Categories
Academic Freedom Acid Ocean Babykillers Big Picture Carbon Capture Climate Change Dead Zone Deal Breakers Disturbing Trends Economic Implosion Energy Autonomy Energy Change Energy Disenfranchisement Energy Insecurity Evil Opposition Feed the World Fossilised Fuels Global Warming Incalculable Disaster Mad Mad World Marine Gas Mass Propaganda Methane Management Military Invention Modern Myths Natural Gas No Blood For Oil Orwells Peace not War Policy Warfare Political Nightmare Regulatory Ultimatum Renewable Energy Renewable Gas Renewable Hydrogen Renewable Methane Renewable Resource Resource Curse Stop War The Data The Power of Intention The Price of Gas The Price of Oil The Right Chemistry The War on Error Toxic Hazard Unconventional Foul Western Hedge

Russia Sours

I have a theory. But I don’t have access to the data to confirm or deny it. The data is in the hands of the oil and gas companies, and private oil industry data concerns, who charge a lot of money for access to the data. Some data might become public soon, as the International Energy Agency, the IEA, have made a commitment to opening up their databases, but I don’t know when this will be.

The data I would need to assess my theory regards the chemical composition of Natural Gas from a range of fields and wells, and its evolution over time. Although some data about chemical quality exists in the public domain, such as crude assays for various petroleum oils, and is published in various places, such as Eni’s annual review, and a handful of academic research papers regarding prospects for gas in some regions or countries, there is little to go on for a global view from gas analyses.

The European Union has announced a plan to “get off” Russian fossil fuel dependency (addiction), but I would contend that they would need to do it anyway, regardless of the incentive to “cancel” Russian oil and gas in sanction over Russia’s unspeakable acts of terror and aggression in their invasion of Ukraine. My view is that the rationale for an early exit from Russian fossil fuel supplies is all to do with the chemistry.

Gas fields and oil basins deplete, that we all know. The easy, good stuff gets emptied out first, and then the clever engineers are commissioned to suck out the last remaining dregs. So-called “sweet spots”, where easy, good stuff has accumulated over the ages, are quickly pumped dry, and investors and management push for the assets to be sweated, but it’s a game of diminishing returns.

If you look for a mention of problem contaminants, such as sulfur compounds and heavy metals, the publicly, freely-available literature is quite thin on the ground – even general discussion of the global overview – in other words, it is noticeable by its absence.

Natural Gas with high levels of inherent carbon dioxide has started to merit explicit mention, because of climate change mitigation efforts, but even there, there is not much in terms of basins, fields and wells by numbers and locations, and over timespans.

There was quite a lot of discussion about the procedure of reinjection of acid and sour gases, starting in the early 1990s or so, pumping unwanted molecules from contaminated or sub-standard Natural Gas back underground, after separation at or close to the well head. This was partly to answer climate change concerns, but also to enhance further oil and gas recovery from emptying wells. This has been known mostly by the term EOR – enhanced oil recovery. Bad gas was being pumped, then filtered, and the bad fraction was being pumped back down to build up pressure to get more gas and oil out.

There has also been a lot of very public discussion of the project to mitigate gas venting and gas flaring, as a potentially easy win against environmental damage – including climate change burden. Unburned Natural Gas has been routinely vented to the atmosphere from locations where gas was not the principal product from wells, or where it has been costly to install gas capture equipment. Unburned Natural Gas vented to air leeches methane, carbon dioxide and hydrogen sulfide, two of which are climate change-sparking greenhouse gases, and the other, a local toxin to all forms of life. But flaring unwanted Natural Gas is only marginally less dangerous, as it still emits carbon dioxide to air, as well as sulfur dioxide, and potentially some nitrogen oxides (and sometimes, still, some hydrogen sulfide) : and sulfur dioxide interferes with local temperatures through localised greenhouse cooling; sulfur dioxide is also a local environmental pollutant; and both sulfur dioxide and nitrogen oxides, in addition to the carbon dioxide, lead to acidification of air, water and soils. Obviously, it would be better to capture any currently unwanted Natural Gas, and make use of it in the economy, processing it somewhere in a way that can reduce the environmental disbenefits that would have come from venting or flaring it in the field.

However, discussion about venting and flaring of Natural Gas and the attempts to stem it centre on the potency of emissions of fossil methane as a short-term greenhouse gas, and there is little discussion of the emissions of fossil carbon dioxide and fossil sulfur compounds that are part of that unwanted Natural Gas.

Trying to drill down into the geography and localised basin- and field-specific gas composition is near-nigh impossible without insider access to data, or some kind of large budget for data. Public reports, such as the financial and annual reports of companies, focus on levels of Natural Gas production, but not the amounts of rejected molecules from the production yield – the molecules of hydrogen sulfide, carbon dioxide and nitrogen and so on that don’t make it into the final gas product. Keeping up production is discussed in terms of sales revenue and investment in exploration and production, but not in terms of the economic costs of bad chemistry.

Over time, oil and gas production companies must explore for new reserves that they can bring to production – often within their already-tapped resource base – because old fields empty, until well production starts slowing down, and become uneconomic to continue pumping. But running down the reserves, and having to find new locations within basins and fields to drill new wells is not the only issue. Oil and gas are not monolithic : resources vary in terms of accessibility, temperature, pressure, geology, but also chemistry – even within fields; and over time and operating conditions – which can even be seasonal.

Contaminants can be concentrated in one particular area, or at one particular pre-historic geological stratum or layer : the formation of the sediments. Not only that, but over time, oil and gas wells can sour, that is, production can experience increasing levels of hydrogen sulfide and other sulfur compounds. They can also show increasing production levels of inert non-combustible or acid-producing chemical species, mainly carbon dioxide and nitrogen.

As drilling goes deeper, the more likely inert, sour and acid gases are to occur, as the deposits will have had more time to mature, and reach temperatures where gas generation from organic matter is more likely than oil generation : the “gas window” depends on such things as temperature, pressure and time. And more gas can signal more non-useful molecules.

The deeper you go, the higher the risk of your Natural Gas being contaminated with hydrogen sulfide, carbon dioxide and nitrogen; as the deposits have cooked for too long. The presence of significant levels of sulfur compounds is credited to rock-oil and rock-gas chemical interactions known as TSR – thermochemical sulfate reduction – between hydrocarbons and sulfate-bearing rocks.

In addition, drilling a well can lead to BSR – bacterial sulfate reduction – where bacterial life starts to work on sulfate present in any water as the hydrocarbons are raised from the depths and depressurise and cool.

The closer to the source rocks drilling goes, the black shales, high in organic matter, from which all hydrocarbon oils and gases originate, the higher the risk of pumping up heavy metals where there are metal sulfides clustered.

Although wells can sour over time, especially if acid gas is reinjected to dispose of it, fields can even be highly acid or sour right from the get-go. For decades, some sour and acid resources were listed as proven reserves, but were considered too uneconomic to mine. But during the last decade or so, increasing numbers of sour gas projects have commenced.

The engineering can be incredible, but the chemistry is still wrong. With new international treaties, sulfur cannot be retained in fuels, so where does it end up ? Rejected sulfur atoms largely end up in abandoned pyramids of yellow granules, or on the sulfur market, and a lot is used to make sulfuric acid, a key industrial chemical, used for such things as the production of fertilisers, explosives, and petrochemicals. But after the sulfuric acid is used, where does the sulfur end up ? As sulfate in water, that drains to the sea ? And what about the granulated sulfur from the mega sour gas projects ? Some of that is used as soil treatment, as a fertiliser, either directly, or as part of ammonium sulfate. But after it is used, what happens to the sulfur ? Does it become sulfate in water, that courses to the ocean ? And what happens to it there ? How much is fossil sulfur going to contribute to ocean anoxia through BSR generation of hydrogen sulfide ?

Sulfur atoms don’t just disappear. It will take many millenia for the mined fossil sulfur to be incorporated back into sedimentary sulfides or rocks. As increasingly sour oils and gases are increasingly used, the question of the perturbation of the global sulfur cycle (as well as the global sulfur market) becomes relevant.

At what point will the balance tip, and high sulfur deposits of fossil fuels become untenable ?

In addition to management of the fossil sulfur mined during the exploitation of chemically-challenged Natural Gas, there are other important considerations about emissions.

Satellite monitoring of “trace” greenhouse and environmentally-damaging gases, such as sulfur dioxide and methane, is constantly evolving to support international calls for emissions reduction and control. For example, analyses of methane emissions from the oil and gas industry have pinpointed three geographical areas of concern for the locations of “ultra-emitters” : the United States, the Russian Federation and Turkmenistan. A lot of methane emissions from the oil and gas industry could be stemmed, but the question needs to be asked : is it worth opening up new gas fields, with all the infrastructure and risks of increased methane and other emissions ? And if the major explanation for methane emissions in gas drilling are connected to end-of-life fields, what incentives could be offered to cap those emissions, given the lack of an economic case, at so late a stage in the exploitation of assets ?

And so, to Russia.

A great variety of commentators have been working hard to put forward their theories about why Russia chose to launch a violent, cruel and destructive military assault on Ukraine in early 2022. Some suppose that Russia is looking to build out its empire, occupying lands for grain production and transportation routes, gaining control over peoples for slave labour, removing the irritant of social or political threat. Arguments about the ownership of territory, rightfully or wrongfully. Historically revisionist or revanchist philosophies are identified in the output from Russian voices and political narrative. However, there does not appear to be a truly justifying rationale for a war arising from these pseudo-historical caricatures. Even if the territory of Ukraine could be deemed, by some internal Russian legal process, to belong to some concocted Greater Russian Federation, it would require a lot of magical thinking to believe it would gain traction in the wider sphere.

Some see Russia’s actions as vindictive or retaliatory, but to assert this with any validity would require explaining what has really changed to justify the recent major escalation in one-sided aggression from Russia, action that has lasted for some time, principally since 2014.

What can really be driving Russia’s murderous marauding, the bombing of civilian districts, wanton infrastructure destruction, people snatching, torture basements and all forms of intimate, personal aggression and attack ?

I decided to do some reading, and I went back to 2004/2005 to do so, and then realised I should have gone back further, to the time of Vladimir Putin’s “ascension” to the Presidency of the Russian Federation.

Putin appears to have control issues, and seems to want to impress his will on absolutely any person and any organisation he comes across, up to and including whole countries. The means are various, and the medium also. There is continual “hybrid” warfare; and the evidence suggests that Russia has interfered with foreign democracy, for example, by playing the joker in the memetic transfer of ideologies and “fake news” through social media; used blackmail in “diplomacy”; used strong-arm tactics in trade and investment; and locked international energy companies into corrupting, compromising deals.

By far the most injurious behaviour, however, has been the outright military assaults he has ordered to be launched on lands and people groups, both inside and around the outside of Russia. I will leave the details to expert military historians and human rights organisations, but the pattern of the annihilation visited on many areas of Ukraine since early in 2022 is not new. There appears to be no dialogue possible to restrain Putin’s sadistic army of Zombies (Z) and Vampires (V).

But just what made this happen ? What was really behind Putin’s decision to launch an invasion on Ukraine ? It wasn’t to de-Nazify. That’s just weak and quite bizarre propaganda, that cannot hold together. He knows there are far fewer ultra-right wing cultists in Ukraine than in Moscow. The “war” wasn’t to protect Russian speakers. Many people in Ukraine speak several languages, and none of them have been safe from the rampaging hordes of Russian “orcs”. The invasion wasn’t to defend the Putin-styled Republics of Donetsk and Luhansk, as people there don’t feel defended from anything nasty the Russians seem to visit on everybody they invade, or the military responses of the Ukrainian forces, something the Russians could have anticipated. If Russia really cared about the people in the Donbas, they wouldn’t have brought troops there. The warfare isn’t benefitting or supporting any pro-Russian factions or Russian-speakers in Ukraine, and the only thing that looks like Nazis are the Russian Nasties.

It has come into focus for me from my reading that there seem to be three major, real, potential or probable reasons for Russia seeking to have overt, administrative, and if necessary, military control of the southern, littoral part of Ukraine; and my reading suggests that this is an outworking of the maritime policy of the Russian Federation going back at least 20 years.

I intend to give a list of my resources for reading later on, but for now, let’s begin with a Tweet thread from Dmitri Alperovitch, which really resonated for me :-

https://mobile.twitter.com/DAlperovitch/status/1520333220964933632

https://threadreaderapp.com/thread/1520333220964933632.html

He makes the point that with Russian forces control the coastal area of Ukraine, and its ports and seafaring routes, they will have a stranglehold on the economy of Ukraine. If the Russians deny grain and other agricultural exports, or deny the proceeds from export sales, then the Ukrainian economy will be seriously damaged. In addition, the continual bombing and mining of agricultural lands means that crops are already at risk this year in Ukraine, which will add to these woes. There is already some discussion about the effects on the importers of Ukrainian grain in particular, as it has been a “bread basket of the world”.

It is easy to see from maps of the fighting that controlling the coastal ports must have been a major part of the reason for the Russian invasion, but the triggering of conflict is surely not just about control of the trade routes in and out of Ukraine, as a means to squeeze the country into submission.

It’s clear from my reading so far that Russia has an historical and significant ambition to control more of the maritime routes in that region. Russia clearly didn’t like the awkwardness of having to share the Black Sea and the Sea of Azov. They’d rather just run all of it, apparently. Russia appears to regard rulership of the “warm seas” to the south of Federation lands as vital to their aims. There are mentions of improving the waterway routes from the Caspian, through the Black Sea, out to the Mediterranean, to permit military vessels to exert control in the region, and to enable Russian trade. The Russians built a contested bridge to Crimea, but they may end up building vast new canals as well. Are you listening yet, Turkey ?

This is grandiose enough, but this is still not the end of Russia’s aims in taking over the coast of Ukraine, it could transpire.

What floats on top of the Black Sea, the Sea of Azov, the Mediterranean Sea and the Caspian Sea is important enough, but what lies beneath is far more important, I am beginning to find in my reading.

There has been a couple of decades or so of development of newly-discovered oil and gas resources around the Caspian Sea. Russia even acted quite collaboratively initially with the other countries bordering co-littorally. Although it hasn’t been very happy since in some parts of the region. Due to Russian military carpet-bombing and martial illegalities, in some cases.

But despite oil- and gas-aplenty, for example, in the Kashagan, fossil fuel deposits there are really rather sour, that is, loaded with sulfur compounds; particularly hydrogen sulfide, which is corrosive, explosive and needs to be removed before the fossil fuels can be utilised. That, coupled with the anoxic and difficult conditions of the undersea mining, mean that Russia has looked elsewhere to build up new proved resources, as they have become necessary.

There was much talk of Russia going to drill in the Arctic; but even with melting ice from global warming, conditions north of the Arctic Circle are tough, and the offshore prospects are likely to be costly. Yes, they might end up trying to keep their rights to trade LNG from the far North, but the “cold seas” make for harsh economic conditions.

After years of stagnating Natural Gas production in Russia, more gas fields have been opened up in the Yamal Peninsula, but they only have a half life of approximately ten to fifteen years, perhaps. And judging by other gas fields, some parts of them could be extremely contaminated with sulfur compounds, which would lead to extra costs in cleaning the products up for sale and piping out for export.

And then came the Mediterranean and Black Sea seismic surveys and gas prospecting. What was found ? Sweet, sweet gas. Little in the way of sulfur contamination, and continental sea conditions, as opposed to stormy oceans. There are many countries that border both bodies of water that have been rapidly developing Natural Gas projects, eager to jump right in and tap as much as they can from fields, presumably before other countries tap into the same fields from another entry point.

There is some evidence that the primary goal for Russia in invading Crimea in 2014 was to secure control of Ukraine’s Natural Gas production projects in the Black Sea. Ukraine had been at the mercy of Russia’s energy “policy” for decades (which seems to consist mostly of what looks like : threat, supply cuts, blackmail, extortion, compromise, false accusation, unjustifiable price hikes), and now it was about to start developing a new sizeable domestic resource, and could conceivably become energy-independent. It could have been too much for Vladimir Putin to bear, thinking that Ukraine could become the masters and mistresses of their own energy destiny. He wanted the sales of that Natural Gas for himself, and deny Ukraine control over their own economy. Hence what has been described as the “theft” of energy company, oil and gas rigs, other utility holdings and the EEZ maritime exclusive exploitation zone out at sea. Oh Chornomornaftogaz !

If Russia establish control of the whole of Southern Ukraine, recognised or no, they will almost inevitably be seeking to exploit as much of the Black Sea Natural Gas as they can. It will be cleaner than Caspian gas, cheaper than Arctic gas, and easier to export as ship-laden LNG.

So, I ask again, why did Russia invade Ukraine ? To take advantage of ten to fifteen years of sweet, cheap Black Sea Natural Gas ? Is that really what this is actually about ?

The European Union has declared that they will wind down their use of Natural Gas, and develop Renewable Gas instead over the next decade. There will be a divorce from Russian gas, because of this policy, and as a reaction to the invasion of Ukraine.

I would argue however, that this policy is needed not just because of climate change, and not simply as a reaction to unjustifiable horrors of aggression. The future of gas sourced from Russia is either sour or stolen, and so the European Union has no choice but to wean itself away.

To support my theory, I would need to have access to gas composition analysis by the major oil and gas companies of Russia, and the countries surrounding the Caspian, Black Sea, Sea of Azov and Mediterranean Sea, and the companies working on oil and gas projects onshore and offshore in the region.

I have made a few enquiries, but nothing has emerged as yet.

Categories
Academic Freedom Advancing Africa Alchemical Big Number Big Picture Carbon Commodities Change Management Corporate Pressure Direction of Travel Disturbing Trends Energy Calculation Energy Change Energy Revival Fossilised Fuels Growth Paradigm Hide the Incline Hydrocarbon Hegemony Landslide Major Shift Oil Change Petrolheads Realistic Models Resource Wards Stirring Stuff The Data The Right Chemistry The War on Error

JODI Oil and BP #2

Previously, I was comparing data from the annual BP Statistical Review of World Energy with the annual averages of JODI Oil data, and when I cast my eye over a table of differences, it was easy to spot that something happened in 2009 – the data from the two sources jumped to more closely correlate. For some countries and product types, if it didn’t happen in 2009, it happened in 2010; but since then some data lines have begun to diverge again. Either somebody was lying prior to 2009 (and by “lying”, I mean, making errors in reporting on hydrocarbon refinery), or something changed in the definitions of the sub-categories of hydrocarbon products from petrorefineries. At this stage, I cannot tell if the corrections were done by BP or by JODI Oil, but the corrections show a step change. This intrigued me, so, here follow a few diagrams and some summary notes.



The example of North America is dominated by a correction in the data for the United States of America (whether the correction was in the JODI Oil data, or in the BP data) for the “Others” category. Since 2009, the data lines have been coming progressively closer, until it seems they are reporting from either the same sources, or using the same industry data to base their calculations on.


Data from South and Central America as a whole is rather random when compared between BP and JODI – however there is a clear correction in the category “Others” in 2009, and perhaps a further correction to both “Light distillates” and “Others” in 2011. Since then, the trend is for BP and JODI data to diverge.




The 2009 correction for the “Europe and Eurasia” region (an artefact) is mainly due to the big correction for the European Union in 2009 for “Light distillates” and “Others”. The data for CIS undergoes a smaller correction, and this is in 2010, for “Fuel oil” and “Others”.


The “Others” category is also adjusted for the Middle East in 2009.


There are minor corrections in the data for Africa in both 2009 and 2010, and recently a large divergence for “Middle distillates”.




Asia Pacific data is corrected for “Light distillates”, “Middle distillates” and “Others” in 2009, reflecting corrections in both China and Japan data.




Corrections in 2009 for OECD data are the main reason for the differences between BP and JODI to snap shut; whilst Non-OECD data still remains divergent.

Categories
Academic Freedom Be Prepared Big Number Big Picture Change Management Climate Change Climate Chaos Climate Damages Corporate Pressure Cost Effective Delay and Deny Disturbing Trends Dreamworld Economics Economic Implosion Energy Crunch Energy Insecurity Engineering Marvel Extreme Energy Extreme Weather Firestorm Forestkillers Fossilised Fuels Global Heating Global Singeing Global Warming Growth Paradigm Heatwave Hydrocarbon Hegemony Incalculable Disaster Natural Gas Near-Natural Disaster Oil Change Paradigm Shapeshifter Peak Energy Peak Natural Gas Peak Oil Petrolheads Price Control Realistic Models Resource Curse Resource Wards Shale Game Sustainable Deferment Tarred Sands Technological Fallacy Technomess The Myth of Innovation The Price of Gas The Price of Oil Toxic Hazard Unconventional Foul Unnatural Gas Wildfire

Peak Oil Redux

Peak conventional crude petroleum oil production is apparently here already – the only thing that’s been growing global total liquids is North American unconventional oils : tight oil – which includes shale oil in the United States of America – and tar sands oil from bitumen in Canada – either refined into synthetic crude, or blended with other oils – both heavy and light.

But there’s a problem with unconventional oils – or rather several – but the key one is the commodity price of oil, which has been low for many months, and has caused unconventional oil producers to rein in their operations. It’s hitting conventional producers too. A quick check of Section 3 “Oil data : upstream” in OPEC’s 2016 Annual Statistical Bulletin shows a worrying number of negative 2014 to 2015 change values – for example “Active rigs by country”, “Wells completed in OPEC Members”, and “Producing wells in OPEC Members”.

But in the short term, it’s the loss of uneconomic unconventional oil production that will hit hardest. Besides problems with operational margins for all forms of unconventionals, exceptional air temperatures (should we mention global warming yet ?) in the northern part of North America have contributed to a seizure in Canadian tar sands oil production – because of extensive wildfires.

Here’s two charted summaries of the most recent data from the EIA on tight oil (which includes shale oil) and dry shale gas production in the United States – which is also suffering.

Once the drop in North American unconventionals begins to register in statistics for global total liquids production, some concern will probably be expressed. Peak Oil just might be sharper and harder and sooner than some people think.

Categories
Academic Freedom Arctic Amplification Bait & Switch Be Prepared Big Number Big Picture Big Society Burning Money Change Management Climate Change Climate Damages Delay and Deny Delay and Distract Demoticratica Disturbing Trends Engineering Marvel Environmental Howzat Extreme Weather Financiers of the Apocalypse Floodstorm Global Warming Hide the Incline Human Nurture Incalculable Disaster Major Shift Mass Propaganda Media Modern Myths Paradigm Shapeshifter Policy Warfare Political Nightmare Price Control Rainstorm Realistic Models Regulatory Ultimatum Social Change Social Chaos Stirring Stuff The Data The War on Error Water Wars Western Hedge Wind of Fortune

Cumbria Floods : Climate Defenceless

I fully expect the British Prime Minister, David Cameron, will be more than modicum concerned about public opinion as the full toll of damage to property, businesses, farmland and the loss of life in Cumbria of the December 2015 floods becomes clear. The flooding in the Somerset Levels in the winter of 2013/2014 led to strong public criticism of the government’s management of and investment in flood defences.

The flood defences that were improved in Cumbria after the rainstorm disaster of 2009 were in some cases completely ineffective against the 2015 deluge. It appears that the high water mark at some places in Cumbria was higher in the 2015 floods than ever recorded previously, but that cannot be used as David Cameron’s get-out-of-jail-free clause. These higher flood levels should have been anticipated as a possibility.

However, the real problem is not the height of flooding, but the short recurrence time. Flood defences are designed in a way that admits to a sort of compromise calculus. Measurements from previous floods are used to calculate the likelihood of water levels breaching a particular height within a number of years – for example, a 1-in-20 year flood, or a 1-in-200 year flood. The reinforced flood defences in Cumbria were designed to hold back what was calculated to be something like a 1-in-100 year flood. It could be expected that if within that 100 years, other serious but not overwhelming flooding took place, there would be time for adaptation and restructuring of the defences. However, it has taken less than 10 years for a 1-in-100 year event to recur, and so no adaptation has been possible.

This should suggest to us two possibilities : either the Environment Agency is going about flood defences the wrong way; or the odds for the 1-in-100 year flood should be reset at 1-in-10-or-so years – in other words, the severity profile of flooding is becoming worse – stronger flooding is more frequent – which implies acceptance of climate change.

The anti-science wing of the Conservative Party were quick to construct a campaign against the Environment Agency in the South West of England in early 2014 – distracting people from asking the climate change question. But this time, I think people might be persuaded that they need to consider climate change as being a factor.

Placing the blame for mismanagement of the Somerset Levels at the door of the Environment Agency saved David Cameron’s skin in 2014, but I don’t think he can use that device a second time. People in Cockermouth are apparently in disbelief about the 2015 flooding. They have barely had time to re-establish their homes and lives before Christmas has been cancelled again for another year.

Will the Prime Minister admit to the nation that climate change is potentially a factor in this 2015 waterborne disaster ?

I remember watching in in credulity as the BBC showed the restoration of Cockermouth back in 2010 – it was either Songs of Praise or Countryfile – I forget which. The BBC were trying to portray a town getting back to normal. I remember asking myself – but what if climate change makes this happen again ? What then ? Will the BBC still be mollifying its viewers, lulling them back into a false sense of security about the risks of severe climate change ? What if there is no “normal” to get back to any more ? Is this partly why the Meteorological Office has decided to name winter storms ?

Can future climate-altered floods be escaped – or are the people of Britain to remain defenceless ?

Categories
Academic Freedom Big Picture Big Society Change Management Conflict of Interest Dead End Direction of Travel Disturbing Trends Divide & Rule Energy Insecurity Evil Opposition Foreign Interference Global Singeing Human Nurture Incalculable Disaster Landslide Mad Mad World Mass Propaganda Media Military Invention National Power Not In My Name Policy Warfare Political Nightmare Protest & Survive Public Relations Screaming Panic Social Chaos Stirring Stuff Stop War The War on Error Unutterably Useless Utter Futility Vain Hope Western Hedge

Energy Security : National Security #4

Previously, I summarised and sketched the situation regarding Europe’s policy of developing the “Southern Gas Corridor”, to provide Natural Gas supplies from resources that are not the Russian Federation and its satellite countries. My conclusion from a British perspective was that the United Kingdom should be very cautious in widening its military engagement in the region to include a proposed bombing campaign against Syria. Increasing violence in the region will harm energy transport projects and damage existing infrastructure. By way of example, renewed conflict between the Turkish government and the Kurdish Workers’ Party or PKK has been suggested as the incentive behind recent destruction of gas pipelines, events that have suspected of being assisted by Russian “forces”, an alliance that appears to have a history.

The British Prime Minister David Cameron has recently made his case for an air campaign in Syria, and it is to this that I turn. It is a political document, and so naturally enough contains language that is contestable. For example, in the first paragraph, the Prime Minister writes, “Whether or not to use military force is one of the most significant decisions that any government takes. The need to do so most often arises because of a government’s first duty: the responsibility to protect its citizens.” The UK is already using military force across the border from Syria, in Iraq, as the document outlines later on, so it is curious that David Cameron feels he has to appeal to the Foreign Affairs Select Committee regarding very similar action in Syria. There is a significant level of evidence to reasonably argue that attacking Islamic State with an air campaign will lead to reprisal attacks in the UK from Islamic State sympathisers, so air strikes against Syria might damage national security in Britain.

To understand this, you would need to understand the appeal that Islamic State philosophy has to a small group of deluded, desperate, brainwashed activists. For those who aren’t Islamic State adherents, it would be hard to understand the “death cult” fundamentalism enshrined in its philosophy, so it would be impossible to understand why there would be anyone prepared to sympathise with Islamic State and wish to support it by the use of massacre and suicide. But if you want to understand how provocation of Islamic State by aerial bombardment could precipitate violent responses on the streets of Europe, all you need to do is look at the evidence from Paris and Brussels coming in the last few weeks. When all the talk was about young people being seduced by the insane rhetoric of Islamic State and running away to fight in Syria, it all seemed harmless enough – although tragic and bewildering for their families. But now European nationals have returned home as secret trained suicide bombers, and recruited their peers and sometimes siblings and other relatives to the Islamic State cause, it’s no longer a sad tale of teenage and twenty-something obsession. To extend the British air campaign into Syria won’t fix this problem, neither will closing borders.

When David Cameron says, “it is … vital that the Government can act to keep this country safe”, he says it in defence of the use of violent attack or “force”, but there are obviously more human, humane, cheaper, cyber, public relations, political ways to keep the UK safe. He writes, “Throughout Britain’s history, we have been called on time and again to make the hardest of decisions in defence of our citizens and our country”, but it appears that he hasn’t learned any lessons from the last century, especially the last 21 years. Every time that the UK has been involved in a major aerial bombardment campaign, things have gone badly, either for British armed forces, or British nationals – not to mention the citizens of other countries, who in some cases, if they’ve survived being carpet bombed, have been documented as starting to hate Britain because of British warfare. It’s a short step from hating Britain to sympathising with a rhetoric of anti-British violence, so it could be relatively rationally explained that British air campaigns of the last few decades have weakened our defences.

