Energy Change for Climate Control
RSS icon Home icon
  • Fields of Diesel Generators

    Posted on February 19th, 2016 Jo No comments

    Recently, I had a very helpful telephone conversation with somebody I shall call Ben – because that’s his name, obviously, so there’s no point in trying to camoflage that fact. It was a very positive conversation, with lots of personal energy from both parties – just the sort of constructive engagement I like.

    Amongst a range of other things, we were batting about ideas for what could constitute a business model or economic case for the development of Renewable Gas production – whether Renewable Hydrogen or Renewable Methane. Our wander through the highways and byways of energy markets and energy policy led us to this sore point – that the National Grid is likely to resort to “fields of diesel generators” for some of its emergency backup for the power grid in the next few years – if new gas-fired power plants don’t get built. Various acronyms you might find in this space include STOR and BM.

    Now, diesel is a very dirty fuel – so dirty that it appears to be impossible to build catalytic exhaust filters for diesel road vehicles that meet any of the air pollution standards and keep up fuel consumption performance. It’s not just VW that have had trouble meeting intention with faction – all vehicle manufacturers have difficulties balancing all the requirements demanded of them. Perhaps it’s time to admit that we need to ditch the diesel fuel itself, rather than vainly try to square the circle.

    The last thing we really need is diesel being used as the fuel to prop up the thin margins in the power generation network – burned in essentially open cycle plant – incurring dirty emissions and a massive waste of heat energy. Maybe this is where the petrorefiners of Great Britain could provide a Renewable Gas alternative. Building new plant or reconfiguring existing plant for Renewable Gas production would obviously entail capital investment, which would create a premium price on initial operations. However, in the event of the National Grid requiring emergency electricity generation backup, the traded prices for that power would be high – which means that slightly more expensive Renewable Gas could find a niche use which didn’t undermine the normal economics of the market.

    If there could be a policy mandate – a requirement that Renewable Gas is used in open cycle grid-balancing generation – for example when the wind dies down and the sun sets – then we could have fields of Renewable Gas generators and keep the overall grid carbon emissions lower than they would otherwise have been.

    Both Ben and I enjoyed this concept and shared a cackle or two – a simple narrative that could be adopted very easily if the right people got it.

    Renewable Gas – that’s the craic.

  • Nobel Chutzpah Prize 2015

    Posted on July 14th, 2015 Jo 2 comments

    The problem with climate change “deniers” and low carbon energy “sceptics” is that they cannot read.

    Here’s Jo Nova, claiming that the United Nations and the World Bank are demanding $89 trillion “to fix climate”.

    She writes, “The ambit claims know no bounds. Who else would ask for $89,000,000,000,000? If the evil “more developed” nations pay for their carbon sins, the bill for those 1.3 billion people works out at $70,000 per person by 2030 (babies included).”

    A simple little diagram from the actual report and a little text, shows she is entirely wrong :-

    From Section 2.1 “Infrastructure investment and global growth” :-

    “The global economy will require substantial investments in infrastructure as the population and the middle class grow. An estimated US$89 trillion of infrastructure investment will be required through 2030, based on data from the International Energy Agency (IEA), the Organisation for Economic Co-operation and Development (OECD), and analysis for the Commission (see Figure 1). This is chiefly investment in energy and cities. This estimate for the required investment is before accounting for actions to combat climate change.”

    That’s before accounting for actions to combat climate change, Ms Nova. Before. I know it’s probably clanging against your internal cognitive fences, but the fact is, the world needs to spend a heap of capital in the next 20 to 30 years reviving, replacing and renewing energy systems infrastructure. That spending has to happen regardless of whether it’s low carbon spending.

    And let’s read the note on Figure 1 more carefully :-


    So, Jo Nova, the world will actually be better off if it decides to make all new energy expenditure low carbon.

    Jo Nova, when will you be updating your web post ?

  • DECC Dungeons and Dragnets

    Posted on July 14th, 2015 Jo No comments

    Out of the blue, I got an invitation to a meeting in Whitehall.

    I was to join industrial developers and academic researchers at the Department of Energy and Climate Change (DECC) in a meeting of the “Green Hydrogen Standard Working Group”.

    The date was 12th June 2015. The weather was sunny and hot and merited a fine Italian lemonade, fizzing with carbon dioxide. The venue was an air-conditioned grey bunker, but it wasn’t an unfriendly dungeon, particularly as I already knew about half the people in the room.

    The subject of the get-together was Green Hydrogen, and the work of the group is to formulate a policy for a Green Hydrogen standard, navigating a number of issues, including the intersection with other policy, and drawing in a very wide range of chemical engineers in the private sector.

    My reputation for not putting up with any piffle clearly preceded me, as somebody at the meeting said he expected I would be quite critical. I said that I would not be saying anything, but that I would be listening carefully. Having said I wouldn’t speak, I must admit I laughed at all the right places in the discussion, and wrote copious notes, and participated frequently in the way of non-verbal communication, so as usual, I was very present. At the end I was asked for my opinion about the group’s work and I was politely congratulational on progress.

