pm and 12:51pm (Eggborough, Fiddlers and Rugeley according to various sources) dropping approximately 640 megawatts (MW) out of the system (according to BM Reports data), National Grid had to resort to elements of their balancing “toolkit” that they would not normally use.

The operators generating for the National Grid were able to ramp up Combined Cycle Gas Turbine (CCGT), and various large electricity users with special arrangements with National Grid were stopped using power. By around 18:00 6pm the emergency was over, with peak demand for the evening levelling off at around 48 gigawatts (GW).

Although National Grid handled the problem well, there was a serious risk of blackouts, but again, not because of wind power.

If during the period of supply stress, one of the nuclear power plants had suddered an outage, that would have created the “nightmare scenario”, according to Peter Atherton, from Jefferies, quoted in The Guardian newspaper. The reason for this is that the nuclear power plants are large generators, or “baseload” generators. They have suffered from problems of unreliability over the recent years, and whenever they shutdown, either in a planned or an unplanned manner, they cause the power grid a massive headache. The amount of power lost is large, and there’s sometimes no guarantee of when the nuclear generation can be restored. In addition, it takes several hours to ramp up replacement gas-fired power plants to compensate for the power lost from nuclear.

Yes, Andrea Leadsom, more renewable energy is essential to meet decarbonisation goals. Yes, Andrea Leadsom, renewable energy technologies have an inherent intermittency or variability in their output. No, Andrea Leadsom, National Grid’s problems with power generation during the winter months is not caused by wind power on the system – wind power is providing some of the cheapest resources of electricity. No, Andrea Leadsom, insecurity in Britain’s power supply is being caused by ageing nuclear and coal power plants, and the only way to fix that is to create incentives to develop a plethora of differently-scaled generation facilities, including many more decentralised renewable energy utilities, flexible top-up backup gas-fired power plants, including Combined Heat and Power town-scale plants, and Renewable Gas production and storage facilities.

Categories
Academic Freedom Renewable Gas Shale Game

Averil Macdonald : Shale Scold

“So, Professor Macdonald”, I hazarded, as the good woman, sporting an alarmingly bright red frock, was fiddling with her bags on her way out of the Energy Live 2015 conference event on 5th November 2015 in the arty Barbican, “I understand that some remarks that you made about women and shale gas have been misrepresented.”

Averil Macdonald politely stopped what she was doing and engaged with me about this issue, which had thrust her abruptly into the limelight, accused of being sexist. She said that she had been misquoted, and her real meaning twisted by the absence of five words from what she’d actually said. I asked her where I could check what she had actually said, and she pointed me at a Guardian newspaper piece, which I think is this one.

I was willing to give her the benefit of the doubt, as I had sat in her earlier stage presentation urging women and girls into STEM careers, amongst other things, and she’d been quite upbeat about energy transition. She said it was going to be a long road to an ultra-low carbon system, and require lots of investment. Although she spoiled this by adding that the investment would need to be in extraction – for fossil fuels, obviously – as well as infrastructure. Her assumption that continued fossil fuel mining is essential, particularly in light of the need to reduce carbon dioxide and methane emissions, was, I felt, quite alarming.

Anyway, back to the evening one-to-one chat. I asked her a little more about how she viewed shale gas exploration, because I said I couldn’t see a good reason for it – especially as industrially manufactured low carbon gas held out more potential. Her argument was a little more detailed than she had made from the platform earlier. She said that “this country” can’t afford new energy investment. I didn’t stop her right there, but I should have. I should have countered with asking about the eye-watering sums of foreign sovereign wealth, taxpayers’ money, billpayers’ money and tax breaks being thrown at supporting new and existing fossil fuel production in the North Sea, and loan guarantees and other subsidies for new nuclear power, besides the huge public budgets for cleaning up decades of nuclear power plant waste and spent nuclear fuel. And then I should have challenged her about privatisation in the energy industry, which has led to companies being hamstrung by their need to provide higher returns to shareholders at the expense of capital investment, a situation that has only been turned around by government promises of public money and guaranteed high power prices to justify boardroom spending on new and renovated assets. The money to invest is there, I should have countered. It’s in the system. It’s just being frittered away on dividends, Contracts for Difference, capacity auctions, and insane projects like new nuclear power. And anyway, if banks are confident of technologies, they can always create debt to finance projects.