David Cameron writes, “Today one of the greatest threats we face to our security is the threat from ISIL. We need a comprehensive response which seeks to deal with the threat that ISIL poses to us directly, not just through the measures we are taking at home, but by dealing with ISIL on the ground in the territory that it controls. It is in Raqqa, Syria, that ISIL has its headquarters, and it is from Raqqa that some of the main threats against this country are planned and orchestrated.” However, bombing Islamic State on the ground in the territory it controls won’t diminish the threats to the United Kingdom from Islamic State trained or inspired “operatives” and disciples who have never even travelled to the Middle East, and in fact, it is unlikely that any of the people living in the territory that Islamic State inhabits would have anything to do with violent attacks against the United Kingdom, inside the United Kingdom. The suicide bombers in Paris were not Syrian or Iraqi. And although Islamic State claimed responsibility for the attacks, it is unclear how Syrian and Iraqi leaders in Islamic State could have orchestrated them. What good would bombing Islamic State in Syria and Iraq do in making Britain safer ?

David Cameron writes, “We must tackle ISIL in Syria, as we are doing in neighbouring Iraq, in order to deal with the threat that ISIL poses to the region and to our security here at home”, but you can’t fight an ideology with guns or silence their extremism with bombs. He also writes, “We have to deny a safe haven for ISIL in Syria. The longer ISIL is allowed to grow in Syria, the greater the threat it will pose”, but the question is, a threat to whom and what ?

This is beginning to sound like the propaganda that was once designed to oppose the man who is still the official leader in Syria, Bashar al-Assad. And in fact, David Cameron’s appeal includes him later, when he says British aims should be to “secure a transition to an inclusive Government in Syria that responds to the needs of all the Syrian people and with which the international community could co-operate fully to help restore peace and stability to the whole country. It means continuing to support the moderate opposition in Syria, so that there is a credible alternative to ISIL and Assad.”

Later again, he writes, “Some have argued that we should ally ourselves with Assad and his regime against the greater threat posed by ISIL, as the ‘lesser of two evils’. But this misunderstands the causes of the problem; and would make matters worse. By inflicting brutal attacks against his own people, Assad has in fact acted as one of ISIL’s greatest recruiting sergeants. We therefore need a political transition in Syria to a government that the international community can work with against ISIL, as we already do with the Government of Iraq.” There is also the comment, “Assad regime’s mass murder of its own people”.

So it seems there has not been a reversal : Assad is still not in favour, despite Assad’s military campaign against Islamic State. Let’s just recap here on the “killing his own people” concept, an accusation levelled at the leaders of both Iraq and Libya before the UK bombed them. In Syria’s case, Assad’s repression of anti-government elements was accepted by the “international community” for some time, until the crackdown on the “Arab Spring” protests which lead to a civil war – during which, arguably, Assad’s forces committed crimes against humanity.

But if you think about it, since the “Arab Spring” was possibly largely a result of the exercise of Internet-fed “soft power” by American intelligence agencies and their allies, it would be logical and reasonable for Assad to attempt to quell it, and to attempt to keep social stability. So how does that make Assad a bad person ? And what justifies the international community demanding that he be removed from power ? And why were no representatives of the Syrian government or any of the Syrian opposition parties – “anti-Assad forces” – invited to the International Syria Support Group (ISSG) in Vienna at the end of October 2015 ? David Cameron should not include the removal of Assad from leadership in his appeal to bomb Islamic State in Syria. The parties in the Syrian civil war need to come to a negotiated settlement, but this is a separate issue to the question of the UK fighting the influence of Islamic State by bombing in Syria.

If Assad is not good enough for Syrian leadership, and the anti-Assad forces are not good enough for Syrian leadership, and Islamic State is not good enough for playing any part in Syrian governance, then what is David Cameron really arguing for ? The clue may lie in this, “putting Britain’s full diplomatic weight, as a full member of an international coalition, behind the new political talks – the Vienna process. It means working through these talks to secure a transition to an inclusive Government in Syria that responds to the needs of all the Syrian people and with which the international community could co-operate fully to help restore peace and stability to the whole country. It means continuing to support the moderate opposition in Syria, so that there is a credible alternative to ISIL and Assad. It means using our aid budget to alleviate the immediate humanitarian suffering. It means insisting, with other countries, on the preparation of a proper stabilisation and reconstruction effort in Syria once the conflict has been brought to an end. And it means continuing, and stepping up, our effort here at home to counter radicalisation.”

Aside from the humour in trying to identify who is “moderate” in the Syrian conflict, since all the opposition groups appear to be belligerent and divisive, there is a commitment within a commitment here. What David Cameron is apparently arguing for is not only the involvement of British forces in an air campaign – but also an occupied Syria – occupied by the armed forces of the economically and politically powerful nations of the world. It’s worked so well in Iraq, of course (not), that it deserves to be replicated (not).

But hang on – this is not Britain’s agenda – this is an American agenda – and it should be resisted.

It would be very costly, not only economically, but also in terms of Britain’s reputation abroad. It could spark further hatred of the United Kingdom, and could lead to further acts of terror and sabotage in Europe. Do we really want to risk that ?

How about a genuinely non-violent response to Islamic State ? Instead of interference with the state of Syria – which could well become destabilising – just look at Iraq and Libya.

A common factor with Iraq and Libya is that energy production, storage, transmission, distribution and supply has obviously been affected by the warfare and uprisings in Syria – and it seems that Islamic State have been selling Syrian oil to finance their resistance to all the other militaries in the region. Some of that money could have been used to finance terrorism in other countries, as well.

An American-led occupation of Syria would obviously assist in stabilising the energy sector, and ensuring safe passage for gas and oil, for example in pipelines and power grids. But Europe’s desire for Natural Gas from non-Russian sources should not be any kind of reason for the UK to bomb and occupy Syria.

Categories
Academic Freedom Alchemical Assets not Liabilities Be Prepared Big Picture Big Society Change Management Deal Breakers Demoticratica Direction of Travel Disturbing Trends Divide & Rule Energy Autonomy Energy Insecurity Feed the World Foreign Interference Foreign Investment Fossilised Fuels Grid Netmare Hydrocarbon Hegemony Incalculable Disaster Insulation Mad Mad World Major Shift Methane Management Military Invention Modern Myths National Energy Natural Gas Near-Natural Disaster Neverending Disaster No Blood For Oil Paradigm Shapeshifter Peace not War Peak Natural Gas Policy Warfare Political Nightmare Protest & Survive Resource Curse Resource Wards Screaming Panic Social Democracy Stop War The Power of Intention The Price of Gas The Right Chemistry The War on Error Ungreen Development Western Hedge

Energy Security : National Security #3

Although the Autumn Statement and the Spending Review are attracting all the media and political attention, I have been more interested by the UK Government’s Security Review – or to give it is full title : the “National Security Strategy and Strategic Defence and Security Review 2015”, or (SDSR), document number Cm 9161.

Its aim is stated in its sub-heading “A Secure and Prosperous United Kingdom”, but on matters of energy, I would suggest it fails to nail down security at all.

In my analysis, having dealt with what appears to be a misunderstanding about the nature of hydrocarbon markets, I then started to address the prospect of Liquefied Natural Gas (LNG) imports from the United States.

My next probe is into the global gas pipeline networks indicated by this mention of the “Southern Gas Corridor” in Section 3.40 : “…measures to protect and diversify sources of [energy] supply will become increasingly important, including the new Southern Corridor pipeline, US liquid natural gas (LNG) exports, further supplies of Australian LNG, and increased supply from Norway and North Africa.”

First of all, and perhaps of secondmost importance, the “Southern Gas Corridor” is more of a European Union policy suite than an individual pipeline. In fact, it’s not just one pipeline – several pipelines are involved, some actual, some under construction, some cancelled, some renamed, some re-routed, and some whose development is threatened by geopolitical struggle and even warfare.

It is this matter of warfare that is the most important in considering the future of Natural Gas being supplied to the European Union from the Caspian Sea region : Turkmenistan, Iran, Kazakhstan, Georgia and Azerbijan. Oh, and we should mention Uzbekistan, and its human rights abuses, before moving on. And Iraq and Syria – where Islamic State sits, brooding.

Natural Gas is probably why we are all friends with Iran again. Our long-lasting dispute with Iran was ostensibly about nuclear power, but actually, it was all about Natural Gas. When Russia were our New Best Friend, Iran had to be isolated. But now Russia is being a tricky trading partner, and being beastly to Ukraine, Iran is who we’ve turned to, to cry on their shoulder, and beg for an alternative source of gas.

So we’ve back-pedalled on the concept of waging economic or military conflict against Iran, so now we have a more southerly option for our massive East-to-West gas delivery pipeline project – a route that takes in Iran, and avoids passing through Georgia and Azerbaijan – where Russia could interfere.

The problem with this plan is that the pipeline would need to pass through Syria and/or southern Turkey at some point. Syria is the country where Islamic State is currently being bombed by the United States and some European countries. And Turkey is the country where there has been a revival of what amounts pretty much to civil war with the Kurdish population – who also live in Iraq (and the edges of Syria and Iran).

Russia is envious of the southerly Southern Gas Corridor plan, and jealous of its own version(s) of the gas-to-Europe project, and influence in Georgia and Azerbaijan. So perhaps we should not be surprised that Russia and Turkey have had several military and political stand-offs in the last few months.

We in the United Kingdom should also be cautious about getting dragged into military action in Syria – if we’re thinking seriously about future energy security. Further destabilisation of the region through military upheaval would make it difficult to complete the Southern Gas Corridor, and make the European Union increasingly dependent on Russia for energy.

In the UK, although we claim to use no Russian gas at all, we do get gas through the interconnectors from The Netherlands and Belgium, and they get gas from Russia, so actually, the UK is using Russian gas. The UK gets over half its Natural Gas from Norway, and Norway has been a strong producer of Natural Gas, so why should we be worried ? Well, it appears that Norwegian Natural Gas production may have peaked. Let’s re-visit Section 3.40 one more time : “…measures to protect and diversify sources of [energy] supply will become increasingly important, including the new Southern Corridor pipeline, US liquid natural gas (LNG) exports, further supplies of Australian LNG, and increased supply from Norway and North Africa.”

The problem is that nobody can fight geology. If Norway has peaked in Natural Gas production, there is little that anyone can do to increase it, and even if production could be raised in Norway through one technique or another (such as carbon dioxide injection into gas wells), it wouldn’t last long, and wouldn’t be very significant. Norway is going to continue to supply gas to its other trading partners besides the UK, so how could the UK commandeer more of the Norwegian supply ? It seems likely that “increased supply from Norway” is just not possible.

But back to the Southern Gas Corridor. It is in the United Kingdom’s security interests to support fresh gas supplies to the European Union. Because we may not be able to depend on Russia, we need the Southern Gas Corridor. Which is why we should think very, very carefully before getting involved in increased military attacks on Syria.

Categories
Academic Freedom Assets not Liabilities Bad Science Bait & Switch Be Prepared Big Picture Change Management Dead End Delay and Deny Delay and Distract Disturbing Trends Divide & Rule Energy Autonomy Energy Calculation Energy Crunch Energy Denial Energy Insecurity Extreme Energy Foreign Interference Foreign Investment Fossilised Fuels Freemarketeering Gamechanger Hide the Incline Hydrocarbon Hegemony Insulation Mad Mad World Mass Propaganda Media Methane Management Military Invention Modern Myths National Energy National Power Natural Gas Orwells Paradigm Shapeshifter Peak Energy Peak Natural Gas Policy Warfare Political Nightmare Public Relations Pure Hollywood Realistic Models Resource Curse Resource Wards Shale Game Stirring Stuff The Data The Myth of Innovation The Power of Intention The Price of Gas The War on Error Unqualified Opinion Unsolicited Advice & Guidance Unutterably Useless Utter Futility Vain Hope Western Hedge

Energy Security, National Security #2

The UK Government’s Security Review (SDSR), published 23rd November 2015, regrettably shows traces of propaganda not supported by current data.

For example, the report states in Section 3.40 that : “…measures to protect and diversify sources of [energy] supply will become increasingly important, including the new Southern Corridor pipeline, US liquid natural gas (LNG) exports, further supplies of Australian LNG, and increased supply from Norway and North Africa.”

I have already addressed my recommendation that the writers of this report should be more careful to distinguish between Liquefied Natural Gas (LNG) which is a methane-rich product that can substitute for Natural Gas; and Natural Gas Liquids (NGLs) which is a methane-poor product that cannot substitute for Natural Gas.

However, assuming that the writers of the report are talking about cryogenically stored and transported Natural Gas-sourced energy gases, there is a problem in assuming that the United States will be exporting any large amounts of LNG to Europe any time soon. In fact, there are several problems.

Just because the business and political press have been touting the exciting prospect of US LNG exports, doesn’t mean that the data backs up this meme.

First of all, although American Natural Gas production (gross withdrawals from oil and gas wells) continues to grow at a rate that appears unaffected by low Natural Gas prices, the production of shale gas appears to have plateau’d, which might well be related to Natural Gas prices.

Secondly, although exports of Natural Gas as a whole and exports of Natural Gas by pipeline remain healthy, LNG exports have fallen since the heady days of 2010-2011.

Next, although the oil and gas industry proposed lots of LNG export terminals, only a handful are being constructed, and there are already predictions that they will run under-capacity, or won’t get completed.

And further, as regards potential future LNG customers, although China is rejecting LNG imports for a variety of reasons, mostly to do with falling economic growth rates, none of that LNG currently comes from the United States. And China is planning to develop its own onshore Natural Gas and will take LNG from the Australia/Indonesia region.

The bulk of US LNG exports go to Taiwan and Japan, and Japan is unlikely to restart many nuclear power plants, so Japan will continue to need this gas.

On top of all this, the United States is a very minor LNG exporter, so major change should be considered unlikely in the near term.

And it any LNG is heading for Europe, it will probably end up in France, perhaps because they need a better backup plan for their turbulent nuclear power plants.

All of which adds up to a puzzled look on my face. How can the British Government reasonably expect the commencement of significant quantities of American LNG exports to arrive in the UK ? The only reason they believe this is because there has been American propaganda, promulgated through media of all kinds, for the last five or so years, to convince the world that the USA can achieve greater energy independence through the “explosion” in shale gas production.

It’s a story told by many successive US Governments – that the US can achieve greater energy independence, but the reality is very, very different.

The UK Government should not believe any narrative of this nature, in my view, nor include it in national security analyses.

…to be continued…

Categories
Academic Freedom Assets not Liabilities Be Prepared Carbon Commodities Change Management Climate Change Conflict of Interest Corporate Pressure Delay and Deny Delay and Distract Direction of Travel Disturbing Trends Drive Train Economic Implosion Emissions Impossible Energy Crunch Energy Insecurity Energy Revival Extreme Energy Fossilised Fuels Fuel Poverty Global Warming Green Gas Green Investment Green Power Growth Paradigm Human Nurture Hydrocarbon Hegemony Hydrogen Economy Incalculable Disaster Major Shift Methane Management Natural Gas Oil Change Paradigm Shapeshifter Peak Emissions Peak Energy Peak Natural Gas Peak Oil Realistic Models Renewable Gas Resource Curse Solar Sunrise Solution City Sustainable Deferment The Power of Intention The Price of Gas The Price of Oil The Right Chemistry Wind of Fortune

What To Do Next

Status-checking questions. I’m sure we all have them. I certainly do. Several times a week, or even day, I ask myself two little questions of portent : “What am I doing ?” and “Why am I here ?”. I ask myself these questions usually because my mind’s wandered off again, just out of reach, and I need to call myself to attention, and focus. I ask these little questions of myself when I do that thing we all do – I’ve set off with great purpose into another room, and then completely forgotten why I went there, or what I came to find or get. I also use these forms of enquiry when I’m at The Crossroads of Purpose – to determine what exactly it is I’m deciding to aim for. What are my goals this day, week, month, age ? Can I espy my aims, somewhere on the horizon ? Can I paddle labouriously towards them – against the tide – dodge/defeat the sharks ? Can I muster the will to carry this out – “longhauling it” ?

I’ve spent a long time writing a book, which I’m sure to bore everybody about for the next aeon. My intention in writing the book was to stimulate debate about what I consider to be the best direction for balanced energy systems – a combination of renewable electricity and Renewable Gas. I wanted to foster debate amongst the academics and engineers who may be my peers, certainly, hopefully providing a little seed for further research. Hopefully also having a small influence on energy policy, perhaps, or at least, getting myself and my ideas asked to various policy meetings for a little airing. But, if I could in some way, I also wanted to offer a bit of fizz to the internal conversations of companies in the energy sector. You see, it may be obvious, or it may not be, but action on climate change, which principally involves the reduction in the mining, drilling and burning of fossil fuels, principally also involves the co-operation of the fossil fuel extraction companies. Their products are nearly history, and so it must be that inside the headquarters of every transnational energy giant, corporate heads are churning through their options with a very large what-if spoon.

Categories
Academic Freedom Alchemical Artistic Licence Assets not Liabilities Bait & Switch Baseload is History Big Number Big Picture British Biogas Burning Money Carbon Recycling Change Management Cost Effective Dead End Design Matters Direction of Travel Disturbing Trends Dreamworld Economics Efficiency is King Electrificandum Emissions Impossible Energy Autonomy Energy Calculation Energy Change Energy Insecurity Energy Revival Engineering Marvel Gamechanger Gas Storage Green Gas Green Investment Green Power Growth Paradigm Hydrocarbon Hegemony Hydrogen Economy Nuclear Nuisance Nuclear Shambles Optimistic Generation Policy Warfare Political Nightmare Price Control Realistic Models Renewable Gas Solar Sunrise Solution City Technofix Technological Fallacy Technological Sideshow The Data The Power of Intention The Right Chemistry The War on Error Wasted Resource Wind of Fortune Zero Net

Nuclear Power Is Not An Energy Policy

The British Government do not have an energy policy. They may think they have one, and they may regularly tell us that they have one, but in reality, they don’t. There are a number of elements of regulatory work and market intervention that they are engaged with, but none of these by itself is significant enough to count as a policy for energy. Moreover, all of these elements taken together do not add up to energy security, energy efficiency, decarbonisation and affordable energy.

What it takes to have an energy policy is a clear understanding of what is a realistic strategy for reinvestment in energy after the dry years of privatisation, and a focus on energy efficiency, and getting sufficient low carbon energy built to meet the Carbon Budget on time. Current British Government ambitions on energy are not realistic, will not attract sufficient investment, will not promote increased energy efficiency and will not achieve the right scale and speed of decarbonisation.

I’m going to break down my critique into a series of small chunks. The first one is a quick look at the numbers and outcomes arising from the British Government’s obsessive promotion of nuclear power, a fantasy science fiction that is out of reach, not least because the industry is dog-tired and motheaten.

Categories
Academic Freedom Assets not Liabilities Be Prepared Big Picture British Biogas Burning Money Carbon Commodities Conflict of Interest Corporate Pressure Dead End Demoticratica Direction of Travel Disturbing Trends Energy Autonomy Energy Change Energy Insecurity Energy Revival Extreme Energy Fossilised Fuels Freemarketeering Green Gas Green Power Growth Paradigm Hydrocarbon Hegemony Low Carbon Life Mad Mad World Major Shift National Energy National Power Natural Gas No Pressure Nuclear Nuisance Nuclear Shambles Oil Change Paradigm Shapeshifter Peak Energy Peak Natural Gas Peak Oil Petrolheads Policy Warfare Political Nightmare Price Control Realistic Models Renewable Gas Renewable Resource Resource Curse Resource Wards Revolving Door Shale Game Social Chaos Social Democracy Solar Sunrise Solution City The Data The Price of Gas The Price of Oil The Right Chemistry The War on Error Unconventional Foul Ungreen Development Unnatural Gas Utter Futility Vain Hope Wasted Resource Wind of Fortune

Amber Rudd : First Skirmish

As if to provide proof for the sneaking suspicion that Great Britain is run by the wealthy, rather than by the people, and that energy policy is decided by a close-knit circle of privileged dynasties, up bubbles Amber Rudd MP’s first whirl of skirmish as Secretary of State for Energy and Climate Change : her brother Roland is chairperson of a lobbying firm, Finsbury, which is seeking to get state approval for a controversial gas storage scheme at Preesall, near Fleetwood, on behalf of the developers, Halite Energy of Preston, Lancashire.

Whilst some claim there is a starkly obvious conflict of interest for Rudd to take part in the decision-making process, the Department of Energy and Climate Change (DECC) could have denied it, but have instead confirmed that the potential reversal of a 2013 decision will be made, not by Rudd, but by Lord Bourne.

New gas storage in the United Kingdom is a crucial piece of the energy infrastructure provision, as recognised by successive governments. Developments have been ongoing, such as the opening of the Holford facility at Byley in Cheshire. Besides new gas storage, there are anticipated improvements for interconnectors with mainland Europe. These are needed for raising the volume of Natural Gas available to the British market, and for optimising Natural Gas flows and sales in the European regional context – a part of the EC’s “Energy Union”.

An underlying issue not much aired is that increased gas infrastructure is necessary not just to improve competition in the energy markets – it is also to compensate for Peak Natural Gas in the North Sea – something many commentators regularly strive to deny. The new Conservative Government policy on energy is not fit to meet this challenge. The new Secretary of State has gone public about the UK Government’s continued commitment to the exploitation of shale gas – a resource that even her own experts can tell her is unlikely to produce more than a footnote to annual gas supplies for several decades. In addition, should David Cameron be forced to usher in a Referendum on Europe, and the voters petulantly pull out of the Europe project, Britain’s control over Natural Gas imports is likely to suffer, either because of the failure of the “Energy Union” in markets and infrastructure, or because of cost perturbations.

Amber Rudd MP is sitting on a mountain of trouble, undergirded by energy policy vapourware : the promotion of shale gas is not going to solve Britain’s gas import surge; the devotion to new nuclear power is not going to bring new atomic electrons to the grid for decades, and the UK Continental Shelf is going to be expensive for the Treasury to incentivise to mine. What Amber needs is a proper energy policy, based on focused support for low carbon technologies, such as wind power, solar power and Renewable Gas to back up renewable electricity when the sun is not shining and wind is not blowing.

Categories
Academic Freedom Assets not Liabilities Be Prepared Big Number Big Picture Burning Money Carbon Commodities Contraction & Convergence Corporate Pressure Dead End Delay and Deny Direction of Travel Disturbing Trends Divest and Survive Energy Autonomy Energy Crunch Energy Denial Energy Insecurity Energy Revival Fossilised Fuels Fuel Poverty Gamechanger Growth Paradigm Hydrocarbon Hegemony Insulation National Energy Natural Gas No Pressure Oil Change Paradigm Shapeshifter Peak Energy Peak Natural Gas Peak Oil Petrolheads Policy Warfare Political Nightmare Realistic Models Regulatory Ultimatum Resource Curse Resource Wards The Data The War on Error Wasted Resource

Renewable Gas : A Presentation #2

So, this is the second slide from my presentation at Birkbeck, University of London, last week.

When making an argument, it is best to start from consensus and well-accredited data, so I started with government analysis of the energy sector of the economy in the United Kingdom. Production of Natural Gas in the UK is declining, and imports are rising.

I did not go into much detail about this chart, but there is a wealth of analysis out there that I would recommend people check out.

Despite continued investment in oil and gas, North Sea production is declining, and it is generally accepted that this basin or province as a whole is depleting – that is – “running out”.

Here, for example, is more DECC data. The Summary of UK Estimated Remaining Recoverable Hydrocarbon Resources, published in 2014, had these numbers for UK Oil and Gas Reserves :-

billion barrels of oil equivalentLowerCentralUpper
Oil and Gas Reserves4.58.212.1
Potential Additional Resources1.43.46.4
Undiscovered Resources2.16.19.2

The summary concluded with the estimate of remaining recoverable hydrocarbons from the UK Continental Shelf (offshore) resources would be between 11.1 and 21 billion barrels of oil equivalent (bboe).

Other data in the report showed estimates of cumuluative and annual oil production :-

billion barrels of oil equivalentCumulative productionAnnual production
To date to end 201241.30.6 (in 2012)
To date to end 201241.80.5 (in 2013)
Additional production 2013 to 20307.00.44 (average 2014 to 2030)
Additional production 2013 to 20409.10.21 (average 2031 to 2040)
Additional production 2013 to 205010.40.13 (average 2041 to 2050)

Another source of estimates on remaining oil and gas resources, reserves and yet-to-find potential is from the Wood Review of 2014 :-

billion barrels of oil equivalentLow caseMid-caseHigh case
DECC reference122235
Wood Review1224

So it’s clear that British oil and gas production is in decline, and that also, reserves and resources to exploit are depleting. The Wood Review made several recommendations to pump up production, and maximise the total recoverable quantities. Some interpreted this as an indication that good times were ahead. However, increased production in the near future is only going to deplete these resources faster.

OK, so the UK is finding the North Sea running dry, but what about other countries ? This from the BP Statistical Review of Energy, 2014 :-

Oil – proved reserves
Thousand million barrels

At end 1993

At end 2003

At end 2012
United Kingdom4.54.33.0
Denmark0.71.30.7
Norway9.610.19.2

Natural gas – Proved Reserves
Trillion cubic metres

At end 1993

At end 2003

At end 2012
United Kingdom0.60.90.2
Denmark0.10.1
Netherlands1.71.40.9
Norway1.42.52.1
Germany0.20.20.1

Oil and gas chief executives may be in denial about a peak in global crude oil production, but they don’t challenge geology on the North Sea. Here’s what BP’s CEO Bob Dudley said on 17th February 2015, during a presentation of the BP Energy Outlook 2035 :-

“The North sea is a very mature oil and gas province and it will inevitably go through a decline. It peaked in 1999 at around 2.9 millions barrels per day and our projections are that it will be half a million barrels in 2035”.

That’s “inevitably” regardless of the application of innovation and new technology. New kit might bring on production sooner, but won’t replenish the final count of reserves to exploit.

So what are the likely dates for Peak Oil and Peak Natural Gas production in the North Sea bordering countries ?

Norway : by 2030.

The Netherlands : peaked already. Due to become a net importer of Natural Gas by 2025.

Denmark : net importer of oil and gas by 2030.

Categories
Baseload is History Big Picture Burning Money Carbon Army Change Management Conflict of Interest Corporate Pressure Cost Effective Design Matters Direction of Travel Disturbing Trends Dreamworld Economics Economic Implosion Efficiency is King Electrificandum Energy Change Energy Crunch Energy Revival Financiers of the Apocalypse Freemarketeering Gamechanger Green Investment Green Power Growth Paradigm Insulation Optimistic Generation Policy Warfare Political Nightmare Price Control Regulatory Ultimatum Renewable Resource Revolving Door Solar Sunrise Solution City Stirring Stuff The Myth of Innovation Western Hedge Wind of Fortune

Contracts for Difference Risks

The UK Government’s Electricity Market Reform (EMR) is a moving feast, or “trough”, if you are of the opinion that any state subsidy is a subsidy too far. My, how people complained and complained about the Renewables Obligation (RO), perhaps one of the world’s best stimuli for pushing forward wind power development. Yes, some rich engineering firms and rich landowners got richer on the back of the RO. What do you expect ? The wealthy always leverage their capital. But at least the RO has produced some exceptional wind power generation numbers. In the period 2017 to 2018 however, the RO is set to be staged down and replaced by several elements in the EMR, most notably, the CfD or Contracts for Difference, otherwise affectionately and quite inaccurately described as the FiT CfD – Feed-in Tariff Contracts for Difference.

The basic plan for the CfD is to guarantee to new electricity generators, or old generators building new plant, a definite price on power sold, in order to ensure they can get debt and equity invested in their projects. However, this is a huge state intervention and potentially entirely scuppers the efforts to create a market in electricity. More dangerously, although the CfD is supposed to encourage the freeing up of capital to support new energy investment, it might fail in that, at least in the short-term, and it may even fail to make capital cheaper. This is due to the new kinds of risk associated with the CfD – particularly because of the long lead time from auction to allocation, and the cap on allocations. The CfD is designed to create project failures, it seems.

I recently attended an event hosted at the Queen Elizabeth II Conference Centre in Westminster in London, called Energy4PowerLive 2014 and managed by GMP. The first session I attended was in the RenewablesLive 2014 stream, and featured a panel discussion between Andrew Buglass from Royal Bank of Scotland (RBS), Philip Bazin of Triodos and Steve Hunter, Investment Director of Low Carbon.

What follows is not verbatim, and is based on my handwritten notes, and my handwriting is appalling, so that sometimes, even I cannot read it.