    So, good. I behaved myself. And I got invited back for the next meeting. But what was it all about ?

    Most of what it is necessary to communicate is that at the current time, most hydrogen production is either accidental output from the chemical industry, or made from fossil fuels – the main two being coal and Natural Gas.

    Hydrogen is used extensively in the petroleum refinery industry, but there are bold plans to bring hydrogen to transport mobility through a variety of applications, for example, hydrogen for fuel cell vehicles.

    Clearly, the Green Hydrogen standard has to be such that it lowers the bar on carbon dioxide (CO2) emissions – and it could turn out that the consensus converges on any technologies that have a net CO2 emissions profile lower than steam methane reforming (SMR), or the steam reforming of methane (SRM), of Natural Gas.

    [ It’s at this very moment that I need to point out the “acronym conflict” in the use of “SMR” – which is confusingly being also used for “Small Modular Reactors” of the nuclear fission kind. In the context of what I am writing here, though, it is used in the context of turning methane into syngas – a product high in hydrogen content. ]

    Some numbers about Carbon Capture and Storage (CCS) used in the manufacture of hydrogen were presented in the meeting, including the impact this would have on CO2 emissions, and these were very intriguing.

    I had some good and useful conversations with people before and after the meeting, and left thinking that this process is going to be very useful to engage with – a kind of dragnet pulling key players into low carbon gas production.

    Here follow my notes from the meeting. They are, of course, not to be taken verbatim. I have permission to recount aspects of the discussion, in gist, as it was an industrial liaison group, not an internal DECC meeting. However, I should not say who said what, or which companies or organisations they are working with or for.

    Click to Read More !

  • Shell and BP : from “Delay and Deny” to “Delay and Distract”

    Posted on June 3rd, 2015 Jo No comments

    Shell, BP and some of their confederates in the European oil and gas industry have inched, or perhaps “centimetred”, forward in their narrative on climate change. Previously, the major oil and gas companies were regularly outed as deniers of climate change science; either because of their own public statements, or because of secretive support of organisations active in denying climate change science. It does seem, finally, that Shell in particular has decided to drop this counter-productive “playing of both sides”. Not that there are any “sides” to climate change science. The science on climate change is unequivocal : changes are taking place across the world, and recent global warming is unprecedented, and has almost definitely been attributed to the burning of fossil fuels and land use change.

    So Shell and BP have finally realised that they need to shed the mantle of subtle or not-so-subtle denial, although they cling to the shreds of dispute when they utter doubts about the actual numbers or impacts of global warming (for example : However, we have to grant them a little leeway on that, because although petrogeologists need to understand the science of global warming in order to know where to prospect for oil and gas, their corporate superiors in the organisation may not be scientists at all, and have no understanding of the global carbon cycle and why it’s so disruptive to dig up all that oil and gas hydrocarbon and burn it into the sky. So we should cut the CEOs of Shell and BP a little slack on where they plump for in the spectrum of climate change narrative – from “utter outright doom” to “trifling perturbation”. The central point is that they have stopped denying climate change. In fact, they’re being open that climate change is happening. It’s a miracle ! They have seen the light !

    But not that much light, though. Shell and BP’s former position of “scepticism” of the gravity and actuality of global warming and climate change was deployed to great effect in delaying any major change in their business strategies. Obviously, it would have been unseemly to attempt to transmogrify into renewable energy businesses, which is why anybody in the executive branches who showed signs of becoming pro-green has been shunted. There are a number of fairly decent scalps on the fortress pikes, much to their shame. Shell and BP have a continuing duty to their shareholders – to make a profit from selling dirt – and this has shelved any intention to transition to lower carbon energy producers. Granted, both Shell and BP have attempted to reform their internal businesses by applying an actual or virtual price on carbon dioxide emissions, and in some aspects have cleaned up and tidied up their mining and chemical processing. The worsening chemistry of the cheaper fossil fuel resources they have started to use has had implications on their own internal emissions control, but you have to give them credit for trying to do better than they used to do. However, despite their internal adjustments, their external-facing position of denial of the seriousness of climate change has supported them in delaying major change.

    With these recent public admissions of accepting climate change as a fact (although CEOs without appropriate science degrees irritatingly disagree with some of the numbers on global warming), it seems possible that Shell and BP have moved from an outright “delay and deny” position, which is to be applauded.

    However, they might have moved from “delay and deny” to “delay and distract”. Since the commencement of the global climate talks, from about the 1980s, Shell and BP have said the equivalent of “if the world is serious about acting on global warming (if global warming exists, and global warming is caused by fossil fuels), then the world should agree policy for a framework, and then we will work within that framework.” This is in effect nothing more than the United Nations Framework Convention on Climate Change (UNFCCC) has put forward, so nobody has noticed that Shell and BP are avoiding taking any action themselves here, by making action somebody else’s responsibility.

