The Delta, The Ramp, The Stretch and The Duck #1

I gave a guest lecture at Birkbeck College, of the University of London on the evening of 22nd February 2017 in the evening, as part of the Energy and Climate Change module. I titled it, “Renewable Gas for Energy Storage : Scaling up the ‘Gas Battery’ to balance Wind and Solar Power and provide Low Carbon Heat and Transport”.

The basic concept is that since wind and solar power are variable in output, there has to be some support from other energy technologies. Some talk of batteries to store electrical energy as a chemical potential, and when they talk of batteries they think of large Lithium ion piles, or flow batteries, or other forms of liquid electrolyte with cathodes and anodes. When I talk about batteries, I think of electrical energy stored in the form of a gas. This gas battery doesn’t need expensive metal cathodes or anodes, and it doesn’t need an acid liquid electrolyte to operate. Gas that is synthesised from excess solar or wind power can be a fuel that can be used in chemical reactions, such as combustion, or burning, to generate electricity and heat when desired at some point in the future. It could be burned in a gas turbine, a gas boiler or a fuel cell, or in a vehicle engine. Or instead, a chemically inert gas can be stored under pressure, and this compressed gas can also be used to generate power on demand at a later date by harnessing energy from decompression. Another option would be holding a chemically reactive gas under pressure, allowing two stages of energy recovery.

As expected, the Birkbeck audience was very diverse, and had different social and educational backgrounds, and so there was little that could be assumed as common knowledge, especially since the topic was energy, which is normally only an interest for engineers, or at a stretch, economists.

I decided when preparing that I would attempt to use symbolism as a tool to build a narrative in the presentation. A bold move, perhaps, but I found it created an emblematic thread that ran through the slides quite nicely, and helped me tell the story. I used Mathematical and Physical notation, but I didn’t do any Mathematics or Physics.

I introduced the first concept : the Delta, or change. I explained this delta was not the same as a river delta, which gave me the excuse to show a fabulous night sky image of the Nile Delta taken from the International Space Station. I demonstrated the triangle shape that emerges from charting data that changes over time, and calculating its gradient, such as the temperature of the Earth’s surface.

I explained that the change in temperature of the Earth’s surface over the recent decades is an important metric to consider, not just in terms of scale, but in terms of speed. I showed that this rate of change appears in all the independent data sets.

I then went on to explain that the overall trend in the change in the temperature of the Earth’s surface is not the only phenomenon. Within regions, and within years and seasons, even between months and days, there are smaller scale changes that may not look like the overall delta. A lot of these changes give the appearance of cyclic phenomena, and they can have a periodicity of up to several decades, for example, “oscillations” in the oceans.

These discrete deltas and cycles could, to a casual observer, mask underlying trends, especially as the deltas can be larger than the trends; so climatologists look at a large set of measurements of all kinds, and have shown that some deltas are one way only, and are not cycling.

Teasing out the trends in all of the observations is a major enterprise that has been accomplished by thousands of scientists who have reported to the IPCC, the Intergovernmental Panel on Climate Change, part of the UNFCCC, the United Nations Framework Convention on Climate Change. The Fifth Assessment Report is the most comprehensive yet, and shows that global warming is almost certainly ramping up – in other words, global warming is getting faster, or accelerating.

Many projections for the future of temperature changes at the Earth’s surface have been done, with the overall view that temperatures are likely to carry on rising for hundreds of years without an aggressive approach to curtail net greenhouse gas emissions to the atmosphere – principally carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O).

From observations, it is clear that global warming causes climate change, and that the rate of temperature change is linked to the rate of climate change. In symbols, this reads : delta T for temperature over t for time leads to, or implies, a delta C for climate over t for time. The fact that global warming and its consequential climate change are able to continue worsening under the current emissions profile means that climate change is going to affect humanity for a long stretch. It also means that efforts to rein in emissions will also need to extend over time.

I finished this first section of my presentation by showing a list of what I call “Solution Principles” :-

1. Delays embed and extend the problem, making it harder to solve. So don’t delay.

2. Solve the problem at least as fast as creating it.

3. For maximum efficiency, minimum cost, and maximum speed, re-deploy agents of the problem in its solution.

In other words, make use of the existing energy, transport, agriculture, construction and chemical industries in approaching answers to the imperative to address global warming and climate change.

JODI Oil and BP #1

Once a year BP plc publishes their Statistical Review of World Energy, as they have done for 65 years, now. Recent editions have been digital and anodyne, with lots of mini-analyses and charts and positive messages about the petroleum industry. Whenever energy researchers ask questions, they are invariably directed to take a look at the BP report, as it is considered trustworthy and sound. Good scientists always try to find alternative sources of data, but it can be hard comparing the BP Stat Rev with other numerical offerings, partly because of the general lack of drill-down in-depth figures. Two other reputable data sources are the US Energy Information Administration (EIA) and the JODI Oil initiative. I have already looked at EIA data and data from the National Energy Board (NEB) of Canada recently in order to check on the risks of Peak Oil. Now I’m diving into JODI.

Two of my concerns of the week are to try to understand the status and health of the global economy – which can be seen through the lens of overall consumption of hydrocarbons; and to see if there are changes happening in relative demand levels for the different kinds of hydrocarbons – as this could indicate a transition towards a lower carbon economy. The BP Stat Rev of June 2016 offers an interesting table on Page 13 – “Oil: Regional consumption – by product group”, which breaks down hydrocarbon demand into four main categories : Light distillates, Middle distillates, Fuel oil and Other. The “Other” category for BP includes LPG – Liquefied Petroleum Gases, a blend of mostly propane and butanes (carbon chain C3 and C4), which are gaseous and not liquid at normal room temperature and pressure – so strictly speaking aren’t actually oil. They also have different sources from various process units within petroleum refinery and Natural Gas processing plants. The “Other” category also includes refinery gas – mostly methane and ethane (carbon chain C1 and C2), and hydrogen (H2); and presumably fuel additives and improvers made from otherwise unwanted gubbins at the petrorefinery.

Not by coincidence, the JODI Oil database, in its Secondary data table, also offers a breakdown of hydrocarbon demand from refinery into categories almost analagous to the BP groupings – LPG, Gasoline, Naphtha, Kerosenes, Gas/Diesel oil, Fuel oil, and Other products; where LPG added to Other should be the same as BP’s “Other” category, Gasoline added to Naphtha should be equivalent to BP’s “Light distillates”; and Kerosenes added to Gas/Diesel oil should be analagous to BP’s “Middle distillates. So I set out to average the JODI Oil data, day-weighting the monthly data records, to see if I could replicate the BP Stat Rev Page 13.

Very few of the data points matched BP’s report. I suspect this is partly due to averaging issues – I expect BP has access to daily demand figures, (although I can’t be sure, and I don’t know their data sources); whereas the JODI Oil data is presented as monthly averages for daily demand. However, there are a lot of figures in the BP report that are high compared to the JODI Oil database. This can only partly be due to the fact that not all countries are reporting to JODI – four countries in the Commonwealth of Indepdendent States (CIS) – formerly known as “Former Soviet Union” – are not reporting, for example. I’m wondering if this over-reporting in the BP report might be due to differences in the way that stock transfers are handled – perhaps demand for refinery products that are intended for storage purposes rather than direct consumption is included in the BP data, but not in JODI – but at the moment I don’t have any relevant information with which to confirm or deny this concept.

Anyway, the data is very close between BP and JODI for the United States in recent years, and there are some other lines where there is some agreement (for example – Fuel oil in Japan, and Light distillates in China), so I am going to take this as an indication that I understand the JODI Oil data sufficiently well to be able to look at monthly refinery demand, refinery output and oil production for each region and hopefully reach some useful conclusions.

Energy Security, National Security #1


Our assiduous government in the United Kingdom has conducted a national security review, as they should, but it appears the collective intelligence on energy of the Prime Minister’s office, the Cabinet Office and the Foreign Commonwealth Office is on a scale of poor to dangerously out of date.

No, LNG doesn’t stand for “liquid natural gas”. LNG stands for Liquefied Natural Gas. I think this report has confused LNG with NGLs.

Natural Gas Liquids, or NGLs, are condensable constituents of gas-prone hydrocarbon wells. In other words, the well in question produces a lot of gas, but at the temperatures and pressures in the well underground, hydrocarbons that would normally be liquid on the surface are in the gas phase, underground. But when they are pumped/drilled out, they are condensed to liquids. So, what are these chemicals ? Well, here are the approximate Boiling Points of various typical fossil hydrocarbons, approximate because some of these molecules have different shapes and arrangements which influences their physical properties :-

Boiling Points of Short-Chain Hydrocarbons
Methane : approximately -161.5 degrees Celsius
Ethane : approximately -89.0 degrees Celsius
Propane : approximattely -42.0 degrees Celsius
Butane : approximately -1.0 degrees Celsius
Pentane : approximately 36.1 degrees Celsius
Heptane : approximately 98.42 degrees Celsius

You would expect NGLs, liquids condensed out of Natural Gas, to be mostly butane and heavier molecules, but depending on the techniques used – which are often cryogenic – some propane and ethane can turn up in NGLs, especially if they are kept cold. The remaining methane together with small amounts of ethane and propane and a trace of higher hydrocarbons is considered “dry” Natural Gas.

By contrast, LNG is produced by a process that chills Natural Gas without separating the methane, until it is liquid, and takes up a much smaller volume, making it practical for transportation. OK, you can see why mistakes are possible. Both processes operate at sub-zero temperatures and result in liquid hydrocarbons. But it is really important to keep these concepts separate – especially as methane-free liquid forms of short-chain hydrocarbons are often used for non-energy purposes.

Amongst other criticisms I have of this report, it is important to note that the UK’s production of crude oil and Natural Gas is not “gradually” declining. It is declining at quite a pace, and so imports are “certain” to grow, not merely “likely”. I note that Natural Gas production decline is not mentioned, only oil.

…to be continued…


A Partial Meeting of Engineering Minds

So I met somebody last week, at their invitation, to talk a little bit about my research into Renewable Gas.

I can’t say who it was, as I didn’t get their permission to do so. I can probably (caveat emptor) safely say that they are a fairly significant player in the energy engineering sector.

I think they were trying to assess whether my work was a bankable asset yet, but I think they quickly realised that I am nowhere near a full proposal for a Renewable Gas system.

Although there were some technologies and options over which we had a meeting of minds, I was quite disappointed by their opinions in connection with a number of energy projects in the United Kingdom.

Click to Read More !

DECC Dungeons and Dragnets

Out of the blue, I got an invitation to a meeting in Whitehall.

I was to join industrial developers and academic researchers at the Department of Energy and Climate Change (DECC) in a meeting of the “Green Hydrogen Standard Working Group”.

The date was 12th June 2015. The weather was sunny and hot and merited a fine Italian lemonade, fizzing with carbon dioxide. The venue was an air-conditioned grey bunker, but it wasn’t an unfriendly dungeon, particularly as I already knew about half the people in the room.

The subject of the get-together was Green Hydrogen, and the work of the group is to formulate a policy for a Green Hydrogen standard, navigating a number of issues, including the intersection with other policy, and drawing in a very wide range of chemical engineers in the private sector.

My reputation for not putting up with any piffle clearly preceded me, as somebody at the meeting said he expected I would be quite critical. I said that I would not be saying anything, but that I would be listening carefully. Having said I wouldn’t speak, I must admit I laughed at all the right places in the discussion, and wrote copious notes, and participated frequently in the way of non-verbal communication, so as usual, I was very present. At the end I was asked for my opinion about the group’s work and I was politely congratulational on progress.

So, good. I behaved myself. And I got invited back for the next meeting. But what was it all about ?

Most of what it is necessary to communicate is that at the current time, most hydrogen production is either accidental output from the chemical industry, or made from fossil fuels – the main two being coal and Natural Gas.

Hydrogen is used extensively in the petroleum refinery industry, but there are bold plans to bring hydrogen to transport mobility through a variety of applications, for example, hydrogen for fuel cell vehicles.

Clearly, the Green Hydrogen standard has to be such that it lowers the bar on carbon dioxide (CO2) emissions – and it could turn out that the consensus converges on any technologies that have a net CO2 emissions profile lower than steam methane reforming (SMR), or the steam reforming of methane (SRM), of Natural Gas.

[ It’s at this very moment that I need to point out the “acronym conflict” in the use of “SMR” – which is confusingly being also used for “Small Modular Reactors” of the nuclear fission kind. In the context of what I am writing here, though, it is used in the context of turning methane into syngas – a product high in hydrogen content. ]

Some numbers about Carbon Capture and Storage (CCS) used in the manufacture of hydrogen were presented in the meeting, including the impact this would have on CO2 emissions, and these were very intriguing.

