Categories
Academic Freedom Alchemical Artistic Licence Baseload is History Be Prepared Behaviour Changeling Big Number Big Picture Big Society Bioeffigy Biofools Biomess British Biogas Burning Money Carbon Army Change Management Climate Change Cool Poverty Cost Effective Deal Breakers Design Matters Efficiency is King Electrificandum Emissions Impossible Energy Change Energy Insecurity Fossilised Fuels Fuel Poverty Gamechanger Global Heating Green Gas Green Power Heatwave Human Nurture Hydrogen Economy Insulation Major Shift National Energy Nudge & Budge Optimistic Generation Paradigm Shapeshifter Peak Emissions Policy Warfare Political Nightmare Realistic Models Regulatory Ultimatum Renewable Gas Renewable Resource Social Capital Solution City Technofix The Data The Power of Intention The Right Chemistry Voluntary Behaviour Change Wasted Resource Wind of Fortune

David MacKay : Heating London

I took some notes from remarks made by Professor David MacKay, the UK Government’s Chief Scientific Advisor, yesterday, 1st May 2014, at an event entitled “How Will We Heat London ?”, held by Max Fordhams as part of the Green Sky Thinking, Open City week. I don’t claim to have recorded his words perfectly, but I hope I’ve captured the gist.


[David MacKay] : [Agreeing with others on the panel – energy] demand reduction is really important. [We have to compensate for the] “rebound effect”, though [where people start spending money on new energy services if they reduce their demand for their current energy services].

SAP is an inaccurate tool and not suitable for the uses we put it too :-
https://www.eden.gov.uk/planning-and-development/building-control/building-control-guidance-notes/sap-calculations-explained/
https://www.dimplex.co.uk/products/renewable_solutions/building_regulations_part_l.htm

Things seem to be under-performing [for example, Combined Heat and Power and District Heating schemes]. It would be great to have data. A need for engineering expertise to get in.

I’m not a Chartered Engineer, but I’m able to talk to engineers. I know a kilowatt from a kilowatt hour [ (Laughter from the room) ]. We’ve [squeezed] a number of engineers into DECC [the Department of Energy and Climate Change].

I’m an advocate of Heat Pumps, but the data [we have received from demonstration projects] didn’t look very good. We hired two engineers and asked them to do the forensic analysis. The heat pumps were fine, but the systems were being wrongly installed or used.

Now we have a Heat Network team in DECC – led by an engineer. We’ve published a Heat Strategy. I got to write the first three pages and included an exergy graph.

[I say to colleagues] please don’t confuse electricity with energy – heat is different. We need not just a green fluffy solution, not just roll out CHP [Combined Heat and Power] [without guidance on design and operation].

Sources of optimism ? Hopefully some of the examples will be available – but they’re not in the shop at the moment.

For example, the SunUp Heat Battery – works by having a series of chambers of Phase Change Materials, about the size of a fridge that you would use to store heat, made by electricity during the day, for use at night, and meet the demand of one home. [Comment from Paul Clegg, Senior Partner at Feilden Clegg Bradley Studios : I first heard about Phase Change Materials back in the 1940s ? 1950s ? And nothing’s come of it yet. ] Why is that a good idea ? Well, if you have a heat pump and a good control system, you can use electricity when it’s cheapest… This is being trialled in 10 homes.

Micro-CHP – [of those already trialled] definitely some are hopeless, with low temperature and low electricity production they are just glorified boilers with a figleaf of power.

Maybe Fuel Cells are going to deliver – power at 50% efficiency [of conversion] – maybe we’ll see a Fuel Cell Micro-Combined Heat and Power unit ?

Maybe there will be hybrid systems – like the combination of a heat pump and a gas boiler – with suitable controls could lop off peaks of demand (both in power and gas).

We have designed the 2050 Pathways Calculator as a tool in DECC. It was to see how to meet the Carbon Budget. You can use it as an energy security calculator if you want. We have helped China, Korea and others to write their own calculators.

A lot of people think CHP is green and fluffy as it is decentralised, but if you’re using Natural Gas, that’s still a Fossil Fuel. If you want to run CHP on biomass, you will need laaaaaarge amounts of land. You can’t make it all add up with CHP. You would need many Wales’-worth of bioenergy or similar ways to make it work.