    Shell and BP have known that it would take some considerable time to get unanimity between governments on the reality and severity of climate change. Shell and BP knew that it would take even longer to set up a market in carbon, or a system of carbon dioxide emissions taxation. Shell and BP knew right from the outset that if they kept pushing the ball back to the United Nations, nothing would transpire. The proof of the success of this strategy was the Copenhagen conference in 2009. The next proof of the durability of this delaying tactic will be the outcomes of the Paris 2015 conference. The most that can come out of Paris is another set of slightly improved targets from governments, but no mechanism for translating these into real change.

    Shell and BP and the other oil and gas companies have pushed the argument towards a price on carbon, and a market in carbon, and expensive Carbon Capture and Storage technologies. Not that a price on carbon is likely to be anywhere near high enough to pay for Carbon Capture and Storage. But anyway, the point is that these are all distractions. What really needs to happen is that Shell and BP and the rest need to change their products from high carbon to low carbon. They’ve delayed long enough. Now is the time for the United Nations to demand that the fossil fuel companies change their products.

    This demand is not just about protecting the survival of the human race, or indeed, the whole biome. Everybody is basically on the same page on this : the Earth should remain liveable-inable. This demand for change is about the survival of Shell and BP as energy companies. They have already started to talk about moving their businesses away from oil to gas. There are high profile companies developing gas-powered cars, trains, ships and possibly even planes. But this will only be a first step. Natural Gas needs to be a bridge to a fully zero carbon world. The oil and gas companies need to transition from oil to gas, and then they need to transition to low carbon gas.

    Renewable Gas is not merely “vapourware” – the techniques and technologies for making low carbon gas are available, and have been for decades, or in some cases, centuries. Shell and BP know they can manufacture gas instead of digging it up. They know they can do the chemistry because they already have to do much of the same chemistry in processing fossil hydrocarbons now to meet environmental and performance criteria. BP has known since the 1970s or before that it can recycle carbon in energy systems. Shell is currently producing hydrogen from biomass, and they could do more. A price on carbon is not going to make this transition to low carbon gas. While Shell and BP are delaying the low carbon transition by placing focus on the price of carbon, they could lose a lot of shareholders who shy away from the “carbon bubble” risk of hydrocarbon investment. Shell and BP need to decide for themselves that they want to survive as energy companies, and go public with their plans to transition to low carbon gas, instead of continuing to distract attention away from themselves.

  • Why Shell is Wrong

    Posted on June 2nd, 2015 Jo No comments

    So, some people do not understand why I am opposed to the proposal for a price on carbon put forward by Royal Dutch Shell and their oil and gas company confederates.

    Those who have been following developments in climate change policy and the energy sector know that the oil and gas companies have been proposing a price on carbon for decades; and yet little has been achieved in cutting carbon dioxide emissions, even though carbon markets and taxes have been instituted in several regions.

    Supporters of pricing carbon dioxide emissions urge the “give it time” approach, believing that continuing down the road of tweaking the price of energy in the global economy will cause a significant change in the types of resources being extracted.

    My view is that economic policy and the strengthening of carbon markets and cross-border carbon taxes cannot provide a framework for timely and major shifts in the carbon intensity of energy resources, and here’s a brief analysis of why.

    1.   A price on carbon shifts the locus of action on to the energy consumer and investor

    A price on carbon could be expected to alter the profitability of certain fossil fuel mining, drilling and processing operations. For example, the carbon dioxide emissions of a “tank of gas” from a well-to-wheel or mine-to-wheel perspective, could be made to show up in the price on the fuel station forecourt pump. Leaving aside the question of how the carbon tax or unit price would be applied and redistributed for the moment, a price on carbon dioxide emissions could result in fuel A being more expensive than fuel B at the point of sale. Fuel A could expect to fall in popularity, and its sales could falter, and this could filter its effect back up the chain of production, and have implications on the capital expenditure on the production of Fuel A, and the confidence of the investors in investing in Fuel A, and so the oil and gas company would pull out of Fuel A.

    However, the business decisions of the oil and gas company are assumed to be dependent on the consumer and the investor. By bowing to the might god of unit price, Shell and its confederates are essentially arguing that they will act only when the energy consumers and energy investors act. There are problems with this declaration of “we only do what we are told by the market” position. What if the unit price of Fuel A is only marginally affected by the price on carbon ? What if Fuel A is regarded as a superior product because of its premium price or other marketing factors ? This situation actually exists – the sales of petroleum oil-based gasoline and diesel are very healthy, despite the fact that running a car on Natural Gas, biogas or electricity could be far cheaper. Apart from the fact that so many motor cars in the global fleet have liquid fuel-oriented engines, what else is keeping people purchasing oil-based fuels when they are frequently more costly than the alternative options ?

    And what about investment ? Fuel A might become more costly to produce with a price on carbon, but it will also be more expensive when it is sold, and this could create an extra margin of profit for the producers of Fuel A, and they could then return higher dividends to their shareholders. Why should investors stop holding stocks in Fuel A when their rates of return are higher ?

    If neither consumers nor investors are going to change their practice because Fuel A becomes more costly than Fuel B because of a price on carbon, then the oil and gas company are not going to transition out of Fuel A resources.

    For Shell to urge a price on carbon therefore, is a delegation of responsibility for change to other actors. This is irresponsible. Shell needs to lead on emissions reduction, not insist that other people change.