[ Andrew Buglass, Managing Director and Head of Energy, Royal Bank of Scotland (RBS) : “Financing CfD projects – initial impressions from a lender” ]

[You may have an interest in the actions of] RBS [heckle from the audience, “We own it !”]. We built our first renewable energy project in 1991 – an onshore wind turbine. Now we [have helped] finance 9 gigawatts of renewable energy. I have 15 minutes – only possible to scratch the surface of CfDs [Contracts for Difference – a subsidy under the UK Government Department of Energy and Climate Change (DECC) Electricity Market Reform (EMR))]. The EMR journey has been a very long one – four years. We have offered advice to the government – about the bankability of the policy. DECC have a different policy perspective – they are going over here [in this direction] whether or not… [Their aim was to] encourage new sources of investment debt and equity, [currently] not here in the UK. […] Matt Hancock, new [energy] minister […] £115 [billion ?] […]. Half of £100 billion needed by end of decade. The EMR framework is [intended] to bring in new sources of debt and equity – its ability to track that into the market. I’m not going to review whether the EMR will be successful. It’s a “Nought to Sixty” question [reference to how quickly it takes for cars to accelerate], how quickly is capital going to be delivered [getting up and running]. There will be a big step up in terms of work […] how are different counterparties [countersigning parties in the CfD contracts] responding ? Now is the time to deliver on the [practical economics] for those to decide whether to invest or not. Need to engage the ratings agencies – getting debt from bond markets – to convince Standard and Poor etc to convince […] The first projects are going to take a long time – cutting their teeth. Cost, availability, terms of debt. The risks that will [come into play] :

A. OFFTAKE RISK – BASIS RISK
[At the start of the EMR discussions] we highlighted that small generators found it hard to get PPAS [Power Purchase Agreements]. With the CfDs “lender of last resort” “offtaker of last resort” […] may support less strong balance sheets for PPAs. Great – because we need a lot more liquidity in PPAs. [However] the basis risks on the strike price compared to the reference price – if this is [changed, different] – a concern about whether they might be matching in the middle [and so conferring no benefit to having arranged the CfD]].

B. WHOLESALE PRICE RISK
In offshore wind – wild – the economics of generating. In onshore wind power, the wholesale price has less of a way to fall [because of many years of learning and maturing of supply chains etc].

C. INDEX INFLATION RISK
The CfDs are to be linked to CPI [Consumer Price Index] rather than the RPI [Retail Price Index]. This may seem like a not very important difference – but at the moment you cannot hedge against the CPI. […] we recommend RPI – linked to lock in. Can’t do that with CPI.

D. FORCE MAJEURE RISK
[Risk] especially during construction. The CfD does not pick up during construction – need to see [how this pans out].

E. CHANGE IN LAW (CIL) RISK
Twenty pages of the CIL clause – doesn’t seem to give you much protection – what is a “foreseeable change in law” ? Unless you’re a big utility you will not have been tracking [policy and legislation] for the last ten years. Big risk ? In the RO [Renewables Obligation], CIL risk was set to the offtaker. Law firms are going to really agonise [over this in the CfD].

F. LIFETIME MANAGEMENT RISK
Risk relating to managing CfD contract during its lifetime. There is a risk from the termination of a CfD – more than in the RO. May need to do more work to keep lender involved to manage termination risk.

Leads to a gloomy approach – in banking paying back on time is good – anything else is bad.

The EMR has cross-party support, but this is the most interventionist approach since the CEGB (Central Electricity Generating Board market). The politicians are saying “no, no, we’d never change anything” – from three parties. It would help if there were a public statement on that (I get calls about “too many turbines”). Initial projects will probably take longer to start than [under] RO. Collectively fund pragmatic solutions.

[ Philip Bazin, Head Project Finance Team, Triodos Bank : “Financing CfD projects – initial impressions from a different bank” ]

Triodos was established in 1980, and started in the UK in 1995 with the acquisition of Mercury […] Our portfolio in the UK is still relatively small. Over a third of the £500 million is in renewable energy. Our investment […] basis of positive social and environmental outcomes. […] Core lending of £1 to £15 million finance […] construction […] and up to 15 years [on loan repayment]. Smaller developers – best fit. The bank is almost becoming part of the supply chain in the bidding process. Give a forward fixed rate of interest. We’ve had to think about how we provide this derivative. Discussions with PPA providers. Feeling that most a lot of new players. The whole rush around CfD was quite unhelpful. We haven’t been engaging with any bidders for this round [of CfDs]. Our customers are small generators or community groups. Smaller projects are risk-averse and would [probably] use the RO instead of the CfD [for now]. These markets are going to find this new structure [offputting]. Not ideal if you’re a professional investor. [Andrew has explained the risks well] The biggest one for me is the risk of failing to achieve your LONGSTOP DATE [failure to start electricity generation by an agreed date], which would risk a termination [of the CfD subsidy agreement. This would destroy the economics of the whole project and therefore the investment]. What protections do you have as a sub-contractor ? Another point is about wayleaves. [If you can’t get your wayleaves in time…] Fundamentally, the [CfD] mechanism is bankable. [However] in trying to fix a problem it [may] have created a total mess. Don’t know if more capital will be going into projects.

[ Steve Hunter, Investment Director, Low Carbon : “CfDs from an equity perspective” ]

[Our business is in] Solar PV, Onshore wind, CSP in the Mediterranean area. We get there when project developer is doing land deals. We have a cradle-to-grave perspective. Land planning and grid access are major risks [and the guarantee of biomass feedstock for a biomass project]. The WHOLESALE POWER PRICE RISK – someone needs to take it. Your view depends on your equity horizon. For us, the two big changes [from the RO] are the introduction of the ALLOCATION RISK and the removal of the power price risk. Don’t know the budget for allocation. Only know one month before the [CfD] auction ! The government has not released [a budget] for “emerging technology”. Timing : doesn’t really work for solar. The idea of CfD versus RO for solar will not work. [It’s all down to the project lifecycle] – you could be waiting 14 or 15 months for a CfD allocation after making a bid, but grid connection deals are now closing in [at around 12 months – if you do not take up your grid connection permission, you will lose it]. At the moment there is no competition between technologies. Is there enough CfD set aside for offshore wind projects ? Yes. If CfDs are intended to deliver technology-neutral [energy mix] – it doesn’t yet. The REFERENCE PRICES for me are the significant risk. This is entirely new for CfDs. Because the CfD intended to bring lower cost of capital – there is an implication for return [on investment] to the investor. Government will set [the reference prices]. Government just released [for some technologies] – decreased [in a forward period]. The Government may have a very different view on forward power prices… These reference prices come out of the air [there seems to be no basis for them]. When is final not final ? When it comes from DECC. If consider 2018/2019 September, the tightest budget, you could afford 1,000 MW of offshore, [if there is a change in the reference price] you could only afford 700 MW. In the TEC Register from National Grid – download this – there is 1,000 to 1,200 MG in the pipeline onshore. If I was a wind developer with [grid] connection dates after the end of the RO, you can bet I’ve already bid [for a CfD allocation] already. The political risk of changing the RO. May be a small amount of solar – but anyway it’s too expensive. If the CfD is only to support onshore wind power – is it achieving its goals ? There will almost certainly be some modification [to the CfD or the reference prices ?]. Transparency ? Oversupply ? [Oversight ?] of setting reference prices. Increase in frequency of the CfD auction would be helpful. Would give developers more time to bid. Technologies like solar PV that could deliver large savings… If no large solar is built… They could put a minimum in [for the subsidy allocated to each technology] – more positive. CfD represents long-term support. If the industry drives down the cost of renewable energy, CfD gives us an infill fix on revenue. It will give that certainty to get debt [and equity] in. It may be the support mechanism we need in the long-term. It could be the support mechanism we need for renewable energy…

Categories
Acid Ocean Animal Kingdoom Babykillers Behaviour Changeling Big Picture Big Society Carbon Capture Carbon Commodities Carbon Pricing Carbon Rationing Carbon Taxatious Change Management Climate Change Climate Chaos Climate Damages Coal Hell Corporate Pressure Demoticratica Disturbing Trends Divide & Rule Emissions Impossible Energy Autonomy Energy Crunch Energy Denial Energy Disenfranchisement Energy Insecurity Engineering Marvel Fossilised Fuels Freshwater Stress Gamechanger Global Heating Global Singeing Global Warming Green Gas Green Power Human Nurture Hydrogen Economy Landslide Mad Mad World Major Shift Mass Propaganda Media Meltdown Oil Change Paradigm Shapeshifter Peak Coal Peak Emissions Peak Energy Peak Natural Gas Peak Oil Policy Warfare Political Nightmare Public Relations Pure Hollywood Regulatory Ultimatum Renewable Gas Resource Curse Screaming Panic Social Capital Social Change Social Chaos Social Democracy Solar Sunrise Solution City Stirring Stuff The Science of Communitagion Vote Loser Wind of Fortune Zero Net

Climbing the Concern Ladder

How do we get things changed in a democracy ? The model of political campaigning that has been established over the last century is failing us. In the past, if there was a problem, a small group of people could create a fuss about it, march some placards to somewhere relevant, write some letters, talk to some dignitaries, chain themselves to some railings, occupy a lobby, get some press, and after some years, maybe, get something done.

These days there are just too many complaints for them all to be heard. Philanthropic, charitable and political messages crowd the stage. In this age of social media, the campaign metaphor has been replaced by a ladder of concern. Concern is expressed. Hopefully others will find that they too are sufficiently concerned, and reflect that concern through some medium. And slowly, it is hoped, this concern climbs the ladder of attention, until it is visible, audible. The entitled and endowed middle classes catch the concern, and repeat it. Lots of emails fly. George Monbiot writes about it in The Guardian. Some speeches are made at serious meetings. Angelina Jolie is invited to grace a conference. And then, hopefully, this concern hits the people who have some kind of leverage over the problem, and they act.

Action is almost guaranteed if the concern is the result of a specific outrage, committed by a specific person or group, and has a specific solution. But otherwise, who knows ? How universal and impactful does a concern need to be before it gets acted upon ? And surely some things don’t need campaigns, because the governments already know enough about problems such as people trafficking, slavery, animal welfare, crime and torture ? After all, things such as prostitution and illegal drug trade are included in national economic statistics.

I took public transport today in London and I was doused in outrage pouring from advertisements asking for charitable giving to prevent the inhuman practice of Female Genital Mutilation (FGM). As I read these appeals, I felt two overwhelming sensations – one of intense anger that children are being permanently injured because of insane and unjustifiable, hateful beliefs about female sexuality. And a second feeling of dragging despair that giving a small donation every month to this organisation would have very little impact on abusive culture, which leads to many forms of violation, not just the unimaginably painful and destructive incision and even resection of a child’s clitoris and the sewing together of her labia, leading to permanent nerve damage, lasting wounds, loss of sexual function, complications from incontinence, ruined relationships, injuries from sexual intercourse, and serious medical risks during childbirth, and possibly the need for reconstructive surgery.

This is a problem which cannot be fixed by expressing normal murmurs of concern, building a wave of concern that climbs a ladder of concern, or making monthly token charitable payments. This concern is not susceptible to a campaign. What this problem needs is regulation, legislation, policing. This concern shouldn’t have to compete with all the other concerns out there, like distressed retired donkeys, threatened butterflies, meltdown polar bears, de-forested orangutans and by-catch dolphins. Some things just shouldn’t happen. They just shouldn’t be tolerated. And they shouldn’t be lost amongst an avalanche of other concerns. This problem is so serious that it should be an automatic priority for all the authorities, co-ordinating to detect and prevent it. This concern shouldn’t have to campaign for funds. Or attention.

Switch to BBC News. Roger Harrabin reports that “The UK’s chief scientist says the oceans face a serious and growing risk from man-made carbon emissions. […] Sir Mark Walport warns that the acidity of the oceans has increased by about 25% since the industrial revolution, mainly thanks to manmade emissions. […] He told BBC News: “If we carry on emitting CO2 [carbon dioxide] at the same rate, ocean acidification will create substantial risks to complex marine food webs and ecosystems.” […] The consequences of acidification are likely to be made worse by the warming of the ocean expected with climate change, a process which is also driven by CO2.”

Media Lens Editors reported this piece. My reaction was – who would be paying attention to this ? This is not the “dangerous climate change comes from global warming” story, this is the “other” carbon problem, the decimation of marine productivity and the whole pyramid of life, resulting from increasing levels of dissolved carbon dioxide in seawater because of higher levels of carbon dioxide in the air. The overwhelmingly major causes of this problem are irrefutably and definitely fossil fuel combustion, and its seriousness is hard to deny, even though Roger Harrabin attempts to make light of it by devoting column inches to a laboratory crab who isn’t getting with the programme.

Ocean acidification is a concern that shouldn’t get lost in amongst other concerns. It should be paid serious levels of attention. And not just by middle class philanthropists who work for non-governmental organisations and charities. And yet, cursory analysis of the segmentation of the population who treat BBC News as a main and trusted information source may suggest that the only readers who would act on this piece are exactly these middle class charity staff, or at a push, retired middle class charity staff.

My Media Lens comment was, “Right expert. Right message. Wrong audience. Wrong medium. The UK Government’s chief scientist. OK. Good. Ocean acidification. OK. Good. No quibbles about whether or not extra carbon dioxide in the atmosphere is a real problem or not (as known as “climate change” or “global warming”, which is real by the way). The BBC News. Wrong medium. Wrong audience. The only people going to listen to this are those who already know about the problem but are still as powerless to act as they were yesterday. The UK Government should present this information to the oil, gas and coal companies with a polite request for them to unveil their plan of action in the face of this undeniable problem.”

There is no reason why this story should be covered in BBC News by Roger Harrabin. What can anybody reading it do about the problem ? There is no purpose for this article. It is a pointless statement of concern, or rather, a belittling rehearsal of the concern. Unless this article, and the thousands like it, lead to the Government demanding answers on Energy Change from the fossil fuel companies, there is no point in reporting it, or in this case, disparaging it with faint humour.

The only time that ocean acidification should appear in a media piece is to report that the problem has been presented to the architects of increased ocean carbon dioxide, and answers have been requested.

And who are the architects of increased atmospheric and ocean carbon dioxide ? Those who mine fossil fuels. Those companies like BP and Shell, ExxonMobil, and all the coal extraction companies should act. They should offer us alternative non-fossil fuel energy. And the news should be about how these companies are taking action to offer us Renewable Hydrogen, Renewable Methane, solar power, wind power and Zero Carbon transport fuels.

Answers from the past will simply not do. Trying to assert that somebody needs to pay for pollution won’t prevent pollution occurring. Carbon taxes or carbon pricing won’t work – since they won’t prevent the mining of fossil fuels – and if fossil fuels are mined, of course they will be burned. Carbon combustion quotas won’t work – since economic wealth is based on burning carbon, so many forces will conspire to maintain levels of fossil fuel combustion. Carbon mining quotas won’t work, since the forces for increasing mining quotas are strong. Carbon trading won’t work, since it won’t reduce the amount of fossil fuels mined – because, obviously, if fossil fuels are mined, they will be burned.

I am tired of reading about climate change, global warming, freshwater stress and ocean acidification in the news. It seems there is nothing I can do that I have not already done that can provide a solution to these problems. Enough with communicating the disaster. I want to read about engineering and energy companies who have switched business models to producing Zero Carbon energy. I want to hear how energy security concern is taking oil, gas and coal companies towards Renewable Everything.

Categories
Academic Freedom Advancing Africa Bait & Switch Behaviour Changeling Big Society Change Management Climate Change Climate Chaos Climate Damages Conflict of Interest Corporate Pressure Dead End Deal Breakers Demoticratica Design Matters Direction of Travel Disturbing Trends Divide & Rule Dreamworld Economics Economic Implosion Emissions Impossible Energy Calculation Energy Change Energy Disenfranchisement Energy Revival Evil Opposition Extreme Energy Extreme Weather Feed the World Feel Gooder Freemarketeering Gamechanger Global Heating Global Singeing Global Warming Green Investment Green Power Growth Paradigm Hide the Incline Human Nurture Hydrocarbon Hegemony Incalculable Disaster Insulation Libertarian Liberalism Low Carbon Life Mad Mad World Mass Propaganda Media Meltdown National Energy National Power National Socialism Neverending Disaster Not In My Name Nudge & Budge Optimistic Generation Orwells Paradigm Shapeshifter Pet Peeves Petrolheads Policy Warfare Political Nightmare Protest & Survive Public Relations Pure Hollywood Regulatory Ultimatum Renewable Resource Revolving Door Science Rules Screaming Panic Social Capital Social Change Social Chaos Social Democracy Stirring Stuff The Myth of Innovation The Power of Intention The Science of Communitagion Tsunami Unqualified Opinion Unsolicited Advice & Guidance Unutterably Useless Utter Futility Vain Hope Voluntary Behaviour Change Vote Loser Wasted Resource

Who Likes Beer ?

First, Christian Figueres speaks at St Paul’s Cathedral, and then there’s a debate, and questions, and somebody says Capitalism needs to be reformed or we’re not going to get any proper change. Half the people in the room sigh. “The last thing we need now is an obsessive compulsive revolutionary Marxist”, I hear somebody thinking.

Then, no surprise, Prince Charles comes out in favour of compassionate capitalism. That’s kind of like asking people to be nice to puppies, and about as realistic call for change as wanting the Moon to be actually made of cheese. As if focusing all our efforts and energy on repairing an already-breaking machine of trade with its destructive exploitation of resources and labour is going to stop climate change. Really. What actually needs to happen is that we address carbon emissions. If we cannot measure a reduction in carbon dioxide emissions, or count new trees, we are getting nowhere, fast. The Holy Economy can go hang if we don’t address Climate Change, and it will, because Climate Change is already sucking the lifeblood out of production and trade.

The non-governmental organisations – the charities, aid and development agencies and the like, do not know how to deal with climate change. They cannot simply utilise their tools of guilt to prise coins from peoples’ clenched hands and put the money towards something helpful. Well, they can, and they do, and you better watch out for more poor, starving African type campaigning, because programmes for adaptation to climate change are important, and I’ve never said they’re not, but they don’t address mitigation – the preventing of climate change. Well, some can, such as the project for smokeless, efficient ovens, but that’s not the point here. The point is that Christian Aid, for example, calling on us all to be “Hungry for Justice” isn’t addressing the central problem – the mass use of fossil fuels and deforestation in the name of economic development.

People are talking in hushed, reverential tones about Make Climate History. The way that Make Poverty History worked was a bunch of parliamentary people, and government people, sat down together and worked out how to get shows of public support for the government’s calls to the G8. The appeal to the masses was principally divided into two kinds – messages calling for people to support the government, and messages calling for people to urge, shout, rail, demonstrate to the government that they wanted these things. So, if you were in the first group you were showing support for what you thought was a good thing, and if you were in the second group, you were using all your righteous anger to force the government to take up the cause of the poor. The NGOs merely repeated these messages out on the wires. People spent a lot of time and energy on taking these messages out to various communities, who then spent a lot of time and energy on public meetings, letter writing, postcard signing, rallying, marching, talking to their democratic representatives. But all of that activity was actually useless. The relationships that counted were the relationships between the governments, not between the governments and their NGOs. The NGOs were used to propagate a government initiative.

And now, they’re doing it again with climate change. Various parts of government, who have actually understood the science, and the economics, can see how it is in the best interests of the United Kingdom, and the European Union, of which we are a closely-connected part, to adopt strong carbon control policies. But they’re not content just to get on with it. No, they want all the politically active types to make a show of support. And so the communications begin. Apparently open consultative meetings are convened, but the agenda is already decided, and the messaging already written for you.

It reminds me of what happened with the Climate Marches. A truly independent strongly critical movement centred around the Campaign against Climate Change organised a demonstration of protest every year in London, leading people either from or to the American Embassy, as the USA was the most recalcitrant on taking action to control greenhouse gas emissions. This was an effective display of public feeling, as it irritated and scratched and annoyed. So it had to go. So, I Count was born, a project of Stop Climate Chaos. They organised events sometimes on the very same day as the Campaign against Climate Change, and their inclusive hippy message was all lovehearts and flowers and we wouldn’t hurt a fly type calls for change. In the run up to the Copenhagen Conference of the Parties (COP) of the United Nations Framework Convention on Climate Change (UNFCCC) Kyoto Protocol in late 2009, all the NGOs were pushing for energy to be concentrated on its outcome, but nobody who joined in the vigils, the pilgrimages or the marches had any chance to make a real input. We were just the feather boa on the cake. We were even ejected from the building.

All this energy expended was a complete waste of time. With climate change, the relationships that count are between the governments and the energy industry. The NGOs may rant and rail in their toothless, fangless, clawless way about energy industry infelicity, ignominy, ignorance and inflexibility, but the energy industry only cares about NGOs if they show any sign of rebellious insubordination, which might upset their shareholders.

The governments know what they need to do – they need to improve their relationships with their energy industries to come to an agreement about decarbonising the energy supply – ask them in the most non-nonsense, unavoidable, sisterly/brotherly way to diversify out of fossil fuels. It really doesn’t matter what the NGOs say or do.

Current climate change campaigning to the masses is analagous to walking into a student party and shouting above the noise, sorry, music, “Hands up, who likes beer ?” You might get some token drunken waves out of that, but nothing more.

People, I predict, are less likely to join in with a hunger strike than they are to like beer. And even if I did join the Climate Fast, it wouldn’t make a blind bit of difference to energy company behaviour or government policy.

Look, I’ve done my share of climate change actions. I’ve cut my personal energy use, I’ve given up ironing and vacuuming, for example. I’ve installed solar panels. I use the bus. I’ve taken part in the Great Scheme of Voluntary Behaviour Change – I, the energy consumer have shown my willingness to consume less and produce less greenhouse gas emissions. Now it’s time for other people to act.

Given half a chance, most of the British people would vote for climate – a decent, hardworking, sunshine-and-rain and rather moderate climate – and none of this extremist storms, floods and droughts scenario we’ve been suffering recently.

Yes, and more British people want renewable energy than voted in their Local Elections.

So why doesn’t the UK Government just get on with it – institute the proper Carbon Budget at home, continue to ask for decent decarbonisation targets abroad, and leave all the compassionate caring people to devote themselves to causes that they stand a chance of impacting ?

Categories
Academic Freedom Advancing Africa Alchemical Artistic Licence Assets not Liabilities Bait & Switch Be Prepared Behaviour Changeling Big Number Big Picture Big Society Carbon Army Carbon Capture Carbon Commodities Carbon Pricing Carbon Rationing Carbon Recycling Carbon Taxatious Change Management Climate Change Climate Chaos Climate Damages Conflict of Interest Contraction & Convergence Corporate Pressure Dead End Dead Zone Deal Breakers Demoticratica Design Matters Direction of Travel Disturbing Trends Divide & Rule Dreamworld Economics Droughtbowl Earthquake Eating & Drinking Economic Implosion Electrificandum Energy Autonomy Energy Calculation Energy Change Energy Crunch Energy Denial Energy Insecurity Energy Revival Energy Socialism Engineering Marvel Evil Opposition Extreme Energy Feed the World Feel Gooder Financiers of the Apocalypse Floodstorm Food Insecurity Foreign Interference Foreign Investment Fossilised Fuels Fuel Poverty Gamechanger Global Warming Green Gas Green Investment Green Power Growth Paradigm Human Nurture Hydrocarbon Hegemony Incalculable Disaster Insulation Libertarian Liberalism Low Carbon Life Mad Mad World Major Shift Marvellous Wonderful Mass Propaganda Media Meltdown Money Sings National Energy National Power Near-Natural Disaster Neverending Disaster Not In My Name Nudge & Budge Optimistic Generation Orwells Paradigm Shapeshifter Peace not War Peak Coal Peak Emissions Peak Energy Peak Natural Gas Peak Oil Pet Peeves Petrolheads Policy Warfare Political Nightmare Protest & Survive Public Relations Pure Hollywood Realistic Models Regulatory Ultimatum Renewable Gas Renewable Resource Revolving Door Social Capital Social Change Social Chaos Social Democracy Solar Sunrise Solution City Stirring Stuff Sustainable Deferment Technofix Technological Sideshow The Myth of Innovation The Power of Intention The Price of Gas The Price of Oil The Right Chemistry The Science of Communitagion The War on Error Toxic Hazard Tree Family Unconventional Foul Unqualified Opinion Unsolicited Advice & Guidance Unutterably Useless Utter Futility Vain Hope Vote Loser Western Hedge Wind of Fortune Zero Net

Positively Against Negative Campaigning

How to organise a political campaign around Climate Change : ask a group of well-fed, well-meaning, Guardian-reading, philanthropic do-gooders into the room to adopt the lowest common denominator action plan. Now, as a well-fed, well-meaning, Guardian-reading (well, sometimes), philanthropic do-gooder myself, I can expect to be invited to attend such meetings on a regular basis. And always, I find myself frustrated by the outcomes : the same insipid (but with well-designed artwork) calls to our publics and networks to support something with an email registration, a signed postcard, a fistful of dollars, a visit to a public meeting of no consequence, or a letter to our democratic representative. No output except maybe some numbers. Numbers to support a government decision, perhaps, or numbers to indicate what kind of messaging people need in future.

I mean, with the Fair Trade campaign, at least there was some kind of real outcome. Trade Justice advocates manned stall tables at churches, local venues, public events, and got money flowing to the international co-operatives, building up the trade, making the projects happen, providing schooling and health and aspirations in the target countries. But compare that to the Make Poverty History campaign which was largely run to support a vain top-level political attempt to garner international funding promises for social, health and economic development. Too big to succeed. No direct line between supporting the campaign and actually supporting the targets. Passing round the hat to developed, industrialised countries for a fund to support change in developing, over-exploited countries just isn’t going to work. Lord Nicholas Stern tried to ask for $100 billion a year by 2020 for Climate Change adaptation. This has skidded to a halt, as far as I know. The economic upheavals, don’t you know ?

And here we are again. The United Nations Framework Convention on Climate Change (UNFCCC), which launched the Intergovernmental Panel on Climate Change (IPCC) reports on climate change, oh, so, long, ago, through the person of its most charismatic and approachable Executive Secretary, Christiana Figueres, is calling for support for a global Climate Change treaty in 2015. Elements of this treaty, being drafted this year, will, no doubt, use the policy memes of the past – passing round the titfer begging for a couple of billion squid for poor, hungry people suffering from floods and droughts; proposing some kind of carbon pricing/taxing/trading scheme to conjure accounting bean solutions; trying to implement an agreement around parts per million by volume of atmospheric carbon dioxide; trying to divide the carbon cake between the rich and the poor.

Somehow, we believe, that being united around this proposed treaty, few of which have any control over the contents of, will bring us progress.

What can any of us do to really have input into the building of a viable future ? Christiana – for she is now known frequently only by her first name – has called for numbers – a measure of support for the United Nations process. She has also let it be known that if there is a substantial number of people who, with their organisations, take their investments out of fossil fuels, then this could contribute to the mood of the moment. Those who are advocating divestment are yet small in number, and I fear that they will continue to be marginal, partly because of the language that is being used.

First of all, there are the Carbon Disclosers. Their approach is to conjure a spectre of the “Carbon Bubble” – making a case that investments in carbon dioxide-rich enterprises could well end up being stranded by their assets, either because of wrong assumptions about viable remaining resources of fossil fuels, or because of wrong assumptions about the inability of governments to institute carbon pricing. Well, obviously, governments will find it hard to implement effective carbon pricing, because governments are in bed with the energy industry. Politically, governments need to keep big industry sweet. No surprise there. And it’s in everybody’s interests if Emperor Oil and Prince Regent Natural Gas are still wearing clothes. In the minds of the energy industry, we still have a good four decades of healthy fossil fuel assets. Royal Dutch Shell’s CEO can therefore confidently say at a public AGM that There Is No Carbon Bubble. The Carbon Discloser language is not working, it seems, as any kind of convincer, except to a small core of the concerned.

And then there are the Carbon Voices. These are the people reached by email campaigns who have no real idea how to do anything practical to affect change on carbon dioxide emissions, but they have been touched by the message of the risks of climate change and they want to be seen to be supporting action, although it’s not clear what action will, or indeed can, be taken. Well-designed brochures printed on stiff recycled paper with non-toxic inks will pour through their doors and Inboxes. Tick it. Send it back. Sign it. Send it on. Maybe even send some cash to support the campaign. This language is not achieving anything except guilt.

And then there are the Carbon Divestors. These are extremely small marginal voices who are taking a firm stand on where their organisations invest their capital. The language is utterly dated. The fossil fuel industry are evil, apparently, and investing in fossil fuels is immoral. It is negative campaigning, and I don’t think it stands a chance of making real change. It will not achieve its goal of being prophetic in nature – bearing witness to the future – because of the non-inclusive language. Carbon Voices reached by Carbon Divestor messages will in the main refuse to respond, I feel.

Political action on Climate Change, and by that I mean real action based on solid decisions, often taken by individuals or small groups, has so far been under-the-radar, under-the-counter, much like the Fair Trade campaign was until it burst forth into the glorious day of social acceptability and supermarket supply chains. You have the cyclists, the Transition Towners, the solar power enthusiasts. Yet to get real, significant, economic-scale transition, you need Energy Change – that is, a total transformation of the energy supply and use systems. It’s all very well for a small group of Methodist churches to pull their pension funds from investments in BP and Shell, but it’s another thing entirely to engage BP and Shell in an action plan to diversify out of petroleum oil and Natural Gas.

Here below are my email words in my feeble attempt to challenge the brain of Britain’s charitable campaigns on what exactly is intended for the rallying cry leading up to Paris 2015. I can pretty much guarantee you won’t like it – but you have to remember – I’m not breaking ranks, I’m trying to get beyond the Climate Change campaigning and lobbying that is currently in play, which I regard as ineffective. I don’t expect a miraculous breakthrough in communication, the least I can do is sow the seed of an alternative. I expect I could be dis-invited from the NGO party, but it doesn’t appear to be a really open forum, merely a token consultation to build up energy for a plan already decided. If so, there are probably more important things I could be doing with my time than wasting hours and hours and so much effort on somebody else’s insipid and vapid agenda.