Anyway, back to Averil’s take on things. She said that indigenous UK energy resources should be exploited in order to finance the low carbon transition. Again, I should have interjected and prevented her from continuing. When does Her Majesty’s Treasury actually hypothecate revenue, I should have asked her. How would tax take from shale gas production ever be converted into money for renewable energy or building insulation ? She should look at the example of fuel duty, or several other allegedly “green” taxes and see for herself where the pennies have accumulated into budgetary expenditure pounds. Not in Feed-in Tariffs, that’s for sure. I tried to question the potential volumes of shale gas production, and how it would only contribute small revenue streams for the Treasury. I tried to ask her about other indigenous British energy resources, such as the wind and sunshine, and how they are free, compared to the costs of digging up shale gas, but she breezed on.

She said that there was a lot of capital being attracted to the exploitation of shale gas in the UK. She implied that private capital was heavily invested. I should have asked her in-depth questions about this. Intelligent oil and gas companies have steered well clear of the UK Shale Gas project. Large companies like Shell and Total are promising their shareholders that dividends will remain healthy, despite the downturn in the oil commodity price which impacts their profits. Shell won’t be involved in British shale gas, even though Total will, apparently, but evidence suggests that any failure in exploration will mean that Total pulls right out again. So far, UK shale gas experience has been empty holes, and companies withdrawing. What kind of companies apart from those in the existing energy sector would have enough confidence of their knowledge about shale gas and hydraulic fracturing, sufficient to invest on the kind of scale required ? I said that the real investment money for energy in future wasn’t going to come from the government, or from speculators, but from large investment funds. She said that capital was already committed to shale gas. I should have asked more, because I can’t imagine that the very cautious major investors would risk their reputations and credit ratings on shale gas.

I said that I doubted there would be much in terms of shale gas production for the first 20 years. I also said that there are some very good reasons to oppose the development of a shale gas industry in the UK. I said the only reason that the general voting democratic public permit the ongoing extraction of oil and gas in the North Sea is because the ocean disperses most spills. If this drilling were to come onshore, people would see the environmental pollution that fossil fuel production always entails. Averil Macdonald insisted that the UK has one of the best industrial regulatory regimes, and that shale gas production can be done safely and securely. I said that I had been looking at some of the research on gas and oil well integrity, and spills, and about long term monitoring. I should have challenged her by asking her whether she realised that without decades of close monitoring and potentially emergency intervention, shale gas wells could constitute a major environmental risk for a very long time to come.

I should have reminded her of the basic problems with UK shale gas development proposals : that in comparison to the United States, where the federal government sold off massive blocks of open public land for shale development, the UK is densely populated, and that vital environmental resources are packed close together. I should have reminded her that the best estimates are that the potential shale gas resource in the whole of Europe is only ten times or less what it is in northern America. I should have said that the statistical rates of compromised oil and gas wells mean that surface pollution from shale production is inevitable. I should have reminded her that although what’s happening in Gasland USA could be considered “scare stories”, as she clearly thinks, these are real events, and real lives being affected. Whatever she might think about the poor standards in the oil and gas industry in the USA, they too have a regulatory regime for the energy sector, and yet environmental and social abuses are rife. Perhaps it is simply the nature of shale gas and shale oil development that causes problems, regardless of legislation and industry monitoring ? I should have reminded her that the geology of UK shale sediments are different to those in northern America; that it took well over 40 years to develop shale extraction there, and that there are real problems resulting from new underground extraction technologies, including seismic events, water, soil and air pollution and land collapse.

I should have stated the obvious about women in particular, who she accused of taking a position against shale gas without knowing the facts, without understanding the science. First of all, shale gas exploitation is not science : it’s an engineering technology, and technologies fail, and women know this. And secondly, oil and gas production is dirty, and women know this, too. Women get sick and tired of men treading all over the clean kitchen floor in their muddy boots, leaving toxic damp towels on the bed, and not wiping up spills. Women know that onshore oil and gas production will be another bunch of big, strong boys, muscling into your house, promising to do a good job and then behaving like dodgy builders, regardless of the regulations in the construction industry. We don’t want these profiteers tearing up our beautiful countryside to dig leaky, unhealthy holes, and bomb the underside of the Earth just to make a few homes warmer.

Oh, Averil Macdonald knows how to peddle political tales – she posed the usual narrative that it’s fine buying Liquefied Natural Gas (LNG) from Qatar, but all the Qataris do with the money is buy Ferraris. I said I’d heard that story before, and I said I found it irrelevant. I should have challenged her about the serious prospects of LNG expansion in Australia and south east Asia. After the Middle East gas is finished, there are more places to get gas from, for at least another 30 years, without blowing up the subsoil for shale gas.

