Categories
Uncategorized

Renewable Gas : Where The Ask Is

Today, I’m trying to think through where the conversations about renewable chemical feedstocks must be taking place. Where high level strategists, government departments or agencies, company directors and shareholder action groups must be discussing how to displace crude petroleum oil, Natural Gas and coal as inputs to the global energy and chemicals machine.

Naturally, the conflicting demands of pumping fossil fuels and lowering carbon emissions have reached the boardroom of the major oil and gas company.

Their strategy is ideally for them one that highlights their operations and ignores their product; celebrates their alternative and renewable energy work, yet obscures its minuscule contribution to their total business model.

They need to be asked to focus their attention on synthesised low carbon gas and fuels, to re-centre their businesses on gas, and eventually synthetic gas and synthetic fuels.

So, just where is the ask ? Can the ask come from shareholders, based on annual company reports ?

Categories
Uncategorized

All Roads Lead to Renewable Gas

Renewable Gas will be a solution of choice in the low carbon transition for many energy applications. It stands to reason that because it can be useful in a number of ways, addressing a range of problems, it will become increasingly important and developed.

Gas Is A Good Partner To Renewable Electricity

The deployment of renewable electricity, principally wind power and solar power, is accelerating, but in order to navigate the transition to a much greener electricity mix, support will be needed from infrastructure put in place by power network operators, in such areas as grid capacity upgrades and backup power generation, as renewable electricity will always remain variable in supply.

Any storable fuel is useful from an operational point of view; but gas fuels can be combusted through oxidation for power generation more efficiently and cleanly than liquid or solid fuels, because the oxygen can be well-mixed with the gas. Although it is somewhat more complicated to store gas than liquid or solid fuels, because of issues of fugitive emissions, with good design and monitoring, gas can be safely and securely stored, season to season.

Different kinds of gas are useful as fuels, and they can be used by different power technologies. Not only can combustible gases be used in engines, for example, methane; pressurised gas can be used to run power generating equipment, for example, non-burning carbon dioxide, and ordinary air. Carbon dioxide and methane are both global warming gases, and so their containment is a priority, and where possible, the aim should be to not emit them as a byproduct or through leaks.

Gas heating systems have become widespread in many regions of the developed world, as has gas-powered chilling. Owing to its relative cleanliness and efficiency, gas combustion is becoming recognised as the preferred option, not only for power generation and building temperature control, but also for vehicle fuelling.

Rebalancing Regional Heterogeneity Of Fossil Fuel Resources

Although coals of varying quality and quantity can be found almost everywhere, the uneven global distribution and local concentration of petroleum oil and Natural Gas deposits could reasonably be implicated in the augmentation of regional resource conflict and the promotion of economic imbalance, owing to the tendency for corporocratic influences, as governments and fossil fuel markets form mutual dependencies.

Resource concentration geographies, modelled on the history of fossil fuel machinations, could be seen arising afresh in the need for increasing supplies of rare earth elements, used in electrolytes and catalysts for new energy technologies. These “resource curses” could cause delicate and bruised situations to degenerate further, as localised deposits of fossil fuels and other geographically-constrained mined materials experience significant depletion.

Renewable Gas can be made in a wide number of locations, using a variety of technologies and feedstocks, and so would prevent and preclude the systemic pressure points of fossil fuel resource exploitation. Additionally, it could ameliorate the situation if there are any flare-ups in the process of the decline of petroleum and Natural Gas resource provision : Renewable Gas could salve and soothe the aching voids left by empty wells.

Just as highly decentralised projects in wind power and solar power are providing energy access to the energy-deprived, and economic stimulus, local Renewable Gas facilities will both complement and expand the range and coverage of low carbon and low air pollution energy supply at the same geocodes. This will reduce fossil fuel import dependencies, and could help unpick systems of energy colonialism, whilst also rolling back situational triggers for conflict. No more will the passage of oil or other resource tankers through the Straits of Hormuz be a potential flashpoint, one could hope.

Even in energy-rich regions, with strongly-developed power and gas grid and pipeline networks, boosting the production and supply of local Renewable Gas will promote economic stability and regeneration. It will also offset regional and state centralised supplies, and can be carried by the same networks.