I had some good and useful conversations with people before and after the meeting, and left thinking that this process is going to be very useful to engage with – a kind of dragnet pulling key players into low carbon gas production.

Here follow my notes from the meeting. They are, of course, not to be taken verbatim. I have permission to recount aspects of the discussion, in gist, as it was an industrial liaison group, not an internal DECC meeting. However, I should not say who said what, or which companies or organisations they are working with or for.

Click to Read More !

Nuclear Power Is Not An Energy Policy

The British Government do not have an energy policy. They may think they have one, and they may regularly tell us that they have one, but in reality, they don’t. There are a number of elements of regulatory work and market intervention that they are engaged with, but none of these by itself is significant enough to count as a policy for energy. Moreover, all of these elements taken together do not add up to energy security, energy efficiency, decarbonisation and affordable energy.

What it takes to have an energy policy is a clear understanding of what is a realistic strategy for reinvestment in energy after the dry years of privatisation, and a focus on energy efficiency, and getting sufficient low carbon energy built to meet the Carbon Budget on time. Current British Government ambitions on energy are not realistic, will not attract sufficient investment, will not promote increased energy efficiency and will not achieve the right scale and speed of decarbonisation.

I’m going to break down my critique into a series of small chunks. The first one is a quick look at the numbers and outcomes arising from the British Government’s obsessive promotion of nuclear power, a fantasy science fiction that is out of reach, not least because the industry is dog-tired and motheaten.

Click to Read More !

Shell and BP : from “Delay and Deny” to “Delay and Distract”

Shell, BP and some of their confederates in the European oil and gas industry have inched, or perhaps “centimetred”, forward in their narrative on climate change. Previously, the major oil and gas companies were regularly outed as deniers of climate change science; either because of their own public statements, or because of secretive support of organisations active in denying climate change science. It does seem, finally, that Shell in particular has decided to drop this counter-productive “playing of both sides”. Not that there are any “sides” to climate change science. The science on climate change is unequivocal : changes are taking place across the world, and recent global warming is unprecedented, and has almost definitely been attributed to the burning of fossil fuels and land use change.

So Shell and BP have finally realised that they need to shed the mantle of subtle or not-so-subtle denial, although they cling to the shreds of dispute when they utter doubts about the actual numbers or impacts of global warming (for example : http://www.joabbess.com/2015/06/01/shells-public-relations-offensive/). However, we have to grant them a little leeway on that, because although petrogeologists need to understand the science of global warming in order to know where to prospect for oil and gas, their corporate superiors in the organisation may not be scientists at all, and have no understanding of the global carbon cycle and why it’s so disruptive to dig up all that oil and gas hydrocarbon and burn it into the sky. So we should cut the CEOs of Shell and BP a little slack on where they plump for in the spectrum of climate change narrative – from “utter outright doom” to “trifling perturbation”. The central point is that they have stopped denying climate change. In fact, they’re being open that climate change is happening. It’s a miracle ! They have seen the light !

But not that much light, though. Shell and BP’s former position of “scepticism” of the gravity and actuality of global warming and climate change was deployed to great effect in delaying any major change in their business strategies. Obviously, it would have been unseemly to attempt to transmogrify into renewable energy businesses, which is why anybody in the executive branches who showed signs of becoming pro-green has been shunted. There are a number of fairly decent scalps on the fortress pikes, much to their shame. Shell and BP have a continuing duty to their shareholders – to make a profit from selling dirt – and this has shelved any intention to transition to lower carbon energy producers. Granted, both Shell and BP have attempted to reform their internal businesses by applying an actual or virtual price on carbon dioxide emissions, and in some aspects have cleaned up and tidied up their mining and chemical processing. The worsening chemistry of the cheaper fossil fuel resources they have started to use has had implications on their own internal emissions control, but you have to give them credit for trying to do better than they used to do. However, despite their internal adjustments, their external-facing position of denial of the seriousness of climate change has supported them in delaying major change.

With these recent public admissions of accepting climate change as a fact (although CEOs without appropriate science degrees irritatingly disagree with some of the numbers on global warming), it seems possible that Shell and BP have moved from an outright “delay and deny” position, which is to be applauded.

However, they might have moved from “delay and deny” to “delay and distract”. Since the commencement of the global climate talks, from about the 1980s, Shell and BP have said the equivalent of “if the world is serious about acting on global warming (if global warming exists, and global warming is caused by fossil fuels), then the world should agree policy for a framework, and then we will work within that framework.” This is in effect nothing more than the United Nations Framework Convention on Climate Change (UNFCCC) has put forward, so nobody has noticed that Shell and BP are avoiding taking any action themselves here, by making action somebody else’s responsibility.

Shell and BP have known that it would take some considerable time to get unanimity between governments on the reality and severity of climate change. Shell and BP knew that it would take even longer to set up a market in carbon, or a system of carbon dioxide emissions taxation. Shell and BP knew right from the outset that if they kept pushing the ball back to the United Nations, nothing would transpire. The proof of the success of this strategy was the Copenhagen conference in 2009. The next proof of the durability of this delaying tactic will be the outcomes of the Paris 2015 conference. The most that can come out of Paris is another set of slightly improved targets from governments, but no mechanism for translating these into real change.

Shell and BP and the other oil and gas companies have pushed the argument towards a price on carbon, and a market in carbon, and expensive Carbon Capture and Storage technologies. Not that a price on carbon is likely to be anywhere near high enough to pay for Carbon Capture and Storage. But anyway, the point is that these are all distractions. What really needs to happen is that Shell and BP and the rest need to change their products from high carbon to low carbon. They’ve delayed long enough. Now is the time for the United Nations to demand that the fossil fuel companies change their products.

This demand is not just about protecting the survival of the human race, or indeed, the whole biome. Everybody is basically on the same page on this : the Earth should remain liveable-inable. This demand for change is about the survival of Shell and BP as energy companies. They have already started to talk about moving their businesses away from oil to gas. There are high profile companies developing gas-powered cars, trains, ships and possibly even planes. But this will only be a first step. Natural Gas needs to be a bridge to a fully zero carbon world. The oil and gas companies need to transition from oil to gas, and then they need to transition to low carbon gas.

Renewable Gas is not merely “vapourware” – the techniques and technologies for making low carbon gas are available, and have been for decades, or in some cases, centuries. Shell and BP know they can manufacture gas instead of digging it up. They know they can do the chemistry because they already have to do much of the same chemistry in processing fossil hydrocarbons now to meet environmental and performance criteria. BP has known since the 1970s or before that it can recycle carbon in energy systems. Shell is currently producing hydrogen from biomass, and they could do more. A price on carbon is not going to make this transition to low carbon gas. While Shell and BP are delaying the low carbon transition by placing focus on the price of carbon, they could lose a lot of shareholders who shy away from the “carbon bubble” risk of hydrocarbon investment. Shell and BP need to decide for themselves that they want to survive as energy companies, and go public with their plans to transition to low carbon gas, instead of continuing to distract attention away from themselves.

The Price on Carbon

Although The Guardian newspaper employs intelligent people, sometimes they don’t realise they’ve been duped into acting as a mouthpiece for corporate propaganda. The “strapline” for the organisation is “Owned by no one. Free to say anything.”, and so it seemed like a major coup to be granted an interview with Ben Van Beurden of Royal Dutch Shell, recorded for a podcast that was uploaded on 29th May 2015.

However, the journalists, outoing editor Alan Rusbridger, Damian Carrington and Terry McAllister probably didn’t fully appreciate that this was part of an orchestrated piece of public relations. The same day as the podcast was published, Shell, along with five other oil and gas companies wrote a letter to officials of the United Nations Framework Convention on Climate Change (UNFCCC).

Favourable copy appeared in various places, for example, at Climate Central, The Daily Telegraph and in the Financial Times where a letter also appeared.

In the letter to Christiana Figueres and Laurent Fabius of the UNFCCC, Shell and fellow companies BP, BG Group, Eni, Total and Statoil, wrote that they appreciate the risks of the “critical challenge” of climate change and that they “stand ready to play their part”. After listing their contributions towards a lower carbon energy economy, they wrote :-

“For us to do more, we need governments across the world to provide us with clear, stable, long-term, ambitious policy frameworks. This would reduce uncertainty and help stimulate investments in the right low carbon technologies and the right resources at the right pace.”

“We believe that a price on carbon should be a key element of these frameworks. If governments act to price carbon, this discourages high carbon options and encourages the most efficient ways of reducing emissions widely, including reduced demand for the most carbon intensive fossil fuels, greater energy efficiency, the use of natural gas in place of coal, increased investment in carbon capture and storage, renewable energy, smart buildings and grids, off-grid access to energy, cleaner cars and new mobility business models and behaviors.”

The obvious problem with this call is that the oil and gas companies are pushing responsibility for change out to other actors in the economy, namely, the governments; yet the governments have been stymied at every turn by the lobbying of the oil and gas companies – a non-virtuous cycle of pressure. Where is the commitment by the oil and gas companies to act regardless of regulatory framework ?

I think that many of the technological and efficiency gains mentioned above can be achieved without pricing carbon, and I also think that efforts to assert a price on carbon dioxide emissions will fail to achieve significant change. Here are my top five reasons :-

1. Large portions of the economy will probably be ringfenced from participating in a carbon market or have exemptions from paying a carbon tax. There will always be special pleading, and it is likely that large industrial concerns, and centralised transportation such as aviation, will be able to beat back at a liability for paying for carbon dioxide emissions. Large industrial manufacture will be able to claim that their business is essential in sustaining the economy, so they should not be subject to a price on carbon. International industry and aviation, because of its international nature, will be able to claim that a carbon tax or a market in carbon could infringe their cross-border rights to trade without punitive regulatory charges.

2. Those who dig up carbon will not pay the carbon price. Fossil fuel producers will pass any carbon costs placed on them to the end consumers of fossil fuels. A price on carbon will inevitably make the cost of energy more expensive for every consumer, since somewhere in the region of 80% of global energy is fossil fuel-derived. Customers do not have a non-carbon option to turn to, so will be forced to pay the carbon charges.

3. A price on carbon dioxide emissions will not stop energy producers digging up carbon. An artificial re-levelising of the costs of high carbon energy will certainly deter some projects from going ahead, as they will become unprofitable – such as heavy oil, tar sands and remote oil, such as in the Arctic. However, even with jiggled energy prices from a price on carbon, fossil fuel producers will continue to dig up carbon and sell it to be burned into the sky.

4. A price on carbon dioxide emissions is being touted as a way to incentivise carbon capture and storage (CCS) by the authors of the letter – and we’ve known since they first started talking about CCS in the 1990s that they believe CCS can wring great change. Yet CCS will only be viable at centralised facilities, such as mines and power plants. It will not be possible to apply CCS in transport, or in millions of homes with gas-fired boilers.

5. A price on carbon dioxide emissions will not cause the real change that is needed – the world should as far as possible stop digging up carbon and burning it into the sky. What fossil carbon that still enters energy systems should be recycled where possible, using Renewable Gas technologies, and any other carbon that enters the energy systems should be sourced from renewable resources such as biomass.

Shell’s Public Relations Offensive #2

And so it has begun – Shell’s public relations offensive ahead of the 2015 Paris climate talks. The substance of their “advocacy” – and for a heavyweight corporation, it’s less lobbying than badgering – is that the rest of the world should adapt. Policymakers should set a price on carbon, according to Shell. A price on carbon might make some dirty, polluting energy projects unprofitable, and there’s some value in that. A price on carbon might also stimulate a certain amount of Carbon Capture and Storage, or CCS, the capturing and permanent underground sequestration of carbon dioxide at large mines, industrial plant and power stations. But how much CCS could be incentivised by pricing carbon is still unclear. Egging on the rest of the world to price carbon would give Shell the room to carry on digging up carbon and burning it and then capturing it and burying it – because energy prices would inevitably rise to cover this cost. Shell continues with the line that they started in the 1990s – that they should continue to dig up carbon and burn it, or sell it to other people to burn, and that the rest of the world should continue to pay for the carbon to be captured and buried – but Shell has not answered a basic problem. As any physicist could tell you, CCS is incredibly energy-inefficient, which makes it cost-inefficient. A price on carbon wouldn’t solve that. It would be far more energy-efficient, and therefore cost-efficient, to either not dig up the carbon in the first place, or, failing that, recycle carbon dioxide into new energy. Shell have the chemical prowess to recycle carbon dioxide into Renewable Gas, but they are still not planning to do it. They are continuing to offer us the worst of all possible worlds. They are absolutely right to stick to their “core capabilities” – other corporations can ramp up renewable electricity such as wind and solar farms – but Shell does chemistry, so it is appropriate for them to manufacture Renewable Gas. They are already using most of the basic process steps in their production of synthetic crude in Canada, and their processing of coal and biomass in The Netherlands. They need to join the dots and aim for Renewable Gas. This will be far less expensive, and much more efficient, than Carbon Capture and Storage. The world does not need to shoulder the expense and effort of setting a price on carbon. Shell and its fellow fossil fuel companies need to transition out to Renewable Gas.