Maybe we should carry on using boilers and power with low carbon gas – perhaps with electrolysis [A “yay !” from the audience. Well, me, actually]. Hydrogen – the the 2050 Calculator there is no way to put it back into the beginning of the diagram – but it could provide low carbon heat, industry and transport. At the moment we can only put Hydrogen into Transport [in the 2050 Calculator. If we had staff in DECC to do that… It’s Open Source, so if any of you would like to volunteer…

Plan A of DECC was to convert the UK to using lots of electricity [from nuclear power and other low carbon technologies, to move to a low carbon economy], using heat pumps at the consumer end, but there’s a problem in winter [Bill Watts of Max Fordham had already shown a National Grid or Ofgem chart of electricity demand and gas demand over the year, day by day. Electricity demand (in blue) fluctuates a little, but it pretty regular over the year. Gas demand (in red) however, fluctuates a lot, and is perhaps 6 to 10 times larger in winter than in summer.]

If [you abandon Plan A – “electrification of everything”] and do it the other way, you will need a large amount of Hydrogen, and a large Hydrogen store. Electrolysers are expensive, but we are doing/have done a feasibility study with ITM Power – to show the cost of electrolysers versus the cost of your wind turbines [My comment : but you’re going to need your wind turbines to run your electrolysers with their “spare” or “curtailed” kilowatt hours.]

[David Mackay, in questions from the floor] We can glue together [some elements]. Maybe the coming smart controls will help…can help save a load of energy. PassivSystems – control such things as your return temperature [in your Communal or District Heating]…instead of suing your heat provider [a reference to James Gallagher who has problems with his communal heating system at Parkside SE10], maybe you could use smart controls…

[Question] Isn’t using smart controls like putting a Pirelli tyre on a Ford Cortina ? Legacy of poor CHP/DH systems…

[David MacKay in response to the question of insulation] If insulation were enormously expensve, we wouldn’t have to be so enthusastic about it…We need a well-targeted research programme looking at deep retrofitting, instead of letting it all [heat] out.

[Adrian Gault, Committee on Climate Change] We need an effective Government programme to deliver that. Don’t have it in the Green Deal. We did have it [in the previous programmes of CERT and CESP], but since they were cancelled in favour of the Green Deal, it’s gone off a cliff [levels of insulation installations]. We would like to see an initiative on low cost insulation expanded. The Green Deal is not producing a response.

[Bill Watts, Max Fordham] Agree that energy efficiency won’t run on its own. But it’s difficult to do. Not talking about automatons/automation. Need a lot of pressure on this.

[Adrian Gault] Maybe a street-by-street approach…

[Michael Trousdell, Arup] Maybe a rule like you can’t sell a house unless you’ve had the insulation done…

[Peter Clegg] … We can do heat recovery – scavenging the heat from power stations, but we must also de-carbonise the energy supply – this is a key part of the jigsaw.

Categories
Academic Freedom Assets not Liabilities Be Prepared Big Number Big Picture British Biogas Carbon Commodities Change Management Corporate Pressure Demoticratica Design Matters Disturbing Trends Energy Autonomy Energy Change Energy Crunch Energy Denial Energy Insecurity Energy Revival Engineering Marvel Fossilised Fuels Fuel Poverty Gamechanger Gas Storage Green Gas Green Investment Green Power Growth Paradigm Hide the Incline Hydrocarbon Hegemony Hydrogen Economy Insulation Major Shift Marine Gas Methane Management Money Sings National Energy Paradigm Shapeshifter Peak Natural Gas Realistic Models Regulatory Ultimatum Renewable Gas Renewable Resource Resource Curse Resource Wards Shale Game Solution City Technofix Technological Sideshow The Power of Intention The Price of Gas The Right Chemistry Unconventional Foul Unnatural Gas Western Hedge

Fiefdom of Information

Sigh. I think I’m going to need to start sending out Freedom of Information requests… Several cups of tea later…


To: Information Rights Unit, Department for Business, Innovation & Skills, 5th Floor, Victoria 3, 1 Victoria Street, London SW1H OET

28th April 2014

Request to the Department of Energy and Climate Change

Re: Policy and Strategy for North Sea Natural Gas Fields Depletion

Dear Madam / Sir,

I researching the history of the development of the gas industry in the United Kingdom, and some of the parallel evolution of the industry in the United States of America and mainland Europe.