Enabling The Low Carbon Transport Transition

The sheer scale of private, corporate and state fleets of fossil-fuelled vehicles, and the manufacture and sale of new units, means that liquid vehicle fuels are necessitated for a number of decades to come. Sales and use of alternative drive vehicles is accelerating, but starting from such a low base, it seems likely that it will take many years to create an impact on this market dominance. This pragmatic truth has been used by the projectioners of the oil and gas companies to claim that their products, and hence their business models, are secure for investment.

Oil and gas majors, when offering to act on climate change, proffer such things as their increasing engineering efficiency and operations streamlining as evidence that they are constraining emissions. They are working together in a global pact to curb Natural Gas venting and flaring. They are using the most environmentally-sound chemical engineering. However, the oil and gas companies, just as the rest of society, need to address the net end-use carbon dioxide and methane emissions of their products, as well as their mining and refining operations.

As the numerical size of the global fossil fuel fleets is so large, it is not feasible to wait for electric drive cars, hydrogen buses and compressed biomethane trucks to form the major segment of the market before seeing an important transition. That would be waiting too late to make a dent in net global warming emissions. Measures that could help would include mandating the reduction in the size of private road vehicles, launching schemes to perform diesel-to-electric conversions, and promoting public transport and vehicle sharing; but these measures will be small in scale compared to the total fleets in use, at least to begin with. As the liquid fuel engines will continue to roll, the best inroad to addressing the emissions of fuels is to transition the feedstocks and processes used to produce the fuels themselves.

Increasing manufacture and sales of alternative drive vehicles, and transitioning fossil fuels to alternative liquid fuels could be viewed as an essential two-pronged attack on the scourge of global warming emissions from transport and freight, predicated by the intractable nature of this sector’s emissions, embedded deeply in the economy, with its tentacle hold on governance.

There have been several coordinated or independent attempts at introducing alternative liquid fuels over the last century, and regional fuel standards sometimes require or permit a selection of chemical substitutes or additives for diesel or petrol-gasoline fuels. Yet, these regulatory transitions are overall insignificant compared to the quantities of fossil fuels that are still sold, and will continue to be sold, unless impactful and consequential change is imposed or agreed.

The chemical engineering needed to create low net carbon liquid vehicle fuels has existed since the development of industrial scale catalysis; for example, the widespread production of methanol from syngas – a mixture of primarily hydrogen, carbon monoxide and carbon dioxide, that results from high temperature oxygen-constrained gasification of a range of substrates (feedstocks, base materials).

Although movement towards alternative liquid fuels is making progress, it will probably need global private and public investment projects to push forward towards meaningful gains and hold significant ground. Disparate and uncoordinated, uncentralised measures might not cross thresholds of cost and efficiency fast enough for enterprises to succeed.

Unlike many Renewable Gas projects, alternative liquid fuels plants will need to be centralised, at least to kickstart production capability, and provide learning; engaging the economies of scale until cost reductions are enabled. This is where the inclusion and leadership of the fossil fuel companies will be essential; they are some of the most appropriate industrial bases with the requisite chemical engineering capabilities to markedly develop alternative fuel production. If the oil and gas companies make alternative fuel production one of their central strategies, it will enable these entities to weather and survive. If they let other engineering corporates take up the mantle of Renewable Fuel production, the oil and gas companies face the possibility of annihilation and insignificance.

The production of liquid Renewable Fuels requires the making of low carbon Renewable Gas, which once again points the solutions compass arrow in that direction.

The production of Renewable Gas will also help cushion the potential carbon emissions impact from the rise of electric vehicles – which will all need charging and will sap the grids of power : where demand has been stable for many years, it will suddenly rise. To provide a much firmer supply base in renewable power will require a much stronger acceleration in the deployment of wind turbines and solar panels. This growth might be stymied by a number of factors. Not only that, but demand patterns may have noticeably different daily profiles, leading to problems arising from incorrect power provision planning. Having recourse to Renewable Gas will buffer supply and demand in low carbon electricity. When there is a plentiful supply of renewable power, Renewable Gas will be made; when there are scarcities arising from the contrary patterns of renewable power supply and demand, Renewable Gas can step in for electricity generation.

