The extent to which Energy Change will take place in response to Climate Change depends on the set of technologies being pursued, and also on the influential voices and actors in energy and chemistry that call for those technologies to be deployed.
As gas fuels and gas chemicals are so flexible in their use, they can assist with Energy Change as well as securing industrial chemistry in a climate-constrained future, where petroleum-derived compounds – the leftovers from petroleum refining for fuels – may no longer enter the supply chain.
As petroleum-derived fuels fall from favour, the relative volumes of petroleum-derived chemical feedstocks available will inevitably change, as petroleum refineries have to adjust their processes.
As just one example, the availability of ethane, propane and butane, and the compounds made from ethane, propane and butane, will change as the resources of petroleum exploited change, and as demand for petroleum-based fuels will change.
The “balance of plant” in the petroleum refinery will see shifts both in input compounds and output compounds. As of now, the plastics industry is replete with ethane, as shale gas and shale oil exploitation affords extra supplies; but as the shale industry wanes, the Natural Gas Liquids (NGL) – a mixture of compounds part-liquid and part-gas – from shale hydraulic fracturing will no longer be on the supply side slate.
There is likely to be increasing demand for synthesised base chemicals, to guarantee the plastics and associated chemical industries.