In looking at the period of the mid- to late- 1960s, and the British decision to transition from manufactured gas to Natural Gas supplies, I have been able to answer some of my questions, but not all of them, so far.

From a variety of sources, I have been able to determine that there were contingency plans to provide substitutes for Natural Gas, either to solve technical problems in the grid conversion away from town gas, or to compensate should North Sea Natural Gas production growth be sluggish, or demand growth higher than anticipated.

Technologies included the enriching of “lean” hydrogen-rich synthesis gas (reformed from a range of light hydrocarbons, by-products of the petroleum refining industry); Synthetic Natural Gas (SNG) and methane-“rich” gas making processes; and simple mixtures of light hydrocarbons with air.

In the National Archives Cmd/Cmnd/Command document 3438 “Fuel Policy. Presented to Parliament by the Minister of Power Nov 1967”, I found discussion on how North Sea gas fields could best be exploited, and about expected depletion rates, and that this could promote further exploration and discovery.

In a range of books and papers of the time, I have found some discussion about options to increase imports of Natural Gas, either by the shipping of Liquified Natural Gas (LNG) or by pipeline from The Netherlands.

Current British policy in respect of Natural Gas supplies appears to rest on “pipeline diplomacy”, ensuring imports through continued co-operation with partner supplier countries and international organisations.

I remain unclear about what official technological or structural strategy may exist to bridge the gap between depleting North Sea Natural Gas supplies and continued strong demand, in the event of failure of this policy.

It is clear from my research into early gas field development that depletion is inevitable, and that although some production can be restored with various techniques, that eventually wells become uneconomic, no matter what the size of the original gas field.

To my mind, it seems unthinkable that the depletion of the North Sea gas fields was unanticipated, and yet I have yet to find comprehensive policy statements that cover this eventuality and answer its needs.

Under the Freedom of Information Act (2000), I am requesting information to answer the following questions :-

1.   At the time of European exploration for Natural Gas in the period 1948 to 1965, and the British conversion from manufactured gas to Natural Gas, in the period 1966 to 1977, what was HM Government’s policy to compensate for the eventual depletion of the North Sea gas fields ?

2.   What negotiations and agreements were made between HM Government and the nationalised gas industry between 1948 and 1986; and between HM Government and the privatised gas industry between 1986 and today regarding the projections of decline in gas production from the UK Continental Shelf, and any compensating strategy, such as the development of unconventional gas resources, such as shale gas ?

3.   Is there any policy or strategy to restore the SNG (Synthetic Natural Gas) production capacity of the UK in the event of a longstanding crisis emerging, for example from a sharp rise in imported Natural Gas costs or geopolitical upheaval ?

4.   Has HM Government any plan to acquire the Intellectual Property rights to SNG production technology, whether from British Gas/Centrica or any other private enterprise, especially for the slagging version of the Lurgi gasifier technology ?

5.   Has HM Government any stated policy intention to launch new research and development into, or pilot demonstrations of, SNG ?

6.   Does HM Government have any clearly-defined policy on the production and use of manufactured gas of any type ? If so, please can I know references for the documents ?

7.   Does HM Government anticipate that manufactured gas production could need to increase in order to support the production of synthetic liquid vehicle fuels; and if so, which technologies are to be considered ?

Thank you for your attention to my request for information.

Regards,

jo.

Categories
Academic Freedom Alchemical Behaviour Changeling Big Picture British Biogas Carbon Capture Carbon Commodities Carbon Pricing Carbon Recycling Carbon Taxatious Change Management Climate Change Conflict of Interest Corporate Pressure Cost Effective Dead End Design Matters Direction of Travel Dreamworld Economics Efficiency is King Emissions Impossible Energy Change Energy Crunch Energy Denial Energy Insecurity Geogingerneering Green Gas Green Investment Green Power Human Nurture Hydrocarbon Hegemony Insulation Low Carbon Life Major Shift Money Sings National Power Nuclear Nuisance Nuclear Shambles Paradigm Shapeshifter Policy Warfare Political Nightmare Price Control Realistic Models Regulatory Ultimatum Renewable Gas Resource Curse Resource Wards Science Rules Solution City Technofix Technological Sideshow The Myth of Innovation The Power of Intention Utter Futility Vain Hope Wasted Resource Western Hedge

On Having to Start Somewhere

In the last few weeks I have heard a lot of noble but futile hopes on the subject of carbon dioxide emissions control.