    2.   A price on carbon will not change overall prices or purchasing decsions

    In economic theory, choices about products, goods and services are based on key factors such as trust in the supplier, confidence in the product, availability and sustainability of the service, and, of course, the price. Price is a major determinant in most markets, and artificially altering the price of a vital commodity will certainly alter purchasing decisions – unless, that is, the price of the commodity in question increases across the board. If all the players in the field start offering a more expensive product, for example, because of supply chain issues felt across the market, then consumers will not change their choices.

    Now consider the global markets in energy. Upwards of 80% of all energy consumed in the global economy is fossil fuel-based. Putting a price on carbon will raise the prices of energy pretty much universally. There will not be enough cleaner, greener product to purchase, so most purchasing decisions will remain the same. Price differentiation in the energy market will not be established by asserting a price on carbon.

    A key part of Shell’s argument is that price differentiation will occur because of a price on carbon, and that this will drive behaviour change, and yet there is nothing to suggest it could do that effectively.

    3.   A price on carbon will not enable Carbon Capture and Storage

    Athough a key part of Shell’s argument about a price on carbon is the rationale that it would stimulate the growth in Carbon Capture and Storage (CCS), it seems unlikely that the world will ever agree to a price on carbon that would be sufficient to stimulate significant levels of CCS. A price on carbon will be deemed to be high enough when it creates a difference in the marginal extra production cost of a unit of one energy resource compared to another. A carbon price can only be argued for on the basis of this optimisation process – after all – a carbon price will be expected to be cost-efficient, and not punitive to markets. In other words, carbon prices will be tolerated if they tickle the final cost of energy, but not if they mangle with it. However, CCS could imply the use of 20% to 45% extra energy consumption at a facility or plant. In other words, CCS would create a parasitic load on energy resources that is not slim enough to be supported by a cost-optimal carbon price.

    Some argue that the technology for CCS is improving, and that the parasitic load of CCS at installations could be reduced to around 10% to 15% extra energy consumption. However, it is hard to imagine a price on carbon that would pay even for this. And additionally, CCS will continue to require higher levels of energy consumption which is highly inefficient in the use of resources.

    Shell’s argument that CCS is vital, and that a price on carbon can support CCS, is invalidated by this simple analysis.

    4.   Shell needs to be fully engaged in energy transition

    Calling for a price on carbon diverts attention from the fact that Shell itself needs to transition out of fossil fuels in order for the world to decarbonise its energy.

    Shell rightly says that they should stick to their “core capabilities” – in other words geology and chemistry, instead of wind power and solar power. However, they need to demonstrate that they are willing to act within their central business activities.

    Prior to the explosion in the exploitation of deep geological hydrocarbon resources for liquid and gas fuels, there was an energy economy that used coal and chemistry to manufacture gas and liquid fuels. Manufactured gas could still replace Natural Gas, if there are climate, economic or technological limits to how much Natural Gas can be resourced or safely deployed. Of course, to meet climate policy goals, coal chemistry would need to be replaced by biomass chemistry, and significant development of Renewable Hydrogen technologies.

    Within its own production facilities, Shell has the answers to meet this challenge. Instead of telling the rest of the world to change its economy and its behaviour, Shell should take up the baton of transition, and perfect its production of low carbon manufactured gas.

  • The Great Transition to Gas

    Posted on April 8th, 2015 Jo No comments

    Hello, hello; what have we here then ? Royal Dutch Shell buying out BG Group (formerly known as British Gas). Is this the start of the great transition out of petroleum oil into gas fuels ?

    Volatile crude petroleum oil commodity prices over the last decade have played some undoubted havoc with oil and gas company strategy. High crude prices have pushed the choice of refinery feedstocks towards cheap heavy and immature gunk; influenced decisions about the choices for new petrorefineries and caused ripples of panic amongst trade and transport chiefs : you can’t keep the engine of globalisation ticking over if the key fuel is getting considerably more expensive, and you can’t meet your carbon budgets without restricting supplies.

    Low crude commodity prices have surely caused oil and gas corporation leaders to break out into the proverbial sweat. Heavy oil, deep oil, and complicated oil suddenly become unprofitable to mine, drill and pump. Because the economic balance of refinery shifts. Because low commodity prices must translate into low end user refined product prices.

    There maybe isn’t an ideal commodity price for crude oil. All the while, as crude oil commodity prices jump around like a medieval flea, the price of Natural Gas, and the gassy “light ends” of slightly unconventional and deep crude oil, stay quite cheap to produce and cheap to use. It’s a shame that there are so many vehicles on the road/sea/rails that use liquid fuels…all this is very likely to change.

    Shell appear to be consolidating their future gas business by buying out the competition. Hurrah for common sense ! The next stage of their evolution, after the transition of all oil applications to gas, will be to ramp up Renewable Gas production : low carbon gas supplies will decarbonise every part of the economy, from power generation, to transport, to heating, to industrial chemistry.

