Why are we building gas ships ?

Calum Watson at BBC Scotland rightly asks “Why are we building gas-powered ships ?

Two “problem-hit” “green” ferries are three years late, designed to be fuelled by LNG – Liquefied Natural Gas.

Of course, Natural Gas has a shelf life, a sell-by date, a leave-it-in-the-ground date. Because it’s a fossil fuel, and at some point, even though we might use Natural Gas as a “bridge fuel” to the fully renewable future, as some point we will need to stop pumping it up and burning it. The climate demands it.

So, why are we building gas-fuelled ships, then ? Well, that’s because Renewable Gas is a-coming in. For now, Natural Gas combustion produces around half the carbon dioxide per unit of useful end energy than coal or the thickest petroleum-sourced “bunker fuel” marine oils.

And in addition, as Calum Watson at BBC Scotland points out, burning Natural Gas produces far less air pollution than burning the treacle tar that comes out of the bottom of the barrel and the bottom of the petrorefinery fractional distillation columns – almost too heavy to vaporise.

The model of shipping gas halfway round the globe, compressed and chilled as LNG, in a network of efficient trading routes, is something that can put cheap associated Natural Gas to good use in energy markets – associated with petroleum oil, that is – co-produced, or by-produced when the oils and the condensates are pumped up.

The same system can in the future be used to trade Renewable Gas – Renewable Methane, synthesised from Renewable Hydrogen and Renewable Carbon.

There’s no need to abandon gas-fuelled ships on climate change action grounds, when Renewable Gas is going to displace Natural Gas.

Calum Watson at BBC Scotland asks if hydrogen could be the shipping fuel of the future, but he rightly points out that if hydrogen were to be shipped in the same way as Natural Gas is now in the form of a liquid, the cryogenic demands on liquefying hydrogen would be extreme.

He discusses electric drive ships, and that’s going to be great for short hops – but for the long haul, shipping will still need energy denser material fuels. The question in my mind is if Renewable Methane as LRG – Liquefied Renewable Gas is the best option – as it is possible to synthesise fuels that are liquid at room temperature, starting with biomass and Renewable Hydrogen.

Combusting liquid Renewable Fuels made through synthesis might be shown to have the same kinds of air pollution implications as fossil marine fuels : perhaps Renewable Gas will work out to be the best choice for new ocean-going vessels. It won’t be the ammonia-made-from-hydrogen mentioned in the article – there are too many issues with using this in bulk. Renewable Gas, however, where it is Renewable Methane, will be almost identical to Natural Gas, which has a very high methane content.

Calum Watson at BBC Scotland ponders that, “it looks like shipyards will be building a lot more gas-powered ships – whether that will satisfy climate change concerns is another matter.” This is a valid issue when considering hydrogen made from Natural Gas – which is another dead end. But if we use, as he says, “The cleanest way of obtaining the gas is by splitting water molecules using electrolysis, a process which requires electricity”, and take Renewable Electricity as our power for this, then the product will automatically be climate sound.

BP : Breaking Paradigms

As you walk into BP World, be prepared to have an ideological transplant. Be prepared to have hopes dashed and disappointments bittered. Be prepared, above all, to have unrecognisable narratives thrust upon you, with all the reinforcements that money can lobby for.

This is my initial reaction upon reading the words of Bob Dudley, outgoing Chief Executive Officer of BP, reported yesterday by Bloomberg, and carried on the wires elsewhere, for example :-

https://www.msn.com/en-us/finance/markets/outgoing-bp-ceo-warns-of-moving-too-fast-on-climate-change/ar-BBZom91
https://www.energyvoice.com/otherenergy/220661/outgoing-bp-ceo-warns-of-moving-too-fast-on-climate-change/
https://www.rigzone.com/news/wire/bps_dudley_warns_of_moving_too_fast_on_climate_change-28-jan-2020-160921-article/

In the article, headlined, “Outgoing BP CEO Warns of Moving Too Fast on Climate Change”, Bob Dudley “warned Big Oil of moving too fast on investing in new technologies to counter climate change, because their failure could lead to financial ruin. ‘If you go too fast and you don’t get it right you can drive yourself out of business,’ Dudley said in a Columbia Energy Exchange podcast with Professor Jason Bordoff.”

I suppose that sentiment would be valid if the “new” technologies he is probably referring to were genuinely radical. The thing is, wind power and solar power, the two key technologies that have been causing an explosion in renewable energy, are tried and tested, so they are definitely not “new”; and also, there’s no significant failure that could reasonably be anticipated now.

What is it with BP and Renewable Energy ? Why the long faces ? It probably has to do with the BP Solar venture, that was properly amazing at the time, although it transpired that BP was making it all work with subsidies, which obviously is not sustainable, and there was strong competition from Chinese manufacture, so it was all closed down.

The real issue here could be said to have been market manipulation; but when the markets started functioning properly, over-subsidised, cost-inefficient technologies could no longer compete.

Market rigging doesn’t really work, except to kickstart technology adoption, and so it’s a bit of a mystery why BP still clings to carbon pricing as their preferred ask, “‘I cannot imagine how we’re going to get there without a price on carbon.'”

Now that wind power and solar power are within reach at increasingly reasonable capital expenditure levels, and many power companies increasingly depend on the cheap wind and solar electrons, why does Bob Dudley still maintain renewable energy technologies cannot be assets instead of liabilities, where for example, he said, “It does have a lower return profile, there’s no question about it.” ?

And further, he says he has been taunting shareholders with what he believes – that there is a lack of financial returns from renewables, “[…] they say ‘we would like you to move really quickly into renewables.’ I say, ‘we can do that, would you like us to cut the dividend?’ They go, ‘no, no, don’t do that.’