Amber Rudd : First Skirmish

As if to provide proof for the sneaking suspicion that Great Britain is run by the wealthy, rather than by the people, and that energy policy is decided by a close-knit circle of privileged dynasties, up bubbles Amber Rudd MP’s first whirl of skirmish as Secretary of State for Energy and Climate Change : her brother Roland is chairperson of a lobbying firm, Finsbury, which is seeking to get state approval for a controversial gas storage scheme at Preesall, near Fleetwood, on behalf of the developers, Halite Energy of Preston, Lancashire.

Whilst some claim there is a starkly obvious conflict of interest for Rudd to take part in the decision-making process, the Department of Energy and Climate Change (DECC) could have denied it, but have instead confirmed that the potential reversal of a 2013 decision will be made, not by Rudd, but by Lord Bourne.

New gas storage in the United Kingdom is a crucial piece of the energy infrastructure provision, as recognised by successive governments. Developments have been ongoing, such as the opening of the Holford facility at Byley in Cheshire. Besides new gas storage, there are anticipated improvements for interconnectors with mainland Europe. These are needed for raising the volume of Natural Gas available to the British market, and for optimising Natural Gas flows and sales in the European regional context – a part of the EC’s “Energy Union”.

An underlying issue not much aired is that increased gas infrastructure is necessary not just to improve competition in the energy markets – it is also to compensate for Peak Natural Gas in the North Sea – something many commentators regularly strive to deny. The new Conservative Government policy on energy is not fit to meet this challenge. The new Secretary of State has gone public about the UK Government’s continued commitment to the exploitation of shale gas – a resource that even her own experts can tell her is unlikely to produce more than a footnote to annual gas supplies for several decades. In addition, should David Cameron be forced to usher in a Referendum on Europe, and the voters petulantly pull out of the Europe project, Britain’s control over Natural Gas imports is likely to suffer, either because of the failure of the “Energy Union” in markets and infrastructure, or because of cost perturbations.

Amber Rudd MP is sitting on a mountain of trouble, undergirded by energy policy vapourware : the promotion of shale gas is not going to solve Britain’s gas import surge; the devotion to new nuclear power is not going to bring new atomic electrons to the grid for decades, and the UK Continental Shelf is going to be expensive for the Treasury to incentivise to mine. What Amber needs is a proper energy policy, based on focused support for low carbon technologies, such as wind power, solar power and Renewable Gas to back up renewable electricity when the sun is not shining and wind is not blowing.

Renewable Gas : A Presentation #2

So, this is the second slide from my presentation at Birkbeck, University of London, last week.

When making an argument, it is best to start from consensus and well-accredited data, so I started with government analysis of the energy sector of the economy in the United Kingdom. Production of Natural Gas in the UK is declining, and imports are rising.

I did not go into much detail about this chart, but there is a wealth of analysis out there that I would recommend people check out.

Despite continued investment in oil and gas, North Sea production is declining, and it is generally accepted that this basin or province as a whole is depleting – that is – “running out”.

Here, for example, is more DECC data. The Summary of UK Estimated Remaining Recoverable Hydrocarbon Resources, published in 2014, had these numbers for UK Oil and Gas Reserves :-

billion barrels of oil equivalentLowerCentralUpper
Oil and Gas Reserves4.58.212.1
Potential Additional Resources1.43.46.4
Undiscovered Resources2.16.19.2

The summary concluded with the estimate of remaining recoverable hydrocarbons from the UK Continental Shelf (offshore) resources would be between 11.1 and 21 billion barrels of oil equivalent (bboe).

Other data in the report showed estimates of cumuluative and annual oil production :-

billion barrels of oil equivalentCumulative productionAnnual production
To date to end 201241.30.6 (in 2012)
To date to end 201241.80.5 (in 2013)
Additional production 2013 to 20307.00.44 (average 2014 to 2030)
Additional production 2013 to 20409.10.21 (average 2031 to 2040)
Additional production 2013 to 205010.40.13 (average 2041 to 2050)

Another source of estimates on remaining oil and gas resources, reserves and yet-to-find potential is from the Wood Review of 2014 :-

billion barrels of oil equivalentLow caseMid-caseHigh case
DECC reference122235
Wood Review1224

So it’s clear that British oil and gas production is in decline, and that also, reserves and resources to exploit are depleting. The Wood Review made several recommendations to pump up production, and maximise the total recoverable quantities. Some interpreted this as an indication that good times were ahead. However, increased production in the near future is only going to deplete these resources faster.

OK, so the UK is finding the North Sea running dry, but what about other countries ? This from the BP Statistical Review of Energy, 2014 :-

Oil – proved reserves
Thousand million barrels

At end 1993

At end 2003

At end 2012
United Kingdom4.54.33.0
Denmark0.71.30.7
Norway9.610.19.2

Natural gas – Proved Reserves
Trillion cubic metres

At end 1993

At end 2003

At end 2012
United Kingdom0.60.90.2
Denmark0.10.1
Netherlands1.71.40.9
Norway1.42.52.1
Germany0.20.20.1

Oil and gas chief executives may be in denial about a peak in global crude oil production, but they don’t challenge geology on the North Sea. Here’s what BP’s CEO Bob Dudley said on 17th February 2015, during a presentation of the BP Energy Outlook 2035 :-

“The North sea is a very mature oil and gas province and it will inevitably go through a decline. It peaked in 1999 at around 2.9 millions barrels per day and our projections are that it will be half a million barrels in 2035”.

That’s “inevitably” regardless of the application of innovation and new technology. New kit might bring on production sooner, but won’t replenish the final count of reserves to exploit.

So what are the likely dates for Peak Oil and Peak Natural Gas production in the North Sea bordering countries ?

Norway : by 2030.

The Netherlands : peaked already. Due to become a net importer of Natural Gas by 2025.

Denmark : net importer of oil and gas by 2030.

Zero Careers In Plainspeaking

There are many ways to make a living, but there appear to be zero careers in plainspeaking.

I mean, who could I justify working with, or for ? And would any of them be prepared to accept me speaking my mind ?

Much of what I’ve been saying over the last ten years has been along the lines of “that will never work”, but people generally don’t get consulted or hired for picking holes in an organisation’s pet projects or business models.

Could I imagine myself taking on a role in the British Government ? Short answer : no.

The slightly longer answer : The British Government Department of Energy and Climate Change (DECC) ? No, they’re still hooked on the failed technology of nuclear power, the stupendously expensive and out-of-reach Carbon Capture and Storage (CCS), and the mythical beast of shale gas. OK, so they have a regular “coffee club” about Green Hydrogen (whatever that turns out to be according to their collective ruminations), and they’ve commissioned reports on synthetic methane, but I just couldn’t imagine they’re ever going to work up a serious plan on Renewable Gas. The British Government Department for Transport ? No, they still haven’t adopted a clear vision of the transition of the transport sector to low carbon energy. They’re still chipping away at things instead of coming up with a strategy.

Could I imagine myself taking on a role with a British oil and gas multinational ? Short and very terse and emphatic answer : no.

The extended answer : The oil and gas companies have had generous support and understanding from the world’s governments, and are respected and acclaimed. Yet they are in denial about “unburnable carbon” assets, and have dismissed the need for Energy Change that is the outcome of Peak Oil (whether on the supply or the demand side). Sneakily, they have also played both sides on Climate Change. Several major oil and gas companies have funded or in other ways supported Climate Change science denial. Additionally, the policy recommendations coming from the oil and gas companies are what I call a “delayer’s game”. For example, BP continues to recommend the adoption of a strong price on carbon, yet they know this would be politically unpalatable and take decades (if ever) to bring into effect. Shell continues to argue for extensive public subsidy support for Carbon Capture and Storage (CCS), knowing this would involve such huge sums of money, so it’s never going to happen, at least not for several decades. How on Earth could I work on any project with these corporations unless they adopt, from the centre, a genuine plan for transition out of fossil fuels ? I’m willing to accept that transition necessitates the continued use of Natural Gas and some petroleum for some decades, but BP and Royal Dutch Shell do need to have an actual plan for a transition to Renewable Gas and renewable power, otherwise I would be compromising everything I know by working with them.

Could I imagine myself taking on a role with a large engineering firm, such as Siemens, GE, or Alstom, taking part in a project on manufactured low carbon gas ? I suppose so. I mean, I’ve done an IT project with Siemens before. However, they would need to demonstrate that they are driving for a Renewable Gas transition before I could join a gas project with them. They might not want to be so bold and up-front about it, because they could risk the wrath of the oil and gas companies, whose business model would be destroyed by engineered gas and fuel solutions.

Could I imagine myself building fuel cells, or designing methanation catalysts, or improving hydrogen production, biocoke/biocoal manufacture or carbon dioxide capture from the oceans… with a university project ? Yes, but the research would need to be funded by companies (because all applied academic research is funded by companies) with a clear picture on Energy Change and their own published strategy on transition out of fossil fuels.

Could I imagine myself working on rolling out gas cars, buses and trucks ? Yes. The transition of the transport sector is the most difficult problem in Energy Change. However, apart from projects that are jumping straight to new vehicles running entirely on Hydrogen or Natural Gas, the good options for transition involve converting existing diesel engine vehicles to running mostly on Natural Gas, such as “dual fuel”, still needing roughly 20% of liquid diesel fuel for ignition purposes. So I would need to be involved with a project that aims to supply biodiesel, and have a plan to transition from Natural Gas to Renewable Gas.

Could I imagine myself working with a team that has extensive computing capabilities to model carbon dioxide recycling in power generation plant ? Yes.

Could I imagine myself modelling the use of hydrogen in petroleum refinery, and making technological recommendations for the oil and gas industry to manufacture Renewable Hydrogen ? Possibly. But I would need to be clear that I’m doing it to enable Energy Change, and not to prop up the fossil fuel paradigm – a game that is actually already bust and needs helping towards transition.

Could I imagine myself continuing to research the growth in Renewable Gas – both Renewable Hydrogen and Renewable Methane – in various countries and sectors ? Possibly. It’s my kind of fun, talking to engineers.

But whatever future work I consider myself doing, repeatedly I come up against this problem – whoever asked me to work with them would need to be aware that I do not tolerate non-solutions. I will continue to say what doesn’t work, and what cannot work.

If people want to pay me to tell them that what they’re doing isn’t working, and won’t work, then fine, I’ll take the role.

I’d much rather stay positive, though, and forge a role where I can promote the things that do work, can work and will work.

The project that I’m suitable for doesn’t exist yet, I feel. I’m probably going to continue in one way or another in research, and after that, since I cannot see a role that I could fit easily or ethically, I can see I’m going to have to write my own job description.

Who Likes Beer ?

First, Christian Figueres speaks at St Paul’s Cathedral, and then there’s a debate, and questions, and somebody says Capitalism needs to be reformed or we’re not going to get any proper change. Half the people in the room sigh. “The last thing we need now is an obsessive compulsive revolutionary Marxist”, I hear somebody thinking.

Then, no surprise, Prince Charles comes out in favour of compassionate capitalism. That’s kind of like asking people to be nice to puppies, and about as realistic call for change as wanting the Moon to be actually made of cheese. As if focusing all our efforts and energy on repairing an already-breaking machine of trade with its destructive exploitation of resources and labour is going to stop climate change. Really. What actually needs to happen is that we address carbon emissions. If we cannot measure a reduction in carbon dioxide emissions, or count new trees, we are getting nowhere, fast. The Holy Economy can go hang if we don’t address Climate Change, and it will, because Climate Change is already sucking the lifeblood out of production and trade.

The non-governmental organisations – the charities, aid and development agencies and the like, do not know how to deal with climate change. They cannot simply utilise their tools of guilt to prise coins from peoples’ clenched hands and put the money towards something helpful. Well, they can, and they do, and you better watch out for more poor, starving African type campaigning, because programmes for adaptation to climate change are important, and I’ve never said they’re not, but they don’t address mitigation – the preventing of climate change. Well, some can, such as the project for smokeless, efficient ovens, but that’s not the point here. The point is that Christian Aid, for example, calling on us all to be “Hungry for Justice” isn’t addressing the central problem – the mass use of fossil fuels and deforestation in the name of economic development.