I expect people might find that attitude upsetting. If so, you know, I still love you all, but you need to do better.


[…]

A lot of campaigning over the last 30 years has been very negative and divisive, and frequently ends in psychological stalemate. Those who are cast as the Bad Guys cannot respond to the campaigning because they cannot admit to their supporters/employees/shareholders that the campaigners are “right”. Joe Average cannot support a negative campaign as there is no apparent way to make change happen by being so oppositional, and because the ask is too difficult, impractical, insupportable. [Or there is simply too much confusion or cognitive dissonance.]

One of the things that was brought back from the […] working group breakout on […] to the plenary feedback session was that there should be some positive things about this campaign on future-appropriate investment. I think […] mentioned the obvious one of saying effectively “we are backing out of these investments in order to invest in things that are more in line with our values” – with the implicit encouragement for fossil fuel companies to demonstrate that they can be in line with our values and that they are moving towards that. There was some discussion that there are no bulk Good Guy investment funds, that people couldn’t move investments in bulk, although some said there are. […] mentioned Ethex.

Clearly fossil fuel production companies are going to find it hard to switch from oil and gas to renewable electricity, so that’s not a doable we can ask them for. Several large fossil fuel companies, such as BP, have tried doing wind and solar power, but they have either shuttered those business units, or not let them replace their fossil fuel activities.

[…] asked if the [divestment] campaign included a call for CCS – Carbon Capture and Storage – and […] referred to […] which showed where CCS is listed in a box on indicators of a “good” fossil fuel energy company.

I questioned whether the fossil fuel companies really want to do CCS – and that they have simply been waiting for government subsidies or demonstration funds to do it. (And anyway, you can’t do CCS on a car.)

I think I said in the meeting that fossil fuel producer companies can save themselves and save the planet by adopting Renewable Gas – so methods for Carbon Capture and Utilisation (CCU) or “carbon recycling”. Plus, they could be making low carbon gas by using biomass inputs. Most of the kit they need is already widely installed at petrorefineries. So – they get to keep producing gas and oil, but it’s renewably and sustainably sourced with low net carbon dioxide emissions. That could be turned into a positive, collaborative ask, I reckon, because we could all invest in that, the fossil fuel companies and their shareholders.

Anyway, I hope you did record something urging a call to positive action and positive engagement, because we need the co-operation of the fossil fuel companies to make appropriate levels of change to the energy system. Either that, or they go out of business and we face social turmoil.

If you don’t understand why this is relevant, that’s OK. If you don’t understand why a straight negative campaign is a turn-off to many people (including those in the fossil fuel industry), well, I could role play that with you. If you don’t understand what I’m talking about when I talk about Renewable Gas, come and talk to me about it again in 5 years, when it should be common knowledge. If you don’t understand why I am encouraging positive collaboration, when negative campaigning is so popular and marketable to your core segments, then I will resort to the definition of insanity – which is to keep doing the same things, expecting a different result.

I’m sick and tired of negative campaigning. Isn’t there a more productive thing to be doing ?

There are no enemies. There are no enemies. There are no enemies.

——-

As far as I understand the situation, both the […] and […] campaigns are negative. They don’t appear to offer any positive routes out of the problem that could engage the fossil fuel companies in taking up the baton of Energy Change. If that is indeed the main focus of […] and […] efforts, then I fear they will fail. Their work will simply be a repeat of the negative campaigning of the last 30 years – a small niche group will take up now-digital placards and deploy righteous, holy social media anger, and that will be all.

Since you understand this problem, then I would suggest you could spend more time and trouble helping them to see a new way. You are, after all, a communications expert. And so you know that even Adolf Hitler used positive, convening, gathering techniques of propaganda to create power – and reserved the negative campaigning for easily-marginalised vulnerable groups to pile the bile and blame on.

Have a nicer day,

—–

The important thing as far as I understand it is that the “campaigning” organisations need to offer well-researched alternatives, instead of just complaining about the way things are. And these well-researched alternatives should not just be the token sops flung at the NGOs and UN by the fossil fuel companies. What do I mean ?

Well, let’s take Carbon Capture and Storage (CCS). The injection of carbon dioxide into old oil and gas caverns was originally proposed for Enhanced Oil Recovery (EOR) – that is – getting more oil and gas out the ground by pumping gas down there – a bit like fracking, but with gas instead of liquid. The idea was that the expense of CCS would be compensated for by the new production of oil and gas – however, the CCS EOR effect has shown to be only temporary. So now the major oil and gas companies say they support carbon pricing (either by taxation or trading), to make CCS move forward. States and federations have given them money to do it. I think the evidence shows that carbon pricing cannot be implemented at a sufficiently high level to incentivise CCS, therefore CCS is a non-answer. Why has […] not investigated this ? CCS is a meme, but not necessarily part of the carbon dioxide solution. Not even the UNFCCC IPCC reports reckon that much CCS can be done before 2040. So, why does CCS appear in the […] criteria for a “good” fossil fuel company ? Because it’s sufficiently weak as a proposal, and sufficiently far enough ahead that the fossil fuel companies can claim they are “capture ready”, and in the Good Book, but in reality are doing nothing.

Non-starters don’t just appear from fossil fuel companies. From my point of view, another example of running at and latching on to things that cannot help was the support of the GDR – Greenhouse Development Rights, of which there has been severe critique in policy circles, but the NGOs just wrote it into their policy proposals without thinking about it. There is no way that the emissions budgets set out in the GDR policy could ever get put into practice. For a start, there is no real economic reason to divide the world into developing and developed nations (Kyoto [Protocol]’s Annex I and Annex II).

If you give me some links, I’m going to look over your […] and think about it.

I think that if a campaign really wants to get anywhere with fossil fuel companies, instead of being shunted into a siding, it needs to know properly what the zero carbon transition pathways really are. Unequal partners do not make for a productive engagement, I reckon.

—–

I’m sorry to say that this still appears to be negative campaigning – fossil fuel companies are “bad”; and we need to pull our money out of fossil fuel companies and put it in other “good” companies. Where’s the collective, co-operative effort undertaken with the fossil fuel companies ? What’s your proposal for helping to support them in evolving ? Do you know how they can technologically transition from using fossil fuels to non-fossil fuels ? And how are you communicating that with them ?

——

They call me the “Paradigm Buster”. I’m not sure if “the group” is open to even just peeking into that kind of approach, let alone “exploring” it. The action points on the corporate agenda could so easily slip back into the methods and styles of the past. Identify a suffering group. Build a theory of justice. Demand reparation. Make Poverty History clearly had its victims and its saviours. Climate change, in my view, requires a far different treatment. Polar bears cannot substitute for starving African children. And not even when climate change makes African children starve, can they inspire the kind of action that climate change demands. A boycott campaign without a genuine alternative will only touch a small demographic. Whatever “the group” agrees to do, I want it to succeed, but by rehashing the campaigning strategies and psychology of the past, I fear it will fail. Even by adopting the most recent thinking on change, such as Common Cause, [it] is not going to surmount the difficulties of trying to base calls to action on the basis of us-and-them thinking – polar thinking – the good guys versus the bad guys – the body politic David versus the fossil fuel company Goliath. By challenging this, I risk alienation, but I am bound to adhere to what I see as the truth. Climate change is not like any other disaster, aid or emergency campaign. You can’t just put your money in the [collecting tin] and pray the problem will go away with the help of the right agencies. Complaining about the “Carbon Bubble” and pulling your savings from fossil fuels is not going to re-orient the oil and gas companies. The routes to effective change require a much more comprehensive structure of actions. And far more engagement that agreeing to be a flag waver for whichever Government policy is on the table. I suppose it’s too much to ask to see some representation from the energy industry in “the group”, or at least […] leaders who still believe in the fossil fuel narratives, to take into account their agenda and their perspective, and a readiness to try positive collaborative change with all the relevant stakeholders ?


Categories
Academic Freedom Advancing Africa Animal Kingdoom Arctic Amplification Artistic Licence Bad Science Bait & Switch Big Number Change Management Climate Change Climate Chaos Climate Damages Conflict of Interest Delay and Deny Direction of Travel Disturbing Trends Divide & Rule Emissions Impossible Energy Calculation Energy Change Environmental Howzat Evil Opposition Extreme Weather Fair Balance Feed the World Forestkillers Fossilised Fuels Freak Science Global Heating Global Singeing Global Warming Growth Paradigm Health Impacts Heatwave Hide the Incline Human Nurture Incalculable Disaster Mad Mad World Mass Propaganda Meltdown Methane Management Money Sings Near-Natural Disaster Neverending Disaster Orwells Protest & Survive Public Relations Realistic Models Science Rules Scientific Fallacy Screaming Panic Sea Level Risk Sustainable Deferment The Data The War on Error Toxic Hazard Unutterably Useless Utter Futility Vote Loser

Nigel Lawson : Unreferenced & Ill-Informed ?

An appeal was issued by David Andrews of the Claverton Energy Research Group, to respond to the Bath Lecture given by Nigel Lawson :-

“Dear All, this group is not meant to be a mere venting of frustration and opinion at what is perceived to be poor policy. So what would be really useful is to have the Lawson spiel with the countering fact interspersed. I can then publish this on the Claverton web site which does get a lot of hits and appears to be quite influential. Can I therefore first thank Ed Sears for making a good effort, but ask him to copy his bits into the Lawson article at the appropriate point. Then circulate it and get others to add in bits. Otherwise these good thoughts will simply be lost in the wind. Dave”

My reply of today :-

“Dear Dave, I don’t have time at the moment to answer all of Nigel Lawson’s layman ruminations, but I have written a few comments here (see below) which begin to give vent to frustration typical of that which his tactics cause in the minds of people who have some acquaintance with the actual science. The sheer volume of his output suggests an attempt to filibuster proper debate rather than foster it. To make life more complicated to those who wish to answer his what I think are absurd notions, he gives no accurate references to his supposed facts or cites any accredited, peer-reviewed documentation that could back up his various emotive generalisations and what appear to be aspersions. Regards, jo.”


https://www.thegwpf.org/nigel-lawson-the-bath-lecture/

Nigel Lawson: The Bath Lecture

Climate Alarmism Is A Belief System And Needs To Be Evaluated As Such

Nigel Lawson: Cool It

Standpoint, May 2014

This essay is based on the text of a speech given to the Institute for Sustainable Energy and the Environment at the University of Bath.

There is something odd about the global warming debate — or the climate change debate, as we are now expected to call it, since global warming has for the time being come to a halt.

[ joabbess.com : Contrary to what Nigel Lawson is claiming, there is no pause – global warming continues unabated. Of this there can be no doubt. All of the data that has been assessed – and there is a lot of it – confirms the theoretical framework – so it is odd that Nigel Lawson states otherwise, seemingly without any evidence to substantiate his assertion. Nigel Lawson appears to be taking advantage of fluctuations, or short-term wrinkles, in the records of air temperatures close to the Earth, to claim that up is down, dark is light and that truth is in error. Why are temperatures in the atmosphere close to the Earth’s surface, or “surface temperatures”, subject to variability ? Because heat can flow through matter, is the short answer. The longer answer is the interplay between the atmosphere and the oceans, where heat is being transfered between parts of the Earth system under conditions of flows such as the movement of air and water – what we call winds and ocean currents. There are detectable patterns in the flows of air and water – and some are oscillatory, so the temperature (taken at any one time) may appear to wriggle up and down (when viewed over a period of time). Despite these wobbles, the overall trend of temperature over several decades has been reliably detected. Despite Nigel Lawson’s attention to air temperatures, they are probably the least significant in detecting global warming, even though the data shows that baseline air temperatures, averaged over time, are rising. The vast proportion of heat being added to the Earth system is ending up in the oceans :-
https://www.skepticalscience.com/global-cooling-intermediate.htm
and the rise in ocean temperatures is consistent :-
https://www.skepticalscience.com/cherrypicking-deny-continued-ocean-global-warming.html
which indicates that circulatory patterns of heat exchange in the oceans have less effect on making temperatures fluctuate than the movement of masses of air in the atmosphere. This is exactly what you would expect from the study of basic physics. If you give only a cursory glance at the recent air temperatures at the surface of the Earth, you could think that temperatures have levelled off in the last decade or so, but taking a longer term view easily shows that global warming continues to be significant :-
https://data.giss.nasa.gov/gistemp/graphs_v3/
What is truly astonishing about this data is that the signal shows through the noise – that the trend in global warming is easily evident by eye, despite the wavy shakes from natural variability. For Nigel Lawson’s information, the reason why we refer to climate change is to attempt to encompass other evidence in this term besides purely temperature measurements. As the climate changes, rainfall patterns are altering, for example, which is not something that can be expressed in the term global warming. ]

I have never shied away from controversy, nor — for example, as Chancellor — worried about being unpopular if I believed that what I was saying and doing was in the public interest.

But I have never in my life experienced the extremes of personal hostility, vituperation and vilification which I — along with other dissenters, of course — have received for my views on global warming and global warming policies.

For example, according to the Climate Change Secretary, Ed Davey, the global warming dissenters are, without exception, “wilfully ignorant” and in the view of the Prince of Wales we are “headless chickens”. Not that “dissenter” is a term they use. We are regularly referred to as “climate change deniers”, a phrase deliberately designed to echo “Holocaust denier” — as if questioning present policies and forecasts of the future is equivalent to casting malign doubt about a historical fact.

[ joabbess.com : Climate change science is built on observations : all historical facts. Then, as in any valid science, a theoretical framework is applied to the data to check the theory – to make predictions of future change, and to validate them. It is an historical fact that the theoretical framework for global warming has not been falsified. The Earth system is warming – this cannot be denied. It seems to me that Nigel Lawwon usurps the truth with myth and unsubstantiated rumour, casting himself in the role of doubting dissenter, yet denying the evidence of the data. He therefore self-categorises as a denier, by the stance of denial that he takes. His denial is also an historical fact, but calling him a denier is not a value judgement. It is for each person to ascribe for themselves a moral value to the kind of denial he expresses. ]

The heir to the throne and the minister are senior public figures, who watch their language. The abuse I received after appearing on the BBC’s Today programme last February was far less restrained. Both the BBC and I received an orchestrated barrage of complaints to the effect that it was an outrage that I was allowed to discuss the issue on the programme at all. And even the Science and Technology Committee of the House of Commons shamefully joined the chorus of those who seek to suppress debate.

[ joabbess.com : Considering the general apathy of most television viewers, it is therefore quite refreshingly positive that so many people decided to complain about Nigel Lawson being given a platform to express his views about climate change, a subject about which it seems he is unqualified to speak with authority of learning. He may consider the complaints an “orchestrated barrage”. Another interpretation could be that the general mood of the audience ran counter to his contributions, and disagreed with the BBC’s decisiont to permit him to air his contrarian position, to the point of vexation. A parallel example could be the kind of outrage that could be expressed if Nigel Lawson were to deny that the Earth is approximately spherical, that gravity means that things actually move out to space rather than towards the ground, or that water is generally warmer than ice. He should expect opposition to his opinions if he is denying science. ]

In fact, despite having written a thoroughly documented book about global warming more than five years ago, which happily became something of a bestseller, and having founded a think tank on the subject — the Global Warming Policy Foundation — the following year, and despite frequently being invited on Today to discuss economic issues, this was the first time I had ever been asked to discuss climate change. I strongly suspect it will also be the last time.

The BBC received a well-organised deluge of complaints — some of them, inevitably, from those with a vested interest in renewable energy — accusing me, among other things, of being a geriatric retired politician and not a climate scientist, and so wholly unqualified to discuss the issue.

[ joabbess.com : It is a mark of integrity to put you money where your mouth is, not an indicator on insincerity. It is natural to expect people who accept climate change science to be taking action on carbon dioxide emissions, which includes investment in renewable energy. ]

Perhaps, in passing, I should address the frequent accusation from those who violently object to any challenge to any aspect of the prevailing climate change doctrine, that the Global Warming Policy Foundation’s non-disclosure of the names of our donors is proof that we are a thoroughly sinister organisation and a front for the fossil fuel industry.

As I have pointed out on a number of occasions, the Foundation’s Board of Trustees decided, from the outset, that it would neither solicit nor accept any money from the energy industry or from anyone with a significant interest in the energy industry. And to those who are not-regrettably-prepared to accept my word, I would point out that among our trustees are a bishop of the Church of England, a former private secretary to the Queen, and a former head of the Civil Service. Anyone who imagines that we are all engaged in a conspiracy to lie is clearly in an advanced stage of paranoia.

The reason why we do not reveal the names of our donors, who are private citizens of a philanthropic disposition, is in fact pretty obvious. Were we to do so, they, too, would be likely to be subject to the vilification and abuse I mentioned earlier. And that is something which, understandably, they can do without.

That said, I must admit I am strongly tempted to agree that, since I am not a climate scientist, I should from now on remain silent on the subject — on the clear understanding, of course, that everyone else plays by the same rules. No more statements by Ed Davey, or indeed any other politician, including Ed Milliband, Lord Deben and Al Gore. Nothing more from the Prince of Wales, or from Lord Stern. What bliss!

But of course this is not going to happen. Nor should it; for at bottom this is not a scientific issue. That is to say, the issue is not climate change but climate change alarmism, and the hugely damaging policies that are advocated, and in some cases put in place, in its name. And alarmism is a feature not of the physical world, which is what climate scientists study, but of human behaviour; the province, in other words, of economists, historians, sociologists, psychologists and — dare I say it — politicians.

[ joabbess.com : Au contraire, I would say to Nigel Lawson. At root, climate change is very much a scientific issue. Science defines it, describes it and provides evidence for it. Climate change is an epistemological concern, and an ontological challenge. How we know what we know about climate change is by study of a very large number of results from data collection and other kinds of research. The evidence base is massive. The knowledge expressed in climate change science is empirical – based on observations – which is how we are sure that what we know is assured. There is still scope for uncertainty – will the surface temperatures rise by X plus or minus some Y, owing to the dynamic between the atmosphere, the oceans, the ice cover and the land masses ? The results of the IPCC assessments are that we pretty much know what X is, and we have an improved clarity on a range of values for Y. The more science is done, the clearer these numbers emerge. Knowledge increases as more science is done, which is why the IPCC assessments are making firmer conclusions as time passes. Climate change science does not make value judgements on its results. It concludes that sea levels are rising and will continue to rise; that rainfall patterns are changing and will continue to change; that temperatures are rising and will continue to rise under current economic conditions and the levels of fossil fuel use and land use. Science describes the outcomes of these and other climate changes. It is for us as human beings, with humanity in our hearts, to place a meaning on predicted outcomes such as crop and harvest failures, displacement of peoples, unliveable habitats, loss of plant and animal species, extreme weather. You cannot take the human out of the scientist. Of course scientists will experience alarm at the thought of these outcomes, just as the rest of society will do. The people should not be denied the right to feeling alarm. ]

And en passant, the problem for dissenting politicians, and indeed for dissenting climate scientists for that matter, who certainly exist, is that dissent can be career-threatening. The advantage of being geriatric is that my career is behind me: there is nothing left to threaten.

[ joabbess.com : Climate change science is not something you can “dissent” from if you are at all versed in it. For those who question any part of climate change science from inside the community of those who have appropriate knowledge and learning, their position is not one of dissent, but of being unable to assent completely to the conclusions of their peers. They lack a capacity to fully assent to the results of other people’s research because their own research indicates otherwise. As responsible members of the science community, they would then put their research conclusions and the research conclusions of others to the test. There is an integrity in this kind of questioning. It is a valid position, as long as the questions are posed in the language of scientific enquiry, and answered with scientific methods. For example, the Berkeley BEST team had questions about the evidence of global warming and set out to verify or falsify the results of others. Their own research led them to become convinced that their peers had been correct in the their conclusions. This is how science comes to consensus. Nigel Lawson should fund research in the field if he wishes to be taken seriously in denying the current consensus in climate change science. Instead of which, he invests in the publication of what appears to be uncorroborated hearsay and emotive politicking. ]

But to return: the climate changes all the time, in different and unpredictable (certainly unpredicted) ways, and indeed often in different ways in different parts of the world. It always has done and no doubt it always will. The issue is whether that is a cause for alarm — and not just moderate alarm. According to the alarmists it is the greatest threat facing humankind today: far worse than any of the manifold evils we see around the globe which stem from what Pope called “man’s inhumanity to man”.

[ joabbess.com : Nigel Lawson doesn’t need to tell anyone that weather is changeable and that climate changes. They can see it for themselves if they care to study the data. Climate change science has discovered that the current changes in the climate are unprecedented within at least the last 800,000 years. No previous period of rapid climate change in that era has been entirely similar to the changes we are experiencing today. This is definite cause for alarm, high level alarm, and not moderate. If there is a fire, it is natural to sound the alarm. If there is a pandemic, people spread the news. If there is a risk, as human beings, we take collective measures to avoid the threat. This is normal human precautionary behaviour. It is unreasonable for Nigel Lawson to insist that alarm is not an appropriate response to what is patently in the process of happening. ]

Climate change alarmism is a belief system, and needs to be evaluated as such.

[ joabbess.com : Belief in gravity, or thinking that protein is good to eat are also belief systems. Everything we accept as normal and true is part of our own belief system. For example, I believe that Nigel Lawson is misguided and has come to the wrong conclusions. The evidence lies before me. Is my opinion to be disregarded because I have a belief that Nigel Lawson is incorrect ? ]

There is, indeed, an accepted scientific theory which I do not dispute and which, the alarmists claim, justifies their belief and their alarm.

This is the so-called greenhouse effect: the fact that the earth’s atmosphere contains so-called greenhouse gases (of which water vapour is overwhelmingly the most important, but carbon dioxide is another) which, in effect, trap some of the heat we receive from the sun and prevent it from bouncing back into space.

Without the greenhouse effect, the planet would be so cold as to be uninhabitable. But, by burning fossil fuels — coal, oil and gas — we are increasing the amount of carbon dioxide in the atmosphere and thus, other things being equal, increasing the earth’s temperature.

But four questions immediately arise, all of which need to be addressed, coolly and rationally.

First, other things being equal, how much can increased atmospheric CO2 be expected to warm the earth? (This is known to scientists as climate sensitivity, or sometimes the climate sensitivity of carbon.) This is highly uncertain, not least because clouds have an important role to play, and the science of clouds is little understood. Until recently, the majority opinion among climate scientists had been that clouds greatly amplify the basic greenhouse effect. But there is a significant minority, including some of the most eminent climate scientists, who strongly dispute this.

[ joabbess.com : Simple gas chemistry and physics that is at least a century old is evidence that carbon dioxide allows sunlight to pass right through to warm the Earth, which then emits infrared light because it has warmed up. When the infrared radiation is emitted, the Earth cools down. Infrared is partially blocked by carbon dioxide, which absorbs it, then re-radiates it, partially back to the Earth, which warms up again. Eventually, the warming radiation will escape the carbon dioxide blanket, but because of this trapping effect, the net result is for more heat to remain in the atmosphere close to the Earth’s surface than you would expect. This is the main reason why the temperature of the Earth’s surface is warmer than space. As carbon dioxide accumulates in the atmosphere, the warming effect will be enhanced. This is global warming and it is undisputed by the overwhelming majority of scientists. Climate sensitivity, or Equilibrium Climate Sensitivity (ECS) is a calculated measure of the total temperature change that would be experienced (after some time) at the surface of the Earth for a doubling of atmospheric carbon dioxide concentrations compare to the pre-industrial age. The Transient Climate Response (TCR) is a measure of the temperature change that would be experienced in the shorter-term for a doubling of atmospheric carbon dioxide concentrations. The TCR can be easily calculated from basic physics. The shorter-term warming will cause climate change. Some of the changes will act to cool the Earth down from the TCR (negative feedbacks). Some of the changes will act to heat the Earth up from the TCR (positive feedbacks). These are some disagreements about the ECS, such as the net effects from the fertilisation effect of carbon dioxide on plant growth, the net effects of changes in weather and cloud systems, and the net effects of changes in ocean and atmospheric circulation. However, evidence from the deep past (paleoclimatology) is helping to determine the range of temperatures that ECS could be. ]

Second, are other things equal, anyway? We know that, over millennia, the temperature of the earth has varied a great deal, long before the arrival of fossil fuels. To take only the past thousand years, a thousand years ago we were benefiting from the so-called medieval warm period, when temperatures are thought to have been at least as warm, if not warmer, than they are today. And during the Baroque era we were grimly suffering the cold of the so-called Little Ice Age, when the Thames frequently froze in winter and substantial ice fairs were held on it, which have been immortalised in contemporary prints.

[ joabbess.com : The Medieval Warming Period (or Medieval Warm Period) was just a blip compared to the current global warming of the last 150 years. And the Little Ice Age was also a minor anomaly, being pretty much confined to the region of Europe, and some expect could have become the Rather Much Longer Icy Period had it not been for the use of fossil fuels, which warmed Europe up again. Burning coal and other fossil fuels releases carbon that would have originally been in the atmosphere in the form of carbon dioxide millions of years ago, that trees and other plants used to grow. Geological evidence shows that surface temperatures at those times were warmer than today. ]

Third, even if the earth were to warm, so far from this necessarily being a cause for alarm, does it matter? It would, after all, be surprising if the planet were on a happy but precarious temperature knife-edge, from which any change in either direction would be a major disaster. In fact, we know that, if there were to be any future warming (and for the reasons already given, “if” is correct) there would be both benefits and what the economists call disbenefits. I shall discuss later where the balance might lie.

[ joabbess.com : The evidence from the global warming that we have experienced so far since around 1880 is almost universally limiting in terms of the ability of species of animals and plants to survive. There are tiny gems of positive outcomes, compared to a sand pit of negatives. Yes, of course it matters. The mathematics of chaos with strong perturbations to any system do not permit it to coast on a precarious knife-edge for very long. Sooner or later there will be a major alteration, and the potential for some milder probable outcomes will collapse. ]

And fourth, to the extent that there is a problem, what should we, calmly and rationally, do about it?

[ joabbess.com : The most calm and rational thing to do is to compile all the evidence and report on it. Oh yes, we’ve already done that. It’s called the Intergovernmental Panel on Climate Change or IPCC. The concluisons of the compilation of over 100 years of science is that global warming is real, and it’s happening now, and that there is a wide range of evidence for climate change, and indicators that it is a major problem, and that we have caused it, through using fossil fuels and changing how we use land. ]

It is probably best to take the first two questions together.

According to the temperature records kept by the UK Met Office (and other series are much the same), over the past 150 years (that is, from the very beginnings of the Industrial Revolution), mean global temperature has increased by a little under a degree centigrade — according to the Met Office, 0.8ºC. This has happened in fits and starts, which are not fully understood. To begin with, to the extent that anyone noticed it, it was seen as a welcome and natural recovery from the rigours of the Little Ice Age. But the great bulk of it — 0.5ºC out of the 0.8ºC — occurred during the last quarter of the 20th century. It was then that global warming alarmism was born.

[ joabbess.com : Nigel Lawson calls it “alarmism”. I call it empirical science. And there are many scientific explanations for what he calls “fits and starts”, it’s just that they’re written in research papers, so he will probably never read them, going on his lack of attention to research publications in the past. ]

But since then, and wholly contrary to the expectations of the overwhelming majority of climate scientists, who confidently predicted that global warming would not merely continue but would accelerate, given the unprecedented growth of global carbon emissions, as China’s coal-based economy has grown by leaps and bounds, there has been no further warming at all. To be precise, the latest report of the Intergovernmental Panel on Climate Change (IPCC), a deeply flawed body whose non-scientist chairman is a committed climate alarmist, reckons that global warming has latterly been occurring at the rate of — wait for it — 0.05ºC per decade, plus or minus 0.1ºC. Their figures, not mine. In other words, the observed rate of warming is less than the margin of error.