Just as we will balance renewable electricity with Renewable Gas for ordinary domestic, commercial and industrial power demand, we will also balance vehicular power demand with Renewable Gas, during the new charging times profile.

Contributing To Better Urban Air Quality

In order to reduce urban air pollution from transport, it is necessary to use lighter, less complex fuels, and also to make them as hydrogen-rich as possible – as unburned carbon atoms and carbon-based molecules have the potential to be the site of nucleation of pollution particles – particulate matter, which is often small enough to compromise lungs.

Methane in this regard makes an almost perfect fuel : a lot of hydrogen which will burn cleanly, and one carbon atom to keep energy density high. Methane also has superior operational parameters for a range of applications, such as a much more reasonable liquefaction temperature than hydrogen – useful for long distance transportation.

Even though Renewable Gas, whether Renewable Methane or Renewable Hydrogen, will contribute to a lowering of air pollution, any kind of combustion in a vehicle engine that uses ordinary air will still produce nitrogen oxides air pollution. The only way to avoid this would be to have gas drive vehicles of the future designed around using pure oxygen as the combustion oxidant – which would entail parallel tanks, and much higher safety features; or designing fuel cells that do not permit nitrogen combustion.

Displacing Fossil Fuels For Heating And Cooling

It takes some time to rip out gas networks. Much of the gas distributed is used for heating. To make giant strides in the near term, substituting Natural Gas for Renewable Gas in existing gas grids is a logical development.

Replacing Industrial Chemical Feedstocks

To start the low carbon transition of chemical engineering requires the insertion of key renewable feedstocks, as well as the use of renewable electricity. Renewable Hydrogen, Renewable Methanol and Renewable Methane will all be useful target molecules.

Natural Gas Is Not A Destination

The fact that gas is a good choice for a range of energy applications should not become an excuse for the oil and gas companies to keep pushing Natural Gas. Natural Gas cannot be the endpoint of change, so oil and gas companies should not pin themselves into this niche : instead, they should be following a strategy of diversification into electricity and energy services, and in the production of Renewable Gas, which will become increasingly mandated by global warming limitation legislation and shareholder climate change action.

Categories
Behaviour Changeling British Sea Power Carbon Army Carbon Capture Carbon Commodities China Syndrome Climate Change Energy Revival Geogingerneering Global Warming Growth Paradigm Health Impacts Low Carbon Life Media Nuclear Nuisance Nuclear Shambles Pet Peeves Political Nightmare Public Relations Regulatory Ultimatum Renewable Resource Science Rules Social Change Solar Sunrise Voluntary Behaviour Change Vote Loser Wind of Fortune

Climate Union : Sharing Principles

Image Credit : Gilbert & George, “Nettle Dance”, White Cube

I’m in the Climate Union. Are You ?

Soon we could all be, if the expansionist plans of a group of social campaigners come to fruition.

Taking in the unions, faith communities and the usual rag-tag bunch of issues activists, the Climate Union aims to establish itself as a political force for Low Carbon.

First of all, however, it has to tackle the uneasy and prickly problem of the exact name of the movement, and the principles under which it will operate.

The flag has been flown : a set of principles has been circulated for discussion amongst the “Climate Forum”. I cannot show you the finalised document yet, but I can offer you my comments (see below).

If you want to comment on the development of this emerging entity, please contact : Peter Robinson, Campaign against Climate Change, mobile/cell telephone in the UK : 07876595993.


Comments on the Climate Forum Principles
Jo Abbess
28 June 2010

I am aware that my comments are going to be a little challenging. I made similar comments during the review of the ClimateSafety briefing, which were highly criticised.

I expect you to be negative in response to what I say, but I think it is necessary to make sure the Climate Forum does not become watered-down, sectorally imprisoned and politically neutered, like so many other campaigns.

Categories
Climate Change Political Nightmare Social Change

Ed Is Quite The Daddy

Snared though he is on unreliable, expensive technological futures like a raft of new Nuclear Power plants and the unseemly costs of Carbon Capture with Storage, Ed Miliband does have a sound view of the “long” now : that decisions made now have to lead to a Low Carbon configuration in the decades to come, and that short-term campaigns only go so far in drawing democracy along with you.