People are talking in hushed, reverential tones about Make Climate History. The way that Make Poverty History worked was a bunch of parliamentary people, and government people, sat down together and worked out how to get shows of public support for the government’s calls to the G8. The appeal to the masses was principally divided into two kinds – messages calling for people to support the government, and messages calling for people to urge, shout, rail, demonstrate to the government that they wanted these things. So, if you were in the first group you were showing support for what you thought was a good thing, and if you were in the second group, you were using all your righteous anger to force the government to take up the cause of the poor. The NGOs merely repeated these messages out on the wires. People spent a lot of time and energy on taking these messages out to various communities, who then spent a lot of time and energy on public meetings, letter writing, postcard signing, rallying, marching, talking to their democratic representatives. But all of that activity was actually useless. The relationships that counted were the relationships between the governments, not between the governments and their NGOs. The NGOs were used to propagate a government initiative.

And now, they’re doing it again with climate change. Various parts of government, who have actually understood the science, and the economics, can see how it is in the best interests of the United Kingdom, and the European Union, of which we are a closely-connected part, to adopt strong carbon control policies. But they’re not content just to get on with it. No, they want all the politically active types to make a show of support. And so the communications begin. Apparently open consultative meetings are convened, but the agenda is already decided, and the messaging already written for you.

It reminds me of what happened with the Climate Marches. A truly independent strongly critical movement centred around the Campaign against Climate Change organised a demonstration of protest every year in London, leading people either from or to the American Embassy, as the USA was the most recalcitrant on taking action to control greenhouse gas emissions. This was an effective display of public feeling, as it irritated and scratched and annoyed. So it had to go. So, I Count was born, a project of Stop Climate Chaos. They organised events sometimes on the very same day as the Campaign against Climate Change, and their inclusive hippy message was all lovehearts and flowers and we wouldn’t hurt a fly type calls for change. In the run up to the Copenhagen Conference of the Parties (COP) of the United Nations Framework Convention on Climate Change (UNFCCC) Kyoto Protocol in late 2009, all the NGOs were pushing for energy to be concentrated on its outcome, but nobody who joined in the vigils, the pilgrimages or the marches had any chance to make a real input. We were just the feather boa on the cake. We were even ejected from the building.

All this energy expended was a complete waste of time. With climate change, the relationships that count are between the governments and the energy industry. The NGOs may rant and rail in their toothless, fangless, clawless way about energy industry infelicity, ignominy, ignorance and inflexibility, but the energy industry only cares about NGOs if they show any sign of rebellious insubordination, which might upset their shareholders.

The governments know what they need to do – they need to improve their relationships with their energy industries to come to an agreement about decarbonising the energy supply – ask them in the most non-nonsense, unavoidable, sisterly/brotherly way to diversify out of fossil fuels. It really doesn’t matter what the NGOs say or do.

Current climate change campaigning to the masses is analagous to walking into a student party and shouting above the noise, sorry, music, “Hands up, who likes beer ?” You might get some token drunken waves out of that, but nothing more.

People, I predict, are less likely to join in with a hunger strike than they are to like beer. And even if I did join the Climate Fast, it wouldn’t make a blind bit of difference to energy company behaviour or government policy.

Look, I’ve done my share of climate change actions. I’ve cut my personal energy use, I’ve given up ironing and vacuuming, for example. I’ve installed solar panels. I use the bus. I’ve taken part in the Great Scheme of Voluntary Behaviour Change – I, the energy consumer have shown my willingness to consume less and produce less greenhouse gas emissions. Now it’s time for other people to act.

Given half a chance, most of the British people would vote for climate – a decent, hardworking, sunshine-and-rain and rather moderate climate – and none of this extremist storms, floods and droughts scenario we’ve been suffering recently.

Yes, and more British people want renewable energy than voted in their Local Elections.

So why doesn’t the UK Government just get on with it – institute the proper Carbon Budget at home, continue to ask for decent decarbonisation targets abroad, and leave all the compassionate caring people to devote themselves to causes that they stand a chance of impacting ?

David MacKay : Heating London

I took some notes from remarks made by Professor David MacKay, the UK Government’s Chief Scientific Advisor, yesterday, 1st May 2014, at an event entitled “How Will We Heat London ?”, held by Max Fordhams as part of the Green Sky Thinking, Open City week. I don’t claim to have recorded his words perfectly, but I hope I’ve captured the gist.


[David MacKay] : [Agreeing with others on the panel – energy] demand reduction is really important. [We have to compensate for the] “rebound effect”, though [where people start spending money on new energy services if they reduce their demand for their current energy services].

SAP is an inaccurate tool and not suitable for the uses we put it too :-
http://www.eden.gov.uk/planning-and-development/building-control/building-control-guidance-notes/sap-calculations-explained/
http://www.dimplex.co.uk/products/renewable_solutions/building_regulations_part_l.htm

Things seem to be under-performing [for example, Combined Heat and Power and District Heating schemes]. It would be great to have data. A need for engineering expertise to get in.

I’m not a Chartered Engineer, but I’m able to talk to engineers. I know a kilowatt from a kilowatt hour [ (Laughter from the room) ]. We’ve [squeezed] a number of engineers into DECC [the Department of Energy and Climate Change].

I’m an advocate of Heat Pumps, but the data [we have received from demonstration projects] didn’t look very good. We hired two engineers and asked them to do the forensic analysis. The heat pumps were fine, but the systems were being wrongly installed or used.

Now we have a Heat Network team in DECC – led by an engineer. We’ve published a Heat Strategy. I got to write the first three pages and included an exergy graph.

[I say to colleagues] please don’t confuse electricity with energy – heat is different. We need not just a green fluffy solution, not just roll out CHP [Combined Heat and Power] [without guidance on design and operation].

Sources of optimism ? Hopefully some of the examples will be available – but they’re not in the shop at the moment.

For example, the SunUp Heat Battery – works by having a series of chambers of Phase Change Materials, about the size of a fridge that you would use to store heat, made by electricity during the day, for use at night, and meet the demand of one home. [Comment from Paul Clegg, Senior Partner at Feilden Clegg Bradley Studios : I first heard about Phase Change Materials back in the 1940s ? 1950s ? And nothing’s come of it yet. ] Why is that a good idea ? Well, if you have a heat pump and a good control system, you can use electricity when it’s cheapest… This is being trialled in 10 homes.

Micro-CHP – [of those already trialled] definitely some are hopeless, with low temperature and low electricity production they are just glorified boilers with a figleaf of power.

Maybe Fuel Cells are going to deliver – power at 50% efficiency [of conversion] – maybe we’ll see a Fuel Cell Micro-Combined Heat and Power unit ?

Maybe there will be hybrid systems – like the combination of a heat pump and a gas boiler – with suitable controls could lop off peaks of demand (both in power and gas).

We have designed the 2050 Pathways Calculator as a tool in DECC. It was to see how to meet the Carbon Budget. You can use it as an energy security calculator if you want. We have helped China, Korea and others to write their own calculators.

A lot of people think CHP is green and fluffy as it is decentralised, but if you’re using Natural Gas, that’s still a Fossil Fuel. If you want to run CHP on biomass, you will need laaaaaarge amounts of land. You can’t make it all add up with CHP. You would need many Wales’-worth of bioenergy or similar ways to make it work.

Maybe we should carry on using boilers and power with low carbon gas – perhaps with electrolysis [A “yay !” from the audience. Well, me, actually]. Hydrogen – the the 2050 Calculator there is no way to put it back into the beginning of the diagram – but it could provide low carbon heat, industry and transport. At the moment we can only put Hydrogen into Transport [in the 2050 Calculator. If we had staff in DECC to do that… It’s Open Source, so if any of you would like to volunteer…

Plan A of DECC was to convert the UK to using lots of electricity [from nuclear power and other low carbon technologies, to move to a low carbon economy], using heat pumps at the consumer end, but there’s a problem in winter [Bill Watts of Max Fordham had already shown a National Grid or Ofgem chart of electricity demand and gas demand over the year, day by day. Electricity demand (in blue) fluctuates a little, but it pretty regular over the year. Gas demand (in red) however, fluctuates a lot, and is perhaps 6 to 10 times larger in winter than in summer.]

If [you abandon Plan A – “electrification of everything”] and do it the other way, you will need a large amount of Hydrogen, and a large Hydrogen store. Electrolysers are expensive, but we are doing/have done a feasibility study with ITM Power – to show the cost of electrolysers versus the cost of your wind turbines [My comment : but you’re going to need your wind turbines to run your electrolysers with their “spare” or “curtailed” kilowatt hours.]

[David Mackay, in questions from the floor] We can glue together [some elements]. Maybe the coming smart controls will help…can help save a load of energy. PassivSystems – control such things as your return temperature [in your Communal or District Heating]…instead of suing your heat provider [a reference to James Gallagher who has problems with his communal heating system at Parkside SE10], maybe you could use smart controls…

[Question] Isn’t using smart controls like putting a Pirelli tyre on a Ford Cortina ? Legacy of poor CHP/DH systems…

[David MacKay in response to the question of insulation] If insulation were enormously expensve, we wouldn’t have to be so enthusastic about it…We need a well-targeted research programme looking at deep retrofitting, instead of letting it all [heat] out.

[Adrian Gault, Committee on Climate Change] We need an effective Government programme to deliver that. Don’t have it in the Green Deal. We did have it [in the previous programmes of CERT and CESP], but since they were cancelled in favour of the Green Deal, it’s gone off a cliff [levels of insulation installations]. We would like to see an initiative on low cost insulation expanded. The Green Deal is not producing a response.

[Bill Watts, Max Fordham] Agree that energy efficiency won’t run on its own. But it’s difficult to do. Not talking about automatons/automation. Need a lot of pressure on this.

[Adrian Gault] Maybe a street-by-street approach…

[Michael Trousdell, Arup] Maybe a rule like you can’t sell a house unless you’ve had the insulation done…

[Peter Clegg] … We can do heat recovery – scavenging the heat from power stations, but we must also de-carbonise the energy supply – this is a key part of the jigsaw.

Peak Oil : Kitchen Burlesque

An engineering buddy and I find ourselves in my kitchen, reading out loud from Jeremy Leggett’s 2013 book “The Energy of Nations : Risk Blindness and the Road to Renaissance”. The main topic of the work, I feel, is the failure of the energy sector and the political elites to develop a realistic plan for the future, and their blinkered adherence to clever arguments taken from failing and cracked narratives – such as the belief that unconventional fossil fuels, such as tar sands, can make up for declining conventional oil and gas production. It’s also about compromise of the highest order in the most influential ranks. The vignettes recalling conversations with the high and mighty are pure comedy.

“It’s very dramatic…”

“You can imagine it being taken to the West End theatres…”

“We should ask Ben Elton to take a look – adapt it for the stage…”

“It should really have costumes. Period costumes…Racy costumes…”

“Vaudeville ?”

“No…burlesque ! Imagine the ex-CEO of BP, John Browne, in a frou-frou tutu, slipping a lacy silk strap from his shoulder…What a Lord !”

“Do you think Jeremy Leggett would look good in a bodice ?”

On Having to Start Somewhere

In the last few weeks I have heard a lot of noble but futile hopes on the subject of carbon dioxide emissions control.

People always seem to want to project too far into the future and lay out their wonder solution – something that is just too advanced enough to be attainable through any of the means we currently have at our disposal. It is impossible to imagine how the gulf can be bridged between the configuration of things today and their chosen future solutions.

Naive civil servants strongly believe in a massive programme of new nuclear power. Head-in-the-clouds climate change consultants and engineers who should know otherwise believe in widespread Carbon Capture and Storage or CCS. MBA students believe in carbon pricing, with carbon trading, or a flat carbon tax. Social engineers believe in significant reductions in energy intensity and energy consumer behaviour change, and economists believe in huge cost reductions for all forms of renewable electricity generation.

To make any progress at all, we need to start where we are. Our economic system has strong emissions-dependent components that can easily be projected to fight off contenders. The thing is, you can’t take a whole layer of bricks out of a Jenga stack without severe degradation of its stability. You need to work with the stack as it is, with all the balances and stresses that already exist. It is too hard to attempt to change everything at once, and the glowing ethereal light of the future is just too ghostly to snatch a hold of without a firm grasp on an appropriate practical rather than spiritual guide.

Here’s part of an email exchange in which I strive for pragmatism in the face of what I perceive as a lack of realism.


To: Jo

I read your article with interest. You have focused on energy, whereas I
tend to focus on total resource. CCS does make sense and should be pushed
forward with real drive as existing power stations can be cleaned up with it
and enjoy a much longer life. Establishing CCS is cheaper than building new
nuclear and uses far less resources. Furthermore, CCS should be used on new
gas and biomass plants in the future.