Professor Macdonald, chair of UK Onshore Oil and Gas, tried to sell me the idea that communities who would be prepared to accept the wonderfully small profile shale gas wells would receive generous funds. I suppose she was suggesting that these bribes could then pay for solar and wind power development. But I didn’t get to ask this, as our conversation was terminated by our being shushed by an irritated young privileged white male who wanted to hear the Ed Davey Unplugged interview without interruption, who began impolitely with an angry “excuse me”. Being women, naturally, Professor Averil Macdonald and I both immediately apologised as our gender are culturally trained to do, and continued arguing for only a minute more sotto voce before giving up in the face of amplified male competition. Ed Davey was most entertaining, after all. It almost made up for being scolded about my resistance to and scorn for shale gas development.

Categories
Academic Freedom Renewable Gas Revolving Door Shale Game

Ed Davey : Lounge Lizard

Nothing can really top an Energy Live News day of energy debates rounded off by a beer and the spectacle of a respectable ex-Energy Minister lounging in playboy fashion on a bar stool nursing a glass of red wine (or two) and being nigh on scathing about UK energy policy – or the total lack thereof.

As I recall it, but I didn’t take notes or a voice recording, Ed Davey, now an energy consultant as “Energy Destinations”, had the temerity to call out the current UK Government as “liars” about the Levy Control Framework being overspent, and quoted others as saying that the current Tory energy strategy is “stupid” and “barmy”.

He said, as I remember it, that the Tories have never offered viable alternatives to things that are failing, and that he personally wouldn’t bet his house on the claims of large volumes of shale gas production. I believe he said that the Tories pushing through shale gas development was bound to create strong resistance – although he didn’t stoop so low as to suggest that the main resistance to shale gas was coming from… Tory ruralshire voters.

Conservative voters in every town and village seem to be the key deniers of climate change science, and appear to me to be generally against any form of energy investment – wind, solar and shale, and any new cables and pipes. Deranged or rabid that may seem, at first glance. And possibly the second glance, too. But there you are. A Party can’t choose the sanity of its voters. Although if I were in the Tory Government, I’d be highly embarrassed by some of these people. There are plenty of “ouch” moments to deal with – such as the entire cancellation of a perfectly viable wind power project offshore in southern England, just because of the contributors to the Letters Page in the Bournemouth Echo newspaper and the local yachtsmen. The whole fate of human civilisation could rest in the hands of uneducated yokels dismissing renewable energy because they listened to James Delingpole’s gut instinct about the reliability of global warming science. But I digress.

It is the height of Conservative Government cowardice and illogic to permit local groups to fight political battles against new energy investment, instead of making the strategic case for new energy, particularly renewables. Also, it is ridiculous to use subsidy or “golden egg” community bribes to roll out infrastructure development. Sorry. They’re not “bribes”. Not even if money is being handed out by the shedload to communities volunteering to host industrially landscape-disfiguring and toxic shale gas developments or nuclear waste disposal facilities that need monitoring for decades or even centuries to guarantee their environmental security.

Ed Davey wanted to remind his audience that he had been the longest serving Energy Minister since 1997 (did I get that right ?) – which is about right, as many others have been pushed out of office on one pretext or another – faux scandal after faux scandal. Nobody would want that job.

Ed Davey said that trade with other countries was the way to build global security and address things such as human rights issues, so he has no problem in energy trade and investment with China – and that he has his own project there.

After the “Ed Davey, Unplugged” interview with Energy Live News, I hung about earwigging to Ed talk to his encircling fandom. I think the first question he got was about thorium nuclear power, small modular reactors or nuclear fusion or something, because he was talking about how advanced designs could not be said to be feasible, even though people claim they are feasible.

He made the very good point that a lot of things in energy are uncertain, and that in the energy sector, if anybody claims that something is absolutely certain, they’re lying. I tried to get across the general conclusion of my research into low carbon gas – that there are much better, and more certain, prospects of industrially manufactured low carbon gas than anything that shale gas could ever deliver. He admitted that the range of projections for shale gas production are very wide. I said that many players were working on green gas projects, including the National Grid. He said that National Grid had a vested interest. I agreed.

Because everybody has a vested interest in their own pet favourite energy. There are a number of people in the Conservative Party, for example, who stand to gain significantly from investment in shale gas development. If confidence can be raised in the technology, then investment can be gathered, and distributed, even if there is no commodity of any size to draw on. Shale gas development sounds to me like the plot of The Producers – the aim is to raise a lot of investment capital for a flop, and scarper with the proceeds. A little like the loan guarantee offered for the Hinkley Point C financiers. Another fine British energy subsidy. But again, I digress.