People always seem to want to project too far into the future and lay out their wonder solution – something that is just too advanced enough to be attainable through any of the means we currently have at our disposal. It is impossible to imagine how the gulf can be bridged between the configuration of things today and their chosen future solutions.

Naive civil servants strongly believe in a massive programme of new nuclear power. Head-in-the-clouds climate change consultants and engineers who should know otherwise believe in widespread Carbon Capture and Storage or CCS. MBA students believe in carbon pricing, with carbon trading, or a flat carbon tax. Social engineers believe in significant reductions in energy intensity and energy consumer behaviour change, and economists believe in huge cost reductions for all forms of renewable electricity generation.

To make any progress at all, we need to start where we are. Our economic system has strong emissions-dependent components that can easily be projected to fight off contenders. The thing is, you can’t take a whole layer of bricks out of a Jenga stack without severe degradation of its stability. You need to work with the stack as it is, with all the balances and stresses that already exist. It is too hard to attempt to change everything at once, and the glowing ethereal light of the future is just too ghostly to snatch a hold of without a firm grasp on an appropriate practical rather than spiritual guide.

Here’s part of an email exchange in which I strive for pragmatism in the face of what I perceive as a lack of realism.


To: Jo

I read your article with interest. You have focused on energy, whereas I
tend to focus on total resource. CCS does make sense and should be pushed
forward with real drive as existing power stations can be cleaned up with it
and enjoy a much longer life. Establishing CCS is cheaper than building new
nuclear and uses far less resources. Furthermore, CCS should be used on new
gas and biomass plants in the future.

What we are lacking at the moment is any politician with vision in this
space. Through a combination of boiler upgrades, insulation, appliance
upgrades and behaviour change, it is straight forward to halve domestic
energy use. Businesses are starting to make real headway with energy
savings. We can therefore maintain a current total energy demand for the
foreseeable future.

To service this demand, we should continue to eke out every last effective
joule from the current generating stock by adding cleansing kit to the dirty
performers. While this is being done, we can continue to develop renewable
energy and localised systems which can help to reduce the base load
requirement even further.

From an operational perspective, CCS has stagnated over the last 8 years, so
a test plant needs to be put in place as soon as possible.

The biggest issue for me is that, through political meddling and the
unintended consequences of ill-thought out subsidies, the market has been
skewed in such a way that the probability of a black-out next year is very
high indeed.

Green gas is invisible in many people’s thinking, but the latest House of
Lords Report highlighted its potential.

Vested interests are winning hands down in the stand-off with the big
picture!


From: Jo

What is the title of the House of Lords report to which you refer ?

Sadly, I am old enough to remember Carbon Capture and Storage (CCS)
the first time the notion went around the block, so I’d say that
progress has been thin for 30 years rather than 8.

Original proposals for CCS included sequestration at the bottom of the
ocean, which have only recently been ruled out as the study of global
ocean circulation has discovered more complex looping of deep and
shallower waters that originally modelled – the carbon dioxide would
come back up to the surface waters eventually…

The only way, I believe, that CCS can be made to work is by creating a
value stream from the actual carbon dioxide, and I don’t mean Enhanced
Oil Recovery (EOR).

And I also definitely do not mean carbon dioxide emissions pricing,
taxation or credit trading. The forces against an
investment-influencing carbon price are strong, if you analyse the
games going on in the various economic system components. I do not
believe that a strong carbon price can be asserted when major economic
components are locked into carbon – such as the major energy producers
and suppliers, and some parts of industry, and transport.

Also, carbon pricing is designed to be cost-efficient, as markets will
always find the lowest marginal pricing for any externality in fines
or charges – which is essentially what carbon dioxide emissions are.
The EU Emissions Trading Scheme was bound to deliver a low carbon
price – that’s exactly what the economists predicted in modelling
carbon pricing.

I cannot see that a carbon price could be imposed that was more than
5% of the base commodity trade price. At those levels, the carbon
price is just an irritation to pass on to end consumers.

The main problem is that charging for emissions does not alter
investment decisions. Just like fines for pollution do not change the
risks for future pollution. I think that we should stop believing in
negative charging and start backing positive investment in the energy
transition.