    This is a viable low carbon solution – to accelerate the use of renewable electricity – wind power and solar principally – and at the same time, transition the oil and gas companies to become gas companies, and thence to Renewable Gas companies.

  • UKERC : Gas by Design

    Posted on November 12th, 2014 Jo No comments

    Today I attended a meeting of minds.

    It’s clear to me that the near-term and mid-term future for energy in the United Kingdom and the European Union will best be centred on Natural Gas and Renewable Electricity, and now the UK Energy Research Centre has modelled essentially the same scenario. This can become a common narrative amongst all parties – the policy people, the economists, the technologists, the non-governmental groups, as long as some key long-term de-carbonisation and energy security objectives are built into the plan.

    The researchers wanted to emphasise from their report that the use of Natural Gas should not be a default option in the case that other strategies fail – they want to see a planned transition to a de-carbonised energy system using Natural Gas by design, as a bridge in that transition. Most of the people in the room found they could largely agree with this. Me, too. My only caveat was that when the researchers spoke about Gas-CCS – Natural Gas-fired power generation with Carbon Capture and Storage attached, my choice would be Gas-CCU – Natural Gas-fired power generation with Carbon Capture and Re-utilisation – carbon recycling – which will eventually lead to much lower emissions gas supply at source.

    What follows is a transcription of my poorly-written notes at the meeting, so you cannot accept them as verbatim.

    Jim Watson, UKERC = [JW]
    Christophe McGlade, University College London (UCL) = [CM]
    Mike Bradshaw, Warwick Business School = [MB]

    [JW] Thanks to Matt Aylott. Live Tweeting #FutureOfGas. Clearly gas is very very important. It’s never out of the news. The media all want to talk about fracking… If we want to meet the 2 degrees Celsius target of the United Nations Framework Convention on Climate Change, how much can gas be a part of this ? Is Natural Gas a bridge – how long a ride will that gas bridge be ?

    [CM] Gas as a bridge ? There is healthy debate about the Natural Gas contribution to climate change [via the carbon dioxide emissions from burning Natural Gas, and also about how much less in emissions there is from burning Natural Gas compared to burning coal]. The IPCC said that “fuel switching” from coal to gas would offer emissions benefits, but some research, notably McJeon et al. (2014) made statements that switching to Natural Gas cannot confer emissions benefits. Until recently, there have not been many disaggregated assessments on gas as a bridge. We have used TIAM-UCL. The world is divided into 16 regions. The “climate module” seeks to constrain the global temperature rise to 2 degrees Celsius. One of the outcomes from our model was that export volumes [from all countries] would be severaly impacted by maintaining the price indexation between oil and gas. [Reading from chart on the screen : exports would peak in 2040s]. Another outcome was that gas consumption is not radically affected by different gas market structures. However, the over indexation to the oil price may destroy gas export markets. Total exports of natural gas are higher under the 2 degrees Celsius scenario compared to the 4 degrees Celsius scenario – particularly LNG [Liquefied Natural Gas]. A global climate deal will support gas exports. There will be a higher gas consumption under a 2 degrees Celsius deal compared to unconstrained scenario [leading to a 4 degrees Celsius global temperature rise]. The results of our modelling indicate that gas acts as a bridge fuel out to 2035 [?] in both absolute and relative terms. There is 15% greater gas consumption in the 2 degrees Celsius global warming scenario than in the 4 degrees Celsius global warming scenario. Part of the reason is that under the 4 degrees Celsius scenario, Compressed Natural Gas vehicles are popular, but a lot less useful under the 2 degrees Celsius scenario [where hydrogen and other fuels are brought into play].

    There are multiple caveats on these outcomes. The bridging period is strictly time-limited. Some sectors need to sharply reduce consumption [such as building heating by Natural Gas boilers, which can be achieved by mass insulation projects]. Coal must be curtailed, but coal-for-gas substitution alone is not sufficient. Need a convincing narrative about how coal can be curtailed. In an absence of a global binding climate deal we will get consumption increases in both coal and gas. In the model, gas is offsetting 15% of coal by 2020, and 85% by 2030. With Carbon Capture and Storage (CCS), gas’s role is drastically reduced – after 2025 dropping by 2% a year [of permitted gas use]. Not all regions of the world can use gas as a bridge. [Reading from the chart : with CCS, gas is a strong bridging fuel in the China, EU, India, Japan and South Korea regions, but without CCS, gas is only strong in China. With CCS, gas’s bridging role is good in Australasia, ODA presumably “Offical Development Assistance” countries and USA. Without CCS, gas is good for Africa, Australasia, EU, India, Japan, South Korea, ODA and USA.]

    In the UK, despite the current reliance on coal, there is little scope to use it as a transition fuel. Gas is unlikely to be removed from UK energy system by 2050.

    [Question from the floor] The logic of gas price indexation with the oil price ?

    [CM] If maintain oil indexation, exports will reduce as countries turn more towards indigenous at-home production of gas for their domestic demand. This would not be completely counter-balanced by higher oil and therefore gas prices, which should stimulate more exports.