Ed Davey said that a leftwing Labour Party bothered him, and that they had been bandying about a wild high figure for green gas production potential. I said it all depends on energy efficiency measures, and also, that the original research had been done by National Grid and other researchers. Half of residential gas demand being supplied by green gas is not unimaginable or unfeasible if you consider this as an industrial proposition, and not just farm-based tank digestion for biogas and biomethane.

Ed Davey said that he wanted to see shale gas developed, as he didn’t really trust Vladimir Putin. He was keen to point out that the UK Government should work with uncertainty, and build a framework for energy policy that can cope with uncertainty. I tried to make the point that it would take at least 20 years before shale gas production could produce significant volumes, if it could at all. We don’t have time for this highly uncertain strategy. I also tried to say that nobody knows if the EPR nuclear reactor design destined to be built at Hinkley Point C actually works. That’s quite an uncertainty to base core energy policy on, if you ask me.

Since the potential resources of shale gas in the whole of Europe are ten times smaller, or less, than in North America, why would shale gas be expected to be productive in the UK ? The deal that BP has just done with China to develop shale gas in its desertified hinterland is probably a useful project compared to the idiocy of trying to develop shale gas in Britain. The BP-China deal, by the way, was signed in under cover of the news of the Chinese investment in the Hinkley Point C nuclear power plant, but I think the BP-China-shale-gas story is far more important. I think Hinkley Point C is a project that stands a chance of falling flat on its face – either because the EPR doesn’t work – something the Chinese should soon be able to tell us because they’re building a pair in Taishan – or because it cannot get built in a useful timeframe.

Ed Davey’s position, as a Liberal, of course, is that he wants to let all the possible energy technologies come on, and see which succeed. He gave no recognition of the support needed to bring on some new or currently niche technologies. Or the subsidies still being received by the fossil fuel and nuclear power industry.

Ed’s view is that David Cameron will not want to break up or disband the Department of Energy and Climate Change, but that when George Osborne becomes Leader of the Conservative Party, and becomes Prime Minister in the next General Election, he will definitely want to get rid of DECC. Ed Davey didn’t mention that over half of DECC’s budget is committed to nuclear decommissioning, and that this will still need to get paid for, even if DECC dies a departmental death.

Although Ed Davey admitted that the strike price for power arising from the Contract for Difference agreed for the Hinkley Point C was high, he said that this was to pay for the eventual decommissioning of the plant and the disposal of the fuel waste. However, he didn’t seem to realise that this is likely to be under-costed, as the final disposal of nuclear waste and nuclear fuel will still paid for by the British taxpayer, as it will be sold back from the private energy companies when the Geological Disposal Facility will be built. So, in addition to the 60 years or more of radioactive waste and radioactive spent nuclear fuel that the British people have yet to pay to dispose of, we will be lumped with paying the spiralling costs of disposing of all the waste from the new nuclear projects as well. No lessons learned there, then.

Categories
Academic Freedom Renewable Gas Shale Game

Clueless in Whitehall

On 3rd November 2015, I had the disconcerting experience of wandering up and down Whitehall in London looking vainly for a venue : the Parliamentary Renewable and Sustainable Energy Group (PRASEG) and Energy Networks Association (ENA) event entitled “Gas – Delivering for Customers and Supporting the Low Carbon Economy“.

The central street of government officialdom has become almost unrecognisable in parts, owing to a fad for boarding up offices under renovation in boxed section – London’s joinery community must be waxing rich. I wondered inconclusively if this trend was spurred by attention to security questions ahead of the round-Cenotaph open-air wreath-laying coming up on 11th November.

I very politely asked several security guards in high visibility jerkins and a policeman outside Downing Street with an outrageously full hipster beard where I could find Number 61, and nobody seemed to know where it was.

I even went into the front door of Number 74 Parliament Street to check I wasn’t looking in the wrong place. The reception guard said that I wasn’t the first person who’d come asking.

I dropped in at the Cabinet Office, and asked if perhaps the invitation meant Whitehall Place instead of Whitehall. I even phoned the mobile phone number and desk number of the event organiser – who didn’t pick up. Obviously. Because he was hard at work at the venue itself already.

Eventually, I encountered a face I recognised striding along Whitehall, or at least I thought I recognised : Nick Molho, now working with the Aldersgate Group, and I asked him if he was also going to the PRASEG/ENA meeting. He was not.

And then I found Dr Alan Whitehead MP also wandering down the street, similarly lost. He too had stopped Nick Molho to ask about Number 61. Clueless in Whitehall.

Comrades in lostness, together we walked into the scaffolded, but not boxed-in, Banqueting House, and helpfully, a woman on the welcome team knew that Number 61 was next door. Of course, Number 61 is the home of RUSI, the Royal United Services Institute. And of course, we’d both been there before. Maybe I ought to carry around a proper smartphone for situations such as these.