What we are lacking at the moment is any politician with vision in this
space. Through a combination of boiler upgrades, insulation, appliance
upgrades and behaviour change, it is straight forward to halve domestic
energy use. Businesses are starting to make real headway with energy
savings. We can therefore maintain a current total energy demand for the
foreseeable future.

To service this demand, we should continue to eke out every last effective
joule from the current generating stock by adding cleansing kit to the dirty
performers. While this is being done, we can continue to develop renewable
energy and localised systems which can help to reduce the base load
requirement even further.

From an operational perspective, CCS has stagnated over the last 8 years, so
a test plant needs to be put in place as soon as possible.

The biggest issue for me is that, through political meddling and the
unintended consequences of ill-thought out subsidies, the market has been
skewed in such a way that the probability of a black-out next year is very
high indeed.

Green gas is invisible in many people’s thinking, but the latest House of
Lords Report highlighted its potential.

Vested interests are winning hands down in the stand-off with the big
picture!


From: Jo

What is the title of the House of Lords report to which you refer ?

Sadly, I am old enough to remember Carbon Capture and Storage (CCS)
the first time the notion went around the block, so I’d say that
progress has been thin for 30 years rather than 8.

Original proposals for CCS included sequestration at the bottom of the
ocean, which have only recently been ruled out as the study of global
ocean circulation has discovered more complex looping of deep and
shallower waters that originally modelled – the carbon dioxide would
come back up to the surface waters eventually…

The only way, I believe, that CCS can be made to work is by creating a
value stream from the actual carbon dioxide, and I don’t mean Enhanced
Oil Recovery (EOR).

And I also definitely do not mean carbon dioxide emissions pricing,
taxation or credit trading. The forces against an
investment-influencing carbon price are strong, if you analyse the
games going on in the various economic system components. I do not
believe that a strong carbon price can be asserted when major economic
components are locked into carbon – such as the major energy producers
and suppliers, and some parts of industry, and transport.

Also, carbon pricing is designed to be cost-efficient, as markets will
always find the lowest marginal pricing for any externality in fines
or charges – which is essentially what carbon dioxide emissions are.
The EU Emissions Trading Scheme was bound to deliver a low carbon
price – that’s exactly what the economists predicted in modelling
carbon pricing.

I cannot see that a carbon price could be imposed that was more than
5% of the base commodity trade price. At those levels, the carbon
price is just an irritation to pass on to end consumers.

The main problem is that charging for emissions does not alter
investment decisions. Just like fines for pollution do not change the
risks for future pollution. I think that we should stop believing in
negative charging and start backing positive investment in the energy
transition.

You write “You have focused on energy, whereas I tend to focus on
total resource.” I assume you mean the infrastructure and trading
systems. My understanding leads me to expect that in the current
continuing economic stress, solutions to the energy crisis will indeed
need to re-use existing plant and infrastructure, which is why I
think that Renewable Gas is a viable option for decarbonising total
energy supply – it slots right in to substitute for Natural Gas.

My way to “eke out every last effective joule from the current
generating stock” is to clean up the fuel, rather than battle
thermodynamics and capture the carbon dioxide that comes out the back
end. Although I also recommend carbon recycling to reduce the need for
input feedstock.

I completely agree that energy efficiency – cutting energy demand
through insulation and so on – is essential. But there needs to be a
fundamental change in the way that profits are made in the energy
sector before this will happen in a significant way. Currently it
remains in the best interests of energy production and supply
companies to produce and supply as much energy as they can, as they
have a duty to their shareholders to return a profit through high
sales of their primary products.

“Vested interests” have every right under legally-binding trade
agreements to maximise their profits through the highest possible
sales in a market that is virtually a monopoly. I don’t think this can
be challenged, not even by climate change science. I think the way
forward is to change the commodities upon which the energy sector
thrives. If products from the energy sector include insulation and
other kinds of efficiency, and if the energy sector companies can
continue to make sales of these products, then they can reasonably be
expected to sell less energy. I’m suggesting that energy reduction
services need to have a lease component.

Although Alistair Buchanan formerly of Ofgem is right about the
electricity generation margins slipping really low in the next few
winters, there are STOR contracts that National Grid have been working
on, which should keep the lights on, unless Russia turn off the gas
taps, which is something nobody can do anything much about – not BP,
nor our diplomatic corps, the GECF (the gas OPEC), nor the WTO.


Failing Narratives : Carbon Culprits

In the last few weeks I have attended a number of well-intentioned meetings on advances in the field of carbon dioxide emissions mitigation. My overall impression is that there are several failing narratives to be encountered if you make even the shallowest foray into the murky mix of politics and energy engineering.

As somebody rightly pointed out, no capitalist worth their share price is going to spend real money in the current economic environment on new kit, even if they have asset class status – so all advances will necessarily be driven by public subsidies – in fact, significant technological advance has only ever been accomplished by state support.

Disturbingly, free money is also being demanded to roll out decades-old low carbon energy technology – nuclear power, wind power, green gas, solar photovoltaics – so it seems to me the only way we will ever get appropriate levels of renewable energy deployment is by directed, positive public investment.

More to the point, we are now in an era where nobody at all is prepared to spend any serious money without a lucrative slap on the back, and reasons beyond reasons are being deployed to justify this position. For example, the gas-fired power plant operators make claims that the increase in wind power is threatening their profitability, so they are refusing to built new electricity generation capacity without generous handouts. This will be the Capacity Mechanism, and will keep gas power plants from being mothballed. Yes, there is data to support their complaint, but it does still seem like whinging and special pleading.

And the UK Government’s drooling and desperate fixation with new nuclear power has thrown the European Commission into a tizzy about the fizzy promises of “strike price” guaranteed sales returns for the future atomic electricity generation.

But here, I want to contrast two other energy-polity dialogues – one for developing an invaluable energy resource, and the other about throwing money down a hole.

First, let’s take the white elephant. Royal Dutch Shell has for many years been lobbying for state financial support to pump carbon dioxide down holes in the ground. Various oil and gas industry engineers have been selling this idea to governments, federal and sub-federal for decades, and even acted as consultants to the Civil Society process on emissions control – you just need to read the United Nations’ IPCC Climate Change Assessment Report and Special Report output to detect the filigree of a trace of geoengineering fingers scratching their meaning into global intention. Let us take your nasty, noxious carbon dioxide, they whisper suggestively, and push it down a hole, out of sight and out of accounting mind, but don’t forget to slip us a huge cheque for doing so. You know, they add, we could even do it cost-effectively, by producing more oil and gas from emptying wells, resulting from pumping the carbon dioxide into them. Enhanced Oil Recovery – or EOR – would of course mean that some of the carbon dioxide pumped underground would in effect come out again in the form of the flue gas from the combustion of new fossil fuels, but anyway…

And governments love being seen to be doing something, anything, really, about climate change, as long as it’s not too complicated, and involves big players who should be trustworthy. So, you get the Peterhead project picking up a fat cheque for a trial of Carbon Capture and Storage (CCS) in Scotland, and the sidestep hint that if Scotland decides to become independent, this project money could be lost…But this project doesn’t involve much of anything that is really new. The power station that will be used is a liability that ought to be closing now, really, according to some. And the trial will only last for ten years. There will be no EOR – at least – not in the public statements, but this plan could lead the way.

All of this is like pushing a fat kid up a shiny slide. Once Government take their greasy Treasury hands off the project, the whole narrative will fail, falling to an ignominious muddy end. This perhaps explains the underlying desperation of many – CCS is the only major engineering response to emissions that many people can think of – because they cannot imagine burning less fossil fuels. So this wobbling effigy has to be kept on the top of the pedestal. And so I have enjoyed two identical Shell presentations on the theme of the Peterhead project in as many weeks. CCS must be obeyed.

But, all the same, it’s big money. And glaring yellow and red photo opps. You can’t miss it. And then, at the other end of the scale of subsidies, is biogas. With currently low production volumes, and complexities attached to its utilisation, anaerobically digesting wastes of all kinds and capturing the gas for use as a fuel, is a kind of token technology to many, only justified because methane is a much stronger greenhouse gas than carbon dioxide, so it needs to be burned.

The subsidy arrangements for many renewable energy technologies are in flux. Subsidies for green gas will be reconsidered and reformulated in April, and will probably experience a degression – a hand taken off the tiller of driving energy change.

At an evening biogas briefing given by Rushlight this week, I could almost smell a whiff of despair and disappointment in the levels of official support for green gas. It was freely admitted that not all the planned projects around the country will see completion, not only because of the prevailing economic climate, but because of the vagaries of feedstock availability, and the complexity of gas cleaning regulations.

There was light in the tunnel, though, even if the end had not been reached – a new Quality Protocol for upgrading biogas to biomethane, for injection into the gas grid, has been established. You won’t find it on the official UK Goverment website, apparently, as it has fallen through the cracks of the rebranding to gov.uk, but here it is, and it’s from the Environment Agency, so it’s official :-

http://www.greengas.org.uk/pdf/biomethane-qp.pdf

http://www.r-e-a.net/news/rea-welcomes-environment-agencys-updated-anaerobic-digestion-quality-protocol

http://adbiogas.co.uk/2014/01/30/biomethane-qp-could-boost-renewable-gas-to-grid-market/
http://adbiogas.co.uk/2014/01/30/biomethane-quality-protocol-published/

Here’s some background :-

http://www.environment-agency.gov.uk/aboutus/wfo/epow/124111.aspx

To get some picture of the mess that British green energy policy is in, all you need do is take a glance at Germany and Denmark, where green gas is considered the “third leg of the stool”, stabilising renewable energy supply with easily-stored low carbon gas, to balance out the peaks and troughs in wind power and solar power provision.

Green gas should not be considered a nice-to-have minor addition to the solutions portfolio in my view. The potential to de-carbonise the energy gas supply is huge, and the UK are missing a trick here – the big money is being ladled onto the “incumbents” – the big energy companies who want to carry on burning fossil fuels but sweep their emissions under the North Sea salt cavern carpet with CCS, whilst the beer change is being reluctantly handed out as a guilt offering to people seeking genuinely low carbon energy production.

Seriously – where the exoplanet are we at ?

Gain in Transmission #2

Here is further email exchange with Professor Richard Sears, following on from a previous web log post.


From: Richard A. Sears
Date: 24 February 2014
To: Jo Abbess
Subject: Question from your TED talk

Jo,

I was looking back over older emails and saw that I had never responded to your note. It arrived as I was headed to MIT to teach for a week and then it got lost. Sorry about that.

Some interesting questions. I don’t know anybody working specifically on wind power to gas options. At one time Shell had a project in Iceland using geothermal to make hydrogen. Don’t know what its status is but if you search on hydrogen and Iceland on the Shell website I’m sure there’s something. If the Germans have power to gas as a real policy option I’d poke around the web for information on who their research partners are for this.

Here are a couple of high level thoughts. Not to discourage you because real progress comes from asking new questions, but there are some physical fundamentals that are important.

Direct air capture of anything using current technology is prohibitively expensive to do at scale for energy. More energy will be expended in capture and synthesis than the fuels would yield.

Gaseous fuels are problematic on their own. Gas doesn’t travel well and is difficult to contain at high energy densities as that means compressing or liquefying it. That doesn’t make anything impossible, but it raises many questions about infrastructure and energy balance. If we take the energy content of a barrel of oil as 1.0, then a barrel of liquefied natural gas is about 0.6, compressed natural gas which is typically at about 3600psi is around 0.3, and a barrel (as a measure of volume equal to 42 US gallons) of natural gas at room temperature and pressure is about 0.0015 (+/-). Also there’s a real challenge in storing and transporting gasses as fuel at scale, particularly motor fuel to replace gasoline and diesel.

While there is some spare wind power potential that doesn’t get utilized because of how the grid must be managed, I expect it is a modest amount of energy compared to what we use today in liquid fuels. I think what that means is that while possible, it’s more likely to happen in niche local markets and applications rather than at national or global scales.

If you haven’t seen it, a nice reference on the potential of various forms of sustainable energy is available free and online here. http://www.withouthotair.com/

Hope some of this helps.

Rich

Richard A. Sears
Consulting Professor
Department of Energy Resources Engineering
Stanford University


From: Jo Abbess
Date: 24 February 2014
To: Richard A. Sears

Dear Richard,

Many thanks for getting back to me. Responses are nice – even if they
are months late. As they say – better late than never, although with
climate change, late action will definitely be unwise, according to an
increasing number of people.