    [Point from the floor] This assumes logical behaviour…

    [Question from the floor] [Question about Carbon Capture and Storage (CCS)]

    [CM] The model does anticipate more CCS – which permits some extra coal consumption [at the end of the modelling period]. Gas-CCS [gas-fired power generation with CCS attached] is always going to generate less emissions than coal-CCS [coal-fired power generation with CCS attached] – so the model prefers gas-CCS.

    [to be continued…]

  • Positively Against Negative Campaigning

    Posted on May 24th, 2014 Jo 4 comments

    How to organise a political campaign around Climate Change : ask a group of well-fed, well-meaning, Guardian-reading, philanthropic do-gooders into the room to adopt the lowest common denominator action plan. Now, as a well-fed, well-meaning, Guardian-reading (well, sometimes), philanthropic do-gooder myself, I can expect to be invited to attend such meetings on a regular basis. And always, I find myself frustrated by the outcomes : the same insipid (but with well-designed artwork) calls to our publics and networks to support something with an email registration, a signed postcard, a fistful of dollars, a visit to a public meeting of no consequence, or a letter to our democratic representative. No output except maybe some numbers. Numbers to support a government decision, perhaps, or numbers to indicate what kind of messaging people need in future.

    I mean, with the Fair Trade campaign, at least there was some kind of real outcome. Trade Justice advocates manned stall tables at churches, local venues, public events, and got money flowing to the international co-operatives, building up the trade, making the projects happen, providing schooling and health and aspirations in the target countries. But compare that to the Make Poverty History campaign which was largely run to support a vain top-level political attempt to garner international funding promises for social, health and economic development. Too big to succeed. No direct line between supporting the campaign and actually supporting the targets. Passing round the hat to developed, industrialised countries for a fund to support change in developing, over-exploited countries just isn’t going to work. Lord Nicholas Stern tried to ask for $100 billion a year by 2020 for Climate Change adaptation. This has skidded to a halt, as far as I know. The economic upheavals, don’t you know ?

    And here we are again. The United Nations Framework Convention on Climate Change (UNFCCC), which launched the Intergovernmental Panel on Climate Change (IPCC) reports on climate change, oh, so, long, ago, through the person of its most charismatic and approachable Executive Secretary, Christiana Figueres, is calling for support for a global Climate Change treaty in 2015. Elements of this treaty, being drafted this year, will, no doubt, use the policy memes of the past – passing round the titfer begging for a couple of billion squid for poor, hungry people suffering from floods and droughts; proposing some kind of carbon pricing/taxing/trading scheme to conjure accounting bean solutions; trying to implement an agreement around parts per million by volume of atmospheric carbon dioxide; trying to divide the carbon cake between the rich and the poor.

    Somehow, we believe, that being united around this proposed treaty, few of which have any control over the contents of, will bring us progress.

    What can any of us do to really have input into the building of a viable future ? Christiana – for she is now known frequently only by her first name – has called for numbers – a measure of support for the United Nations process. She has also let it be known that if there is a substantial number of people who, with their organisations, take their investments out of fossil fuels, then this could contribute to the mood of the moment. Those who are advocating divestment are yet small in number, and I fear that they will continue to be marginal, partly because of the language that is being used.

    First of all, there are the Carbon Disclosers. Their approach is to conjure a spectre of the “Carbon Bubble” – making a case that investments in carbon dioxide-rich enterprises could well end up being stranded by their assets, either because of wrong assumptions about viable remaining resources of fossil fuels, or because of wrong assumptions about the inability of governments to institute carbon pricing. Well, obviously, governments will find it hard to implement effective carbon pricing, because governments are in bed with the energy industry. Politically, governments need to keep big industry sweet. No surprise there. And it’s in everybody’s interests if Emperor Oil and Prince Regent Natural Gas are still wearing clothes. In the minds of the energy industry, we still have a good four decades of healthy fossil fuel assets. Royal Dutch Shell’s CEO can therefore confidently say at a public AGM that There Is No Carbon Bubble. The Carbon Discloser language is not working, it seems, as any kind of convincer, except to a small core of the concerned.

    And then there are the Carbon Voices. These are the people reached by email campaigns who have no real idea how to do anything practical to affect change on carbon dioxide emissions, but they have been touched by the message of the risks of climate change and they want to be seen to be supporting action, although it’s not clear what action will, or indeed can, be taken. Well-designed brochures printed on stiff recycled paper with non-toxic inks will pour through their doors and Inboxes. Tick it. Send it back. Sign it. Send it on. Maybe even send some cash to support the campaign. This language is not achieving anything except guilt.

    And then there are the Carbon Divestors. These are extremely small marginal voices who are taking a firm stand on where their organisations invest their capital. The language is utterly dated. The fossil fuel industry are evil, apparently, and investing in fossil fuels is immoral. It is negative campaigning, and I don’t think it stands a chance of making real change. It will not achieve its goal of being prophetic in nature – bearing witness to the future – because of the non-inclusive language. Carbon Voices reached by Carbon Divestor messages will in the main refuse to respond, I feel.