Once successfully in the round room with the tasteful purple velvet curtain backdrop, I found a contact from the UK Government’s Department of Energy and Climate Change (DECC), who was also sporting very large amounts of sprouty chin hair. The beard’s coming on well, I commented. Yes, I grew it all myself, he answered proudly. So, I asked, could I ask you anything about the Spending Review ? Well, he said, you could ask me, but I can’t guarantee if I can answer you, and if I do answer you, I might not be able to give the full answer. OK then, I conceded, I won’t ask.

The 25th November, he said, is when the announcements will be made.

My view is though that this particular person will get to keep his job. If he were about to leave the government, he would have shaved his beard off by now. Presentableness for interviews, you see. A clean chin denotes a clean mind, or at least, a refreshed one, looking more youthful, and ready for something new. A kind of face “reset”.

There were a number of very interesting presentations at the PRASEG/ENA do, but the ones that really stood out for me were a presentation on Renewable Gas from National Grid and the one from CNG Services about compressed Natural Gas being used to fuel Heavy Goods Vehicles.

I spoke to the speaker from National Grid after their presentation. I told them I had called my book on low carbon gas system options “Renewable Gas”, as I had been impressed by the National Grid publication of the same name that I read back in 2009.

I said it was a shame that the UK Capacity Mechanism had not worked as it should have done to support new investment in high performance combined cycle gas turbine power generation plant (CCGTs), which are an ideal way of increasing flexibility in balancing the UK power supply to demand, especially as more intermittent/variable renewable power becomes available.

CCGTs have faced issues of economic viability because they are not always in use, and this would only be exacerbated by increasing levels of wind and solar power feeding the grid.

I said it seemed obvious to me that it would be more economically efficient if CCGTs were extended to become fully integrated gas production and recycling systems. I said this meant capturing carbon dioxide and re-processing it into new methane-rich gas fuel, methanating with Renewable Hydrogen produced from biomass and steam, or renewable electricity when available, and storing the methane-rich fuel for use when renewable electricity was not available.

I congratulated the speaker on having the word “Methanation” on one of their slides.

They intimated that in a very short timeframe they expected their first BioSNG (biomass-derived substitute Natural Gas) project to be announced – gasifying black bag waste in Swindon, and making methane-rich gas for grid injection.

I said I would be interested in visiting the site, and was invited to email in a request to be included on the notification list.

The presentation from CNG Services showed us the new Scania gas truck – fuelled entirely by compressed natural gas – and the location of the filling station – on the high pressure gas transmission line. What will be happening is that John Lewis – will be anaerobically digesting all their food waste, and converting the biogas to biomethane, and injecting it into the gas grid, receiving Green Gas Certificates. They will then run a fleet of Scania gas trucks, and fill up at CNG Services, and will be able to claim that their entire transport fleet will be running on Renewable Gas.

To me, it was notable that there was not much discussion of shale gas throughout much of the event, despite this being one of the key planks of the Conservative Government energy narrative of late, regardless of how vain and meaningless it is. The PRASEG/ENA event showed that they may be clueless in Whitehall, but there are some parliamentarians and their friends in the gas industry who recognise the huge opportunities for manufactured low carbon gas.

Categories
Academic Freedom Assets not Liabilities Be Prepared Carbon Commodities Change Management Climate Change Conflict of Interest Corporate Pressure Delay and Deny Delay and Distract Direction of Travel Disturbing Trends Drive Train Economic Implosion Emissions Impossible Energy Crunch Energy Insecurity Energy Revival Extreme Energy Fossilised Fuels Fuel Poverty Global Warming Green Gas Green Investment Green Power Growth Paradigm Human Nurture Hydrocarbon Hegemony Hydrogen Economy Incalculable Disaster Major Shift Methane Management Natural Gas Oil Change Paradigm Shapeshifter Peak Emissions Peak Energy Peak Natural Gas Peak Oil Realistic Models Renewable Gas Resource Curse Solar Sunrise Solution City Sustainable Deferment The Power of Intention The Price of Gas The Price of Oil The Right Chemistry Wind of Fortune

What To Do Next

Status-checking questions. I’m sure we all have them. I certainly do. Several times a week, or even day, I ask myself two little questions of portent : “What am I doing ?” and “Why am I here ?”. I ask myself these questions usually because my mind’s wandered off again, just out of reach, and I need to call myself to attention, and focus. I ask these little questions of myself when I do that thing we all do – I’ve set off with great purpose into another room, and then completely forgotten why I went there, or what I came to find or get. I also use these forms of enquiry when I’m at The Crossroads of Purpose – to determine what exactly it is I’m deciding to aim for. What are my goals this day, week, month, age ? Can I espy my aims, somewhere on the horizon ? Can I paddle labouriously towards them – against the tide – dodge/defeat the sharks ? Can I muster the will to carry this out – “longhauling it” ?