Bob Dudley seems to be making reference to an alternative reality, because this is not how things work in this current universe. Wind power and solar power are making real money, these days.

Also, Mr Dudley still seems unconvinced that renewable electricity technology is already viable, “‘Technology has not yet been cracked that will make the big movement on climate change. Renewables are fantastic. They’re one way to do it, but we’re going to come through with some solution.'”; and “‘Oil companies must […] invest when game-changing technologies are developed.'”

There’s no need to look to the future, though. All the technologies we need, we already have.

Bob Dudley seems to suffer from a lack of insight into what could be possible within BP’s current core business. “‘Oil companies must retain a strong financial footing to be able to invest when game-changing technologies are developed’, he said.” He is implying that BP must keep their social licence to pump crude petroleum oil and Natural Gas, in order to keep their balance sheet healthy enough to invest; yet the technologies he is thinking of have nothing to do with BP’s mining and refining activities. He mentions “some sort of nuclear capability that’s much safer”, by way of an example.

He’s also leaving this shift to the future – to things not yet known or done – leaving BP drilling fossil carbon for decades.

He neglects to address what could be possible in BP’s own house, with green chemistry, to bring about a massive reduction in net carbon dioxide emissions to air.

And about this social licence to drill : “‘If we understand where the technologies are going and we invest, the best thing we can do strategically is have a strong balance sheet. When it becomes really clear certain technologies are going to move very quickly and be profitable, then we’ll be able to make that shift.'” But, but, we can’t wait for BP to jump, when they think the market’s right to act on climate change. They do need to be acting right now.

So, not really inspiring, and rather disparaging.

But here’s where I agree with Bob, “‘We should not shut down what we’re doing or sell our assets to somebody else and go all into renewables'”, he is quoted as saying, and I totally agree. Why should BP try to do anything apart from what they’re really good at – chemical engineering ?

“‘We want to be leaders in this and we do enormous amount as companies’, such as in developing technology and reducing emissions from their own operations. But ‘we’re not the epicenter of these issues.'” Again, too right. BP is not the epicentre of solar power and wind power development, it’s not really their thing. Even so, they should be very central in the global response to climate change. Nobody should shrug.

And again, I agree with Bob when he says, “‘I don’t know how the world can get to the goals of [the] Paris [Treaty, agreed by UNFCCC] without a very major role for natural gas.'” No, indeed. Methane, the main constituent of Natural Gas, is a fine energy vector, and high flexible. It’s just that I think BP should be focussing on Renewable Methane, instead of Natural Gas, in future, and need a strategy to make that transition out of Natural Gas happen.

Bob Dudley thinks we should be resigned about the reign of King Oil, “‘If we were all driven out of business that oil would still be produced’ by national oil companies and other countries.”, which is a major abdication of responsiblity. Where is the compact between companies and countries to take up green chemistry, and elect to cease and desist from digging up fossil fuels ?

I think there is room for a breaking of paradigms. It might be too much to hope for a non-white person, or a woman, or even a person not wearing a suit and tie to be the new head of BP, but I have a vague idea there’s some traction in arguing for BP to return to their 1970s glory days of fuel synthesis.

The Renewable Gas Ask : Part Q

In the continuing inquiry into which bodies and actors are likely to call for Renewable Gas, and why, I am going back to add extra comments to sectors I already discussed.

14.   Power Grid Operators (Continued)

An Embarrassment of Electrons

Stories regularly bubble away, and rise to the surface from time to time, about how renewable power is being wasted, as grids don’t need it or can’t handle it.

There appears to be a whole phalanx of media commentators, who might identify as right-wing, and therefore be fans of shareholding and markets, who complain about wind turbines being “shut down” (or more accurately “shut out”) because it’s too windy. Funny, though, increasingly more wind turbines are being planted, almost as if there’s a strong return on capital investment in these zero carbon assets. Plus, these opinion-formers don’t seem to change their story from year to year, which is a tad strange :-

2018 : Wind farms paid £100m to switch power off
2020 : “Wind farms paid up to £3 million per day to switch off turbines”

It’s a losing argument, lads. Actually, no, it’s lost. The National Grid knew what it was doing when it agreed to adopt renewable electricity sources. There’s the whole Balancing Mechanism, and soon, there will be heaps of extra electricity storage, and the storage of the power of electrons in other forms of energy.

As time goes by, and reams of solar panels and crowds of wind turbines are added to the standing army of power grids in the developed and developing countries, because neighbouring countries will all be producing too much electricity at the same time – for example in a strong storm system or a very sunny day – it will not be possible to export electrons along interconnectors.

Oops, an embarrassment of electrons. The infrastructure and grid distribution people will be looking for anything that can act as a load sink. Sure, for an anticipated storage time of a few hours, using grid-integrated solid state batteries are going to be a boon. Except the scale of the energy storage required might far outweigh original scoping.

Will the power companies turn to flow batteries and other kinds of chemical looping systems for energy storage on windy Wednesdays and sunny Sundays ? It all depends on how stable these turn out to be – how many cycles of a unit can be done before maintenance or chemical refilling is required. Also, the containment of chemical batteries is a fairly major construction cost, and for safety reasons, it might be better if they were built into the ground – also saving on build materials. If the power companies need to go to the extent of digging for battery provision, why not produce synthetic gas from excess renewable power, and store that underground instead ? It would require much less in terms of containment and build. Nature has provided a fine example of how gases can be stored safely for millions of years underground – why, we could even use the now-emptied Natural Gas caverns to store synthesised methane.

It is at this point in the logic that a wise reviewer of energy will reflect on how there is now a bit of a competition for the provision of sub-surface storage of gases. Large, traditionally leading oil and gas companies are selling the idea of CCS – Carbon Capture and Storage, where all vagrant carbon dioxide should be plucked from whichever process, or even from the air itself, to be compressed and pumped underground for eternity – but actually a good deal shorter, because of tectonics and the natural long period natural Carbon Cycle. Modern, more conscious energy companies want to use the sub-surface to store carbon-free hydrogen, despite the fact that hydrogen molecules are incredibly small and incorrigibly mobile, seeping through even metals.