I have indeed seen the website, and bought and spilled coffee on the
book of Professor David MacKay’s “Sustainable Energy Without The Hot
Air” project. It is legendary. However, I have checked and he has only
covered alternative gas in a couple of paragraphs – in notes. By
contrast, he spent a long chapter discussing how to filter uranium out
of seawater and other nuclear pursuits.

Yet as a colleague of mine, who knows David better than I do, said to
me this morning, his fascination with nuclear power is rather naive,
and his belief in the success of Generation III and Generation IV
lacks evidence. Plus, if we get several large carbon dioxide
sequestration projects working in the UK – Carbon Capture and Storage
(CCS) – such as the Drax pipeline (which other companies will also
join) and the Shell Peterhead demonstration, announced today, then we
won’t need new nuclear power to meet our 4th Carbon Budget – and maybe
not even the 5th, either (to be negotiated in 2016, I hear) :-

http://www.heraldscotland.com/politics/referendum-news/peterhead-confirmed-for-carbon-capture-sitebut-its-not-a-bribe-says-ed-dave.1393232825

We don’t need to bury this carbon, however; we just need to recycle
it. And the number of ways to make Renewable Hydrogen, and
energy-efficiently methanate carbon monoxide and carbon dioxide with
hydrogen, is increasing. People are already making calculations on how
much “curtailed” or spare wind power is likely to be available for
making gas in 10 years’ time, and if solar power in the UK is
cranked/ramped up, then there will be lots of juicy cost-free power
ours for the taking – especially during summer nights.

Direct Air Capture of carbon dioxide is a nonsensical proposition.
Besides being wrong in terms of the arrow of entropy, it also has the
knock-on effect of causing carbon dioxide to come back out of the
ocean to re-equilibrate. I recently read a paper by climate scientists
that estimated that whatever carbon dioxide you take out of the air,
you will need to do almost all of it again.

Instead of uranium, we should be harvesting carbon dioxide from the
oceans, and using it to make gaseous and liquid fuels.

Gaseous fuels and electricity complement each other very well –
particularly in storage and grid balancing terms – there are many
provisions for the twins of gas and power in standards, laws, policies
and elsewhere. Regardless of the limitations of gas, there is a huge
infrastructure already in place that can store, pipe and use it, plus
it is multi-functional – you can make power, heat, other fuels and
chemicals from gas. In addition, you can make gas from a range of
resources and feedstocks and processing streams – the key quartet of
chemical gas species keep turning up : hydrogen, methane, carbon
monoxide and carbon dioxide – whether you are looking at the exhaust
from combustion, Natural Gas, industrial furnace producer gas,
biological decomposition, just about everywhere – the same four gases.

Energy transition must include large amounts of renewable electricity
– because wind and solar power are quick to build yet long nuclear
power lead times might get extended in poor economic conditions. The
sun does not always shine and the wind does not always blow (and the
tide is not always in high flux). Since demand profiles will never be
able to match supply profiles exactly, there will always be spare
power capacity that grids cannot use. So Power to Gas becomes the
optimal solution. At least until there are ways to produce Renewable
Hydrogen at plants that use process heat from other parts of the
Renewable Gas toolkit. So the aims are to recycle carbon dioxide from
gas combustion to make more gas, and recycle gas production process
heat to make hydrogen to use in the gas production process, and make
the whole lot as thermally balanced as possible. Yes. We can do that.
Lower the inputs of fresh carbon of any form, and lower the energy
requirements to make manufactured gas.

I met somebody working with Jacobs who was involved in the Carbon
Recycling project in Iceland. Intriguing, but an order of magnitude
smaller than I think is possible.

ITM Power in the UK are doing a Hydrogen-to-gas-grid and methanation
project in Germany with one of the regions. They have done several
projects with Kiwa and Shell on gas options in Europe. I know of the
existence of feasibility reports on the production of synthetic
methane, but I have not had the opportunity to read them yet…

I feel quite encouraged that Renewable Gas is already happening. It’s
a bit patchy, but it’s inevitable, because the narrative of
unconventional fossil fuels has many flaws. I have been looking at
issues with reserves growth and unconventionals are not really
commensurate with conventional resources. There may be a lot of shale
gas in the ground, but getting it out could be a long process, so
production volumes might never be very good. In the USA you’ve had
lots of shale gas – but that’s only been supported by massive drilling
programmes – is this sustainable ?

BP have just finished building lots of dollars of kit at Whiting to
process sour Natural Gas. If they had installed Renewable Gas kit
instead of the usual acid gas and sulfur processing, they could have
been preparing for the future. As I understand it, it is possible to
methanate carbon dioxide without first removing it from the rest of
the gas it comes in – so methanating sour gas to uprate it is a viable
option as far as I can see. The hydrogen sulfide would still need to
be washed out, but the carbon dioxide needn’t be wasted – it can be
made part of the fuel. And when the sour gas eventually thins out,
those now methanating sour gas can instead start manufacturing gas
from low carbon emissions feedstocks and recycled carbon.

I’m thinking very big.

Regards,

jo.

In Confab : Paul Elsner

Dr Paul Elsner of Birkbeck College at the University of London gave up some of his valuable time for me today at his little bijou garret-style office in Bloomsbury in Central London, with an excellent, redeeming view of the British Telecom Tower. Leader of the Energy and Climate Change module on Birkbeck’s Climate Change Management programme, he offered me tea and topical information on Renewable Energy, and some advice on discipline in authorship.

He unpacked the recent whirlwind of optimism surrounding the exploitation of Shale Gas and Shale Oil, and how Climate Change policy is perhaps taking a step back. He said that we have to accept that this is the way the world is at the moment.

I indicated that I don’t have much confidence in the “Shale Bubble”. I consider it mostly as a public relations exercise – and that there are special conditions in the United States of America where all this propaganda comes from. I said that there are several factors that mean the progress with low carbon fuels continues to be essential, and that Renewable Gas is likely to be key.

1. First of all, the major energy companies, the oil and gas companies, are not in a healthy financial state to make huge investment. For example, BP has just had the legal ruling that there will be no limit to the amount of compensation claims they will have to face over the Deepwater Horizon disaster. Royal Dutch Shell meanwhile has just had a serious quarterly profit warning – and if that is mostly due to constrained sales (“Peak Oil Demand”) because of economic collapse, that doesn’t help them with the kind of aggressive “discovery” they need to continue with to keep up their Reserves to Production ratio (the amount of proven resources they have on their books). These are not the only problems being faced in the industry. This problem with future anticipated capitalisation means that Big Oil and Gas cannot possibly look at major transitions into Renewable Electricity, so it would be pointless to ask, or try to construct a Carbon Market to force it to happen.

2. Secondly, despite claims of large reserves of Shale Gas and Shale Oil, ripe for the exploitation of, even major bodies are not anticipating that Peak Oil and Peak Natural Gas will be delayed by many years by the “Shale Gale”. The reservoir characteristics of unconventional fossil fuel fields do not mature in the same way as conventional ones. This means that depletion scenarios for fossil fuels are still as relevant to consider as the decades prior to horizontal drilling and hydraulic fracturing (“fracking”).

3. Thirdly, the reservoir characteristics of conventional fossil fuel fields yet to exploit, especially in terms of chemical composition, are drifting towards increasingly “sour” conditions – with sigificant levels of hydrogen sulfide and carbon dioxide in them. The sulphur must be removed for a variety of reasons, but the carbon dioxide remains an issue. The answer until recently from policy people would have been Carbon Capture and Storage or CCS. Carbon dioxide should be washed from acid Natural Gas and sequestered under the ocean in salt caverns that previously held fossil hydrocarbons. It was hoped that Carbon Markets and other forms of carbon pricing would have assisted with the payment for CCS. However, recently there has been reduced confidence that this will be significant.

Renewable Gas is an answer to all three of these issues. It can easily be pursued by the big players in the current energy provision system, with far less investment than wholesale change would demand. It can address concerns of gas resource depletion at a global scale, the onset of which could occur within 20 to 25 years. And it can be deployed to bring poor conventional fossil fuels into consideration for exploitation in the current time – answering regional gas resource depletion.

Outside, daffodils were blooming in Tavistock Square. In January, yes. The “freaky” weather continues…

Economic Ecology

Managing the balance between, on the one hand, extraction of natural resources from the environment, and on the other hand, economic production, shouldn’t have to be either, or. We shouldn’t value higher throughput and consumption at the expense of exhausting what the Earth can supply. We shouldn’t be “economic” in our ecology, we shouldn’t be penny-pinching and miserly and short-change the Earth. The Earth, after all, is the biosystem that nourishes us. What we should be aiming for is an ecology of economy – a balance in the systems of manufacture, agriculture, industry, mining and trade that doesn’t empty the Earth’s store cupboard. This, at its root, is a conservation strategy, maintaining humanity through a conservative economy. Political conservatives have lost their way. These days they espouse the profligate use of the Earth’s resources by preaching the pursuit of “economic growth”, by sponsoring and promoting free trade, and reversing environmental protection. Some in a neoliberal or capitalist economy may get rich, but they do so at the expense of everybody and everything else. It is time for an ecology in economics.

Over the course of the next couple of years, in between doing other things, I shall be taking part in a new project called “Joy in Enough”, which seeks to promote economic ecology. One of the key texts of this multi-workstream group is “Enough is Enough”, a book written by Rob Dietz and Dan O’Neill. In their Preface they write :-

“But how do we share this one planet and provide a high quality of life for all ? The economic orthodoxy in use around the world is not up to the challenge. […] That strategy, the pursuit of never-ending economic growth has become dysfunctional. With each passing day, we are witnessing more and more uneconomic growth – growth that costs more than it is worth. An economy that chases perpetually increasing production and consumption, always in search of more, stands no chance of achieving a lasting prosperity. […] Now is the time to change the goal from the madness of more to the ethic of enough, to accept the limits to growth and build an economy that meets our needs without undermining the life-support systems of the planet.”

One of the outcomes of global capitalism is huge disparities, inequalities between rich and poor, between haves and have-nots. Concern about this is not just esoteric morality – it has consequences on the whole system. Take, for example, a field of grass. No pastoral herder with a flock of goats is going to permit the animals to graze in just one corner of this field, for if they do, part of the grassland will over-grow, and part will become dust or mud, and this will destroy the value of the field for the purposes of grazing. And take another example – wealth distribution in the United Kingdom. Since most people do not have enough capital to live on the proceeds of investment, most people need to earn money for their wealth through working. The recent economic contraction has persuaded companies and the public sector to squeeze more productivity out of a smaller number of employees, or abandon services along with their employees. A simple map of unemployment shows how parts of the British population have been over-grazed to prop up the economic order. This is already having impacts – increasing levels of poverty, and the consequent social breakdown that accompanies it. Poverty and the consequent worsening social environment make people less able to look after themselves, their families, and their communities, and this has a direct impact on the national economy. We are all poorer because some of our fellow citizens need to use food banks, or have to make the choice in winter to Heat or Eat.

And let’s look more closely at energy. Whilst the large energy producers and energy suppliers continue to make significant profits – or put their prices up to make sure they do so – families in the lower income brackets are experiencing unffordability issues with energy. Yes, of course, the energy companies would fail if they cannot keep their shareholders and investors happy. Private concerns need to make a profit to survive. But in the grand scheme of things, the economic temperature is low, so they should not expect major returns. The energy companies are complaining that they fear for their abilities to invest in new resources and infrastructure, but many of their customers cannot afford their products. What have we come to, when a “trophy project” such as the Hinkley Point C nuclear power station gets signed off, with billions in concomitant subsidy support, and yet people in Scotland and the North East and North West of England are failing to keep their homes at a comfortable temperature ?

There is a basic conflict at the centre of all of this – energy companies make money by selling energy. Their strategy for survival is to make profit. This means they either have to sell more energy, or they have to charge more for the same amount of energy. Purchasing energy for most people is not a choice – it is a mandatory part of their spending. You could say that charging people for energy is akin to charging people for air to breathe. Energy is a essential utility, not an option. Some of the energy services we all need could be provided without purchasing the products of the energy companies. From the point of view of government budgets, it would be better to insulate the homes of lower income families than to offer them social benefit payments to pay their energy bills, but this would reduce the profits to the energy companies. Insulation is not a priority activity, because it lowers economic production – unless insulation itself is counted somehow as productivity. The ECO, the Energy Company Obligation – an obligation on energy companies to provide insulation for lower income family homes, could well become part of UK Prime Minister David Cameron’s “Bonfire of the Green Tax Vanities”. The ECO was set up as a subsidy payment, since energy companies will not provide energy services without charging somebody for them. The model of an ESCO – an Energy Services Company – an energy company that sells both energy and energy efficiency services is what is needed – but this means that energy companies need to diversify. They need to sell energy, and also sell people the means to avoid having to buy energy.