I’ve spent a long time writing a book, which I’m sure to bore everybody about for the next aeon. My intention in writing the book was to stimulate debate about what I consider to be the best direction for balanced energy systems – a combination of renewable electricity and Renewable Gas. I wanted to foster debate amongst the academics and engineers who may be my peers, certainly, hopefully providing a little seed for further research. Hopefully also having a small influence on energy policy, perhaps, or at least, getting myself and my ideas asked to various policy meetings for a little airing. But, if I could in some way, I also wanted to offer a bit of fizz to the internal conversations of companies in the energy sector. You see, it may be obvious, or it may not be, but action on climate change, which principally involves the reduction in the mining, drilling and burning of fossil fuels, principally also involves the co-operation of the fossil fuel extraction companies. Their products are nearly history, and so it must be that inside the headquarters of every transnational energy giant, corporate heads are churning through their options with a very large what-if spoon.

Categories
Academic Freedom Efficiency is King Electrificandum Renewable Gas

The Trouble with Electrificandum #2

During my meeting with boffins last week, when I raised the thorny problem of how many new power generation plants the UK would need to build if all home heating and personal transport were shifted to electricity – and then how they would be left idle for most of the year – my conversational correspondent said it really wasn’t a problem – gas-fired power plants are cheap to build, and they wouldn’t be consuming gas when they’re resting. I found this position untenable – as it could well mean gross inefficiencies in the use of energy, besides locking capital up in unused and unsuable plant. The person asked whether I was after optimising cost or efficiency in energy systems, and my reply was “both”.

After putting together a basic power consumption profile, I realised I needed to build a basic heat model as well, in order to test various simple options of how to meet demand. This proved even harder than the electricity model, as I couldn’t find representative heat demand data of any quality – or at least, I haven’t found any yet. I had to invent a seasonal/weekly half-hourly heat demand profile in order to be able to compare gas demand data to electricity demand data. I must admit, it was extremely basic. I then calculated half-hourly non-industrial heating demand and half-hourly industrial gas demand for 2014. The industrial gas demand would partly be used for generating electricity, as can be seen in the rise and fall in demand maxima when charted alongside power consumption – however this chart is poor, as it slips into the negative, showing that I don’t have any data for half-hourly gross gas demand in the UK, and I’m just using a daily figure divided equally into 48 segments, which is clearly not good enough.

I need to improve this model and then test various options for supplying heat demand.

Some examples of efficiency issues :-

1. Converting primary energy to energy as supplied to consumers
Much centralised power generation in future will be gas-fired, and this is something like 60% efficient – 40% of the energy in the gas is lost as heat.

2. Delivering supplied energy to consumers
I don’t know good figures, but is likely that transmission losses for electricity are much higher than for gas.

3. Gas-fired central heating compared to heat pump heating
Heat pumps that take their input energy from supplied electricity may be on average far more efficient than gas-fired central heating, but heat pumps that rely on gas as the input energy might be a better option.

4. Centralised gas-fired power generation compared to localised Combined Heat and Power (CHP)
By far the most important source of potential future energy efficiency is the relocation of centralised power generation to the local area where the heat may be used for District Heating (DH). Heat demand is currently roughly an order of magnitude larger than power demand. There are many options for developing the use of CHP/DH, in combination with other heating options, such as heat pumps, thermal stores and manufactured Renewable Gas (as an energy store). It remains to be seen if it would be more efficient to run CHP plant to cater for most of the large heat demand and supply the byproduct electricity to manufacture gas, or heat pumps for the rest of the heat; or run the CHP plant only for small local electrical power needs (where there are not many heat pumps), and use the byproduct heat for storage in thermal stores (the DH pipeline network, for example).

The reason why efficiency is absolutely crucial is that within 30 years’ time there could well be problems with guaranteeing reliable and ample supplies of Natural Gas. If gas options for energy are generally more efficient than power options – and especially if gas will be the source of much electricity – we will need to have gas-heavy technology choices, and develop indigenous supplies of manufactured and biological Renewable Gas.