    Political action on Climate Change, and by that I mean real action based on solid decisions, often taken by individuals or small groups, has so far been under-the-radar, under-the-counter, much like the Fair Trade campaign was until it burst forth into the glorious day of social acceptability and supermarket supply chains. You have the cyclists, the Transition Towners, the solar power enthusiasts. Yet to get real, significant, economic-scale transition, you need Energy Change – that is, a total transformation of the energy supply and use systems. It’s all very well for a small group of Methodist churches to pull their pension funds from investments in BP and Shell, but it’s another thing entirely to engage BP and Shell in an action plan to diversify out of petroleum oil and Natural Gas.

    Here below are my email words in my feeble attempt to challenge the brain of Britain’s charitable campaigns on what exactly is intended for the rallying cry leading up to Paris 2015. I can pretty much guarantee you won’t like it – but you have to remember – I’m not breaking ranks, I’m trying to get beyond the Climate Change campaigning and lobbying that is currently in play, which I regard as ineffective. I don’t expect a miraculous breakthrough in communication, the least I can do is sow the seed of an alternative. I expect I could be dis-invited from the NGO party, but it doesn’t appear to be a really open forum, merely a token consultation to build up energy for a plan already decided. If so, there are probably more important things I could be doing with my time than wasting hours and hours and so much effort on somebody else’s insipid and vapid agenda.

    I expect people might find that attitude upsetting. If so, you know, I still love you all, but you need to do better.


    A lot of campaigning over the last 30 years has been very negative and divisive, and frequently ends in psychological stalemate. Those who are cast as the Bad Guys cannot respond to the campaigning because they cannot admit to their supporters/employees/shareholders that the campaigners are “right”. Joe Average cannot support a negative campaign as there is no apparent way to make change happen by being so oppositional, and because the ask is too difficult, impractical, insupportable. [Or there is simply too much confusion or cognitive dissonance.]

    One of the things that was brought back from the […] working group breakout on […] to the plenary feedback session was that there should be some positive things about this campaign on future-appropriate investment. I think […] mentioned the obvious one of saying effectively “we are backing out of these investments in order to invest in things that are more in line with our values” – with the implicit encouragement for fossil fuel companies to demonstrate that they can be in line with our values and that they are moving towards that. There was some discussion that there are no bulk Good Guy investment funds, that people couldn’t move investments in bulk, although some said there are. […] mentioned Ethex.

    Clearly fossil fuel production companies are going to find it hard to switch from oil and gas to renewable electricity, so that’s not a doable we can ask them for. Several large fossil fuel companies, such as BP, have tried doing wind and solar power, but they have either shuttered those business units, or not let them replace their fossil fuel activities.

    […] asked if the [divestment] campaign included a call for CCS – Carbon Capture and Storage – and […] referred to […] which showed where CCS is listed in a box on indicators of a “good” fossil fuel energy company.

    I questioned whether the fossil fuel companies really want to do CCS – and that they have simply been waiting for government subsidies or demonstration funds to do it. (And anyway, you can’t do CCS on a car.)

    I think I said in the meeting that fossil fuel producer companies can save themselves and save the planet by adopting Renewable Gas – so methods for Carbon Capture and Utilisation (CCU) or “carbon recycling”. Plus, they could be making low carbon gas by using biomass inputs. Most of the kit they need is already widely installed at petrorefineries. So – they get to keep producing gas and oil, but it’s renewably and sustainably sourced with low net carbon dioxide emissions. That could be turned into a positive, collaborative ask, I reckon, because we could all invest in that, the fossil fuel companies and their shareholders.

    Anyway, I hope you did record something urging a call to positive action and positive engagement, because we need the co-operation of the fossil fuel companies to make appropriate levels of change to the energy system. Either that, or they go out of business and we face social turmoil.

    If you don’t understand why this is relevant, that’s OK. If you don’t understand why a straight negative campaign is a turn-off to many people (including those in the fossil fuel industry), well, I could role play that with you. If you don’t understand what I’m talking about when I talk about Renewable Gas, come and talk to me about it again in 5 years, when it should be common knowledge. If you don’t understand why I am encouraging positive collaboration, when negative campaigning is so popular and marketable to your core segments, then I will resort to the definition of insanity – which is to keep doing the same things, expecting a different result.

    I’m sick and tired of negative campaigning. Isn’t there a more productive thing to be doing ?

    There are no enemies. There are no enemies. There are no enemies.


    As far as I understand the situation, both the […] and […] campaigns are negative. They don’t appear to offer any positive routes out of the problem that could engage the fossil fuel companies in taking up the baton of Energy Change. If that is indeed the main focus of […] and […] efforts, then I fear they will fail. Their work will simply be a repeat of the negative campaigning of the last 30 years – a small niche group will take up now-digital placards and deploy righteous, holy social media anger, and that will be all.

    Since you understand this problem, then I would suggest you could spend more time and trouble helping them to see a new way. You are, after all, a communications expert. And so you know that even Adolf Hitler used positive, convening, gathering techniques of propaganda to create power – and reserved the negative campaigning for easily-marginalised vulnerable groups to pile the bile and blame on.