Whilst it is true that the world needs Renewable Hydrogen – hydrogen liberated from water and biomass by the action of renewable power – the best gas for energy storage is definitely Renewable Methane – made from Renewable Hydrogen. There is a strong parallel with natural processes : Natural Gas, which has been resident in the sub-surface for millions of years, is primarily methane in content.

Fine. Capture and lock away a bit of carbon dioxide underground. Bury CO2. But there is no gain in locking away a source of carbon that has no intrinsic fuel value. What’s more important is energy storage – so temporarily burying hydrogen and methane – which are ideal fuels. Although, as previously noted, methane is more stable and containable, theoretically. Methane gas emissions from oil and gas industry operations have been bad in some places and at some times : due to liberating methane from its millions-years sub-surface storage : this failing will need to be deal with when applications of Renewable Methane expand.

10.   Industrial High Energy Consumers (Continued)

Developed and developing economies will continue to have industries with high levels of energy demand, causing high levels of carbon dioxide emissions : for products such as steel, glass, fuels, petrochemicals and cement. Processes in this sector are highly concentrated in terms of location, owing to the energy efficiency of highly centralised operation, and this would facilitate high volume carbon dioxide capture, and therefore lower-cost CCS – the underground, permanent sequestration of carbon dioxide.

However, in terms of capital expenditure barriers to new technologies, it would be less of a hurdle to implement low carbon synthetic gas production to meet energy demand; and in addition, provide energy-dense synthesised gases for storage which would have a future earnings potential. If syngas in high energy demand industries were to be made from renewable resources, so Renewable Gas, so Renewable Hydrogen, Renewable Methane and Renewable Carbon Monoxide, this would advance low carbon industry significantly.

Another question is that of speed-to-implementation : Renewable Gas for low carbon energy in energy-intensive industries is likely to be much faster to get going than industry-wide Carbon Capture and Storage.

In order for Renewable Gas to be called for in this sector, however, there would need to be a strong confidence that renewable electricity supplies were growing virtually exponentially, as cheap power will be essential. Renewable Gas will not only be a serious soak of excess renewable power load, it will also provide a way to capture and recycle process heat in energy-intensive industries – a matter of energy efficiency, which is highly important to make advances in.

The Renewable Gas Ask : Part O

16.   Gas Network Operators

Water, gas and power are considered essentials in developed society, and the responsibility for providing a constant supply rests with a range of public utilities and private concerns. What might not be visible at a first glance is the necessity for there to be overarching distribution organisations. Most consumers of water, gas and power only see the bills from their supply companies, they don’t see the grids and pipeline networks that act as infrastructure to communicate their supplies to their doors; nor envisage how coordinated and managed these need to be in order to keep the whole system functioning.

And thus it is that there are giant companies and government agencies that are forever working behind the market scenes, installing, repairing, connecting, transforming, regulating, pumping, pressurising, smoothing and balancing the supplies of water, gas and power.

It is these powerful and very well connected groups that may be a powerful voice for the introduction of Renewable Gas, as they have several good reasons to call for it.

First of all, because of potential vagaries and vaguenesses, and perhaps even international vandalism, the supply of Natural Gas, for example to the European region, which is heavily dependent on imports, might be at risk under some possible future conditions – temporal or temporary. This naturally mandates healthy grid-connected gas storage facilities. It is important to note that the storage of energy fuel gases is of an importance a magnitude higher than the storage of waste non-fuel carbon dioxide to these actors in the energy sector. We all know that climate change is a scourge that needs addressing, but if Vladimir Putin’s generals or buddies turn the taps off, the resulting energy emergency in Europe can only be answered by planning ahead of time to have stores of energy-dense gas on hand. Yes, we need to deal with climate change, but first, we need underground gas storage. Then we can decarbonise the gas.

Second, but no less important, is making sure that gas fuels can adequately and at all times compensate for the natural variability in renewable electricity supply – because, you know, the sun sets, and the wind dies down from time to time. Natural Gas is turning into a very good friend for filling in the gaps in generation, and so builds the case for gas storage. The electricity grid people want the smoothing done by gas, partly because it produces so much less in carbon dioxide emissions that coal, so there has to be a strong cooperation between the gas and power authorities and management. Yes, this is not Renewable Gas going into these stores, but see what happens in point three.

Thirdly, as the growth in renewable electricity “rockets”, and other shock terms to indicate exponential change, there will be times when the combination of the sun and wind power is just too copious – hours of excess energy just streaming into the wires. There is no way that every country in Europe can export all their excess electricity – the wires are full of whizzing wind (or solar) electrons from County Kerry to Pchery in the Czech Republic. What to do with all this excess electricity ? Why, make Renewable Gas of course, to store for future hungry gaps. All the more reason to build gas storage.

And so now you see where this is heading : the administration of the gas infrastructure deeply need gas storage, and the power companies can provide lots of perhaps close to zero cost electrons to make gas from water.

The call for “power-to-gas” or P2G is getting louder – making Renewable Hydrogen – but for a range of reasons, the best gas to store is probably Renewable Methane, so it will pay to watch closely for the details of progress.

Here’s Gasunie reporting a European grant for P2G, and their studies into the same

The Renewable Gas Ask : Part F

Synthetic and renewable fuels are likely to be able to answer both climate change and air pollution concerns, to a greater or lesser extent.

Which gases are best to use for which purpose ? Gases good for combustion release a lot of heat when oxidised. Gases good for trade by liquefaction have boiling points closer to 0° C than further away from it. Simple covalently-bound molecules are most appropriate for reactor chemistry – where transformational reactions are fostered.