Selling energy demand reduction services alongside energy is the only way that privatised energy companies can evolve – or the energy sector could have to be taken back into public ownership because the energy companies are not being socially responsible. A combination of economic adjustment measures, essential climate change policy and wholesale price rises for fossil fuel energy mean that energy demand reduction is essential to keep the economy stable. This cannot be achieved by merely increasing end consumer bills, in an effort to change behaviour. There is only so much reduction in energy use that a family can make, and it is a one-time change, it cannot be repeated. You can nudge people to turn their lights off and their thermostats down by one degree, but they won’t do it again. The people need to be provided with energy control. Smart meters may or may not provide an extra tranche of energy demand reduction. Smart fridges and freezers will almost certainly offer the potential for further domestic energy reduction. Mandatory energy efficiency in all electrical appliances sold is essential. But so is insulation. If we don’t get higher rates of insulation in buildings, we cannot win the energy challenge. In the UK, one style of Government policies for insulation were dropped – and their replacements are simply not working. The mistake was to assume that the energy companies would play the energy conservation game without proper incentives – and by incentive, I don’t mean subsidy.

An obligation on energy companies to deploy insulation as well as other energy control measures shouldn’t need to be subsidised. What ? An obligation without a subsidy ? How refreshing ! If it is made the responsibility of the energy companies to provide energy services, and they are rated, and major energy procurement contracts are based on how well the energy companies perform on providing energy reduction services, then this could have an influence. If shareholders begin to understand the value of energy conservation and energy efficiency and begin to value their energy company holdings by their energy services portfolio, this could have an influence. If an energy utility’s licence to operate is based on their ESCO performance, this could have an influence : an energy utility could face being disbarred through the National Grid’s management of the electricity and gas networks – if an energy company does not provide policy-compliant levels of insulation and other demand control measures, it will not get preferential access for its products to supply the grids. If this sounds like the socialising of free trade, that’s not the case. Responsible companies are already beginning to respond to the unfolding crisis in energy. Companies that use large amounts of energy are seeking ways to cut their consumption – for reasons related to economic contraction, carbon emissions control and energy price rises – their bottom line – their profits – rely on energy management.

It’s flawed reasoning to claim that taxing bad behaviour promotes good behaviour. It’s unlikely that the UK’s Carbon Floor Price will do much apart from making energy more unaffordable for consumers – it’s not going to make energy companies change the resources that they use. To really beat carbon emissions, low carbon energy needs to be mandated. Mandated, but not subsidised. The only reason subsidies are required for renewable electricity is because the initial investment is entirely new development – the subsidies don’t need to remain in place forever. Insulation is another one-off cost, so short-term subsidies should be in place to promote it. As Nick Clegg MP proposes, subsidies for energy conservation should come from the Treasury, through a progressive tax, not via energy companies, who will pass costs on to energy consumers, where it stands a chance of penalising lower-income households. Wind power and solar power, after their initial investment costs, provide almost free electricity – wind turbines and solar panels are in effect providing energy services. Energy companies should be mandated to provide more renewable electricity as part of their commitment to energy services.

In a carbon-constrained world, we must use less carbon dioxide emitting fossil fuel energy. Since the industrialised economies use fossil fuels for more than abut 80% of their energy, lowering carbon emissions means using less energy, and having less building comfort, unless renewables and insulation can be rapidly increased. This is one part of the economy that should be growing, even as the rest is shrinking.

Energy companies can claim that they don’t want to provide insulation as an energy service, because insulation is a one-off cost, it’s not a continuing source of profit. Well, when the Big Six have finished insulating all the roofs, walls and windows, they can move on to building all the wind turbines and solar farms we need. They’ll make a margin on that.

Natural Gas in the UK

The contribution of coal-fired power generation to the UK’s domestic electrical energy supply appears to have increased recently, according to the December 2012 “Energy Trends” released by the Department of Energy and Climate Change. This is most likely due to coal plants using up their remaining allotted operational hours until they need to retire.
It could also be due to a quirk of the international markets – coal availability has increased because of gas glut conditions in the USA leading to higher coal exports. Combatting the use of coal in power generation is a global struggle that still needs to be won, but in the UK, it is planned that low carbon generation will begin to gain ascendance.

The transition to lower carbon energy in Britain relies on getting the Natural Gas strategy right. With the imminent closure of coal-fired power plant, the probable decommissioning of several nuclear reactors, and the small tranche of overall supply coming from renewable resources, Natural Gas needs to be providing a greater overall percentage of electricity in the grid. But an increasing amount of this will be imported, since indigenous production is dropping, and this is putting the UK’s economy at risk of high prices and gas scarcity.

Demand for electricity for the most part changes by a few percentage points a year, but the overall trend is to creep upwards (see Chart 4, here). People have made changes to their lighting power consumption, but this has been compensated for by an increase in power used by “gadgets” (see Chart 4, here). There is not much that can be done to suppress power consumption. Since power generation must increasingly coming from renewable resources and Natural Gas combustion, this implies strong competition between the demand for gas for heating and the demand gas for electricity. Electricity generation is key to the economy, so the power sector will win any competition for gas supplies. If competition for Natural Gas is strong, and since we don’t have much national gas storage, we can expect higher seasonal imports and therefore, higher prices.

It is clear that improving building insulation across the board is critical in avoiding energy insecurity. I shall be checking the winter heat demand figures assiduously from now on, to determine if the Green Deal and related measures are working. If they don’t, the UK is in for heightened energy security risks, higher carbon emissions, and possibly much higher energy prices. The Green Deal simply has to work.

A Referendum for Energy

As I dodged the perfunctory little spots of snow yesterday, on my way down to Highbury and Islington underground train station, I passed a man who appeared to have jerky muscle control attempting to punch numbers on the keypad of a cash machine in the wall. He was missing, but he was grinning. A personal joke, perhaps. The only way he could get his money out of the bank to buy a pint of milk and a sliced loaf for his tea was to accurately tap his PIN number. But he wasn’t certain his body would let him. I threw him an enquiring glance, but he seemed too involved in trying to get control of his arms and legs to think of accepting help.

This, I felt, was a metaphor for the state of energy policy and planning in the United Kingdom – everybody in the industry and public sector has focus, but nobody appears to have much in the way of overall control – or even, sometimes, direction. I attended two meetings today setting out to address very different parts of the energy agenda : the social provision of energy services to the fuel-poor, and the impact that administrative devolution may have on reaching Britain’s Renewable Energy targets.

At St Luke’s Centre in Central Street in Islington, I heard from the SHINE team on the progress they are making in providing integrated social interventions to improve the quality of life for those who suffer fuel poverty in winter, where they need to spend more than 10% of their income on energy, and are vulnerable to extreme temperatures in both summer heatwaves and winter cold snaps. The Seasonal Health Interventions Network was winning a Community Footprint award from the National Energy Action charity for success in their ability to reach at-risk people through referrals for a basket of social needs, including fuel poverty. It was pointed out that people who struggle to pay energy bills are more likely to suffer a range of poverty problems, and that by linking up the social services and other agencies, one referral could lead to multiple problem-solving.

In an economy that is suffering signs of contraction, and with austerity measures being imposed, and increasing unemployment, it is clear that social services are being stretched, and yet need is still great, and statutory responsibility for handling poverty is still mostly a publicly-funded matter. By offering a “one-stop shop”, SHINE is able to offer people a range of energy conservation and efficiency services alongside fire safety and benefits checks and other help to make sure those in need are protected at home and get what they are entitled to. With 1 in 5 households meeting the fuel poverty criteria, there is clearly a lot of work to do. Hackney and Islington feel that the SHINE model could be useful to other London Boroughs, particularly as the Local Authority borders are porous.

We had a presentation on the Cold Weather Plan from Carl Petrokovsky working for the Department of Health, explaining how national action on cold weather planning is being organised, using Met Office weather forecasts to generate appropriate alert levels, in a similar way to heatwave alerts in summer – warnings that I understand could become much more important in future owing to the possible range of outcomes from climate change.

By way of some explanation – more global warming could mean significant warming for the UK. More UK warming could mean longer and, or, more frequent heated periods in summer weather, perhaps with higher temperatures. More UK warming could also mean more disturbances in an effect known as “blocking” where weather systems lock into place, in any season, potentially pinning the UK under a very hot or very cold mass of air for weeks on end. In addition, more UK warming could mean more precipitation – which would mean more rain in summer and more snow in winter.

Essentially, extremes in weather are public health issues, and particularly in winter, more people are likely to suffer hospitalisation from the extreme cold, or falls, or poor air quality from boiler fumes – and maybe end up in residential care. Much of this expensive change of life is preventable, as are many of the excess winter deaths due to cold. The risks of increasing severity in adverse conditions due to climate change are appropriately dealt with by addressing the waste of energy at home – targeting social goals can in effect contribute to meeting wider adaptational goals in overall energy consumption.

If the UK were to be treated as a single system, and the exports and imports of the most significant value analysed, the increasing net import of energy – the yawning gap in the balance of trade – would be seen in its true light – the country is becoming impoverished. Domestic, indigenously produced sources of energy urgently need to be developed. Policy instruments and measured designed to reinvigorate oil and gas exploration in the North Sea and over the whole UKCS – UK Continental Shelf – are not showing signs of improving production significantly. European-level policy on biofuels did not revolutionise European agriculture as regards energy cropping – although it did contribute to decimating Indonesian and Malaysian rainforest. The obvious logical end point of this kind of thought process is that we need vast amounts of new Renewable Energy to retain a functioning economy, given global financial, and therefore, trade capacity, weakness.

Many groups, both with the remit for public service and private enterprise oppose the deployment of wind and solar power, and even energy conservation measures such as building wall cladding. Commentators with access to major media platforms spread disinformation about the ability of Renewable Energy technologies to add value. In England, in particular, debates rage, and many hurdles are encountered. Yet within the United Kingdom as a whole, there are real indicators of progressive change, particularly in Scotland and Wales.

I picked up the threads of some of these advances by attending a PRASEG meeting on “Delivering Renewable Energy Under Devolution”, held at the Institution of Mechanical Engineers in Westminster, London; a tour to back up the launch of a new academic report that analyses performance of the devolved administrations and their counterpart in the English Government in Westminster. The conclusions pointed to something that I think could be very useful – if Scotland takes the referendum decision for independence, and continues to show strong leadership and business and community engagement in Renewable Energy deployment, the original UK Renewable Energy targets could be surpassed.

I ended the afternoon exchanging some perceptions with an academic from Northern Ireland. We shared that Eire and Northern Ireland could become virtually energy-independent – what with the Renewable Electricity it is possible to generate on the West Coast, and the Renewable Gas it is possible to produce from the island’s grass (amongst other things). We also discussed the tendency of England to suck energy out of its neighbour territories. I suggested that England had appropriated Scottish hydrocarbon resources, literally draining the Scottish North Sea dry of fossil fuels in exchange for token payments to the Western Isles, and suchlike. If Scotland leads on Renewable Energy and becomes independent, I suggested, the country could finally make back the wealth it lost to England. We also shared our views about the Republic of Ireland and Northern Ireland being asked to wire all their new Renewable Electricity to England, an announcement that has been waiting to happen for some time. England could also bleed Wales of green power with the same lines being installed to import green juice from across the Irish Sea.

I doubt that politics will completely nix progress on Renewable Energy deployment – the economics are rapidly becoming clear that clean, green power and gas are essential for the future. However, I would suggest we could expect some turbulence in the political sphere, as the English have to learn the hard way that they have a responsibility to rapidly increase their production of low carbon energy.

Asking the English if they want to break ties with the European Union, as David Cameron has suggested with this week’s news on a Referendum, is the most unworkable idea, I think. England, and in fact, all the individual countries of the United Kingdom, need close participation in Europe, to join in with the development of new European energy networks, in order to overcome the risks of economic collapse. It may happen that Scotland, and perhaps Wales, even, separate themselves from any increasing English isolation and join the great pan-Europe energy projects in their own right. Their economies may stabilise and improve, while the fortunes of England may tumble, as those with decision-making powers, crony influence and web logs in the Daily Telegraph and Daily Mail, resist the net benefits of the low carbon energy revolution.

[ Many thanks to Simon and all at the Unity Kitchen at St Luke’s Centre, and the handsomely reviving Unity Latte, and a big hi to all the lunching ladies and gents with whom I shared opinions on the chunkiness of the soup of the day and the correct identification of the vegetables in it. ]

Other Snapshots of Yesterday #1 : Approached by short woman with a notebook in Parliament Square, pointing out to me a handwritten list that included the line “Big Ben”. I pointed at the clock tower and started to explain. The titchy tourist apologised for non-comprehension by saying, “French”, so then I explained the feature attraction to her in French, which I think quite surprised her. We are all European.