[ joabbess.com : It is not valid for Nigel Lawson to claim that there has been “no further warming at all”. Heat accumulation continues to be documented. Where is Nigel Lawson’s evidence to support his claim that the IPCC is a “deeply flawed body” ? Or is that another one of his entirely unsubstantiated dismissals of science ? Does he just fudge the facts, gloss over the details, pour scorn on scientists, impugn the academies of science, play with semantics, stir up antipathy, wave his hands and the whole history of science suddenly vanishes in a puff of dismissive smoke ? I doubt it ! Nigel Lawson says “the observed rate of warming is less than the margin of error.” This is ridiculous, because temperature is not something that you can add or subtract, like bags of sugar, or baskets of apples, or Pounds Sterling to the Global Warming Policy Foundation’s public relations fund. Two degrees Celsius, or Centigrade, is not twice as warm as one degree Celsius. 30 degrees C doesn’t indicate twice as much heat as 15 degrees C, or require twice as much heating. The range of figures that Nigel Lawson is quoting, minus 0.05 degrees C plus or minus 0.1 degrees C, that is, somewhere between a cooling of 0.05 degrees C and a warming of 0.15 degrees C, is a calculation of temperature trends averaged over the whole Earth’s surface for the last 15 years :-
https://www.climatechange2013.org/images/uploads/WGIAR5_WGI-12Doc2b_FinalDraft_Chapter09.pdf (Box 9.2)
It is not surprising that over such a short timescale it might appear that the Earth as experienced a mild cooling effect. In the last 15 years there have been a couple of years far hotter than average, and these spike the calculated trend. For example, 1998 was much hotter than the years before or after it, so if you were just to compare 1998 with 2008, it would look like the Earth is cooling down. But who would be foolish enough to look at just two calendar years of the data record on which to base their argument ? The last 15 years have to be taken in context. In “Climate Change 2013 : The Physical Science Basis”, the IPCC report from Working Group 1, in the Summary for Policymakers, page 5, Section B1, the IPCC write :-
https://www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf
“In addition to robust multi-decadal warming, global mean surface temperature exhibits substantial decadal and interannual variability […] Due to natural variability, trends based on short records are very sensitive to the beginning and end dates and do not in general reflect long-term climate trends. As one example, the rate of warming over the past 15 years (1998–2012; 0.05 [–0.05 to 0.15] °C per decade), which begins with a strong El Niño, is smaller than the rate calculated since 1951 (1951–2012; 0.12 [0.08 to 0.14] °C per decade).” (El Niño is a prominent pattern of winds and ocean currents in the Pacific Ocean with two main states – one that tends to produce a warming effect on the Earth’s surface temperatures, and the other, La Niña, which has a general cooling effect.) ] In other words, in the last fifteen years, the range of rate of change of temperature is calculated to be somewhere between the surface of the planet cooling by 0.05 degrees Centigrade, up to warming by 0.15 degrees Centigrade :-
https://data.giss.nasa.gov/gistemp/graphs_v3/Fig.C.gif
https://www.climate4you.com/GlobalTemperatures.htm#Recent%20global%20satellite%20temperature
However, this calculation of a trend line does not take account of three things. First, in the last decade or so, the variability of individual years could mask a trend, but relative to the last 50 years, everything is clearly hotter on average. Secondly, temperature is not a “discrete” quantity, it is a continuous field of effect, and it is going to have different values depending on location and time. The temperature for any January to December is only going to be an average of averages. If you were to measure the year from March to February instead, the average of averages could look different, because of the natural variability. Thirdly, there are lots of causes for local and regional temperature variability, all concurrent, so it is not until some time after a set of measurements has been taken, and other sets of measurements have been done, that it is possible to determine that a substantial change has taken place. ]

And that margin of error, it must be said, is implausibly small. After all, calculating mean global temperature from the records of weather stations and maritime observations around the world, of varying quality, is a pretty heroic task in the first place. Not to mention the fact that there is a considerable difference between daytime and night-time temperatures. In any event, to produce a figure accurate to hundredths of a degree is palpably absurd.

[ joabbess.com : Nigel Lawson could be said to mislead in his explanation of what “a figure accurate to hundredths of a degree” implies. Temperature is measured on an arbitrarily decided scale. To raise the whole of the Earth surface temperatures by 1 degree Celsius requires a lot of extra trapped energy. The surface temperature of the Earth is increasing by the absorption of energy that amounts roughly to 2 trillion Hiroshima atombic bombs since 1998, or 4 Hiroshimas a second. That is not a small number, although it has to be seen in the full context of the energy flows in and out of the Earth system :-
https://www.skepticalscience.com/4-Hiroshima-bombs-per-second-widget-raise-awareness-global-warming.html
https://blogs.discovermagazine.com/imageo/2013/12/03/climate-bomb-redux/#.U2tlfaI-hrQ
Nigel Lawson credits the global temperature monitoring exercise as “heroic”, but then berates its quality. However, climate change scientists do already appreciate that there are differences between daytime and nighttime temperatures – it is called the diurnal range. Besides differences between years, it is known that there are also differences between seasons, and latitudes, and climatic zones. Scientists are not claiming an absolute single value for the temperature of the Earth, accurate to within hundredths of a degree – that’s why they always give a margin of error. What is astonishing from reviews of the data is something that Nigel Lawson has completely missed. Global warming appears to have fractal resolution – that is – at whatever geographical scale you resolve the data, the trend in most cases appears to be similar. If you take a look at some of the websites offering graphs, for example :-
https://www.rimfrost.no/
https://data.giss.nasa.gov/gistemp/station_data/
the global warming trend is seen to be generally similar when averaged locally, regionally or at the global scale. This is an indicator that the global warming signal is properly being detected, as these trend lines are more or less what you would expect from basic physics and chemistry – the more carbon dioxide in the air, the more heat gets trapped, and the rate of carbon dioxide accumulation in the atmosphere has seen similar trendlines :-
https://cdiac.esd.ornl.gov/trends/co2/recent_mauna_loa_co2.html ]

The lessons of the unpredicted 15-year global temperature standstill (or hiatus as the IPCC calls it) are clear. In the first place, the so-called Integrated Assessment Models which the climate science community uses to predict the global temperature increase which is likely to occur over the next 100 years are almost certainly mistaken, in that climate sensitivity is almost certainly significantly less than they once thought, and thus the models exaggerate the likely temperature rise over the next hundred years.

[ joabbess.com : I repeat : there is no pause. The IPCC are not claiming that global warming has stopped, only that there is an apparent “hiatus” in global surface temperature averages. Some scientists have concluded from their work that Climate Sensitivity is less than once feared. However, Climate Sensitivity is calculated for an immediate, once-only doubling of carbon dioxide in the atmosphere, whereas the reality is that carbon dioxide is continuing to build up in the atmosphere, and if emissions continue unabated, there could be a tripling or quadrupling of carbon dioxide concentrations in the atmosphere, which would mean that you would need to multiply the Climate Sensitivity by 1.5 or 2 to arrive at the final top temperature – higher than previously calculated, regardless of whether the expected Climate Sensitivity were to be less than previously calculated. It is therefore illogical for Nigel Lawson to extrapolate from his understanding that Climate Sensitivity is lower than previously calculated to his conclusion that the final level of global warming will be lower than previously calculated. The more carbon dioxide we emit, the worse it will be. ]

But the need for a rethink does not stop there. As the noted climate scientist Professor Judith Curry, chair of the School of Earth and Atmospheric Sciences at the Georgia Institute of Technology, recently observed in written testimony to the US Senate:
“Anthropogenic global warming is a proposed theory whose basic mechnism is well understood, but whose magnitude is highly uncertain. The growing evidence that climate models are too sensitive to CO2 has implications for the attribution of late-20th-century warming and projections of 21st-century climate. If the recent warming hiatus is caused by natural variability, then this raises the question as to what extent the warming between 1975 and 2000 can also be explained by natural climate variability.”

[ joabbess.com : The IPCC reports constitute the world’s best attempts to “rethink” Climate Change. Professor Judith Curry, in the quotation given by Nigel Lawson, undervalues a great deal of her colleagues’ work by dismissing their valid attribution of Climate Change to the burning of fossil fuels and the change in land use. ]

It is true that most members of the climate science establishment are reluctant to accept this, and argue that the missing heat has for the time being gone into the (very cold) ocean depths, only to be released later. This is, however, highly conjectural. Assessing the mean global temperature of the ocean depths is — unsurprisingly — even less reliable, by a long way, than the surface temperature record. And in any event most scientists reckon that it will take thousands of years for this “missing heat” to be released to the surface.

[ joabbess.com : That the oceans are warming is not conjecture – it is a statement based on data. The oceans have a far greater capacity for heat retention than the atmosphere, so yes, it will take a long time for heat in the oceans to re-emerge into the atmosphere. However, the processes that directed heat into the oceans rather than the atmosphere in recent years could easily reverse, and in a short space of time the atmosphere could heat up considerably. In making his arguments, Nigel Lawson omits to consider this eventuality, which lowers considerably the value of his conclusions. ]

In short, the CO2 effect on the earth’s temperature is probably less than was previously thought, and other things — that is, natural variability and possibly solar influences — are relatively more significant than has hitherto been assumed.

[ joabbess.com : Nothing about science has changed. The Earth system continues to accumulate heat and respond to that. Carbon dioxide still contributes to the Greenhouse Effect, and extra carbon dioxide in the air will cause further global warming. The Transient Climate Response to carbon dioxide is still apparently linear. The Equilibrium Climate Sensitivity is still calculated to be roughly what it always has been – but that’s only for a doubling of atmospheric carbon dioxide. If more methane is emitted as a result of Arctic warming, for example, or the rate of fossil fuel use increases, then the temperature increase of the Earth’s surface could be more than previously thought. Natural variability and solar changes are all considered in the IPCC reports, and all calculations and models take account of them. However, the obvious possibility presents itself – that the patterns of natural variability as experienced by the Earth during the last 800,000 years are themseles being changed. If Climate Change is happening so quickly as to affect natural variability, then the outcomes could be much more serious than anticipated. ]

But let us assume that the global temperature hiatus does, at some point, come to an end, and a modest degree of global warming resumes. How much does this matter?

The answer must be that it matters very little. There are plainly both advantages and disadvantages from a warmer temperature, and these will vary from region to region depending to some extent on the existing temperature in the region concerned. And it is helpful in this context that the climate scientists believe that the global warming they expect from increased atmospheric CO2 will be greatest in the cold polar regions and least in the warm tropical regions, and will be greater at night than in the day, and greater in winter than in summer. Be that as it may, studies have clearly shown that, overall, the warming that the climate models are now predicting for most of this century (I referred to these models earlier, and will come back to them later) is likely to do more good than harm.

[ joabbess.com : The claim that warming will “overall […] do more good than harm” is erroneous, according to Climate Change Science. ]

Global warming orthodoxy is not merely irrational. It is wicked.

[ joabbess.com : My conclusions upon reading this lecture are that the evidence suggests that Nigel Lawson’s position is ill-informed. He should read the IPCC reports and re-consider. ]

Categories
Academic Freedom Assets not Liabilities Be Prepared Big Number Big Picture British Biogas Carbon Commodities Change Management Corporate Pressure Demoticratica Design Matters Disturbing Trends Energy Autonomy Energy Change Energy Crunch Energy Denial Energy Insecurity Energy Revival Engineering Marvel Fossilised Fuels Fuel Poverty Gamechanger Gas Storage Green Gas Green Investment Green Power Growth Paradigm Hide the Incline Hydrocarbon Hegemony Hydrogen Economy Insulation Major Shift Marine Gas Methane Management Money Sings National Energy Paradigm Shapeshifter Peak Natural Gas Realistic Models Regulatory Ultimatum Renewable Gas Renewable Resource Resource Curse Resource Wards Shale Game Solution City Technofix Technological Sideshow The Power of Intention The Price of Gas The Right Chemistry Unconventional Foul Unnatural Gas Western Hedge

Fiefdom of Information

Sigh. I think I’m going to need to start sending out Freedom of Information requests… Several cups of tea later…


To: Information Rights Unit, Department for Business, Innovation & Skills, 5th Floor, Victoria 3, 1 Victoria Street, London SW1H OET

28th April 2014

Request to the Department of Energy and Climate Change

Re: Policy and Strategy for North Sea Natural Gas Fields Depletion

Dear Madam / Sir,

I researching the history of the development of the gas industry in the United Kingdom, and some of the parallel evolution of the industry in the United States of America and mainland Europe.

In looking at the period of the mid- to late- 1960s, and the British decision to transition from manufactured gas to Natural Gas supplies, I have been able to answer some of my questions, but not all of them, so far.

From a variety of sources, I have been able to determine that there were contingency plans to provide substitutes for Natural Gas, either to solve technical problems in the grid conversion away from town gas, or to compensate should North Sea Natural Gas production growth be sluggish, or demand growth higher than anticipated.

Technologies included the enriching of “lean” hydrogen-rich synthesis gas (reformed from a range of light hydrocarbons, by-products of the petroleum refining industry); Synthetic Natural Gas (SNG) and methane-“rich” gas making processes; and simple mixtures of light hydrocarbons with air.

In the National Archives Cmd/Cmnd/Command document 3438 “Fuel Policy. Presented to Parliament by the Minister of Power Nov 1967”, I found discussion on how North Sea gas fields could best be exploited, and about expected depletion rates, and that this could promote further exploration and discovery.

In a range of books and papers of the time, I have found some discussion about options to increase imports of Natural Gas, either by the shipping of Liquified Natural Gas (LNG) or by pipeline from The Netherlands.

Current British policy in respect of Natural Gas supplies appears to rest on “pipeline diplomacy”, ensuring imports through continued co-operation with partner supplier countries and international organisations.

I remain unclear about what official technological or structural strategy may exist to bridge the gap between depleting North Sea Natural Gas supplies and continued strong demand, in the event of failure of this policy.

It is clear from my research into early gas field development that depletion is inevitable, and that although some production can be restored with various techniques, that eventually wells become uneconomic, no matter what the size of the original gas field.

To my mind, it seems unthinkable that the depletion of the North Sea gas fields was unanticipated, and yet I have yet to find comprehensive policy statements that cover this eventuality and answer its needs.

Under the Freedom of Information Act (2000), I am requesting information to answer the following questions :-

1.   At the time of European exploration for Natural Gas in the period 1948 to 1965, and the British conversion from manufactured gas to Natural Gas, in the period 1966 to 1977, what was HM Government’s policy to compensate for the eventual depletion of the North Sea gas fields ?

2.   What negotiations and agreements were made between HM Government and the nationalised gas industry between 1948 and 1986; and between HM Government and the privatised gas industry between 1986 and today regarding the projections of decline in gas production from the UK Continental Shelf, and any compensating strategy, such as the development of unconventional gas resources, such as shale gas ?

3.   Is there any policy or strategy to restore the SNG (Synthetic Natural Gas) production capacity of the UK in the event of a longstanding crisis emerging, for example from a sharp rise in imported Natural Gas costs or geopolitical upheaval ?

4.   Has HM Government any plan to acquire the Intellectual Property rights to SNG production technology, whether from British Gas/Centrica or any other private enterprise, especially for the slagging version of the Lurgi gasifier technology ?

5.   Has HM Government any stated policy intention to launch new research and development into, or pilot demonstrations of, SNG ?

6.   Does HM Government have any clearly-defined policy on the production and use of manufactured gas of any type ? If so, please can I know references for the documents ?

7.   Does HM Government anticipate that manufactured gas production could need to increase in order to support the production of synthetic liquid vehicle fuels; and if so, which technologies are to be considered ?

Thank you for your attention to my request for information.

Regards,

jo.

Categories
Academic Freedom Assets not Liabilities Bioeffigy British Biogas Burning Money Carbon Capture Climate Change Conflict of Interest Corporate Pressure Cost Effective Design Matters Direction of Travel Disturbing Trends Dreamworld Economics Emissions Impossible Energy Change Engineering Marvel Extreme Energy Financiers of the Apocalypse Fossilised Fuels Gamechanger Gas Storage Geogingerneering Green Gas Green Investment Green Power Hydrocarbon Hegemony Hydrogen Economy Low Carbon Life Mad Mad World Marine Gas Mass Propaganda Methane Madness Methane Management Money Sings Mudslide National Energy National Power No Pressure Nuclear Nuisance Nuclear Shambles Nudge & Budge Orwells Paradigm Shapeshifter Petrolheads Policy Warfare Political Nightmare Public Relations Pure Hollywood Regulatory Ultimatum Renewable Gas Solar Sunrise Solution City Technofix Technological Fallacy Technological Sideshow Technomess The Myth of Innovation The Power of Intention Ungreen Development Vote Loser Wasted Resource Western Hedge Wind of Fortune Zero Net

Failing Narratives : Carbon Culprits

In the last few weeks I have attended a number of well-intentioned meetings on advances in the field of carbon dioxide emissions mitigation. My overall impression is that there are several failing narratives to be encountered if you make even the shallowest foray into the murky mix of politics and energy engineering.

As somebody rightly pointed out, no capitalist worth their share price is going to spend real money in the current economic environment on new kit, even if they have asset class status – so all advances will necessarily be driven by public subsidies – in fact, significant technological advance has only ever been accomplished by state support.

Disturbingly, free money is also being demanded to roll out decades-old low carbon energy technology – nuclear power, wind power, green gas, solar photovoltaics – so it seems to me the only way we will ever get appropriate levels of renewable energy deployment is by directed, positive public investment.

More to the point, we are now in an era where nobody at all is prepared to spend any serious money without a lucrative slap on the back, and reasons beyond reasons are being deployed to justify this position. For example, the gas-fired power plant operators make claims that the increase in wind power is threatening their profitability, so they are refusing to built new electricity generation capacity without generous handouts. This will be the Capacity Mechanism, and will keep gas power plants from being mothballed. Yes, there is data to support their complaint, but it does still seem like whinging and special pleading.

And the UK Government’s drooling and desperate fixation with new nuclear power has thrown the European Commission into a tizzy about the fizzy promises of “strike price” guaranteed sales returns for the future atomic electricity generation.

But here, I want to contrast two other energy-polity dialogues – one for developing an invaluable energy resource, and the other about throwing money down a hole.

First, let’s take the white elephant. Royal Dutch Shell has for many years been lobbying for state financial support to pump carbon dioxide down holes in the ground. Various oil and gas industry engineers have been selling this idea to governments, federal and sub-federal for decades, and even acted as consultants to the Civil Society process on emissions control – you just need to read the United Nations’ IPCC Climate Change Assessment Report and Special Report output to detect the filigree of a trace of geoengineering fingers scratching their meaning into global intention. Let us take your nasty, noxious carbon dioxide, they whisper suggestively, and push it down a hole, out of sight and out of accounting mind, but don’t forget to slip us a huge cheque for doing so. You know, they add, we could even do it cost-effectively, by producing more oil and gas from emptying wells, resulting from pumping the carbon dioxide into them. Enhanced Oil Recovery – or EOR – would of course mean that some of the carbon dioxide pumped underground would in effect come out again in the form of the flue gas from the combustion of new fossil fuels, but anyway…

And governments love being seen to be doing something, anything, really, about climate change, as long as it’s not too complicated, and involves big players who should be trustworthy. So, you get the Peterhead project picking up a fat cheque for a trial of Carbon Capture and Storage (CCS) in Scotland, and the sidestep hint that if Scotland decides to become independent, this project money could be lost…But this project doesn’t involve much of anything that is really new. The power station that will be used is a liability that ought to be closing now, really, according to some. And the trial will only last for ten years. There will be no EOR – at least – not in the public statements, but this plan could lead the way.

All of this is like pushing a fat kid up a shiny slide. Once Government take their greasy Treasury hands off the project, the whole narrative will fail, falling to an ignominious muddy end. This perhaps explains the underlying desperation of many – CCS is the only major engineering response to emissions that many people can think of – because they cannot imagine burning less fossil fuels. So this wobbling effigy has to be kept on the top of the pedestal. And so I have enjoyed two identical Shell presentations on the theme of the Peterhead project in as many weeks. CCS must be obeyed.

But, all the same, it’s big money. And glaring yellow and red photo opps. You can’t miss it. And then, at the other end of the scale of subsidies, is biogas. With currently low production volumes, and complexities attached to its utilisation, anaerobically digesting wastes of all kinds and capturing the gas for use as a fuel, is a kind of token technology to many, only justified because methane is a much stronger greenhouse gas than carbon dioxide, so it needs to be burned.

The subsidy arrangements for many renewable energy technologies are in flux. Subsidies for green gas will be reconsidered and reformulated in April, and will probably experience a degression – a hand taken off the tiller of driving energy change.

At an evening biogas briefing given by Rushlight this week, I could almost smell a whiff of despair and disappointment in the levels of official support for green gas. It was freely admitted that not all the planned projects around the country will see completion, not only because of the prevailing economic climate, but because of the vagaries of feedstock availability, and the complexity of gas cleaning regulations.

There was light in the tunnel, though, even if the end had not been reached – a new Quality Protocol for upgrading biogas to biomethane, for injection into the gas grid, has been established. You won’t find it on the official UK Goverment website, apparently, as it has fallen through the cracks of the rebranding to gov.uk, but here it is, and it’s from the Environment Agency, so it’s official :-

https://www.greengas.org.uk/pdf/biomethane-qp.pdf

https://www.r-e-a.net/news/rea-welcomes-environment-agencys-updated-anaerobic-digestion-quality-protocol

https://adbiogas.co.uk/2014/01/30/biomethane-qp-could-boost-renewable-gas-to-grid-market/
https://adbiogas.co.uk/2014/01/30/biomethane-quality-protocol-published/

Here’s some background :-

https://www.environment-agency.gov.uk/aboutus/wfo/epow/124111.aspx

To get some picture of the mess that British green energy policy is in, all you need do is take a glance at Germany and Denmark, where green gas is considered the “third leg of the stool”, stabilising renewable energy supply with easily-stored low carbon gas, to balance out the peaks and troughs in wind power and solar power provision.

Green gas should not be considered a nice-to-have minor addition to the solutions portfolio in my view. The potential to de-carbonise the energy gas supply is huge, and the UK are missing a trick here – the big money is being ladled onto the “incumbents” – the big energy companies who want to carry on burning fossil fuels but sweep their emissions under the North Sea salt cavern carpet with CCS, whilst the beer change is being reluctantly handed out as a guilt offering to people seeking genuinely low carbon energy production.

Seriously – where the exoplanet are we at ?

Categories
Acid Ocean Assets not Liabilities Baseload is History Be Prepared Big Number Big Picture Biofools British Biogas British Sea Power Carbon Capture Carbon Recycling China Syndrome Climate Change Climate Chaos Climate Damages Coal Hell Design Matters Direction of Travel Disturbing Trends Efficiency is King Electrificandum Energy Autonomy Energy Calculation Energy Crunch Energy Denial Energy Insecurity Energy Revival Engineering Marvel Environmental Howzat Extreme Energy Extreme Weather Fair Balance Feel Gooder Fossilised Fuels Freshwater Stress Gamechanger Gas Storage Green Investment Green Power Hydrocarbon Hegemony Hydrogen Economy Insulation Low Carbon Life Major Shift Marine Gas Marvellous Wonderful Methane Management Military Invention National Energy National Power Nuclear Nuisance Nuclear Shambles Optimistic Generation Peak Emissions Policy Warfare Political Nightmare Realistic Models Regulatory Ultimatum Renewable Gas Resource Curse Resource Wards Shale Game Solar Sunrise Solution City The Power of Intention The Right Chemistry Transport of Delight Unconventional Foul Ungreen Development Unnatural Gas Utter Futility Vain Hope Wind of Fortune

But Uh-Oh – Those Summer Nights

A normal, everyday Monday morning at Energy Geek Central. Yes, this is a normal conversation for me to take part in on a Monday morning. Energy geekery at breakfast. Perfect.

Nuclear Flower Power

This whole UK Government nuclear power programme plan is ridiculous ! 75 gigawatts (GW) of Generation III nuclear fission reactors ? What are they thinking ? Britain would need to rapidly ramp up its construction capabilities, and that’s not going to happen, even with the help of the Chinese. (And the Americans are not going to take too kindly to the idea of China getting strongly involved with British energy). And then, we’d need to secure almost a quarter of the world’s remaining reserves of uranium, which hasn’t actually been dug up yet. And to cap it all, we’d need to have 10 more geological disposal repositories for the resulting radioactive spent fuel, and we haven’t even managed to negotiate one yet. That is, unless we can burn a good part of that spent fuel in Generation IV nuclear fission reactors – which haven’t even been properly demonstrated yet ! Talk about unconscionable risk !

Baseload Should Be History By Now, But…

Whatever the technological capability for nuclear power plants to “load follow” and reduce their output in response to a chance in electricity demand, Generation III reactors would not be run as anything except “baseload” – constantly on, and constantly producing a constant amount of power – although they might turn them off in summer for maintenance. You see, the cost of a Generation III reactor and generation kit is in the initial build – so their investors are not going to permit them to run them at low load factors – even if they could.

There are risks to running a nuclear power plant at partial load – mostly to do with potential damage to the actual electricity generation equipment. But what are the technology risks that Hinkley Point C gets built, and all that capital is committed, and then it only runs for a couple of years until all that high burn up fuel crumbles and the reactors start leaking plutonium and they have to shut it down permanently ? Who can guarantee it’s a sound bet ?

If they actually work, running Generation III reactors at constant output as “baseload” will also completely mess with the power market. In all of the scenarios, high nuclear, high non-nuclear, or high fossil fuels with Carbon Capture and Storage (CCS), there will always need to be some renewables in the mix. In all probability this will be rapidly deployed, highly technologically advanced solar power photovoltaics (PV). The amount of solar power that will be generated will be high in summer, but since you have a significant change in energy demand between summer and winter, you’re going to have a massive excess of electricity generation in summer if you add nuclear baseload to solar. Relative to the demand for energy, you’re going to get more Renewable Energy excess in summer and under-supply in winter (even though you get more offshore wind in winter), so it’s critical how you mix those two into your scenario.

The UK Government’s maximum 75 GW nuclear scenario comprises 55 GW Generation III and 20 GW Generation IV. They could have said 40 GW Gen III to feed Gen IV – the spent fuel from Gen III is needed to kick off Gen IV. Although, if LFTR took off, if they had enough fluoride materials there could be a Thorium way into Gen IV… but this is all so technical, no MP [ Member of Parliament ] is going to get their head round this before 2050.

The UK Government are saying that 16 GW of nuclear by 2030 should be seen as a first tranche, and that it could double or triple by 2040 – that’s one heck of a deployment rate ! If they think they can get 16 GW by 2030 – then triple that by 10 years later ? It’s not going to happen. And even 30 GW would be horrific. But it’s probably more plausible – if they can get 16 GW by 2030, they can arguably get double that by 2040.

As a rule of thumb, you would need around 10 tonnes of fissionable fuel to kickstart a Gen IV reactor. They’ve got 106 tonnes of Plutonium, plus 3 or 4 tonnes they recently acquired – from France or Germany (I forget which). So they could start 11 GW of Gen IV – possibly the PRISM – the Hitachi thing – sodium-cooled. They’ve been trying them since the Year Dot – these Fast Reactors – the Breeders – Dounreay. People are expressing more confidence in them now – “Pandora’s Promise” hangs around the narrative that the Clinton administration stopped research into Fast Reactors – Oak Ridge couldn’t be commercial. Throwing sodium around a core 80 times hotter than current core heats – you can’t throw water at it easily. You need something that can carry more heat out. It’s a high technological risk. But then get some French notable nuclear person saying Gen IV technologies – “they’re on the way and they can be done”.

Radioactive Waste Disposal Woes

The point being is – if you’re commissioning 30 GW of Gen III in the belief that Gen IV will be developed – then you are setting yourself up to be a hostage to technological fortune. That is a real ethical consideration. Because if you can’t burn the waste fuel from Gen III, you’re left with up to 10 radioactive waste repositories required when you can’t even get one at the moment. The default position is that radioactive spent nuclear fuel will be left at the power stations where they’re created. Typically, nuclear power plants are built on the coast as they need a lot of cooling water. If you are going for 30 GW you will need a load of new sites – possibly somewhere round the South East of England. This is where climate change comes in – rising sea levels, increased storm surge, dissolving, sinking, washed-away beaches, more extreme storms […] The default spent fuel scenario with numerous coastal decommissioned sites with radioactive interim stores which contain nearly half the current legacy radioactive waste […]

Based on the figures from the new Greenpeace report, I calculate that the added radioactive waste and radioactive spent fuel arisings from a programme of 16 GW of nuclear new build would be 244 million Terabequerel (TBq), compared to the legacy level of 87 million TBq.

The Nuclear Decommissioning Authority (NDA) are due to publish their Radioactive Waste Inventory and their Report on Radioactive Materials not in the Waste Inventory at the end of January 2014. We need to keep a watch out for that, because they may have adapted their anticipated Minimum and Maxmium Derived Inventory.

Politics Is Living In The Past

What you hear from politicians is they’re still talking about “baseload”, as if they’ve just found the Holy Grail of Energy Policy. And failed nuclear power. Then tidal. And barrages. This is all in the past. Stuff they’ve either read – in an article in a magazine at the dentist’s surgery waiting room, and they think, alright I’ll use that in a TV programme I’ve been invited to speak on, like Question Time. I think that perhaps, to change the direction of the argument, we might need to rubbish their contribution. A technological society needs to be talking about gasification, catalysis. If you regard yourselves as educated, and have a technological society – your way of living in the future is not only in manufacturing but also ideas – you need to be talking about this not that : low carbon gas fuels, not nuclear power. Ministers and senior civil servants probably suffer from poor briefing – or no briefing. They are relying on what is literally hearsay – informal discussions, or journalists effectively representing industrial interests. Newspapers are full of rubbish and it circulates, like gyres in the oceans. Just circulates around and around – full of rubbish.

I think part of the problem is that the politicians and chief civil servants and ministers are briefed by the “Old Guard” – very often the ex-nuclear power industry guard. They still believe in big construction projects, with long lead times and massive capital investment, whereas Renewable Electricity is racing ahead, piecemeal, and private investors are desperate to get their money into wind power and solar power because the returns are almost immediate and risk-free.

Together in Electric Dreams

Question : Why are the UK Government ploughing on with plans for so much nuclear power ?

1. They believe that a lot of transport and heat can be made to go electric.
2. They think they can use spent nuclear fuel in new reactors.
3. They think it will be cheaper than everything else.
4. They say it’s vital for UK Energy Security – for emissions reductions, for cost, and for baseload. The big three – always the stated aim of energy policy, and they think nuclear ticks all those three boxes. But it doesn’t.