You write “You have focused on energy, whereas I tend to focus on
total resource.” I assume you mean the infrastructure and trading
systems. My understanding leads me to expect that in the current
continuing economic stress, solutions to the energy crisis will indeed
need to re-use existing plant and infrastructure, which is why I
think that Renewable Gas is a viable option for decarbonising total
energy supply – it slots right in to substitute for Natural Gas.

My way to “eke out every last effective joule from the current
generating stock” is to clean up the fuel, rather than battle
thermodynamics and capture the carbon dioxide that comes out the back
end. Although I also recommend carbon recycling to reduce the need for
input feedstock.

I completely agree that energy efficiency – cutting energy demand
through insulation and so on – is essential. But there needs to be a
fundamental change in the way that profits are made in the energy
sector before this will happen in a significant way. Currently it
remains in the best interests of energy production and supply
companies to produce and supply as much energy as they can, as they
have a duty to their shareholders to return a profit through high
sales of their primary products.

“Vested interests” have every right under legally-binding trade
agreements to maximise their profits through the highest possible
sales in a market that is virtually a monopoly. I don’t think this can
be challenged, not even by climate change science. I think the way
forward is to change the commodities upon which the energy sector
thrives. If products from the energy sector include insulation and
other kinds of efficiency, and if the energy sector companies can
continue to make sales of these products, then they can reasonably be
expected to sell less energy. I’m suggesting that energy reduction
services need to have a lease component.

Although Alistair Buchanan formerly of Ofgem is right about the
electricity generation margins slipping really low in the next few
winters, there are STOR contracts that National Grid have been working
on, which should keep the lights on, unless Russia turn off the gas
taps, which is something nobody can do anything much about – not BP,
nor our diplomatic corps, the GECF (the gas OPEC), nor the WTO.


Categories
Academic Freedom Assets not Liabilities Bioeffigy British Biogas Burning Money Carbon Capture Climate Change Conflict of Interest Corporate Pressure Cost Effective Design Matters Direction of Travel Disturbing Trends Dreamworld Economics Emissions Impossible Energy Change Engineering Marvel Extreme Energy Financiers of the Apocalypse Fossilised Fuels Gamechanger Gas Storage Geogingerneering Green Gas Green Investment Green Power Hydrocarbon Hegemony Hydrogen Economy Low Carbon Life Mad Mad World Marine Gas Mass Propaganda Methane Madness Methane Management Money Sings Mudslide National Energy National Power No Pressure Nuclear Nuisance Nuclear Shambles Nudge & Budge Orwells Paradigm Shapeshifter Petrolheads Policy Warfare Political Nightmare Public Relations Pure Hollywood Regulatory Ultimatum Renewable Gas Solar Sunrise Solution City Technofix Technological Fallacy Technological Sideshow Technomess The Myth of Innovation The Power of Intention Ungreen Development Vote Loser Wasted Resource Western Hedge Wind of Fortune Zero Net

Failing Narratives : Carbon Culprits

In the last few weeks I have attended a number of well-intentioned meetings on advances in the field of carbon dioxide emissions mitigation. My overall impression is that there are several failing narratives to be encountered if you make even the shallowest foray into the murky mix of politics and energy engineering.

As somebody rightly pointed out, no capitalist worth their share price is going to spend real money in the current economic environment on new kit, even if they have asset class status – so all advances will necessarily be driven by public subsidies – in fact, significant technological advance has only ever been accomplished by state support.

Disturbingly, free money is also being demanded to roll out decades-old low carbon energy technology – nuclear power, wind power, green gas, solar photovoltaics – so it seems to me the only way we will ever get appropriate levels of renewable energy deployment is by directed, positive public investment.

More to the point, we are now in an era where nobody at all is prepared to spend any serious money without a lucrative slap on the back, and reasons beyond reasons are being deployed to justify this position. For example, the gas-fired power plant operators make claims that the increase in wind power is threatening their profitability, so they are refusing to built new electricity generation capacity without generous handouts. This will be the Capacity Mechanism, and will keep gas power plants from being mothballed. Yes, there is data to support their complaint, but it does still seem like whinging and special pleading.

And the UK Government’s drooling and desperate fixation with new nuclear power has thrown the European Commission into a tizzy about the fizzy promises of “strike price” guaranteed sales returns for the future atomic electricity generation.

But here, I want to contrast two other energy-polity dialogues – one for developing an invaluable energy resource, and the other about throwing money down a hole.