Which liquids are best for which application ? Liquids for cleaner combustion are likely to be oxygenate – have oxygen in their formula; and when their thermochemical properties suit the engines they are to be burned in.

Here is a first pass at summarising some of the molecules being investigated – molecules that can be synthesised from basic input chemical feedstocks.


Table : A Selection of Compounds in Industrial Gas and Fuels Chemistry

Note : STP = Standard Temperature and Pressure (20° C to 25° C, at 1 atmosphere of pressure).

Note : DME is here used for Dimethyl ether, and not Dimethoxyethane.

Note : Oxymethylene Dimethyl Ethers are also known as PODE, Polyoxymethylene dimethyl ethers; POMDME or OMDME.

CompoundFormula Boiling Point
(° C)
State (STP)Use
HydrogenH2 -252.87GasFuel, Feedstock
WaterH2O +100LiquidFeedstock
OxygenO2 -182.95GasCombustion
Carbon monoxideCO -191.5GasFuel, Feedstock
Carbon dioxideCO2 -57GasExhaust, Feedstock
AmmoniaNH3 -33.34GasProduct
NitrogenN2 -195.8GasFeedstock
Nitrous oxideN2O -88.46GasExhaust
Nitrogen dioxideNO2 +21.15Liquid/GasExhaust
Nitric oxide, nitrogen monoxideNO -152GasExhaust
MethaneCH4 -161.50GasFuel, Feedstock
EthaneC2H6; H3C-CH3 -88.5GasFuel, Feedstock
PropaneC3H8; H3C-CH2-CH3 -42GasFuel, Feedstock
Butane, n-ButaneC4H10; H3C-CH2-CH2-CH3 -0.5GasFuel, Feedstock
isoButane, 2-MethylpropaneC4H10; H3C-CH(-CH3)-CH3 -11.7GasFuel, Feedstock
Ethene, EthyleneC2H4; H2C=CH2 -103.7GasFeedstock
Propene, Propylene, Methyl ethyleneC3H6; H2C=CH(-CH3) -185.2GasFeedstock
Butene, Butylene, as alpha-ButyleneC4H8; H2C=CH(-CH2CH3) -6.3GasFeedstock
Butene, Butylene, as cis-beta-ButyleneC4H8; H3C-CH=(CH(-CH3)) +2.25, +3.72…GasFeedstock
Butene, Butylene, as trans-beta-ButyleneC4H8; H3C-CH=(CH(-CH3)) +2.25, +3.73…GasFeedstock
Butene, Butylene, as isoButyleneC4H8; H2C=C(-CH3)CH3 -6.9GasFeedstock
Methanol, MeOHCH3OH; H3C-OH +64.7LiquidFuel, Feedstock
Ethanol, EtOHC2H6O; H3C-CH2-OH +78.24LiquidFuel, Feedstock
Propanol, 1-PropanolC3H8O; H3C-CH2-CH2-OH +97 to +98LiquidFuel, Feedstock
isoPropanol, isoPropyl Alcohol, IPA, 2-PropanolC3H8O; H3C-CH(-OH)-CH3 82.6LiquidFuel, Feedstock
Butanol, n-Butanol, 1-Butanol, butan-1-olC4H9OH; H3C-CH2-CH2-CH2-OH +117.6LiquidFuel, Feedstock
sec-Butanol, 2-Butanol, butan-2-olC4H9OH; H3C-CH2-CH(-OH)-CH3 +98 to +100LiquidFuel, Feedstock
isoButanol, 2-methylpropan-1-olC4H9OH; H3C-CH(-CH3)-CH2-OH +107.89LiquidFuel, Feedstock
tert-Butanol, 2-methylpropan-2-olC4H10O; H3C-CH3(-CH3)-OH +82.3LiquidFuel, Feedstock
Methanal, FormaldehydeCH2O; H2C=O +64.7LiquidFeedstock
Dimethyl ether, Methoxymethane, DME, PODE-0, OMDME-0C2H6O; H3C-O-CH3 -24GasFuel, Feedstock
Oxymethylene Dimethyl Ether 1, OME-1, Methylal, Dimethoxymethane,
PODE-1, OMDME-1, DMM
C3H8O2; H3C-O-CH2-O-CH3 +42, +45.2LiquidFuel, Feedstock
Oxymethylene Dimethyl Ether 2, OME-2, PODE-2, OMDME-2C4H10O3; H3C-O-CH2-O-CH2-O-CH3 +105LiquidFuel
Oxymethylene Dimethyl Ether 3, OME-3, PODE-3, OMDME-3C5H12O4; H3C-O-CH2-O-CH2-O-CH2-O-CH3 +156LiquidFuel
Oxymethylene Dimethyl Ether 4, OME-4, PODE-4, OMDME-4C6H14O5; H3C-O-CH2-O-CH2-O-CH2-O-CH2-O-CH3 +202LiquidFuel
Oxymethylene Dimethyl Ether 5, OME-5, PODE-5, OMDME-5C7H16O6; H3C-O-CH2-O-CH2-O-CH2-O-CH2-O-CH2-O-CH3 +242LiquidFuel
TrioxaneC3H6O3; -CH2-O-CH2-O-CH2-O- +114.5LiquidFeedstock
Diethyl ether, Ether, Ethoxyethane, DEE, OMDEE-0C4H10O; H3C-H2C-O-CH2-CH3 +35LiquidFuel
Oxymethylene Diethyl Ether 1, Diethoxymethane,
Ethylal, DEM, OMDEE-1
C5H12O2; H3C-H2C-O-CH2-O-CH2-CH3 +88LiquidFuel, Feedstock
Oxymethylene Diethyl Ether 2, OMDEE-2C6H14O3; H3C-H2C-O-CH2-O-CH2-O-CH2-CH3 +140LiquidFuel
Oxymethylene Diethyl Ether 3, OMDEE-3C7H16O4; H3C-H2C-O-CH2-O-CH2-O-CH2-O-CH2-CH3 +185LiquidFuel
Oxymethylene Diethyl Ether 4, OMDEE-4C8H18O5; H3C-H2C-O-CH2-O-CH2-O-CH2-O-CH2-O-CH2-CH3 +225LiquidFuel
Dibutyl ether, DBEC8H18O; H3C-H2C-H2C-H2C-O-CH2-CH2-CH2-CH3 +140.8LiquidFuel