What they’ll say is, yes, you have to import uranium, but you’ve got a 4 year stock. Any war you’re going to get yourselves involved in you can probably resolve in 4 days, or 4 weeks. If you go for a very high nuclear scenario, you would be taking quite a big share of the global resource of uranium. There’s 2,600 TWh of nuclear being produced globally. And global final energy demand is around 100,000 TWh – so nuclear power currently produces around 2.6% of global energy supply. At current rates of nuclear generation, according to the World Nuclear Association, you’ve got around 80 years of proven reserves and probably a bit more. Let’s say you double nuclear output by 2050 or 2040 – but in the same time you might just have enough uranium – and then find a bit more. But global energy demand rises significantly as well – so nuclear will still only provide around 3% of global energy demand. That’s not a climate solution – it’s just an energy distraction. All this guff about fusion. Well.

Cornering The Market In Undug Uranium

A 75 GW programme would produce at baseload 590 TWh a year – divide by 2,600 – is about 23% of proven global uranium reserves. You’re having to import, regardless of what other countries are doing, you’re trying to corner the market – roughly a quarter. Not even a quarter of the market – a quarter of all known reserves – it’s not all been produced yet. It’s still in the ground. So could you be sure that you could actually run these power stations if you build them ? Without global domination of the New British Empire […]. The security issues alone – defending coastal targets from a tweeb with a desire to blow them up. 50 years down the line they’re full of radioactive spent fuel that won’t have a repository to go to – we don’t want one here – and how much is it going to cost ?

My view is that offshore wind will be a major contributor in a high or 100% Renewable Electricity scenario by 2050 or 2060. Maybe 180 GW, that will also be around 600 TWh a year – comparable to that maximum nuclear programme. DECC’s final energy demand 2050 – several scenarios – final energy demand from 6 scenarios came out as between roughly 1,500 TWh a year and the maximum 2,500 TWh. Broadly speaking, if you’re trying to do that just with Renewable Electricity, you begin to struggle quite honestly, unless you’re doing over 600 TWh of offshore wind, and even then you need a fair amount of heat pump stuff which I’m not sure will come through. The good news is that solar might – because of the cost and technology breakthroughs. That brings with it a problem – because you’re delivering a lot of that energy in summer. The other point – David MacKay would say – in his book his estimate was 150 TWh from solar by 2050, on the grounds that that’s where you south-facing roofs are – you need to use higher efficiency triple junction cells with more than 40% efficiency and this would be too expensive for a rollout which would double or triple that 150 TWh – that would be too costly – because those cells are too costly. But with this new stuff, you might get that. Not only the cost goes down, but the coverage goes down. Not doing solar across swathes of countryside. There have always been two issues with solar power – cost and where it’s being deployed.

Uh-Oh, Summer Days. Uh-Oh, Summer Nights

With the solar-wind headline, summer days and summer nights are an issue.

With the nuclear headline, 2040 – they would have up to 50 GW, and that would need to run at somewhere between 75% and 95% capacity – to protect the investment and electric generation turbines.

It will be interesting to provide some figures – this is how much over-capacity you’re likely to get with this amount of offshore wind. But if you have this amount of nuclear power, you’ll get this amount […]

Energy demand is strongly variable with season. We have to consider not just power, but heat – you need to get that energy out in winter – up to 4 times as much during peak in winter evenings. How are you going to do that ? You need gas – or you need extensive Combined Heat and Power (CHP) (which needs gas). Or you need an unimaginable deployment of domestic heat pumps. Air source heat pumps won’t work at the time you need them most. Ground source heat pumps would require the digging up of Britain – and you can’t do that in most urban settings.

District Heat Fields

The other way to get heat out to everyone in a low carbon world – apart from low carbon gas – is having a field-based ground source heat pump scheme – just dig up a field next to a city – and just put in pipes and boreholes in a field. You’re not disturbing anybody. You could even grow crops on it next season. Low cost and large scale – but would need a District Heating (DH) network. There are one or two heat pump schemes around the world. Not sure if they are used for cooling in summer or heat extraction in the winter. The other thing is hot water underground. Put in an extra pipe in the normal channels to domestic dwellings. Any excess heat from power generation or electrolysis or whatever is put down this loop and heats the sub-ground. Because heat travels about 1 metre a month in soil, that heat should be retained for winter. A ground source heat sink. Geothermal energy could come through – they’re doing a scheme in Manchester. If there’s a nearby heat district network – it makes it easier. Just want to tee it into the nearest DH system. The urban heat demand is 150 TWh a year. You might be able to put DH out to suburban areas as well. There are 9 million gas-connected suburban homes – another about 150 TWh there as well – or a bit more maybe. Might get to dispose of 300 TWh in heat through DH. The Green Deal insulation gains might not be what is claimed – and condensing gas boiler efficiencies are not that great – which feeds into the argument that in terms of energy efficiency, you not only want to do insulation, but also DH – or low carbon gas. Which is the most cost-effective ? Could argue reasonable energy efficiency measures are cheapest – but DH might be a better bet. That involves a lot of digging.

Gas Is The Logical Answer

But everything’s already laid for gas. (…but from the greatest efficiency first perspective, if you’re not doing DH, you’re not using a lot of Renewable Heat you could otherwise use […] )

The best package would be the use of low carbon gases and sufficient DH to use Renewable Heat where it is available – such as desalination, electrolysis or other energy plant. It depends where the electrolysis is being done.

The Age of Your Carbon

It also depends on which carbon atoms you’re using. If you are recycling carbon from the combustion of fossil fuels into Renewable Gas, that’s OK. But you can’t easily recapture carbon emissions from the built environment (although you could effectively do that with heat storage). You can’t do carbon capture from transport either. So your low carbon gas has to come from biogenic molecules. Your Renewable Gas has to be synthesised using biogenic carbon molecules rather than fossil ones.

[…] I’m using the phrase “Young Carbon”. Young Carbon doesn’t have to be from plants – biological things that grow.

Well, there’s Direct Air Capture (DAC). It’s simple. David Sevier, London-based, is working on this. He’s using heat to capture carbon dioxide. You could do it from exhaust in a chimney or a gasification process – or force a load of air through a space. He would use heat and cooling to create an updraft. It would enable the “beyond capture” problem to be circumvented. Cost is non-competitive. Can be done technically. Using reject heat from power stations for the energy to do it. People don’t realise you can use a lot of heat to capture carbon, not electricity.

Young Carbon from Seawater

If you’re playing around with large amounts of seawater anyway – that is, for desalination for irrigation, why not also do Renewable Hydrogen, and pluck the Carbon Dioxide out of there too to react with the Renewable Hydrogen to make Renewable Methane ? I’m talking about very large amounts of seawater. Not “Seawater Greenhouses” – condensation designs mainly for growing exotic food. If you want large amounts of desalinated water – and you’re using Concentrated Solar Power – for irrigating deserts – you would want to grow things like cacti for biological carbon.

Say you had 40 GW of wind power on Dogger Bank, spinning at 40% load factor a year. You’ve also got electrolysers there. Any time you’re not powering the grid, you’re making gas – so capturing carbon dioxide from seawater, splitting water for hydrogen, making methane gas. Wouldn’t you want to use flash desalination first to get cleaner water for electrolysis ? Straight seawater electrolysis is also being done.

It depends on the relative quantities of gas concentrated in the seawater. If you’ve got oxygen, hydrogen and carbon dioxide, that would be nice. You might get loads of oxygen and hydrogen, and only poor quantities of carbon dioxide ?

But if you could get hydrogen production going from spare wind power. And even if you had to pipe the carbon dioxide from conventional thermal power plants, you’re starting to look at a sea-based solution for gas production. Using seawater, though, chlorine is the problem […]

Look at the relative density of molecules – that sort of calculation that will show if this is going to fly. Carbon dioxide is a very fixed, stable molecule – it’s at about the bottom of the energy potential well – you have to get that reaction energy from somewhere.

How Much Spare Power Will There Be ?

If you’ve got an offshore wind and solar system. At night, obviously, the solar’s not working (unless new cells are built that can run on infrared night-time Earthshine). But you could still have 100 GWh of wind power at night not used for the power grid. The anticipated new nuclear 40 GW nuclear by 2030 will produce about 140 GWh – this would just complicate problems – adding baseload nuclear to a renewables-inclusive scenario. 40 GW is arguably a reasonable deployment of wind power by 2030 – low if anything.

You get less wind in a nuclear-inclusive scenario, but the upshot is you’ve definitely got a lot of power to deal with on a summer night with nuclear power. You do have with Renewable Electricity as well, but it varies more. Whichever route we take we’re likely to end up with excess electricity generation on summer nights.

In a 70 GW wind power deployment (50 GW offshore, 20 GW onshore – 160 TWh a year), you might have something like 50 to 100 GWh per night of excess (might get up to 150 GWh to store on a windy night). But if you have a 16 GW nuclear deployment by 2030 (125 TWh a year), you are definitely going to have 140 GWh of excess per night (that’s 16 GW for 10 hours less a bit). Night time by the way is roughly between 9pm and 7am between peak demands.

We could be making a lot of Renewable Gas !

Can you build enough Renewable Gas or whatever to soak up this excess nuclear or wind power ?

The energy mix is likely to be in reality somewhere in between these two extremes of high nuclear or high wind.

But if you develop a lot of solar – so that it knocks out nuclear power – it will be the summer day excess that’s most significant. And that’s what Germany is experiencing now.

Choices, choices, choices

There is a big choice in fossil fuels which isn’t really talked about very often – whether the oil and gas industry should go for unconventional fossil fuels, or attempt to make use of the remaining conventional resources that have a lower quality. The unconventionals narrative – shale gas, coalbed methane, methane hydrates, deepwater gas, Arctic oil and gas, heavy oil, is running out of steam as it becomes clear that some of these choices are expensive, and environmentally damaging (besides their climate change impact). So the option will be making use of gas with high acid gas composition. And the technological solutions for this will be the same as needed to start major production of Renewable Gas.

Capacity Payments

But you still need to answer the balancing question. If you have a high nuclear power scenario, you need maybe 50 TWh a year of gas-fired power generation. If high Renewable Electricity, you will need something like 100 TWh of gas, so you need Carbon Capture and Storage – or low carbon gas.

Even then, the gas power plants could be running only 30% of the year, and so you will need capacity payments to make sure new flexible plants get built and stay available for use.

If you have a high nuclear scenario, coupled with gas, you can meet the carbon budget – but it will squeeze out Renewable Electricity. If high in renewables, you need Carbon Capture and Storage (CCS) or Carbon Capture and Recycling into Renewable Gas, but this would rule out nuclear power. It depends which sector joins up with which.

Carbon Capture, Carbon Budget

Can the Drax power plant – with maybe one pipeline 24 inches in diameter, carrying away 20 megatonnes of carbon dioxide per year – can it meet the UK’s Carbon Budget target ?

Categories
Academic Freedom Assets not Liabilities Behaviour Changeling Big Society Carbon Pricing Carbon Taxatious Climate Change Contraction & Convergence Cool Poverty Corporate Pressure Demoticratica Direction of Travel Disturbing Trends Dreamworld Economics Economic Implosion Efficiency is King Emissions Impossible Energy Change Energy Disenfranchisement Energy Revival Engineering Marvel Environmental Howzat Fair Balance Financiers of the Apocalypse Fossilised Fuels Freemarketeering Fuel Poverty Green Investment Green Power Growth Paradigm Human Nurture Hydrocarbon Hegemony Libertarian Liberalism Low Carbon Life Money Sings National Energy National Power National Socialism Nuclear Nuisance Nuclear Shambles Nudge & Budge Paradigm Shapeshifter Peak Emissions Peak Energy Policy Warfare Political Nightmare Price Control Regulatory Ultimatum Social Capital Social Change Social Chaos Social Democracy Solar Sunrise Solution City Sustainable Deferment The Power of Intention The Price of Gas The Price of Oil Ungreen Development Wasted Resource Wind of Fortune

Economic Ecology

Managing the balance between, on the one hand, extraction of natural resources from the environment, and on the other hand, economic production, shouldn’t have to be either, or. We shouldn’t value higher throughput and consumption at the expense of exhausting what the Earth can supply. We shouldn’t be “economic” in our ecology, we shouldn’t be penny-pinching and miserly and short-change the Earth. The Earth, after all, is the biosystem that nourishes us. What we should be aiming for is an ecology of economy – a balance in the systems of manufacture, agriculture, industry, mining and trade that doesn’t empty the Earth’s store cupboard. This, at its root, is a conservation strategy, maintaining humanity through a conservative economy. Political conservatives have lost their way. These days they espouse the profligate use of the Earth’s resources by preaching the pursuit of “economic growth”, by sponsoring and promoting free trade, and reversing environmental protection. Some in a neoliberal or capitalist economy may get rich, but they do so at the expense of everybody and everything else. It is time for an ecology in economics.

Over the course of the next couple of years, in between doing other things, I shall be taking part in a new project called “Joy in Enough”, which seeks to promote economic ecology. One of the key texts of this multi-workstream group is “Enough is Enough”, a book written by Rob Dietz and Dan O’Neill. In their Preface they write :-

“But how do we share this one planet and provide a high quality of life for all ? The economic orthodoxy in use around the world is not up to the challenge. […] That strategy, the pursuit of never-ending economic growth has become dysfunctional. With each passing day, we are witnessing more and more uneconomic growth – growth that costs more than it is worth. An economy that chases perpetually increasing production and consumption, always in search of more, stands no chance of achieving a lasting prosperity. […] Now is the time to change the goal from the madness of more to the ethic of enough, to accept the limits to growth and build an economy that meets our needs without undermining the life-support systems of the planet.”

One of the outcomes of global capitalism is huge disparities, inequalities between rich and poor, between haves and have-nots. Concern about this is not just esoteric morality – it has consequences on the whole system. Take, for example, a field of grass. No pastoral herder with a flock of goats is going to permit the animals to graze in just one corner of this field, for if they do, part of the grassland will over-grow, and part will become dust or mud, and this will destroy the value of the field for the purposes of grazing. And take another example – wealth distribution in the United Kingdom. Since most people do not have enough capital to live on the proceeds of investment, most people need to earn money for their wealth through working. The recent economic contraction has persuaded companies and the public sector to squeeze more productivity out of a smaller number of employees, or abandon services along with their employees. A simple map of unemployment shows how parts of the British population have been over-grazed to prop up the economic order. This is already having impacts – increasing levels of poverty, and the consequent social breakdown that accompanies it. Poverty and the consequent worsening social environment make people less able to look after themselves, their families, and their communities, and this has a direct impact on the national economy. We are all poorer because some of our fellow citizens need to use food banks, or have to make the choice in winter to Heat or Eat.

And let’s look more closely at energy. Whilst the large energy producers and energy suppliers continue to make significant profits – or put their prices up to make sure they do so – families in the lower income brackets are experiencing unffordability issues with energy. Yes, of course, the energy companies would fail if they cannot keep their shareholders and investors happy. Private concerns need to make a profit to survive. But in the grand scheme of things, the economic temperature is low, so they should not expect major returns. The energy companies are complaining that they fear for their abilities to invest in new resources and infrastructure, but many of their customers cannot afford their products. What have we come to, when a “trophy project” such as the Hinkley Point C nuclear power station gets signed off, with billions in concomitant subsidy support, and yet people in Scotland and the North East and North West of England are failing to keep their homes at a comfortable temperature ?

There is a basic conflict at the centre of all of this – energy companies make money by selling energy. Their strategy for survival is to make profit. This means they either have to sell more energy, or they have to charge more for the same amount of energy. Purchasing energy for most people is not a choice – it is a mandatory part of their spending. You could say that charging people for energy is akin to charging people for air to breathe. Energy is a essential utility, not an option. Some of the energy services we all need could be provided without purchasing the products of the energy companies. From the point of view of government budgets, it would be better to insulate the homes of lower income families than to offer them social benefit payments to pay their energy bills, but this would reduce the profits to the energy companies. Insulation is not a priority activity, because it lowers economic production – unless insulation itself is counted somehow as productivity. The ECO, the Energy Company Obligation – an obligation on energy companies to provide insulation for lower income family homes, could well become part of UK Prime Minister David Cameron’s “Bonfire of the Green Tax Vanities”. The ECO was set up as a subsidy payment, since energy companies will not provide energy services without charging somebody for them. The model of an ESCO – an Energy Services Company – an energy company that sells both energy and energy efficiency services is what is needed – but this means that energy companies need to diversify. They need to sell energy, and also sell people the means to avoid having to buy energy.

Selling energy demand reduction services alongside energy is the only way that privatised energy companies can evolve – or the energy sector could have to be taken back into public ownership because the energy companies are not being socially responsible. A combination of economic adjustment measures, essential climate change policy and wholesale price rises for fossil fuel energy mean that energy demand reduction is essential to keep the economy stable. This cannot be achieved by merely increasing end consumer bills, in an effort to change behaviour. There is only so much reduction in energy use that a family can make, and it is a one-time change, it cannot be repeated. You can nudge people to turn their lights off and their thermostats down by one degree, but they won’t do it again. The people need to be provided with energy control. Smart meters may or may not provide an extra tranche of energy demand reduction. Smart fridges and freezers will almost certainly offer the potential for further domestic energy reduction. Mandatory energy efficiency in all electrical appliances sold is essential. But so is insulation. If we don’t get higher rates of insulation in buildings, we cannot win the energy challenge. In the UK, one style of Government policies for insulation were dropped – and their replacements are simply not working. The mistake was to assume that the energy companies would play the energy conservation game without proper incentives – and by incentive, I don’t mean subsidy.

An obligation on energy companies to deploy insulation as well as other energy control measures shouldn’t need to be subsidised. What ? An obligation without a subsidy ? How refreshing ! If it is made the responsibility of the energy companies to provide energy services, and they are rated, and major energy procurement contracts are based on how well the energy companies perform on providing energy reduction services, then this could have an influence. If shareholders begin to understand the value of energy conservation and energy efficiency and begin to value their energy company holdings by their energy services portfolio, this could have an influence. If an energy utility’s licence to operate is based on their ESCO performance, this could have an influence : an energy utility could face being disbarred through the National Grid’s management of the electricity and gas networks – if an energy company does not provide policy-compliant levels of insulation and other demand control measures, it will not get preferential access for its products to supply the grids. If this sounds like the socialising of free trade, that’s not the case. Responsible companies are already beginning to respond to the unfolding crisis in energy. Companies that use large amounts of energy are seeking ways to cut their consumption – for reasons related to economic contraction, carbon emissions control and energy price rises – their bottom line – their profits – rely on energy management.

It’s flawed reasoning to claim that taxing bad behaviour promotes good behaviour. It’s unlikely that the UK’s Carbon Floor Price will do much apart from making energy more unaffordable for consumers – it’s not going to make energy companies change the resources that they use. To really beat carbon emissions, low carbon energy needs to be mandated. Mandated, but not subsidised. The only reason subsidies are required for renewable electricity is because the initial investment is entirely new development – the subsidies don’t need to remain in place forever. Insulation is another one-off cost, so short-term subsidies should be in place to promote it. As Nick Clegg MP proposes, subsidies for energy conservation should come from the Treasury, through a progressive tax, not via energy companies, who will pass costs on to energy consumers, where it stands a chance of penalising lower-income households. Wind power and solar power, after their initial investment costs, provide almost free electricity – wind turbines and solar panels are in effect providing energy services. Energy companies should be mandated to provide more renewable electricity as part of their commitment to energy services.

In a carbon-constrained world, we must use less carbon dioxide emitting fossil fuel energy. Since the industrialised economies use fossil fuels for more than abut 80% of their energy, lowering carbon emissions means using less energy, and having less building comfort, unless renewables and insulation can be rapidly increased. This is one part of the economy that should be growing, even as the rest is shrinking.

Energy companies can claim that they don’t want to provide insulation as an energy service, because insulation is a one-off cost, it’s not a continuing source of profit. Well, when the Big Six have finished insulating all the roofs, walls and windows, they can move on to building all the wind turbines and solar farms we need. They’ll make a margin on that.

Categories
Assets not Liabilities Big Number Big Picture Big Society Biofools Biomess British Sea Power Burning Money Carbon Army Carbon Capture Carbon Pricing Change Management Climate Change Climate Chaos Climate Damages Coal Hell Conflict of Interest Corporate Pressure Cost Effective Dead End Dead Zone Demoticratica Design Matters Direction of Travel Disturbing Trends Dreamworld Economics Efficiency is King Electrificandum Emissions Impossible Energy Autonomy Energy Change Energy Denial Energy Insecurity Energy Revival Energy Socialism Engineering Marvel Environmental Howzat Food Insecurity Forestkillers Fossilised Fuels Genetic Modification Geogingerneering Green Investment Green Power Growth Paradigm Health Impacts Hide the Incline Human Nurture Incalculable Disaster Insulation Major Shift Mass Propaganda Media Money Sings National Energy National Power Neverending Disaster No Pressure Nuclear Nuisance Nuclear Shambles Optimistic Generation Peak Coal Policy Warfare Political Nightmare Price Control Protest & Survive Public Relations Realistic Models Regulatory Ultimatum Renewable Resource Resource Curse Resource Wards Solution City Technofix Technological Fallacy Technological Sideshow Technomess The Price of Gas The Price of Oil The War on Error Tree Family Ungreen Development Western Hedge Wind of Fortune

Mind the Gap : BBC Costing the Earth

I listened to an interesting mix of myth, mystery and magic on BBC Radio 4.

Myths included the notion that long-term, nuclear power would be cheap; that “alternative” energy technologies are expensive (well, nuclear power is, but true renewables are most certainly not); and the idea that burning biomass to create heat to create steam to turn turbines to generate electricity is an acceptably efficient use of biomass (it is not).

Biofuelwatch are hosting a public meeting on this very subject :-
https://www.biofuelwatch.org.uk/2013/burning_issue_public_event/
“A Burning Issue – biomass and its impacts on forests and communities”
Tuesday, 29th October 2013, 7-9pm
Lumen Centre, London (close to St Pancras train station)
https://www.lumenurc.org.uk/lumencontact.htm
Lumen Centre, 88 Tavistock Place, London WC1H 9RS

Interesting hints in the interviews I thought pointed to the idea that maybe, just maybe, some electricity generation capacity should be wholly owned by the Government – since the country is paying for it one way or another. A socialist model for gas-fired generation capacity that’s used as backup to wind and solar power ? Now there’s an interesting idea…




https://www.bbc.co.uk/programmes/b03cn0rb

“Mind the Gap”
Channel: BBC Radio 4
Series: Costing the Earth
Presenter: Tom Heap
First broadcast: Tuesday 15th October 2013

Programme Notes :

“Our energy needs are growing as our energy supply dwindles.
Renewables have not come online quickly enough and we are increasingly
reliant on expensive imported gas or cheap but dirty coal. Last year
the UK burnt 50% more coal than in previous years but this helped
reverse years of steadily declining carbon dioxide emissions. By 2015
6 coal fired power stations will close and the cost of burning coal
will increase hugely due to the introduction of the carbon price
floor. Shale gas and biomass have been suggested as quick and easy
solutions but are they really sustainable, or cheap?”

“Carbon Capture and Storage could make coal or gas cleaner and a new
study suggests that with CCS bio energy could even decrease global
warming. Yet CCS has stalled in the UK and the rest of Europe and the
debate about the green credentials of biomass is intensifying. So what
is really the best answer to Britain’s energy needs? Tom Heap
investigates.”

00:44 – 00:48
[ Channel anchor ]
Britain’s energy needs are top of the agenda in “Costing the Earth”…

01:17
[ Channel anchor ]
…this week on “Costing the Earth”, Tom Heap is asking if our
ambitions to go green are being lost to the more immediate fear of
blackouts and brownouts.

01:27
[ Music : Arcade Fire – “Neighbourhood 3 (Power Out)” ]

[ Tom Heap ]

Energy is suddenly big news – central to politics and the economy. The
countdown has started towards the imminent shutdown of many coal-fired
power stations, but the timetable to build their replacements has
barely begun.

It’ll cost a lot, we’ll have to pay, and the politicians are reluctant
to lay out the bill. But both the official regulator and industry are
warning that a crunch is coming.

So in this week’s “Costing the Earth”, we ask if the goal of clean,
green and affordable energy is being lost to a much darker reality.

02:14
[ Historical recordings ]

“The lights have started going out in the West Country : Bristol,
Exeter and Plymouth have all had their first power cuts this
afternoon.”

“One of the biggest effects of the cuts was on traffic, because with
the traffic lights out of commission, major jams have built up,
particularly in the town centres. One of the oddest sights I saw is a
couple of ladies coming out of a hairdressers with towels around their
heads because the dryers weren’t working.”

“Television closes down at 10.30 [ pm ], and although the cinemas are
carrying on more or less normally, some London theatres have had to
close.”

“The various [ gas ] boards on both sides of the Pennines admit to
being taken by surprise with today’s cold spell which brought about
the cuts.”

“And now the major scandal sweeping the front pages of the papers this
morning, the advertisement by the South Eastern Gas Board recommending
that to save fuel, couples should share their bath.”

[ Caller ]
“I shall write to my local gas board and say don’t do it in
Birmingham. It might be alright for the trendy South, but we don’t
want it in Birmingham.”

03:13
[ Tom Heap ]

That was 1974.

Some things have changed today – maybe a more liberal attitude to
sharing the tub. But some things remain the same – an absence of
coal-fired electricity – threatening a blackout.

Back then it was strikes by miners. Now it’s old age of the power
plants, combined with an EU Directive obliging them to cut their
sulphur dioxide and nitrous oxide emissions by 2016, or close.

Some coal burners are avoiding the switch off by substituting wood;
and mothballed gas stations are also on standby.

But Dieter Helm, Professor of Energy Policy at the University of
Oxford, now believes power cuts are likely.

03:57
[ Dieter Helm ]

Well, if we take the numbers produced by the key responsible bodies,
they predict that there’s a chance that by the winter of 2-15 [sic,
meaning 2015] 2-16 [sic, meaning 2016], the gap between the demand for
electricity and the supply could be as low as 2%.

And it turns out that those forecasts are based on extremely
optimistic assumptions about how far demand will fall in that period
(that the “Green Deal” will work, and so on) and that we won’t have
much economic growth.

So basically we are on course for a very serious energy crunch by the
winter of 2-15 [sic, meaning 2015] 2-16 [sic, meaning 2016], almost
regardless of what happens now, because nobody can build any power
stations between now and then.

It’s sort of one of those slow motion car crashes – you see the whole
symptoms of it, and people have been messing around reforming markets
and so on, without addressing what’s immediately in front of them.

[ Tom Heap ]

And that’s where you think we are now ?

[ Dieter Helm ]

I think there’s every risk of doing so.

Fortunately, the [ General ] Election is a year and a half away, and
there’s many opportunities for all the political parties to get real
about two things : get real about the energy crunch in 2-15 [sic,
meaning 2015] 2-16 [sic, meaning 2016] and how they’re going to handle
it; and get real about creating the incentives to decarbonise our
electricity system, and deal with the serious environmental and
security and competitive issues which our electricity system faces.

And this is a massive investment requirement [ in ] electricity : all
those old stations retiring [ originally built ] back from the 1970s –
they’re all going to be gone.

Most of the nuclear power stations are coming to the end of their lives.

We need a really big investment programme. And if you really want an
investment programme, you have to sit down and work out how you’re
going to incentivise people to do that building.

[ Tom Heap ]

If we want a new energy infrastructure based on renewables and
carbon-free alternatives, then now is the time to put those incentives
on the table.

The problem is that no-one seems to want to make the necessary
investment, least of all the “Big Six” energy companies, who are
already under pressure about high bills.

[ “Big Six” are : British Gas / Centrica, EdF Energy (Electricite
de France), E.On UK, RWE npower, Scottish Power and SSE ]

Sam Peacock of the energy company SSE [ Scottish and Southern Energy ]
gives the commercial proof of Dieter’s prediction.

If energy generators can’t make money out of generating energy,
they’ll be reluctant to do it.

[ Sam Peacock ]

Ofgem, the energy regulator, has looked at this in a lot of detail,
and said that around 2015, 2016, things start to get tighter. The
reason for this is European Directives, [ is [ a ] ] closing down some
of the old coal plants. And also the current poor economics around [
or surround [ -ing ] ] both existing plant and potential new plant.

So, at the moment it’s very, very difficult to make money out of a gas
plant, or invest in a new one. So this leads to there being, you know,
something of a crunch point around 2015, 2016, and Ofgem’s analysis
looks pretty sensible to us.

[ Tom Heap ]

And Sam Peacock lays the blame for this crisis firmly at the Government’s door.

[ Sam Peacock ]

The trilemma, as they call it – of decarbonisation, security of supply
and affordability – is being stretched, because the Government’s
moving us more towards cleaner technologies, which…which are more
expensive.

However, if you were to take the costs of, you know, the extra costs
of developing these technologies off government [ sic, meaning
customer ] bills and into general taxation, you could knock about over
£100 off customer bills today, it’ll be bigger in the future, and you
can still get that much-needed investment going.