Categories
Academic Freedom Electrificandum Renewable Gas

The Trouble with Electrificandum #1

Recently, I was in a meeting with some proper boffins, and I was dismayed when one of them articulated their belief in what I call “electrificandum” – the imperative to convert all UK heating and transport to electrical energy. They said that electrical heating of homes had the potential to be highly efficient – they meant, of course, through the adoption of heat pumps. “How could you think that ?” I mused to myself, “Don’t you realised the awkward implications for power generation ?” Leaving aside the question of how the British people could be persuaded to ditch their liquid fuel cars for BEVs (battery electric vehicles) for the moment, I set about searching for a simple model of the UK electricity system. And spent nearly a week finding useful data. It really shouldn’t be this hard, but data on power is an absolute minefield loaded with caveats and lacking clarification. I have averaged, assumed, checked, modelled and massaged what I could find without paying for specialist data services, and worked them into an Excel spreadsheet. And my results astonish even me. The implications for the total generation capacity required for the peak in demand in the late afternoon and evening in 2050 put to bed the notion that nuclear power can help in any way – nuclear power being fairly steady in output. It also negates the assumption that electrical heating can be efficient : although electrical heating from heat pumps can be efficient from the consumer side, from the generator side it’s going to require huge adaptations and lead to gross wastage – partly because of the total gigawatts of power needed during the peak, and partly because of the speed at which it will need to become available. Even for a UK partway-electrified by 2030, the implications for the power sector are huge. The UK will need to adopt a mixed gas-and-power approach to the low carbon energy future. And because Natural Gas supplies could well become tight in the 2030s, and the development of shale gas will not prevent this, the UK needs to develop resources of Renewable Gas.

Categories
Academic Freedom Alchemical Assets not Liabilities Baseload is History Be Prepared Big Number Big Picture Bioeffigy Biofools Biomess British Biogas Burning Money Carbon Capture Carbon Commodities Carbon Pricing Carbon Recycling Carbon Taxatious Change Management Coal Hell Corporate Pressure Cost Effective Design Matters Direction of Travel Dreamworld Economics Efficiency is King Electrificandum Emissions Impossible Energy Autonomy Energy Change Energy Insecurity Energy Revival Energy Socialism Engineering Marvel Foreign Investment Fossilised Fuels Gamechanger Gas Storage Geogingerneering Green Gas Green Investment Green Power Grid Netmare Growth Paradigm Hydrocarbon Hegemony Hydrogen Economy Insulation Low Carbon Life Marine Gas Methane Management National Energy National Power Natural Gas Nuclear Nuisance Nuclear Shambles Oil Change Optimistic Generation Paradigm Shapeshifter Peak Natural Gas Petrolheads Policy Warfare Political Nightmare Price Control Public Relations Realistic Models Regulatory Ultimatum Renewable Gas Shale Game Solar Sunrise Solution City Technofix Technomess The Power of Intention The Price of Gas The Right Chemistry Tree Family Unconventional Foul Ungreen Development Unnatural Gas Wasted Resource Wind of Fortune Zero Net

A Partial Meeting of Engineering Minds

So I met somebody last week, at their invitation, to talk a little bit about my research into Renewable Gas.

I can’t say who it was, as I didn’t get their permission to do so. I can probably (caveat emptor) safely say that they are a fairly significant player in the energy engineering sector.

I think they were trying to assess whether my work was a bankable asset yet, but I think they quickly realised that I am nowhere near a full proposal for a Renewable Gas system.

Although there were some technologies and options over which we had a meeting of minds, I was quite disappointed by their opinions in connection with a number of energy projects in the United Kingdom.

Categories
Academic Freedom Alchemical Assets not Liabilities Baseload is History Big Number Big Picture Bioeffigy Biofools Biomess British Biogas Carbon Capture Carbon Commodities Carbon Pricing Carbon Recycling Change Management Corporate Pressure Demoticratica Direction of Travel Efficiency is King Electrificandum Energy Autonomy Energy Calculation Energy Change Energy Revival Engineering Marvel Fossilised Fuels Gamechanger Green Gas Green Investment Green Power Growth Paradigm Hydrocarbon Hegemony Hydrogen Economy Major Shift Marvellous Wonderful Methane Management National Energy National Power Natural Gas Nuclear Nuisance Nuclear Shambles Oil Change Optimistic Generation Peak Emissions Peak Natural Gas Realistic Models Regulatory Ultimatum Renewable Gas Renewable Resource Revolving Door Social Capital Social Change Social Democracy Solution City Tarred Sands Technofix The Data The Myth of Innovation The Power of Intention The Price of Gas The Right Chemistry Transport of Delight Tree Family Ungreen Development Unnatural Gas Wasted Resource Western Hedge Wind of Fortune Zero Net

DECC Dungeons and Dragnets

Out of the blue, I got an invitation to a meeting in Whitehall.