The Renewable Gas Ask : Part E

Previously, I have been considering what groups of economic actors in what sectors could be influential in calling for the development of Renewable Gas – low net carbon emissions gases, used as energy fuels and chemical feedstocks, thermochemically or biologically synthesised from renewable electricity, water and biomass :-

https://www.joabbess.com/2020/01/08/the-renewable-gas-ask-part-a/
https://www.joabbess.com/2020/01/09/the-renewable-gas-ask-part-b/
https://www.joabbess.com/2020/01/10/the-renewable-gas-ask-part-c/
https://www.joabbess.com/2020/01/11/the-renewable-gas-ask-part-d/

I need to go back a little bit to add some extra thoughts, so these will be paragraphs marked with “Continued”.

1.   The World of Chemical Engineering (Continued)

One key sector in the universe of molecule management is plastics, which are now so essential in trade, commerce and manufacturing. That there is so much ethane coming on-stream from the United States hydraulic fracturing oil rush in the form of high levels of NGLs (Natural Gas Liquids) is good news for petrochemical firms big in polymers. Yet, this bounty is unlikely to continue, so what should happen when fracking uncertainties start to mount ?

Will Big Chemistry start to ask for Renewable Gas ? And will they ask for Renewable Gas from themselves ? This would make sense, as the petrochemical industry will have need of a range of light organic and inorganic molecules, even if these are not being supplied as by-products from the mining and refining of fossil fuels.

Petrochemical plants need to to be able to ride changes in the composition of a barrel of oil, and the “balance of plant” in oil refineries. Here, there would be a huge sink for any Renewable Hydrogen that could be made by any sector. Hydrogen is necessary to synthesise a range of chemistry, for example the production of agricultural chemicals, such as ammonia. If the source of much of the world’s hydrogen continues to be fossil fuels, for example, through the gasification of coals and the steam reforming of the methane from Natural Gas, then Big Chemistry will live with increasing uncertainties about the guarantees of supply.

The agricultural sector could step in themselves and ask for Renewable Gas to underpin their supplies of fertiliser, pesticides and other chemicals feeding the world.

5.   Car Manufacturers (Continued)
6.   Utility Vehicle Manufacturers (Continued)
7.   Freight Vehicle Manufacturers (Continued)

It is anticipated to take a considerable amount of time to replace the current global fleet of internal combustion engine drive (ICE) vehicles, whether car (automobile), light duty vans or heavy duty, heavy goods vehicle trucks/lorries.

Vehicle manufacturing companies have divergent strategies. Many of them have launched electric-only ranges. Some of those serving the freight/haulage markets have brought out gas drive options, intended to be run on CNG, Compressed Natural Gas; in advance of electric models, perhaps because of concerns about power-to-weight ratios, or levels of confidence in batteries. Some automakers have brought out hydrogen fuel cells models, but this only makes sense where there is hydrogen distribution network for fuelling stations. By contrast, power and Natural Gas are distributed widely.

There is a lot of advertising for electric or electric-hybrid vehicles, but this will only impact on the sales of new vehicles – a vast majority of the global “fleet” will remain fuelled by liquids. Whilst sales of electric models pick up, companies will still be selling new ICE cars, vans and so on. As demand for electric models rises, there will likely be situations where production and supply cannot keep up. These imbalances will lead to stress in highly competitive markets.

This dynamic could make the car companies seek to create a levelising factor, to gain back control of sales densities by appealing to oil refiners to bring the net carbon in fuels down. Then customers could have the option to buy combustion engine models, but use “alternative”, “advanced” fuels, which have far lower net carbon emissions.

From the point of view of the economists, this would be preferable : vehicles running on new low carbon fuels would be tested in the market, competing against models driven on electric drive (and hybridised). And in addition, hybrids could use the new fuels too, and become 100% low carbon.

Running two streams of low-to-zero carbon energy to vehicles will also help to document the relative efficiency of power versus low carbon liquid fuels in the whole system.

The theoretical well-to-wheels energy efficiency of electric drive vehicles is significantly better than liquid fuels combustion drive vehicles; however, there is a need to buffer the electricity – running power to filling stations is not optimal. The energy from the electricity should be stored first, awaiting filling demand.

Synthesised gas could act as the buffer to power. This low carbon gas would be stored centrally, and as required, run to the filling stations by pipeline network. Because the gas is packed in the line, it will not be wasted. Fuel cells at the filling stations would convert the gas back to power, as and when needed.

Whilst low mileage/kilometrage electric vehicles might be the right answer for urban environments, particularly from the point of view of air quality, the question of freight – the haulage of food, resources and goods – is one that may be answered by gas drive vehicles rather than electric vehicles. Having a tankable fuel eliminates range anxiety, and means that heavy batteries do not need to be carried along with the merchandise. Any light duty vehicle too that needs to run long distances might be better propelled by liquid or gas fuels – another possible market for Renewable Gas and the liquid fuels that can be synthesised from it.