So, we think you can square the circle, but it’s going to take a
little bit of policy movement [ and ] it’s going to take shifting some
of those costs off customers and actually back where the policymakers
should be controlling them.

[ KLAXON ! Does he mean controlled energy prices ? That sounds a bit
centrally managed economy to me… ]

[ Tom Heap ]

No surprise that a power company would want to shift the pain of
rising energy costs from their bills to the tax bill.

But neither the Government nor the Opposition are actually proposing this.

Who pays the premium for expensve new energy sources is becoming like
a game of pass the toxic parcel.

[ Reference : https://en.wikipedia.org/wiki/Hot_potato_%28game%29 ]

I asked the [ UK Government Department of ] Energy and Climate Change
Secretary, Ed Davey, how much new money is required between now and
2020.

08:06

[ Ed Davey ]

About £110 billion – er, that’s critical to replace a lot of the coal
power stations that are closing, the nuclear power stations that are [
at the ] end of their lives, and replace a lot of the network which
has come to the end of its life, too.

So it’s a huge, massive investment task.

[ Tom Heap ]

So in the end we’re going to have to foot the bill for the £110 billion ?

[ Ed Davey ]

Yeah. Of course. That’s what happens now. People, in their bills that
they pay now, are paying for the network costs of investments made
several years, even several decades ago.

[ Yes – we’re still paying through our national nose to dispose of
radioactive waste and decommission old nuclear reactors. The liability
of it all weighs heavily on the country’s neck… ]

And there’s no escaping that – we’ve got to keep the lights on – we’ve
got to keep the country powered.

You have to look at both sides of the equation. If we’re helping
people make their homes more inefficient [ sic, meaning energy
efficient ], their product appliances more efficient, we’re doing
everything we possibly can to try to help the bills be kept down,

while we’re having to make these big investments to keep the lights
on, and to make sure that we don’t cook the planet, as you say.

[ Tom Heap ]

You mention the lights going out. There are predictions that we’re
headed towards just 2% of spare capacity in the system in a few years’
time.

Are you worried about the dangers of, I don’t know, maybe not lights
going out for some people, but perhaps big energy users being told
when and when [ sic, meaning where ] they can’t use power in the
winter ?

[ Ed Davey ]

Well, there’s no doubt that as the coal power stations come offline,
and the nuclear power plants, er, close, we’re going to have make sure
that new power plants are coming on to replace them.

And if we don’t, there will be a problem with energy security.

Now we’ve been working very hard over a long time now to make sure we
attract that investment. We’ve been working with Ofgem, the regulator;
with National Grid, and we’re…

[ Tom Heap ]

…Being [ or it’s being ] tough. I don’t see companies racing to come
and fill in the gap here and those coal power plants are going off
soon.

[ Ed Davey ]

…we’re actually having record levels of energy investment in the country.

The problem was for 13 years under the last Government
[ same old, same old Coalition argument ] we saw low levels of investment
in energy, and we’re having to race to catch up, but fortunately we’re
winning that race. And we’re seeing, you know, billions of pounds
invested but we’ve still got to do more. We’re not there. I’m not
pretending we’re there yet. [ Are we there, yet ? ] But we do have the
policies in place.

So, Ofgem is currently consulting on a set of proposals which will
enable it to have reserve power to switch on at the peak if it’s
needed.

We’re, we’ve, bringing forward proposals in the Energy Bill for what’s
called a Capacity Market, so we can auction to get that extra capacity
we need.

So we’ve got the policies in place.

[ Tom Heap ]

Some of Ed Davey’s policies, not least the LibDem [ Liberal Democrat
Party ] U-turn on nuclear, have been guided by DECC [ Department of
Energy and Climate Change ] Chief Scientist David MacKay, author of
the influential book “Renewable Energy without the Hot Air” [ sic,
actually “Sustainable Energy without the Hot Air” ].

Does he think the lights will dim in the second half of this decade ?

[ David MacKay ]

I don’t think there’s going to be any problem maintaining the capacity
that we need. We just need to make clear where Electricity Market
Reform [ EMR, part of the Energy Bill ] is going, and the way in which
we will be maintaining capacity.

[ Tom Heap ]

But I don’t quite understand that, because it seems to me, you know,
some of those big coal-fired power stations are going to be going off.
What’s going to be coming in their place ?

[ David MacKay ]

Well, the biggest number of power stations that’s been built in the
last few years are gas power stations, and we just need a few more gas
power stations like that, to replace the coal
, and hopefully some
nuclear power stations will be coming on the bars, as well as the wind
farms that are being built at the moment.

[ Tom Heap ]

And you’re happy with that increase in gas-fired power stations, are
you ? I mean, you do care deeply, personally, about reducing our
greenhouse gases, and yet you’re saying we’re going to have to build
more gas-fired power stations.

[ David MacKay ]

I do. Even in many of the pathways that reach the 2050 target, there’s
still a role for gas in the long-term, because some power sources like
wind and solar power are intermittent, so if you want to be keeping
the lights on in 2050 when there’s no wind and there’s no sun, you’re
going to need some gas power stations there
. Maybe not operating so
much of the time as they do today, but there’ll still be a role in
keeping the lights on.

[ KLAXON ! If gas plants are used only for peak periods or for backup to
renewables, then the carbon emissions will be much less than if they are
running all the time. ]

[ Tom Heap ]

Many energy experts though doubt that enough new wind power or nuclear
capacity could be built fast enough to affect the sums in a big way by
2020.

But that isn’t the only critical date looming over our energy system.
Even more challenging, though more distant, is the legally binding
objective of cutting greenhouse gas emissions in 2050.

David MacKay wants that certainty to provide the foundation for energy
decisions, and he showed me the effect of different choices with the
“Ultimate Future Energy App”. I was in his office, but anyone can try it online.

[ David MacKay ]

It’s a 2050 calculator. It computes energy demand and supply in
response to your choices, and it computes multiple consequences of
your choices. It computes carbon consequences. It also computes for
you estimates of air quality, consequences of different choices;
security of supply, consequences; and the costs of your choices.

So with this 2050 calculator, it’s an open source tool, and anyone can
go on the web and use the levers to imagine different futures in 2050
of how much action we’ve taken in different demand sectors and in
different supply sectors.

The calculator has many visualisations of the pathway that you’re choosing
and helps people understand all the trade-offs… There’s no silver
bullet for any of this. If I dial up a pathway someone made earlier,
we can visualise the implications in terms of the area occupied for
the onshore wind farms, and the area in the sea for the offshore wind
farms, and the length of the wave farms that you’ve built, and the
land area required for energy crops.

And many organisations have used this tool and some of them have given
us their preferred pathway. So you can see here the Friends of the
Earth have got their chosen pathway, the Campaign to Protect Rural
England, and various engineers like National Grid and Atkins have got
their pathways.

So you can see alternative ways of achieving our targets, of keeping
the lights on and taking climate change action. All of those pathways
all meet the 2050 target, but they do so with different mixes.

[ Tom Heap ]

And your view of this is you sort of can’t escape from the scientific
logic and rigour of it. You might wish things were different or you
could do it differently, but you’re sort of saying “Look, it’s either
one thing or the other”. That’s the point of this.

[ David MacKay ]

That’s true. You can’t be anti-everything. You can’t be anti-wind and
anti-nuclear and anti-home insulation. You won’t end up with a plan
that adds up.

[ KLAXON ! But you can be rationally against one or two things, like
expensive new nuclear power, and carbon and particulate emissions-heavy
biomass for the generation of electricity. ]

[ Tom Heap ]

But isn’t that exactly kind of the problem that we’ve had, without
pointing political fingers, that people rather have been
anti-everything, and that’s why we’re sort of not producing enough new
energy sources ?

[ David MacKay ]

Yeah. The majority of the British public I think are in favour of many
of these sources, but there are strong minorities who are vocally
opposed to every one of the major levers in this calculator. So one
aspiration I have for this tool is it may help those people come to a
position where they have a view that’s actually consistent with the
goal of keeping the lights on.

[ Tom Heap ]

Professor MacKay’s calculator also computes pounds and pence,
suggesting that both high and low carbon electricity work out pricey
in the end.

[ David MacKay ]

The total costs of all the pathways are pretty much the same.
“Business as Usual” is cheaper in the early years, and then pays more,
because on the “Business as Usual”, you carry on using fossil fuels,
and the prices of those fossil fuels are probably going to go up.

All of the pathways that take climate change action have a similar
total cost, but they pay more in the early years, ’cause you have to
pay for things like building insulation and power stations, like
nuclear power stations, or wind power, which cost up-front, but then
they’re very cheap to run in the future.

[ KLAXON ! Will the cost of decommissioning nuclear reactors and the
costs of the waste disposal be cheap ? I think not… ]

So the totals over the 40 or 50 year period here, are much the same for these.

[ Tom Heap ]

The cheapest immediate option of all is to keep shovelling the coal.
And last year coal overtook gas to be our biggest electricity
generation source, pushing up overall carbon emissions along the way
by 4.5%

[ KLAXON ! This is not very good for energy security – look where the
coal comes from… ]

As we heard earlier, most coal-fired power stations are scheduled for
termination, but some have won a reprieve, and trees are their
unlikely saviour.

Burning plenty of wood chip [ actually, Tom, it’s not wood “chip”, it’s
wood “pellets” – which often have other things mixed in with the wood,
like coal… ] allows coal furnaces to cut the sulphur dioxide and nitrous
oxide belching from their chimneys to below the level that requires their
closure under European law.

But some enthusiasts see wood being good for even more.

16:19

[ Outside ]

It’s one of those Autumn days that promises to be warm, but currently
is rather moist. I’m in a field surrounded by those dew-laden cobwebs
you get at this time of year.

But in the middle of this field is a plantation of willow. And I’m at
Rothamsted Research with Angela Karp who’s one of the directors here.

Angela, tell me about this willow I’m standing in front of here. I
mean, it’s about ten foot high or so, but what are you seeing ?

[ Angela Karp ]

Well, I’m seeing one of our better varieties that’s on display here.
We have a demonstration trial of about ten different varieties. This
is a good one, because it produces a lot of biomass, quite easily,
without a lot of additional fertilisers or anything. And as you can
see it’s got lovely straight stems. It’s got many stems, and at the
end of three years, we would harvest all those stems to get the
biomass from it. It’s nice and straight – it’s a lovely-looking, it’s
got no disease, no insects on it, very nice, clean willow.

[ Tom Heap ]

So, what you’ve been working on here as I understand it is trying to
create is the perfect willow – the most fuel for the least input – and
the easiest to harvest.

[ Angela Karp ]

That’s absolutely correct, because the whole reason for growing these
crops is to get the carbon from the atmosphere into the wood, and to
use that wood as a replacement for fossil fuels. Without putting a lot
of inputs in, because as soon as you add fertilisers you’re using
energy and carbon to make them, and that kind of defeats the whole
purpose of doing this.

[ KLAXON ! You don’t need to use fossil fuel energy or petrochemicals or
anything with carbon emissions to make fertiliser ! … Hang on, these
are GM trees, right ? So they will need inputs… ]

[ Tom Heap ]

And how much better do you think your new super-variety is, than say,
what was around, you know, 10 or 15 years ago. ‘Cause willow as an
idea for burning has been around for a bit. How much of an improvement
is this one here ?

[ Angela Karp ]

Quite a bit. So, these are actually are some of the, if you like,
middle-term varieties. So we started off yielding about 8 oven-dry
tonnes per hectare, and now we’ve almost doubled that.

[ Tom Heap ]

How big a place do you think biomass can have in the UK’s energy
picture in the future ?

[ Angela Karp ]

I think that it could contribute between 10% and 15% of our energy. If
we were to cultivate willows on 1 million hectares, we would probably
provide about 3% to 4% of energy in terms of electricity, and I think
that’s kind of a baseline figure. We could cultivate them on up to 3
million hectares, so you can multiply things up, and we could use them
in a much more energy-efficient way.

[ KLAXON ! Is that 4% of total energy or 4% of total electricity ?
Confused. ]

[ Tom Heap ]

Do we really have 3 million hectares going a-begging for planting willow in ?

[ Angela Karp ]

Actually, surprisingly we do. So, people have this kind of myth
there’s not enough land, but just look around you and you will find
there’s lots of land that’s not used for cultivating food crops.

We don’t see them taking over the whole country. We see them being
grown synergistically with food crops.

[ KLAXON ! This is a bit different than the statement made in 2009. ]

[ Tom Heap ]

But I’d just like to dig down a little bit more into the carbon cycle
of the combustion of these things, because that’s been the recent
criticism of burning a lot of biomass, is that you put an early spike
in the amount of carbon in the atmosphere, if you start burning a lot
of biomass, because this [ sounds of rustling ], this plant is going
to be turned into, well, partly, CO2 in the atmosphere.

[ Angela Karp ]

Yes, I think that’s probably a simple and not totally correct way of
looking at it. ‘Cause a lot depends on the actual conversion process
you are using.

So some conversion processes are much more efficient at taking
everything and converting it into what you want.

Heat for example is in excess of 80%, 90% conversion efficiency.

Electricity is a little bit more of the problem. And there, what
they’re looking at is capturing some of the carbon that you lose, and
converting that back in, in carbon storage processes, and that’s why
there’s a lot of talk now about carbon storage from these power
stations.

That I think is the future. It’s a question of connecting up all parts
of the process, and making sure that’s nothing wasted.

20:02

[ Tom Heap ]

So, is wood a desirable greener fuel ?

Not according to Almuth Ernsting of Biofuelwatch, who objects to the
current plans for large-scale wood burning, its use to prop up coal,
and even its low carbon claims.

[ Almuth Ernsting ]

The currently-announced industry plans, and by that I mean existing
power stations, but far more so, power stations which are in the
planning process [ and ] many of which have already been consented –
those [ biomass ] power stations, would, if they all go ahead,
require to burn around 82 million tonnes of biomass, primarily wood,
every year. Now by comparison, the UK in total only produces around
10 million tonnes, so one eighth of that amount, in wood, for all
industries and purposes, every year.

We are looking on the one hand at a significant number of proposed,
and in some cases, under-construction or operating new-build biomass
power stations, but the largest single investment so far going into
the conversion of coal power station units to biomass, the largest and
most advanced one of which at the moment is Drax, who are, have
started to move towards converting half their capacity to burning wood
pellets.

[ Tom Heap ]

Drax is that huge former, or still currently, coal-fired power station
in Yorkshire, isn’t it ?

[ Almuth Ernsting ]

Right, and they still want to keep burning coal as well. I mean, their
long-term vision, as they’ve announced, would be for 50:50 coal and
biomass.

[ Tom Heap ]

What do you think about that potential growth ?

[ Almuth Ernsting ]

Well, we’re seriously concerned. We believe it’s seriously bad news
for climate change, it’s seriously bad news for forests, and it’s
really bad news for communities, especially in the Global South, who
are at risk of losing their land for further expansion of monoculture
tree plantations, to in future supply new power stations in the UK.

A really large amount, increasingly so, of the wood being burned,
comes from slow-growing, whole trees that are cut down for that
purpose, especially at the moment in temperate forests in North
America. Now those trees will take many, many decades to grow back
and potentially re-absorb that carbon dioxide, that’s if they’re
allowed and able to ever grow back.

[ Tom Heap ]

There’s another technology desperate for investment, which is critical
to avoiding power failure, whilst still hitting our mid-century carbon
reduction goals – CCS – Carbon Capture and Storage, the ability to
take the greenhouse gases from the chimney and bury them underground.

It’s especially useful for biomass and coal, with their relatively
high carbon emissions, but would also help gas be greener.

The Chancellor has approved 30 new gas-fired power stations, so long
as they are CCS-ready [ sic, should be “capture ready”, or
“carbon capture ready” ].

Jon Gibbons is the boss of the UK CCS Research Centre, based in an
industrial estate in Sheffield.

[ Noise of processing plant ]

Jon’s just brought me up a sort of 3D maze of galvanized steel and
shiny metal pipes to the top of a tower that must be 20 or so metres
high.

Jon, what is this ?

[ Jon Gibbons ]

OK, so this is our capture unit, to take the CO2 out of the combustion
products from gas or coal. In the building behind us, in the test rigs
we’ve got, the gas turbine or the combustor rig, we’re burning coal or
gas, or oil, but mainly coal or gas.

We’re taking the combustion products through the green pipe over
there, bringing it into the bottom of the unit, and then you can see
these big tall columns we’ve got, about 18 inches diameter, half a
metre diameter, coming all the way up from the ground up to the level
we’re at.

It goes into one of those, it gets washed clean with water, and it
goes into this unit over here, and there it meets an amine solvent, a
chemical that will react reversibly with CO2, coming in the opposite
direction, over packing. So, it’s like sort of pebbles, if you can
imagine it, there’s a lot of surface area. The gas flows up, the
liquid flows down, and it picks up the CO2, just mainly the CO2.

[ Tom Heap ]

And that amine, that chemical as you call it, is stripping the CO2 out
of that exhaust gas. This will link to a storage facility.

What would then happen to the CO2 ?

[ Jon Gibbons ]

What would then happen is that the CO2 would be compressed up to
somewhere in excess of about 100 atmospheres. And it would turn from
being a gas into something that looks like a liquid, like water, about
the same density as water. And then it would be taken offshore in the
UK, probably tens or hundreds of kilometres offshore, and it would go
deep, deep down, over a kilometre down into the ground, and basically
get squeezed into stuff that looks like solid rock. If you go and look
at a sandstone building – looks solid, but actually, maybe a third of
it is little holes. And underground, where you’ve got cubic kilometres
of space, those little holes add up to an awful lot of free space. And
the CO2 gets squeezed into those, over time, and it spreads out, and
it just basically sits there forever, dissolves in the water, reacts
with the rocks, and will stay there for millions of years.

[ Tom Heap ]

Back in his office, I asked Jon why CCS seemed to be stuck in the lab.

[ Jon Gibbons ]

We’re doing enough I think on the research side, but what we really
need to do, is to do work on a full-scale deployment. Because you
can’t work on research in a vacuum. You need to get feedback –
learning by doing – from actual real projects.

And a lot of the problems we’ve got on delivering CCS, are to do with
how you handle the regulation for injecting CO2, and again, you can
only do that in real life.

So what we need to do is to see the commercialisation projects that
are being run by the Department of Energy and Climate Change actually
going through to real projects that can be delivered.

[ Tom Heap ]

Hmm. When I talk to engineers, they’re always very passionate and
actually quite optimistic about Carbon Capture and Storage. And when
I talk to people in industry, or indeed read the headlines, not least
a recent cancellation in Norway, it always seems like a very bleak picture.

[ Jon Gibbons ]

I think people are recognising that it’s getting quite hard to get
money for low carbon technologies.

So – recent presentation we had at one of our centre meetings, was
actually a professor from the United States, Howard Herzog. And he
said “You think you’re seeing a crisis in Carbon Capture and Storage.
But what you’re actually seeing is a crisis in climate change
mitigation.”

[ KLAXON ! Priming us for a scaling back of commitment to the
Climate Change Act ? I do hope not. ]

Now, Carbon Capture and Storage, you do for no other purpose than
cutting CO2 emissions to the atmosphere, and it does that extremely
effectively. It’s an essential technology for cutting emissions. But
until you’ve got a global process that says – actually we’re going to
get on top of this problem; we’re going to cut emissions – get them to
safe level before we actually see people dying in large numbers from
climate change effects – ’cause, certainly, if people start dying,
then we will see a response – but ideally, you’d like to do it before
then. But until you get that going, then actually persuading people to
spend money for no other benefit than sorting out the climate is
difficult.

There’s just no point, you know, no country can go it alone, so you
have to get accommodation. And there, we’re going through various
processes to debate that. Maybe people will come to an accommodation.
Maybe the USA and China will agree to tackle climate change. Maybe
they won’t.

What I am fairly confident is that you won’t see huge, you know,
really big cuts in CO2 emissions without that global agreement. But
I’m also confident that you won’t see big cuts in CO2 emissions
without CCS deployment.

And my guess is there’s about a 50:50 chance that we do CCS before we
need to, and about a 50:50 chance we do it after we have to. But I’m
pretty damn certain we’re going to do it.

[ Tom Heap ]

But we can’t wait for a global agreement that’s already been decades
in the making, with still no end in sight.

We need decisions now to provide more power with less pollution.

[ Music lyrics : “What’s the plan ? What’s the plan ?” ]

[ Tom Heap ]

Dieter Helm, Professor of Energy Policy at the University of Oxford
believes we can only deliver our plentiful green energy future if we
abandon our attitude of buy-now pay-later.

[ KLAXON ! Does he mean a kind of hire purchase energy economy ?
I mean, we’re still paying for nuclear electricity from decades ago,
in our bills, and through our taxes to the Department of Energy and
Climate Change. ]

[ Dieter Helm ]

There’s a short-term requirement and a long-term requirement. The
short-term requirement is that we’re now in a real pickle. We face
this energy crunch. We’ve got to try to make the best of what we’ve
got. And I think it’s really like, you know, trying to get the
Spitfires back up again during the Battle of Britain. You know, you
patch and mend. You need somebody in command. You need someone
in control. And you do the best with what you’ve got.

In that context, we then have to really stand back and say, “And this
is what we have to do to get a serious, long-term, continuous, stable
investment environment, going forward.” In which, you know, we pay the
costs, but of course, not any monopoly profits, not any excess
profits, but we have a world in which the price of electricity is
related to the cost.”

[ KLAXON ! Is Dieter Helm proposing state ownership of energy plant ? ]

29:04

[ Programme anchor ]

“Costing the Earth” was presented by Tom Heap, and made in Bristol by
Helen Lennard.

[ Next broadcast : 16th October 2013, 21:00, BBC Radio 4 ]

Categories
Assets not Liabilities Bait & Switch Be Prepared Big Number Big Picture British Sea Power Change Management Delay and Deny Direction of Travel Disturbing Trends Divide & Rule Energy Autonomy Energy Change Energy Denial Energy Insecurity Energy Revival Extreme Weather Fossilised Fuels Green Power Growth Paradigm Hide the Incline Insulation National Energy National Power Optimistic Generation Policy Warfare Political Nightmare Realistic Models Renewable Resource The Data Unqualified Opinion Wind of Fortune

Wind Powers Electricity Security




Have the anti-wind power lobby struck again ? A seemingly turbulent researcher from Private Eye magazine rang me on Thursday evening to ask me to revise my interpretation of his “Keeping The Lights On” piece of a few weeks previously. His article seemed at first glance to be quite derogatory regarding the contribution of wind power to the UK’s electricity supply. If I were to look again, I would find out, he was sure, that I was wrong, and he was right.

So I have been re-reviewing the annual 2013 “Electricity Capacity Assessment Report” prepared by Ofgem, the UK Government’s Office of Gas and Electricity Markets, an independent National Regulatory Authority. I have tried to be as fair-minded and generous as possible to “Old Sparky” at Private Eye magazine, but a close re-reading of the Ofgem report suggests he is apparently mistaken – wind power is a boon, not a burden (as he seems to claim).

In the overview to the Ofgem report, they state, “our assessment suggests that the risks to electricity security of supply over the next six winters have increased since our last report in October 2012. This is due in particular to deterioration in the supply-side outlook. There is also uncertainty over projected reductions in demand.” Neither of these issues can be associated with wind power, which is being deployed at an accelerating rate and so is providing increasing amounts of electricity.

The report considers risks to security of the electricity supply, not an evaluation of the actual amounts of power that will be supplied. How are these risks to the security of supply quantified ? There are several metrics provided from Ofgem’s modelling, including :-

a. LOLE – Loss of Load Expectation – the average number of hours per year in which electricity supply does not meet electricity demand (if the grid System Operator does not take steps to balance it out).

(Note that Ofgem’s definition of LOLE is difference from other people’s “LOLE is often interpreted in the academic literature as representing the probability of disconnections after all mitigation actions available to the System Operator have been exhausted. We consider that a well functioning market should avoid using mitigation actions in [sic] regular basis and as such we interpret LOLE as the probability of having to implement mitigation actions.”)

b. EEU – Expected Energy Unserved (or “Un-served”) – the average amount of electricity demand that is not met in a year – a metric that combines both the likelihood and the size of any shortfall.

c. Frequency and Duration of Expected Outages – a measure of the risk that an electricity consumer faces of controlled disconnection because supply does not meet demand.

The first important thing to note is that the lights are very unlikely to go out. The highest value of LOLE, measured in hours per year is under 20. That’s 20 hours each year. Not 20 days. And this is not anticipated to be 20 days in a row, either. Section 1.11 says “LOLE, as interpreted in this report, is not a measure of the expected number of hours per year in which customers may be disconnected. For a given level of LOLE and EEU, results may come from a large number of small events where demand exceeds supply in principle but that can be managed by National Grid through a set of mitigation actions available to them as System Operator. […] Given the characteristics of the GB system, any shortfall is more likely to take the form of a large number of small events that would not have a direct impact on customers.”

Section 2.19 states, “The probabilistic measures of security of supply presented in this report are often misinterpreted. LOLE is the expected number of hours per year in which supply does not meet demand. This does not however mean that customers will be disconnected or that there will be blackouts for that number of hours a year. Most of the time, when available supply is not high enough to meet demand, National Grid may implement mitigation actions to solve the problem without disconnecting any customers. However, the system should be planned to avoid the use of mitigation actions and that is why we measure LOLE ahead of any mitigation actions being used”. And Section 2.20, “LOLE does not necessarily mean disconnections but they do remain a possibility. If the difference between available supply and demand is so large that the mitigation actions are not enough to meet demand then some customers have to be disconnected – this is the controlled disconnections step in Figure 14 above. In this case the [System Operator] SO will disconnect industrial demand before household demand.”

And in Section 2.21. “The model output numbers presented here refer to a loss of load of any kind. This could be the sum of several small events (controlled through mitigation actions) or a single large event. As a consequence of the mitigation actions available, the total period of disconnections for a customer will be lower than the value of LOLE.”

The report does anticipate that there are risks of large events where the lights could go out, even if only very briefly, for non-emergency customers : “The results may also come from a small number of large events (eg the supply deficit is more than 2 – 3 gigawatts (GW)) where controlled disconnections cannot be avoided.” But in this kind of scenario two very important things would happen. Those with electricity contracts with a clause permitting forced disconnection would lose power. And immediate backup power generation would be called upon to bridge the gap. There are many kinds of electricity generation that can be called on to start up in a supply crisis – some of them becoming operational in minutes, and others in hours.

As the report says in Section 2.24 “Each [Distribution Network Operator] DNO ensures it can provide a 20% reduction of its total system demand in four incremental stages (between 4% and 6%), which can be achieved at all times, with or without prior warning, and within 5 minutes of receipt of an instruction from the System Operator. The reduction of a further 20% (40% in total) can be achieved following issue of the appropriate GB System Warning by National Grid within agreed timescales”.

It’s all about the need for National Grid to balance the system. Section 2.9 says, “LOLE is not a measure of the expected number of hours per year in which customers may be disconnected. We define LOLE to indicate the number of hours in which the system may need to respond to tight conditions.”

The report also rules some potential sources of disruption of supply outside the remit of this particular analysis – see Section 3.17 “There are other reasons why electricity consumers might experience disruptions to supply, which are out of the scope of this assessment and thus not captured by this model, such as: Flexibility : The ability of generators to ramp up in response to rapid increases in demand or decreases in the output of other generators; Insufficient reserve : Unexpected increases in demand or decreases in available capacity in real time which must be managed by the System Operator through procurement and use of reserve capacity; Network outages : Failures on the electricity transmission or distribution networks; Fuel availability : The availability of the fuel used by generators. In particular the security of supplies of natural gas at times of peak electricity demand.”

Crucially, the report says there is much uncertainty in their modelling of LOLE and EEU. In Section 2.26, “The LOLE and EEU estimates are just an indication of risk. There is considerable uncertainty around the main variables in the calculation (eg demand, the behaviour of interconnectors etc.)”

(Note : interconnectors are electricity supply cables that join the UK to other countries such as Ireland and Holland).

Part of the reason for Ofgem’s caveat of uncertainty is the lack of appropriate data. Although they believe they have better modelling of wind power since their 2012 report (see Sections 3.39 to 3.50), there are data sets they believe should be improved. For example, data on Demand Side Response (DSR) – the ability of the National Grid and its larger or aggregated consumers to alter levels of demand on cue (see Sections 4.7 to 4.10 of the document detailing decisions about the methodology). A lack of data has led to certain assumptions being retained, for example, the assumption that there is no relationship between available wind power and periods of high demand – in the winter season (see Section 2.5 and Sections 4.11 to 4.17 of the methodology decisions document).

In addition to these uncertainties, the sensitivity cases used in the modelling are known to not accurately reflect the capability of management of the power grid. In the Executive Summary on page 4, the report says, “These sensitivities only illustrate changes in one variable at a time and so do not capture potential mitigating effects, for example of the supply side reacting to higher demand projections.” And in Section 2.16 it says, “Each sensitivity assumes a change in one variable from the Reference Scenario, with all other assumptions being held constant. The purpose of this is to assess the impact of the uncertainty related to each variable in isolation, on the risk measures. Our report is not using scenarios (ie a combination of changes in several variables to reflect alternative worlds or different futures), as this would not allow us to isolate the impact of each variable on the risk measures.”