First, let’s take the white elephant. Royal Dutch Shell has for many years been lobbying for state financial support to pump carbon dioxide down holes in the ground. Various oil and gas industry engineers have been selling this idea to governments, federal and sub-federal for decades, and even acted as consultants to the Civil Society process on emissions control – you just need to read the United Nations’ IPCC Climate Change Assessment Report and Special Report output to detect the filigree of a trace of geoengineering fingers scratching their meaning into global intention. Let us take your nasty, noxious carbon dioxide, they whisper suggestively, and push it down a hole, out of sight and out of accounting mind, but don’t forget to slip us a huge cheque for doing so. You know, they add, we could even do it cost-effectively, by producing more oil and gas from emptying wells, resulting from pumping the carbon dioxide into them. Enhanced Oil Recovery – or EOR – would of course mean that some of the carbon dioxide pumped underground would in effect come out again in the form of the flue gas from the combustion of new fossil fuels, but anyway…

And governments love being seen to be doing something, anything, really, about climate change, as long as it’s not too complicated, and involves big players who should be trustworthy. So, you get the Peterhead project picking up a fat cheque for a trial of Carbon Capture and Storage (CCS) in Scotland, and the sidestep hint that if Scotland decides to become independent, this project money could be lost…But this project doesn’t involve much of anything that is really new. The power station that will be used is a liability that ought to be closing now, really, according to some. And the trial will only last for ten years. There will be no EOR – at least – not in the public statements, but this plan could lead the way.

All of this is like pushing a fat kid up a shiny slide. Once Government take their greasy Treasury hands off the project, the whole narrative will fail, falling to an ignominious muddy end. This perhaps explains the underlying desperation of many – CCS is the only major engineering response to emissions that many people can think of – because they cannot imagine burning less fossil fuels. So this wobbling effigy has to be kept on the top of the pedestal. And so I have enjoyed two identical Shell presentations on the theme of the Peterhead project in as many weeks. CCS must be obeyed.

But, all the same, it’s big money. And glaring yellow and red photo opps. You can’t miss it. And then, at the other end of the scale of subsidies, is biogas. With currently low production volumes, and complexities attached to its utilisation, anaerobically digesting wastes of all kinds and capturing the gas for use as a fuel, is a kind of token technology to many, only justified because methane is a much stronger greenhouse gas than carbon dioxide, so it needs to be burned.

The subsidy arrangements for many renewable energy technologies are in flux. Subsidies for green gas will be reconsidered and reformulated in April, and will probably experience a degression – a hand taken off the tiller of driving energy change.

At an evening biogas briefing given by Rushlight this week, I could almost smell a whiff of despair and disappointment in the levels of official support for green gas. It was freely admitted that not all the planned projects around the country will see completion, not only because of the prevailing economic climate, but because of the vagaries of feedstock availability, and the complexity of gas cleaning regulations.

There was light in the tunnel, though, even if the end had not been reached – a new Quality Protocol for upgrading biogas to biomethane, for injection into the gas grid, has been established. You won’t find it on the official UK Goverment website, apparently, as it has fallen through the cracks of the rebranding to gov.uk, but here it is, and it’s from the Environment Agency, so it’s official :-

https://www.greengas.org.uk/pdf/biomethane-qp.pdf

https://www.r-e-a.net/news/rea-welcomes-environment-agencys-updated-anaerobic-digestion-quality-protocol

https://adbiogas.co.uk/2014/01/30/biomethane-qp-could-boost-renewable-gas-to-grid-market/
https://adbiogas.co.uk/2014/01/30/biomethane-quality-protocol-published/

Here’s some background :-

https://www.environment-agency.gov.uk/aboutus/wfo/epow/124111.aspx

To get some picture of the mess that British green energy policy is in, all you need do is take a glance at Germany and Denmark, where green gas is considered the “third leg of the stool”, stabilising renewable energy supply with easily-stored low carbon gas, to balance out the peaks and troughs in wind power and solar power provision.

Green gas should not be considered a nice-to-have minor addition to the solutions portfolio in my view. The potential to de-carbonise the energy gas supply is huge, and the UK are missing a trick here – the big money is being ladled onto the “incumbents” – the big energy companies who want to carry on burning fossil fuels but sweep their emissions under the North Sea salt cavern carpet with CCS, whilst the beer change is being reluctantly handed out as a guilt offering to people seeking genuinely low carbon energy production.

Seriously – where the exoplanet are we at ?