Besides the carmakers, and the light and heavy goods vehicle manufacturers, the road hauliers as trade bodies might put up the ask for Renewable Gas in the form of Renewable Fuels; traditionally there have been strong trade associations between fuel refiners, fuel distributors, filling station networks and those who run haulage.

11.   The Fossil Oil and Gas Producers

Strange as it may sound, the companies that produce crude petroleum oil and Natural Gas might themselves start to call for Renewable Gas. This would partly be because they are strongly vertically integrated enterprises, with refineries and they also often do distribution of fuels for sale.

Key oil majors have for some time been strategising about becoming gas majors – focussing their business plans on gas instead of oil. If it is true, that Peak Demand for Oil has been reached, oil majors, now gas majors, might begin to consider what would happen when there is a Peak in Demand for Gas, too; if consumers started to desert fossil hydrocarbons and head towards Renewable Electricity for their energy.

The ex-oil, now-gas majors would therefore need to have a plan to keep up their levels of income, and keep their shareholders happy. A good way to do that would be to enter into the field of providing energy services, and making and providing low carbon electricity – some companies such as Shell have been very overt about doing this.

If these companies go the next logical step and also get into energy storage, the wheel will have come full circle, as power storage is perhaps best as synthetic gas production and storage.

And so, Renewable Gas would be a strategy for ex-oil, now-gas majors to keep from contracting, to keep up sales of energy, whilst dropping the carbon from it.

The Renewable Gas Ask : Part C

Ordinary citizens, even shareholders, have little agency when asking for change in energy systems. Oh yes, we can turn down the thermostat, and buy green gas, but we cannot prevent the sales and operation of millions of internal combustion engine vehicles, moving people and goods in a never-ending bonfire of fossil fuels.


Table : A Selection of “Green” Gas Energy Suppliers

UK “Green” Gas SellerHow “Green” the Gas ?
Good Energy“carbon neutral gas”;
6% biogas/biomethane
Ecotricity“Carbon neutral gas”;
building green gasmills
Bulb“100% carbon neutral”
Tonik“carbon neutral”
Green Energy (UK)“100% Certified Green Gas
Pure Planet (with BP)“100% carbon offset gas”; purchase of CER Carbon Emissions Reductions
npower : Go Green tariffClimateCare “100% carbon offset gas”; purchase of “Emissions Reductions”

To engineer an Energy Change commensurate with Climate Change, the larger players in society and the economy need to ask for it, and they need to know what precisely to ask for. Should they ask for more nuclear power, it were a long, expensive time coming and clearing up from be. Should they seek Carbon Capture and Storage, or even Carbon Capture, Utilisation and Storage, it were sub-sectoral, slow, inefficient and hard to implement be.

So far, this inspection has looked at the worlds of chemical engineering, renewable electricity, the smaller gas and oil production companies and also the gas turbine and gas-fired power generators. Here are some further actors that will be involved in the Giant Ask for Renewable Gas.

5.   Car Manufacturers

In the realm of advertising, the promotion of electric vehicles and hybrid vehicles has become ubiquitous. For the car-owning, car-proud, car-dependent population, this is a significant shift in the universal private car culture propaganda. Car advertisements are everywhere in car-ful societies, and copious, so this influence should not be dismissed.

However much this affects the desire to make the next car purchase electric or hybrid, it doesn’t change the basic arithmetic : higher demand cannot easily be met, because it involves a fundamental change in investment by the car manufacturers : they cannot run two factories in parallel place of one, so they need to make decisions about whether to go electric/hybrid or stay fossil.

Some car companies have made statements that they are going hyper-electric, meaning that they will become the alternative car makers of choice. This will tip the balance somewhat, but will still permit consumer choice by leaving some companies still making ICE internal combustion engine petrol-gasoline and diesel models.

Hybrid models are a little bit like sitting on the fence.

Yet, as electric vehicle (and hybrid vehicle) demand increases, partly in response to the switch in advertising, car makers will need to respond further, by making new investment.

It will not be DAU – driving as usual.

In the midst of all this change, there might be some car manufacturers who take a different tack. They might ask why they need to buy new factories and new industrial equipment. Why not ask the fuel producers to change their fuels ? I mean, car manufacturers have responded to scientific and regulatory concerns about air quality, by investing, and introducing new kit to combat deleterious exhaust emissions. So for them, petrol-gasoline and diesel can be made clean, burned in their vehicle engines and vented through their emissions control kit, without adding to the burden of air pollution. They’ve paid to clean up after themselves. If it’s net carbon emissions to air that potential consumers are now worried about, why not ask the fuel producers to lower the fossil carbon content of their fuels ?

Carbuyers are increasingly trying to choose better. Carmakers are trying to respond. Why don’t the fuel producers join in with this effort to reduce emissions ? Clean up the last link in the carbon chain.

In addition to asking for alternative/advanced/low carbon fuels from fuel producers, whih would all rely in Renewable Gas, the car manufacturers might get the electric bug for vehicles already in the global fleet and join in with projects to convert ICE vehicles to EV electric drive vehicles. This would be a way of making a business out of used cars as well as new cars; which might be a useful income stream if car sales plummet owing to a weak economy and efforts to reduce car sales.

6.   Utility Vehicle Manufacturers

The push from utility vehicle manufacturers on fuel producers, to take the fossil out of their fuels, might be even stronger than for the private automakers. You see, the light goods vehicle and service van market is deeply embedded in and interlinked to the functioning of the peripheral zone of the global economy – small businesses and trades people must use utility vehicles. Whilst individuals may take public transport/transit and relinquish owning a private vehicle, it is not a question of choice for small builder businesses and traders.

Whilst there might be efficiencies of scale in van makers turning over al their fabrication facilities to making electric models, for those that want to continue to offer ICE models, they will need to ask the fuel producers to lower the carbon content of the fuels.