Thus, the numbers that are output by the modelling are perforce illustrative, not definitive.

What “Old Sparky” at Private Eye was rattled by in his recent piece was the calculation of Equivalent Firm Capacity (EFC) in the Ofgem report.

On page 87, Section 3.55, the Ofgem report defines the “standard measure” EFC as “the amount of capacity that is required to replace the wind capacity to achieve the same level of LOLE”, meaning the amount of always-on generation capacity required to replace the wind capacity to achieve the same level of LOLE. Putting it another way on page 33, in the footnotes for Section 3.29, the report states, “The EFC is the quantity of firm capacity (ie always available) that can be replaced by a certain volume of wind generation to give the same level of security of supply, as measured by LOLE.”

Wind power is different from fossil fuel-powered generation as there is a lot of variability in output. Section 1.48 of the report says, “Wind generation capacity is analysed separately given that its outcome in terms of generation availability is much more variable and difficult to predict.” Several of the indicators calculated for the report are connected with the impact of wind on security of the power supply. However, variation in wind power is not the underlying reason for the necessity of this report. Other electricity generation plant has variation in output leading to questions of security of supply. In addition, besides planned plant closures and openings, there are as-yet-unknown factors that could impact overall generation capacity. Section 2.2 reads, “We use a probabilistic approach to assess the uncertainty related to short-term variations in demand and available conventional generation due to outages and wind generation. This is combined with sensitivity analysis to assess the uncertainty related to the evolution of electricity demand and supply due to investment and retirement decisions (ie mothballing, closures) and interconnector flows, among others.”

The report examines the possibility that wind power availability could be correlated to winter season peak demand, based on limited available data, and models a “Wind Generation Availability” sensitivity (see Section 3.94 to Section 3.98, especially Figure 64). In Section 3.42 the report says, “For the wind generation availability sensitivity we assume that wind availability decreases at time of high demand. In particular this sensitivity assumes a reduction in the available wind resource for demand levels higher than 92% of the ACS peak demand. The maximum reduction is assumed to be 50% for demand levels higher than 102% of ACS peak demand.” Bear in mind that this is only an assumption.

In Appendix 5 “Detailed results tables”, Table 34, Table 35 and Table 37 show how this modelling impacts the calculation of the indicative Equivalent Firm Capacity (EFC) of wind power.

In the 2018/2019 timeframe, when there is expected to be a combined wind power capacity of 8405 megawatts (MW) onshore plus 11705 MW offshore = 20110 MW, the EFC for wind power is calculated to be 2546 MW in the “Wind Generation Availability” sensitivity line, which works out at 12.66% of the nameplate capacity of the wind power. Note : 100 divided by 12.66 is 7.88, or a factor of roughly 8.

At the earlier 2013/2014 timeframe, when combined wind power capacity is expected to be 3970 + 6235 MW = 10205 MW, and the EFC is at 1624 MW or 15.91% for the “Wind Generation Sensitivity” line. Note : 100 divided by 15.91 = 6.285, or a factor of roughly 6.

“Old Sparky” is referring to these factor figures when he says in his piece (see below) :-

“[…] For every one megawatt of reliable capacity (eg a coal-fired power
station) that gets closed, Ofgem calculates Britain would need six to
eight
megawatts of windfarm capacity to achieve the original level of
reliability – and the multiple is rising all the time. Windfarms are
not of course being built at eight times the rate coal plants are
closing – hence the ever-increasing likelihood of blackouts. […]”

Yet he has ignored several caveats given in the report that place these factors in doubt. For example, the sensitivity analysis only varies one factor at a time and does not attempt to model correlated changes in other variables. He has also omitted to consider the relative impacts of change.

If he were to contrast his statement with the “Conventional Low Generation Availability” sensitivity line, where wind power EFC in the 2013/2014 timeframe is calculated as a healthy 26.59% or a factor of roughly 4; or 2018/2019 when wind EFC is 19.80% or a factor of roughly 5.

Note : The “Conventional Low Generation Availability” sensitivity is drawn from historical conventional generation operating data, as outlined in Sections 3.31 to 3.38. Section 3.36 states, “The Reference Scenario availability is defined as the mean availability of the seven winter estimates. The availability values used for the low (high) availability sensitivities are defined as the mean minus (plus) one standard deviation of the seven winter estimates.”

Table 30 and Table 31 show that low conventional generation availability will probably be the largest contribution to energy security uncertainty in the critical 2015/2016 timeframe.

The upshot of all of this modelling is that wind power is actually off the hook. Unforeseen alterations in conventional generation capacity are likely to have the largest impact. As the report says in Section 4.21 “The figures indicate that reasonably small changes in conventional generation availability have a material impact on the risk of supply shortfalls. This is most notable in 2015/16, where the estimated LOLE ranges from 0.2 hours per year in the high availability sensitivity to 16 hours per year in the low availability sensitivity, for the Reference Scenario is 2.9 hours per year.”

However, Section 1.19 is careful to remind us, “Wind generation, onshore and offshore, is expected to grow rapidly in the period of analysis and especially after 2015/16, rising from around 9GW of installed capacity now to more than 20GW by 2018/19. Given the variability of wind speeds, we estimate that only 17% of this capacity can be counted as firm (ie always available) for security of supply purposes by 2018/19.” This is in the Reference Scenario.

The sensitivities modelled in the report are a measure of risk, and do not provide absolute values for any of the output metrics, especially since the calculations are dependent on so many factors, including economic stimulus for the building of new generation plant.

Importantly, recent decisions by gas-fired power plant operators to “mothball”, or close down their generation capacity, are inevitably going to matter more than how much exactly we can rely on wind power.

Many commentators neglect to make the obvious point that wind power is not being used to replace conventional generation entirely, but to save fossil fuel by reducing the number of hours conventional generators have to run. This is contributing to energy security, by reducing the cost of fossil fuel that needs to be imported. However, the knock-on effect is this is having an impact on the economic viability of these plant because they are not always in use, and so the UK Government is putting in place the “Capacity Mechanism” to make sure that mothballed plant can be put back into use when required, during those becalmed, winter afternoons when power demand is at its peak.




Private Eye
Issue Number 1345
26th July 2013 – 8th August 2013

“Keeping the Lights On”
page 14
by “Old Sparky”

The report from energy regulator Ofgem that sparked headlines on
potential power cuts contains much new analysis highlighting the
uselessness of wind generation in contributing to security of
electricity supply, aka the problem of windfarm “intermittency”. But
the problem is being studiously ignored by the Department of Energy
and Climate Change (DECC).

As coal power stations shut down, windfarms are notionally replacing
them. If, say, only one windfarm were serving the grid, its inherent
unreliability could easily be compensated for. But if there were
[italics] only windfarms, and no reliable sources of electricity
available at all, security of supply would be hugely at risk. Thus the
more windfarms there are, the less they contribute to security.

For every one megawatt of reliable capacity (eg a coal-fired power
station) that gets closed, Ofgem calculates Britain would need six to
eight megawatts of windfarm capacity to achieve the original level of
reliability – and the multiple is rising all the time. Windfarms are
not of course being built at eight times the rate coal plants are
closing – hence the ever-increasing likelihood of blackouts.

[…]

In consequence windfarms are being featherbedded – not only with
lavish subsidies, but also by not being billed for the ever-increasing
trouble they cause. When the DECC was still operating Plan B, aka the
dash for gas ([Private] Eye [Issue] 1266), the cost of intermittency
was defined in terms of balancing the grid by using relatively clean
and cheap natural gas. Now that the department has been forced to
adopt emergency Plan C ([Private] Eye [Issue] 1344), backup for
intermittent windfarm output will increasingly be provided by dirty,
expensive diesel generators.




Private Eye
Issue 1344
12 – 25 July 2013

page 15
“Keeping the Lights On”

As pandemonium breaks out in newspapers at the prospect of electricity
blackouts, emergency measures are being cobbled together to ensure the
lights stay on. They will probably succeed – but at a cost.

Three years ago incoming coalition ministers were briefed that when
energy policy Plan A (windfarms, new nukes and pixie-dust) failed, Plan B
would be in place – a new dash for gas ([Private] Eye [Issue] 1266).

Civil servants then devised complex “energy market reforms” (EMR) to make
this happen. It is now clear that these, too, have failed. Coal-fired power
stations are closing quicker than new gas plants are being built. As energy
regulator Ofgem put it bluntly last week: “The EMR aims to incentivise
industry to address security of supply in the medium term, but is not able
to bring forward investment in new capacity in time.”

Practical people in the National Grid are now hatching emergency Plan C.
They will pay large electricity users to switch off when requested;
encourage industrial companies and even hospitals to generate their own
diesel-fired electricity (not a hard sell when the grid can’t be relied
on); hire diesel generators to make up for the intermittency of windfarms
([Private] Eye [Issue] 1322); and bribe electricity companies to bring
mothballed gas-fired plants back into service.

Some of these steps are based on techniques previously used in extreme
circumstances, and will probably keep most of the lights on. But this
should not obscure the fact that planning routine use of emergency
measures is an indictment of energy policy. And since diesel is much
more expensive and polluting than gas, electricity prices and CO2
emissions will be higher than if Plan B had worked.

[…]

‘Old Sparky’




Categories
Assets not Liabilities Be Prepared Big Number Big Picture Burning Money Change Management Coal Hell Corporate Pressure Cost Effective Design Matters Disturbing Trends Energy Change Energy Insecurity Energy Revival Extreme Energy Extreme Weather Insulation Money Sings National Energy National Power Optimistic Generation Orwells Paradigm Shapeshifter Peak Coal Peak Emissions Peak Energy Price Control Realistic Models Regulatory Ultimatum Solution City Stirring Stuff Technofix The Price of Gas The Price of Oil The War on Error Unutterably Useless Utter Futility Vain Hope Western Hedge Wind of Fortune

James Delingpole : Worsely Wronger

I wonder to myself – how wrong can James Delingpole get ? He, and Christopher Booker and Richard North, have recently attempted to describe something very, very simple in the National Grid’s plans to keep the lights on. And have failed, in my view. Utterly. In my humble opinion, it’s a crying shame that they appear to influence others.

“Dellingpole” (sic) in the Daily Mail, claims that the STOR – the Short Term Operating Reserve (not “Operational” as “Dellingpole” writes) is “secret”, for “that significant period when the wind turbines are not working”, and that “benefits of the supposedly ‘clean’ energy produced by wind turbines are likely to be more than offset by the dirty and inefficient energy produced by their essential diesel back-up”, all of which are outrageously deliberate misinterpretations of the facts :-

https://www.dailymail.co.uk/news/article-2362762/The-dirty-secret-Britains-power-madness-Polluting-diesel-generators-built-secret-foreign-companies-kick-theres-wind-turbines–insane-true-eco-scandals.html
“The dirty secret of Britain’s power madness: Polluting diesel generators built in secret by foreign companies to kick in when there’s no wind for turbines – and other insane but true eco-scandals : By James Dellingpole : PUBLISHED: 00:27, 14 July 2013”

If “Dellingpole” and his compadre in what appear to be slurs, Richard North, were to ever do any proper research into the workings of the National Grid, they would easily uncover that the STOR is a very much transparent, publicly-declared utility :-

https://www.nationalgrid.com/uk/Electricity/Balancing/services/balanceserv/reserve_serv/stor/

STOR is not news. Neither is the need for it to be beefed up. The National Grid will lose a number of electricity generation facilities over the next few years, and because of the general state of the economy (and resistance to wind power and solar power from unhelpful folk like “Dellingpole”) investment in true renewables will not entirely cover this shortfall.

Renewable energy is intermittent and variable. If an anticyclone high pressure weather system sits over Britain, there could be little wind. And if the sky is cloudy, there could be much less sun than normal. More renewable power feeding the grid means more opportunities when these breaks in service amount to something serious.

Plus, the age of other electricity generation plants means that the risk of “unplanned outage”, from a nuclear reactor, say, is getting higher. There is a higher probability of sudden step changes in power available from any generator.

The gap between maximum power demand and guaranteed maximum power generation is narrowing. In addition, the threat of sudden changes in output supply is increasing.

With more generation being directly dependent on weather conditions and the time of day, and with fears about the reliability of ageing infrastructure, there is a need for more very short term immediate generation backup to take up the slack. This is where STOR comes in.

Why does STOR need to exist ? The answer’s in the name – for short term balancing issues in the grid. Diesel generation is certainly not intended for use for long periods. Because of air quality issues. Because of climate change issues. Because of cost.

If the Meteorological Office were to forecast a period of low wind and low incident solar radiation, or a nuclear reactor started to dip in power output, then the National Grid could take an old gas plant (or even an old coal plant) out of mothballs, pull off the dust sheets and crank it into action for a couple of days. That wouldn’t happen very often, and there would be time to notify and react.

But if a windfarm suddenly went into the doldrums, or a nuclear reactor had to do an emergency shutdown, there would be few power stations on standby that could respond immediately, because it takes a lot of money to keep a power plant “spinning”, ready to use at a moment’s notice.

So, Delingpole, there’s no conspiracy. There’s engagement with generators to set up a “first responder” network of extra generation capacity for the grid. This is an entirely public process. It’s intended for short bursts of immediately-required power because you can’t seem to turn your air conditioner off. The cost and emissions will be kept to a minimum. You’re wrong. You’re just full of a lot of hot air.

Categories
Assets not Liabilities Be Prepared Behaviour Changeling Big Number Big Picture Big Society Burning Money Carbon Capture Carbon Commodities Carbon Pricing Carbon Rationing Carbon Taxatious Change Management Climate Change Coal Hell Contraction & Convergence Cost Effective Dead End Demoticratica Direction of Travel Disturbing Trends Dreamworld Economics Eating & Drinking Efficiency is King Electrificandum Energy Autonomy Energy Change Energy Denial Energy Insecurity Energy Revival Extreme Energy Feed the World Financiers of the Apocalypse Freemarketeering Fuel Poverty Gamechanger Green Investment Green Power Growth Paradigm Human Nurture Hydrocarbon Hegemony Incalculable Disaster Insulation Low Carbon Life Major Shift Money Sings National Energy National Power National Socialism Nuclear Nuisance Nuclear Shambles Nudge & Budge Optimistic Generation Paradigm Shapeshifter Peak Energy Peak Natural Gas Policy Warfare Political Nightmare Price Control Regulatory Ultimatum Solution City Stirring Stuff Sustainable Deferment The Price of Gas Ungreen Development Voluntary Behaviour Change

Birdcage Walk : Cheesestick Rationing


Yesterday…no, it’s later than I think…two days ago, I attended the 2013 Conference of PRASEG, the Parliamentary Renewable and Sustainable Energy Group, at the invitation of Rhys Williams, the long-suffering Coordinator. “…Sorry…Are you upset ?” “No, look at my face. Is there any emotion displayed there ?” “No, you look rather dead fish, actually”, etc.

At the prestigious seat of the Institute of Mechanical Engineers (IMechE), One Birdcage Walk, we were invited down into the basement for a “drinks reception”, after hearing some stirring speeches and intriguing panel discussions. Despite being promised “refreshments” on the invitation, there had only been beverages and a couple of bikkies up until now, and I think several of the people in the room were starting to get quite hypoglycemic, so were grateful to see actual food being offered.

A market economy immediately sprang up, as there was a definite scarcity in the resources of cheesesticks, and people jostled amiably, but intentionally, so they could cluster closest to the long, crispy cow-based snacks. The trading medium of exchange was conversation. “Jo, meet Mat Hope from Carbon Brief, no Maf Smith from Renewable UK. You’ve both been eviscerated by Delingpole online”, and so on.

“Welcome to our own private pedestal”, I said to somebody, who it turned out had built, probably in the capacity of developer, a sugarcane bagasse Combined Heat and Power plant. The little table in the corner had only got room around it for three or at most four people, and yet had a full complement of snack bowls. Bonus. I didn’t insist on memorising what this fellow told me his name was. OK, I didn’t actually hear it above the hubbub. And he was wearing no discernible badge, apart from what appeared to be the tinge of wealth. He had what looked like a trailing truculent teenager with him, but that could have been a figment of my imagination, because the dark ghost child spoke not one word. But that sullenness, and general anonymity, and the talkative gentleman’s lack of a necktie, and his slightly artificial, orange skin tone, didn’t prevent us from engaging wholeheartedly in a discussion about energy futures – in particular the default options for the UK, since there is a capacity crunch coming very soon in electricity generation, and new nuclear power reactors won’t be ready in time, and neither will Carbon Capture and Storage-fitted coal-fired power plants.

Of course, the default options are basically Natural Gas and wind power, because large amounts can be made functional within a five year timeframe. My correspondent moaned that gas plants are closing down in the UK. We agreed that we thought that new Combined Cycle Gas Turbine plant urgently needs to be built as soon as possible – but he despaired of seeing it happen. He seemed to think it was essential that the Energy Bill should be completed as soon as possible, with built-in incentives to make Gas Futures a reality.

I said, “Don’t wait for the Energy Bill”. I said, “Intelligent people have forecast what could happen to Natural Gas prices within a few years from high European demand and UK dependence, and are going to build gas plant for themselves. We simply cannot have extensions on coal-fired power plants…” He agreed that the Large Combustion Plant Directive would be closing the coal. I said that there was still something like 20 gigawatts of permissioned gas plant ready to build – and with conditions shaping up like they are, they could easily get financed.

Earlier, Nigel Cornwall, of Cornwall Energy had put it like this :-

“Deliverability and the trilemma [meeting all three of climate change, energy security and end-consumer affordability concerns] [are key]. Needs to be some joined-up thinking. […] There is clearly a deteriorating capacity in output – 2% to 5% reduction. As long as I’ve worked in the sector it’s been five minutes to midnight, [only assuaged by] creative thinking from National Grid.”

However, the current situation is far from bog standard. As Paul Dickson of Glennmont Partners said :-

“£110 billion [is needed] to meet the [electricity generation] gap. We are looking for new sources of capital. Some of the strategic institutional capital – pension funds [for example] – that’s who policy needs to be directed towards. We need to look at sources of capital.”

Alistair Buchanan, formerly of Ofgem, the power sector regulator, and now going to KPMG, spent the last year or so of his Ofgem tenure presenting the “Crunch Winter” problem to as many people as he could find. His projections were based on a number of factors, including Natural Gas supply questions, and his conclusion was that in the winter of 2015/2016 (or 2016/2017) power supply could get thin in terms of expansion capacity – for moments of peak demand. Could spell crisis.

The Government might be cutting it all a bit fine. As Jenny Holland of the Association for the Conservation of Energy said :-

“[Having Demand Reduction in the Capacity Mechanism] Not our tip-top favourite policy outcome […] No point to wait for “capacity crunch” to start [Energy Demand Reduction] market.”

It does seem that people are bypassing the policy waiting queue and getting on with drawing capital into the frame. And it is becoming more and more clear the scale of what is required. Earlier in the afternoon, Caroline Flint MP had said :-

“In around ten years time, a quarter of our power supply will be shut down. Decisions made in the next few years. Consequences will last for decades. Keeping the lights on, and [ensuring reasonably priced] energy bills, and preventing dangerous climate change.”

It could come to pass that scarcity, not only in cheesesticks, but in electricity generation capacity, becomes a reality. What would policy achieve then ? And how should Government react ? Even though Lord Deben (John Gummer) decried in the early afternoon a suggestion implying carbon rationing, proposed to him by Professor Mayer Hillman of the Policy Studies Institute, it could yet turn out that electricity demand reduction becomes a measure that is imposed in a crisis of scarcity.

As I put it to my sugarcane fellow discussionee, people could get their gas for heating cut off at home in order to guarantee the lights and banks and industry stay on, because UK generation is so dependent on Natural Gas-fired power.

Think about it – the uptake of hyper-efficient home appliances has turned down owing to the contracting economy, and people are continuing to buy and use electronics, computers, TVs and other power-sucking gadgets. Despite all sizes of business having made inroads into energy management, electricity consumption is not shifting downwards significantly overall.

We could beef up the interconnectors between the UK and mainland Europe, but who can say that in a Crunch Winter, the French and Germans will have any spare juice for us ?

If new, efficient gas-fired power plants are not built starting now, and wind farms roll out is not accelerated, the Generation Gap could mean top-down Energy Demand Reduction measures.

It would certainly be a great social equaliser – Fuel Poverty for all !

Categories
Corporate Pressure Cost Effective Demoticratica Direction of Travel Disturbing Trends Dreamworld Economics Economic Implosion Energy Autonomy Energy Change Energy Disenfranchisement Energy Insecurity Energy Revival Engineering Marvel Financiers of the Apocalypse Foreign Investment Green Investment Green Power Growth Paradigm Money Sings National Energy National Power Nuclear Nuisance Nuclear Shambles Optimistic Generation Policy Warfare Regulatory Ultimatum Ungreen Development Western Hedge Wind of Fortune Zero Net

London : Array, Invest, Divest

Showcasing the London Array offshore wind farm in the last week at its official launch, the UK’s Prime Minister David Cameron said “[…] We are making this country incredibly attractive to invest in […] When it comes to green energy, I think we have one of the clearest, most predictable investment climates. And we’re going to add to that by completing the Energy Bill this year. So, we will have a fantastic market for investors to come and build in. […]” (see below).

I think developers of solar energy in Britain would disagree quite extensively with his claim that there is a stable regime for green energy. The most effective stimulus tool, the Feed-in Tariff, was applauded and then mauled in short succession by the Conservative-Liberal-Democrat Coalition Government. Installation rates have simply not recovered from chewings from the Treasury attack dog. It’s been boom and then bust, bust, bust, with flurries of activity in summer, but not much more :-

https://www.gov.uk/government/statistical-data-sets/weekly-solar-pv-installation-and-capacity-based-on-registration-date

And this despite the yappy enthusiasm (perhaps “big, hairy”, or “big, sexy” ambition) that Greg Barker MP and his Dachshund, Otto, have for sun-fired electricity generation :-

https://www.solarpowerportal.co.uk/news/barker_once_more_quotes_22gw_by_2020_solar_ambition_2356

https://www.utilityweek.co.uk/news/news_story.asp?id=198770&title=National+Grid+analysis+clouds+Barker%27s+20GW+solar+ambition

The Energy Bill should have been finished a long time ago, and I’m pretty sure it would have been, apart from the insane obsession with new nuclear power, which all along was predicted to consist of several kinds of big, chunky subsidy, and shows no signs of being anything other than a bankrolling exercise, even now (and too late to bridge Alistair Buchanan‘s “Crunch Winter” of 2015/2016).

https://www.bloomberg.com/news/2013-07-02/edf-nuclear-deal-in-u-k-may-take-a-few-months-.html
“EDF Nuclear Deal in U.K. May Take ‘A Few Months’ : By Alex Morales – Jul 2, 2013 : The U.K. may take “a few months” to agree the price that Electricite de France SA (EDF) will get for power from Britain’s first new nuclear power station in two decades, Energy Secretary Ed Davey suggested. The government has been in talks for months with EDF to agree a so-called strike price the French utility will get for power from a planned plant at Hinkley Point in southwest England. Davey told Parliament’s multi-party Energy and Climate Change Committee he won’t sign a contract with EDF unless it represents “value for money” for consumers. “Even if we agree in the next few months, a nuclear reactor at Hinkley point won’t be producing until the end of this decade at best,” Davey said today. “They have been very constructive negotiations. They are taking some time, and that’s because they are very complicated.”

https://www.telegraph.co.uk/finance/newsbysector/energy/10164435/Rival-nuclear-companies-cheaper-than-EDF-Ed-Davey-suggests.html
“[…] Mr Davey told The Guardian that EDF was aware of the strike price that he would agree to and that he was “not going to budge an inch”. He said: “Sometimes people said it is EDF or bust. I would like to do a deal with EDF but we don’t have to. I was in Korea and Japan recently talking to other investors and vendors. Their interest in the UK market was massive. I got the very strong impression that the sort of price I was happy to agree with EDF, they could match.” In the same interview he said: “We have other nuclear options. Hitachi are very live options. They bought Horizon only last year and their pace of progress is truly impressive.” He noted that Hitachi had delivered four reactors “on time and on budget”. […]”

But the most serious contention that I have with David Cameron’s remarks is his painting a picture that the UK needs international capital to reach down from geostationary orbit, or where it is a bit lower, in transcontinential flight at 35,000 feet, to touch and bless the UK with its gilded finger of providence.

Don’t we have any investors in Britain ? We may have only a few, small British companies that can build green energy for us, but we do have a lot of wealth lurking within these very shores, or representatives of a lot of wealth. Could we not demand that those who shore their cash in Britain, and take advantage of cheap corporate tax deals, invest in British green energy ? Could we not make green energy investment a sine qua non of the residence or passsage of wealth in and through the City of London ?

Many people in Great Britain have pensions, and those pensions have funds, and those funds have fund managers. There’s a lot of money, right there. What are the criteria that govern pension pot investment ?

And then there’s the banks. Almost everyone in the UK has a bank account. Are the banks held to policies to direct finance and investment towards green energy and clean tech ? Do their customers demand it ?

Why does the UK Government not stipulate that “best value for money” as a criteria on all contracts of procurement – and investment – has to be matched by “best carbon emissions reduction potential” ?

Or are we in such an austere position that we need to offer huge, fattened sweeteners from the Treasury tax honeypot, and permission to raise already high power prices for customers, to any international engineering firm prepared to pour concrete here, so that they can arrange for the finance this guarantees ? Why are we in a position where we are being forced to throw public money and billpayer burdens at private companies to guarantee new energy build ?

This looks like a worse deal than PFI. In fact, it is much, much worse that the Private Finance Inititative, or the revamped new acronyms that replaced it. This is the wholesale gifting of large amounts of annual tax revenue and fingerlicking kilowatt hour prices to large, transnational corporations. If the economy gets worse, which it probably will, these big new construction projects may never get completed. And the new national energy infrastructure that does manage to get built won’t even be ours. Unless they go wrong, in which case the country will have to pay to mop them up. Or at the end of life, when the taxpayers and billpayers will need to pay to decommission nuclear reactors and dispose of radioactive waste.

And while we’re on the subject of investment, I need to point out that not all big infrastructure projects are alike. Some development is good, some bad. I don’t really see how the Olympic building spree can be compared in any way to what’s necessary for creating a decarbonised energy system. And building larger ports, and roads, and airports, anticipates higher levels of traded goods – the kind of economic growth that caused climate change in the first place.

If David Cameron wants to crow about big projects and be praised for it, he needs to de-select examples that are unsustainable.

There really needs to be more focus on what we really need for the future, and that requires discernment in investment. It requires moving away from high consumption models of economy, of divesting from stocks and shares in waste, pollution, carbon emissions and unnecessary trade.

Invest, yes, but divest, also.

https://thinkprogress.org/climate/2013/06/25/2213341/invest-divest-obama-goes-full-climate-hawk-in-speech-unveiling-plan-to-cut-carbon-pollution/

https://www.operationnoah.org/PR_southwark_resolution
“4 July 2013: The Diocese of Southwark passed a resolution yesterday (3 July 2013) calling on the General Synod of the Church of England to consider disinvestment from fossil fuels.”




https://www.gov.uk/government/news/prime-minister-champions-inward-investment-at-london-array-and-battersea-power-station

https://www.guardian.co.uk/environment/video/2013/jul/04/david-cameron-windfarm-thames-estuary-video

The UK’s Prime Minister David Cameron speaking outside at the London Array site :-

“Well let’s be clear this is the biggest offshore wind farm anywhere in the world.
And what it shows is Britain is a great country to come and invest in. And it’s meant
jobs for local people. And it means clean, green energy for half a million homes in
our country. It’s part of what we need to have secure, reliable supplies of electricity
and to get investment and jobs for our people, so it’s a good day for Britain.”

David Cameron speaking at the Press Launch indoors :-

“Well of course, when I chaired the G8, I had to arrange everything, starting with
the dress code. There was some criticism. Why wasn’t I wearing a tie ? What people
didn’t realise of course was that President Putin wanted to do the whole thing
barechested on horseback, and I of course had to negotiate him down to smart casual.
We haven’t had that problem today.

Sometimes people wonder, can we in the West, can we do big projects any more ? Can we
do the big investments ? Isn’t that all happening somewhere else in the East and the
South of our world ?

And I think if you look at the United Kingdom right now you can see WE CAN do big
projects. Not only did we do a superb Olympics last year, but underneath London,
CrossRail is the biggest construction project anywhere in Europe.

Not far away from here is Dubai Ports World London Gateway, which is the biggest port
contruction taking place anywhere in Europe.

And here you have the biggest offshore wind farm anywhere in the world.

I think it demonstrates Britain is a great place to invest.

I don’t want to have too much Schadenfreude, but it’s actually a fact that last year,
foreign direct investment into Europe as a whole went down by something like 40%, but in
the UK it went up by 24%.

We are making this country incredibly attractive to invest in, and and that’s part of what
this project is about.

When it comes to green energy, I think we have one of the clearest, most predictable
investment climates. And we’re going to add to that by completing the Energy Bill this year.

So, we will have a fantastic market for investors to come and build in.

So, a great win for Kent, a great win for renewable energy and a great win for Britain.”