Other Snapshots of Yesterday #2 : Spoke with an Austrian academic by the fire for coffee at IMechE, One Birdcage Walk, about the odd attitudes as regards gun ownership in the United States, and the American tendency to collective, cohort behaviour. I suggested that this tendency could be useful, as the levels of progressive political thinking, for instance about drone warfare, could put an end to the practice. When aerial bombardment was first conducted, it should have been challenged in law at that point. We are all Europeans.

Other Snapshots of Yesterday #3 : Met a very creative Belgian from Gent, living in London. We are all European.

Other Snapshots of Yesterday #4 : We Europeans, we are all so civilised. We think that we need to heat venues for meetings, so that people feel comfortable. Levels of comfort are different for different people, but the lack of informed agreement means that the default setting for temperature always ends up being too high. The St Luke’s Centre meeting room was at roughly 23.5 degrees C when I arrived, and roughly 25 degrees C with all the visitors in the room. I shared with a co-attendee that my personal maximum operating temperature is around 19 degrees C. She thought that was fine for night-time. The IMechE venue on the 2nd floor was roughly 19 – 20 degrees C, but the basement was roughly 24 degrees C. Since one degree Celsius of temperature reduction can knock about 10% of the winter heating bill, why are public meetings about energy not more conscious of adjusting their surroundings ?

The Art of Non-Persuasion

I could never be in sales and marketing. I have a strong negative reaction to public relations, propaganda and the sticky, inauthentic charm of personal persuasion.

Lead a horse to water, show them how lovely and sparkling it is, talk them through their appreciation of water, how it could benefit their lives, make them thirsty, stand by and observe as they start to lap it up.

One of the mnemonics of marketing is AIDA, which stands for Attention, Interest, Desire, Action, leading a “client” through the process, guiding a sale. Seize Attention. Create Interest. Inspire Desire. Precipitate Action. Some mindbenders insert the letter C for Commitment – hoping to be sure that Desire has turned into certain decision before permitting, allowing, enabling, contracting or encouraging the Action stage.

You won’t get that kind of psychological plasticity nonsense from me. Right is right, and wrong is wrong, and ethics should be applied to every conversion of intent. In fact, the architect of a change of mind should be the mind who is changing – the marketeer or sales person should not proselytise, evangelise, lie, cheat, sneak, creep and massage until they have control.

I refuse to do “Suggestive Sell”. I only do “Show and Tell”.

I am quite observant, and so in interpersonal interactions I am very sensitive to rejection, the “no” forming in the mind of the other. I can sense when somebody is turned off by an idea or a proposal, sometimes even before they know it clearly themselves. I am habituated to detecting disinclination, and I am resigned to it. There is no bridge over the chasm of “no”. I know that marketing people are trained to not accept negative reactions they perceive – to keep pursuing the sale. But I don’t want to. I want to admit, permit, allow my correspondent to say “no” and mean “no”, and not be harrassed, deceived or cajoled to change it to a “yes”.

I have been accused of being on the dark side – in my attempts to show and tell on climate change and renewable energy. Some assume that because I am part of the “communications team”, I am conducting a sales job. I’m not. My discovery becomes your discovery, but it’s not a constructed irreality. For many, it’s true that they believe they need to follow the path of public relations – deploying the “information deficit model” of communication – hierarchically patronising. Me, expert. You, poor unknowing punter. Me, inform you. You, believe, repent, be cleaned and change your ways. In this sense, communications experts have made climate change a religious cult.

In energy futures, I meet so many who are wild-eyed, desperate to make a sale – those who have genuine knowledge of their subject – and who realise that their pitch is not strong enough in the eyes of others. It’s not just a question of money or funding. The engineers, often in large corporations, trying to make an impression on politicians. The consultants who are trying to influence companies and civil servants. The independent professionals trying to exert the wisdom of pragmatism and negotiated co-operation. The establishment trying to sell technical services. Those organisations and institutions playing with people – playing with belonging, with reputation, marketing outdated narratives. People who are in. People who are hands-off. People who are tipped and ditched. Those with connections who give the disconnected a small rocky platform. The awkwardness of invested power contending with radical outsiders. Denial of changing realities. The dearth of ready alternatives. Are you ready to be captured, used and discarded ? Chase government research and development grants. Steal your way into consultations. Play the game. Sell yourself. Dissociate and sell your soul.

I have to face the fact that I do need to sell myself. I have to do it in a way which remains open and honest. To sell myself and my conceptual framework, my proposals for ways forward on energy and climate change, I need a product. My person is often not enough of a product to sell – I am neuro-atypical. My Curriculum Vitae CV in resume is not enough of a product to sell me. My performance in interviews and meetings is often not enough of a product. My weblog has never been a vehicle for sales. I didn’t want it to be – or to be seen as that – as I try to avoid deceit in communications.

Change requires facilitation. You can’t just walk away when the non-persuasional communications dialogue challenge gets speared with distrust and dismissal. Somehow there has to be a way to present direction and decisions in a way that doesn’t have a shadow of evil hovering in the wings.

“A moment to change it all, is all it takes to start anew.
To the other side.”


Why do I need to “sell” myself ? Why do I need to develop a product – a vehicle with which to sell myself ?

1. In order to be recognised, in order to be welcomed, invited to make a contribution to the development of low carbon energy, the optimisation of the use of energy, and effective climate change policy.

2. In order to put my internal motivations and drive to some practical use. To employ my human energy in the service of the future of energy engineering and energy systems.



What is my agenda ?


Tamino’s Arctic Sea Ice Poll


For some time I have not felt a keen sense of “mission” – a direction for my climate change and energy activities. However, I am beginning to formulate a plan – or rather – I have one important item on my agenda. I am aware that perception can be fatal – and that people in many “camps” are going to dismiss me because of this.

Suddenly I don’t fit into anybody’s pigeonhole – so the needle on the dial will probably swing over to “dismiss”. However, I think it’s necessary to pursue this. I think I have to try.

I am prepared to hold several conflicting ideas in the balance at one time, and let the data add mass to one version of the truth or another.

I’m prepared to accept the possibility of low climate change sensitivity (the reaction of the Earth biosystem to global warming) – apart from the fact that the evidence is accumulating – pointing heavily towards rapid instabilities emerging on short timescales. I don’t think I ever really left behind the hope – and I’m crossing my fingers here – that some massive negative carbon feedback will arise, heroically, and stem the full vigour of climate chaos. But as time slips by, and the Arctic cryosphere continues to de-materialise before our very eyes, that hope is worn down to the barest of threads.

And on energy security, I am prepared to accept the reasoning behind the IEA, BP, Shell and other projections of increasing overall energy demand between now and 2035, and the percentage of fossil fuel use that will inevitably require – apart from the fact that some evidence points towards increasing uncertainties in energy provision – if we are relying on more complex and inaccessible resources, within the framework of an increasingly patchy global economy.

If access to energy becomes threatened for more people globally, and also if climate change becomes highly aggressive in terms of freshwater stress, then I doubt that human population growth can carry on the way it has been – and in addition the global economy may never recover – which means that overall energy demand will not grow in the way that oil and gas companies would like their shareholders to accept.

My impression is that energy producing companies and countries are not openly admitting the risks. If energy supply chaos sets in, then the political and governance ramifications will be enormous, especially since the energy industry is so embedded in administrations. It is time, in my view, that projections of world energy use to 2035 included error bars based on economic failure due to energy chaos.

What do I need to do – given these pragmatic positions ? I need to include realists in the crisis talks – pragmatic, flexible thinkers from the energy industry. Just as we are not going to solve climate change without addressing energy provision, we are not going to solve energy insecurity without addressing climate change impacts on energy infrastructure. And so I need to find the energy industry people, meet them and invite them to the discussions on the risks of chaos. I need people to take in the data. I need people to understand the problems with slipping back into “thinking as usual”.

As to the setting – whether I should be an employee or an independent advisor/adviser, consultant or a researcher, I don’t have any idea what would be best. Collaborators would be useful – as I am but one person with a track record of being rather awkward – despite trying to engage my best behaviour. But then, nobody’s perfect. In a sense it doesn’t matter who does the job, but we have to break the public relations-guided psychology of denial. People are not generally stupid, and many are snapping out of their drip-fed propaganda delusions. I wonder exactly how many other imperfect people are out there who are coming to the same conclusions ? And what will be the game changer ?

Obey the Future

Disobedience only gets you so far. Resistance can be fertile, but intellectual ghettos can be futile. The human tendency to generalise creates too much negativity and prevents us from being constructive. We complain about the “evil” oil and gas companies; the “greedy” coal merchants and their “lying” bankster financiers; but refuse to see the diamonds in the mud.

We should obey the future. In the future, all people will respect each other. There will no longer be war propaganda carried by the media, demonising leaders of foreign countries, or scorn for opposing political parties. In the future, human beings will respect and have regard for other human beings. So we should live that future, live that value, have care for one another. I don’t mean we are obliged to give money to charity to help needy people in poor countries. I don’t mean we should campaign for our government to commit funds to the Climate Finance initiatives, whose aim is to support adaptation to climate chaos in developing countries. No, charity is not enough, and never matches the need. Philanthropy will not answer climate change, and so solutions need to be built into the infrastructure of the global economy, sewn into the design, woven into the fabric. There should be no manufacture, no trade, no form of consumption that does not take account of the climate change impacts on the poor, and on the rich, on ecosystems, on ourselves.

Yes, it’s true that corporations are destroying the biosphere, but we cannot take a step back, grimace and point fingers of blame, for we are all involved in the eco-destructive economy. We are all hooked on dirty energy and polluting trade, and it’s hard to change this. It’s especially hard for oil, gas and coal companies to change track – they have investors and shareholders, and they are obliged to maintain the value in their business, and keep making profits. Yes, they should stop avoiding their responsibilities to the future. Yes, they should stop telling the rest of us to implement carbon taxation or carbon trading. They know that a comprehensive carbon price can never be established, that’s why they tell us to do it. It’s a technique of avoidance. But gathering climate storms, and accumulating unsolved climate damages, are leading the world’s energy corporations to think carefully of the risks of business as usual. How can the governments and society of the world help the energy companies to evolve ? Is more regulation needed ? And if so, what kind of political energy would be required to bring this about ? The United Nations climate change process is broken, there is no framework or treaty at hand, and the climate change social movement has stopped growing, so there is no longer any democratic pressure on the energy production companies and countries to change.

Many climate change activists talk of fear and frustration – the futility of their efforts. They are trapped into the analysis that teaches that greed and deceit are all around them. Yet change is inevitable, and the future is coming to us today, and all is quite possibly full of light. Where is this river of hope, this conduit of shining progress ? Where, this organised intention of good ?

We have to celebrate the dull. Change is frequently not very exciting. Behind the scenes, policy people, democratic leaders, social engineers, corporate managers, are pushing towards the Zero Carbon future reality. They push and pull in the areas open to them, appropriate to their roles, their paid functions. Whole rafts of national and regional policy is wedded to making better use of energy, using less energy overall, displacing carbon energy from all economic sectors.

And then there’s the progressive politics. Every leader who knows the shape of the future should strive to be a Van Jones, or a Jenny Jones, any green-tinged Jones you can think of. We should enquire of our political leaders and our public activists what flavour of environmental ecology they espouse. We should demand green policies in every party, expect clean energy support from every faction. We should not only vote progressive, we should promote future-thinking authority in all spheres of social management – a future of deeper mutual respect, of leaner economy, of cleaner energy.

The future will be tough. In fact, the future is flowing to us faster than ever, and we need resilience in the face of assured destructive change – in environment and in economy. To develop resilience we need to forgo negativity and embrace positivity. So I ask you – don’t just be anti-coal, be pro-wind, pro-solar and pro-energy conservation. Where leaders emerge from the companies and organisations that do so much harm, celebrate them and their vision of a brighter, better, lower carbon future. Where administrations take the trouble to manage their energy use, and improve their efficiency in the use of resources, applaud them, and load them with accolades. Awards may be trite, but praise can encourage better behaviour, create exemplars, inspire goodly competition. Let us encourage the people with good influence in every organisation, institution and corporation. Change is afoot, and people with genuine power are walking confidently to a more wholesome future.

Protect your soul. Don’t get locked into the rejection of evil, but hold fast to what is good. Do not conform to the patterns of this world, but be transformed by the renewing of your minds. Be strong for goodness, even as you turn your back on a life of grime.

Live the Zero Carbon future, and make it come as soon as it can.

Continue reading Obey the Future