7.   Freight Vehicle Manufacturers

Long distance freight in heavy goods vehicles, ships and aeroplanes is not susceptible to carbon reductions in the same way as other sectors.

Large hauliers might be significant enough in size to make an audible ask of the fuel producers to get out of fossil and into renewable.

8.   The IMO, Ship Builders & Shipping Companies

The International Maritime Organisation (IMO) have been enacting various articles and amendments of the MARPOL since the 1970s – the international Marine Pollution treaty. Recent edicts have impacted on the fuel provision for large cargo and passenger vessels. First there were the Sulfur Emission Control Areas (SECA), and now all ocean-going vessels must comply with the requirement to lower sulfur dioxide emissions. Whilst the recent emphasis has been on reducing the sulfur (sulphur) in marine bunker-fuels, the net result is that there is pressure coming on the fuel producers to substitute fossil fuels for biomass feedstocks in refinery. The reason ? Because the bottom of the barrel of crude petroleum has been used for marine oils, since there has been no other market for this viscous, heavy, long-carbon-chain hydrocarbon mix. And the sulfur from refining crude oil ends up mostly in the bottom of the barrel.

Apart from shale oils, most of the oil grades in the world are becoming heavier in complex hydrocarbons and sulfur. The shale oil “miracle” or “gale” might run out of steam within a decade or so, and the upwards sulfur trajectory across a range of crude oils will be resumed.

Proposals exist to convert shipping vessel drive from MHO/MDO (Marine Heavy Oil/Marine Diesel Oil) to LNG, Liquid Natural Gas, or Methanol in some cases, but this could take some time to invest the replacement equipment. LNG is a good choice, as LNG is transported via shipping ports. Other solutions include using sulfur “scrubbers” onboard.

Of course, another option would be to desulfurise marine oils at source, or replace fossil oils with renewable oils, which would naturally have low sulfur content. As marine fuels are going to remain fossil for some time to come, desulfurisation units must be incorporated into refineries, even for low quality fuel streams, such as marine oils. Refiners will baulk at doing this, because of the added cost of processing to what is consider a cheap, bulk, toxic, waste product.

If they joined the dots, however, they could see that the cheapest and most environmentally-friendly method of desulfurising is using hydrogen, where that hydrogen has been derived in the cheapest way possible from excess renewable electricity and water, produced at times of the day, week, month, season and year when there is a virtually zero-cost supply of renewable power. The best way to ensure low cost hydrogen would be to own your own dedicated renewable power supply.

Will the IMO regulations therefore be instrumental in oil and gas refiners buying wind farms for their own special use – to make the extra hydrogen they need for desulfurisation of marine fuels ?

There are tight and firm relationships between shipping companies and oil refineries. Will the shipping companies be making the ask for Renewable Hydrogen capacity to desulfurise the marine fuels they need ?

And will the shipping companies be asking for a gradual transition from the oil refineries, a way through to seeing more and more LRG – Liquid Renewable Gas (mostly methane) – become available for marine fuel needs ?

Renewable Methanol could be the choice of some short haul shipping services, such as the pleasure boats, smaller holiday cruise ships, passenger and car ferries. They would need to ask their fuel stockists, who would ask their refiners for this fuel.


Table : Petroleum Products and Blends Used as Fuel For Shipping Vessels

AcronymTerm
HSFOHigh Sulfur Fuel Oil
MFOMarine Fuel Oil
MDOMarine Diesel Oil, Marine Diesel, Distillate Marine Diesel
MGOMarine Gasoil

9.   Other International Agencies, such as IEA Bioenergy and Governments

The International Energy Agency (IEA) Bioenergy stream has been involved in the research and development of a number of biofuel displacements of fossil fuels. Biodiesel is now an accepted (if small) constituent of many fuel blends, for example. Bioethanol is also a globally recognised fuel.

Knowledge in the network is advanced, and work by partners in the tasks will undoubtedly influence directions in governmental policies, for example, the work on biorefining – replacing fossil fuel refineries with biomass-sources molecules.

The ask for Renewable Gas could well be triggered by governments utilising outcomes from IEA Bioenergy Tasks and similar research groups to make demands on their hosted “national” or privatised oil and gas companies.

Countries in north western Europe, including the United Kingdom, may have great cause to see biofuels replacing fossil fuels – as indigenous production of crude petroleum and Natural Gas has slumped significantly in the last decade.

The European Union already has strong policies on Renewable Gas, as part of the ever-evolving Energy Package, backed up by work done by the IEA and the European Commission, such as the Third Energy Package, which contains the Natural Gas Directive, in which Article 2 reads, “In relation to security of supply, energy efficiency/demand-side management and for the fulfilment of environmental goals and goals for energy from renewable sources, as referred to in this paragraph, Member States may introduce the implementation of long-term planning, taking into account the possibility of third parties seeking access to the system”; and Article 5 reads, “5. In order to protect the independence of the regulatory authority, Member States shall in particular ensure that: […] facilitating access to the network for new production capacity, in particular removing barriers that could prevent access for new market entrants and of gas from renewable energy sources […]”

Foundational documents include the Renewable Energy Directive (2018), in which Article 59 reads, “Guarantees of origin which are currently in place for renewable electricity should be extended to cover renewable gas. Extending the guarantees of origin system to energy from non-renewable sources should be an option for
Member States. This would provide a consistent means of proving to final customers the origin of renewable gas such as biomethane and would facilitate greater cross-border trade in such gas. It would also enable the creation of guarantees of origin for other renewable gas such as hydrogen.”; and the Fuel Quality Directive (2011).