I was to join industrial developers and academic researchers at the Department of Energy and Climate Change (DECC) in a meeting of the “Green Hydrogen Standard Working Group”.

The date was 12th June 2015. The weather was sunny and hot and merited a fine Italian lemonade, fizzing with carbon dioxide. The venue was an air-conditioned grey bunker, but it wasn’t an unfriendly dungeon, particularly as I already knew about half the people in the room.

The subject of the get-together was Green Hydrogen, and the work of the group is to formulate a policy for a Green Hydrogen standard, navigating a number of issues, including the intersection with other policy, and drawing in a very wide range of chemical engineers in the private sector.

My reputation for not putting up with any piffle clearly preceded me, as somebody at the meeting said he expected I would be quite critical. I said that I would not be saying anything, but that I would be listening carefully. Having said I wouldn’t speak, I must admit I laughed at all the right places in the discussion, and wrote copious notes, and participated frequently in the way of non-verbal communication, so as usual, I was very present. At the end I was asked for my opinion about the group’s work and I was politely congratulational on progress.

So, good. I behaved myself. And I got invited back for the next meeting. But what was it all about ?

Most of what it is necessary to communicate is that at the current time, most hydrogen production is either accidental output from the chemical industry, or made from fossil fuels – the main two being coal and Natural Gas.

Hydrogen is used extensively in the petroleum refinery industry, but there are bold plans to bring hydrogen to transport mobility through a variety of applications, for example, hydrogen for fuel cell vehicles.

Clearly, the Green Hydrogen standard has to be such that it lowers the bar on carbon dioxide (CO2) emissions – and it could turn out that the consensus converges on any technologies that have a net CO2 emissions profile lower than steam methane reforming (SMR), or the steam reforming of methane (SRM), of Natural Gas.

[ It’s at this very moment that I need to point out the “acronym conflict” in the use of “SMR” – which is confusingly being also used for “Small Modular Reactors” of the nuclear fission kind. In the context of what I am writing here, though, it is used in the context of turning methane into syngas – a product high in hydrogen content. ]

Some numbers about Carbon Capture and Storage (CCS) used in the manufacture of hydrogen were presented in the meeting, including the impact this would have on CO2 emissions, and these were very intriguing.

I had some good and useful conversations with people before and after the meeting, and left thinking that this process is going to be very useful to engage with – a kind of dragnet pulling key players into low carbon gas production.

Here follow my notes from the meeting. They are, of course, not to be taken verbatim. I have permission to recount aspects of the discussion, in gist, as it was an industrial liaison group, not an internal DECC meeting. However, I should not say who said what, or which companies or organisations they are working with or for.

Categories
Academic Freedom Alchemical Artistic Licence Assets not Liabilities Bait & Switch Baseload is History Big Number Big Picture British Biogas Burning Money Carbon Recycling Change Management Cost Effective Dead End Design Matters Direction of Travel Disturbing Trends Dreamworld Economics Efficiency is King Electrificandum Emissions Impossible Energy Autonomy Energy Calculation Energy Change Energy Insecurity Energy Revival Engineering Marvel Gamechanger Gas Storage Green Gas Green Investment Green Power Growth Paradigm Hydrocarbon Hegemony Hydrogen Economy Nuclear Nuisance Nuclear Shambles Optimistic Generation Policy Warfare Political Nightmare Price Control Realistic Models Renewable Gas Solar Sunrise Solution City Technofix Technological Fallacy Technological Sideshow The Data The Power of Intention The Right Chemistry The War on Error Wasted Resource Wind of Fortune Zero Net

Nuclear Power Is Not An Energy Policy

The British Government do not have an energy policy. They may think they have one, and they may regularly tell us that they have one, but in reality, they don’t. There are a number of elements of regulatory work and market intervention that they are engaged with, but none of these by itself is significant enough to count as a policy for energy. Moreover, all of these elements taken together do not add up to energy security, energy efficiency, decarbonisation and affordable energy.

What it takes to have an energy policy is a clear understanding of what is a realistic strategy for reinvestment in energy after the dry years of privatisation, and a focus on energy efficiency, and getting sufficient low carbon energy built to meet the Carbon Budget on time. Current British Government ambitions on energy are not realistic, will not attract sufficient investment, will not promote increased energy efficiency and will not achieve the right scale and speed of decarbonisation.

I’m going to break down my critique into a series of small chunks. The first one is a quick look at the numbers and outcomes arising from the British Government’s obsessive promotion of nuclear power, a fantasy science fiction that is out of reach, not least because the industry is dog-tired and motheaten.