Since the anticipiated ratio of biologically-derived biofuels (including gases) and synthetic biofuels (and gases) could be 1:10, there will naturally be a lot of emphasis on how best to produce synthetic, renewable fuels (including gases). Synthesising fuels requires hydrogen, methane and methanol. Under the terms of the legislation, this means that Renewable Hydrogen, Renewable Methane and Renewable Methanol will be required. This means that one large part of the ask for Renewable Gas in the European region could well come from the federal parliament.

10.   Industrial High Energy Consumers

Industries like the manufacturers of steel, concrete and glass have centralised and high energy consumption : they may be influential in making a strong ask of the energy supply companies for renewable electricity and Renewable Gas to lower their sectoral carbon dioxide emissions. This would be particularly the case if they were required to purchase more costly carbon credits, or carbon taxation was implemented.

Renewable Gas : The Energy Calculus Caucus

The major oil and gas companies, along with a range of other organisations and agencies, have ongoing energy modelling projects, building scenarios to paint projections in energy, technology and the wider economy.

Table : A Selection of Organisations Working On Energy Models, Data, Statistics and Projections

Inputs to the world’s energy systems are usually considered immutable – wood is the principal biomass; crude petroleum oil is going to remain the primary feedstock for liquid hydrocarbon fuels; Natural Gas is the majority source of energy gases; and solid fuels are considered to be fossil coal-derived.

The projections into the future are mostly done on a “lasts until” basis, that is there are underlying assumptions that all the fossil fuels that can be economically mined will be, right up to steep depletion, and that nothing can substitute for them as primary energy resources.

Alternative energy resources are considered entirely separately from fossil fuels, and are only projected to form thin slivers of contribution on energy projection graphs. There is an unwritten code that alternative primary energy resources must be forced to compete economically, and that deployments of alternative primary energy will only be commissioned if scarcity is experienced elsewhere. Fossil fuels are thought to prop up the energy system, and be dependable; to remain cost-efficient and cost-competitive under any conditions. We will only build renewable energy production when we need it, being the major thread.

Where admissions are made, for example, where modelling suggests that depletion, economic pressure and policy could affect the levels of fossil fuels mined and brought into the economy, there is a default view generally that this might stimulate alternatives, but from a very low starting point, and with marginal growth.

Emerging technologies and biomass-based feeds into the fossil fuel refining and distribution systems are considered opportunistic, blighted by cost and reliability issues, and are expected to suffer negative economic stimulus, to such an extent that they are not expected to make much more than a sliver of contribution; although in some cases they are trusted to “take up the slack” where fossil fuels fail.

In such projections, where fossil fuels can and will speak for most of the world’s energy demand, without significant economic and political change, the necessary rate of new technology deployment is fractional.

This paradigm is expressed in a number of different ways by different actors, and creates an impression that fossil fuels are failsafe, and naturally dominant. Fossil fuels and alternative energy resources are considered to be chalk and cheese – not of a kind. This belies the opportunities for substitution of fossil fuel feedstocks by biomass-, water- and green electricity-sourced streams.

The major failing in many energy models is that no consideration is given to active transition – that is, how to turn around the downward trendlines of fossil fuel production and sales into upwards shares of alternative fuels production and sales, through molecular and electron substitution from renewable sources.

If alternative technologies and fuels were actively encouraged to displace fossil fuels, according to core strategy within the energy system, this would cause greater levels of deployment, and so accelerate transition. Alternative resources would constitute a larger slice of the overall total, and show what higher decarbonisation potentials exist.

For example, every extra modelling for hydrogen use, for example, the hydrogen increasingly used for in liquid fuels refining and synthesis, written as renewable hydrogen production and use, which will necessitate higher levels of renewable elecricity production/generation and use.

The production of liquid hydrocarbon fuels and chemical feedstocks will be needed for decades to come, but these don’t need to come from crude petroleum oil, Natural Gas and coal. With synthesis, the source of the hydrogen and carbon (and oxygen) landing in the liquid fuel products is not relevant, except it should conform to the requirements of protecting a liveable climate.

With liquid fuel synthesis, we can rest from thinking about complex hydrocarbon primary resources, stop looking at the molecular level of organisation, and start to look at the individual streams of elements : where does the hydrogen flow from ? Where, the carbon ?

With synthesis, the source of the hydrogen and carbon (and oxygen) coming into the energy system is not relevant. What matters is how many of the H, C (and O) are coming from renewable resources. We “3D print” the molecules we need, and we don’t need to dispose of the carbon, oxygen (and sulfur) we don’t use.

The biggest problem is where we get the Young Carbon from : Renewable Carbon needed for liquid fuels needs to come from recently-living biological organisms in order not to tamper with the global long-term carbon cycle.

In systems for Renewable Gas-to-Power-to-Gas, renewable electricity is used to make gas for long-term storage, offsetting electricity generation to times when the wind is not blowing and the sun is not shining, and it’s cold. These systems can be centralised, and contained, so the carbon used in the system to lock hydrogen into methane for long-term energy storage, never needs to leave the plant. However, for producing liquid transport fuels, carbon will flow through the supply chain, and so needs to be sourced from renewable, young resources.

With time, it is likely that transport options will mostly become electric, and quite often public, in urban settlements. Freight transportation, and industrial and agricultural machinery fuelling will mostly likely be a combination of light gaseous fuels and electric power. But that time is more than a few decades away, as it will take that long to replace all the vehicles and fuel supply systems. In the meantime, we need renewable liquid fuels.

Energy modelling does not presently include much in the way of molecular and electronic substitution for fossil fuel primary energy resources; is not conscious of the multiplier effect of going beyond the small percentages of substitution by first/second generation biofuels and biomethane.

Since we need to produce liquid fuels for several decades to come – fuels that automatically need to have higher boiling points, and so need to have carbon in them – in order to see the possible speed of the low carbon transition, we need to model every way that fossil carbon and fossil hydrogen can be swapped out for Renewable Carbon and Renewable Hydrogen.