    Have a nicer day,


    The important thing as far as I understand it is that the “campaigning” organisations need to offer well-researched alternatives, instead of just complaining about the way things are. And these well-researched alternatives should not just be the token sops flung at the NGOs and UN by the fossil fuel companies. What do I mean ?

    Well, let’s take Carbon Capture and Storage (CCS). The injection of carbon dioxide into old oil and gas caverns was originally proposed for Enhanced Oil Recovery (EOR) – that is – getting more oil and gas out the ground by pumping gas down there – a bit like fracking, but with gas instead of liquid. The idea was that the expense of CCS would be compensated for by the new production of oil and gas – however, the CCS EOR effect has shown to be only temporary. So now the major oil and gas companies say they support carbon pricing (either by taxation or trading), to make CCS move forward. States and federations have given them money to do it. I think the evidence shows that carbon pricing cannot be implemented at a sufficiently high level to incentivise CCS, therefore CCS is a non-answer. Why has […] not investigated this ? CCS is a meme, but not necessarily part of the carbon dioxide solution. Not even the UNFCCC IPCC reports reckon that much CCS can be done before 2040. So, why does CCS appear in the […] criteria for a “good” fossil fuel company ? Because it’s sufficiently weak as a proposal, and sufficiently far enough ahead that the fossil fuel companies can claim they are “capture ready”, and in the Good Book, but in reality are doing nothing.

    Non-starters don’t just appear from fossil fuel companies. From my point of view, another example of running at and latching on to things that cannot help was the support of the GDR – Greenhouse Development Rights, of which there has been severe critique in policy circles, but the NGOs just wrote it into their policy proposals without thinking about it. There is no way that the emissions budgets set out in the GDR policy could ever get put into practice. For a start, there is no real economic reason to divide the world into developing and developed nations (Kyoto [Protocol]’s Annex I and Annex II).

    If you give me some links, I’m going to look over your […] and think about it.

    I think that if a campaign really wants to get anywhere with fossil fuel companies, instead of being shunted into a siding, it needs to know properly what the zero carbon transition pathways really are. Unequal partners do not make for a productive engagement, I reckon.


    I’m sorry to say that this still appears to be negative campaigning – fossil fuel companies are “bad”; and we need to pull our money out of fossil fuel companies and put it in other “good” companies. Where’s the collective, co-operative effort undertaken with the fossil fuel companies ? What’s your proposal for helping to support them in evolving ? Do you know how they can technologically transition from using fossil fuels to non-fossil fuels ? And how are you communicating that with them ?


    They call me the “Paradigm Buster”. I’m not sure if “the group” is open to even just peeking into that kind of approach, let alone “exploring” it. The action points on the corporate agenda could so easily slip back into the methods and styles of the past. Identify a suffering group. Build a theory of justice. Demand reparation. Make Poverty History clearly had its victims and its saviours. Climate change, in my view, requires a far different treatment. Polar bears cannot substitute for starving African children. And not even when climate change makes African children starve, can they inspire the kind of action that climate change demands. A boycott campaign without a genuine alternative will only touch a small demographic. Whatever “the group” agrees to do, I want it to succeed, but by rehashing the campaigning strategies and psychology of the past, I fear it will fail. Even by adopting the most recent thinking on change, such as Common Cause, [it] is not going to surmount the difficulties of trying to base calls to action on the basis of us-and-them thinking – polar thinking – the good guys versus the bad guys – the body politic David versus the fossil fuel company Goliath. By challenging this, I risk alienation, but I am bound to adhere to what I see as the truth. Climate change is not like any other disaster, aid or emergency campaign. You can’t just put your money in the [collecting tin] and pray the problem will go away with the help of the right agencies. Complaining about the “Carbon Bubble” and pulling your savings from fossil fuels is not going to re-orient the oil and gas companies. The routes to effective change require a much more comprehensive structure of actions. And far more engagement that agreeing to be a flag waver for whichever Government policy is on the table. I suppose it’s too much to ask to see some representation from the energy industry in “the group”, or at least […] leaders who still believe in the fossil fuel narratives, to take into account their agenda and their perspective, and a readiness to try positive collaborative change with all the relevant stakeholders ?

    Academic Freedom, Advancing Africa, Alchemical, Artistic Licence, Assets not Liabilities, Bait & Switch, Be Prepared, Behaviour Changeling, Big Number, Big Picture, Big Society, Carbon Army, Carbon Capture, Carbon Commodities, Carbon Pricing, Carbon Rationing, Carbon Recycling, Carbon Taxatious, Change Management, Climate Change, Climate Chaos, Climate Damages, Conflict of Interest, Contraction & Convergence, Corporate Pressure, Dead End, Dead Zone, Deal Breakers, Demoticratica, Design Matters, Direction of Travel, Disturbing Trends, Divide & Rule, Dreamworld Economics, Droughtbowl, Earthquake, Eating & Drinking, Economic Implosion, Electrificandum, Energy Autonomy, Energy Calculation, Energy Change, Energy Crunch, Energy Denial, Energy Insecurity, Energy Revival, Energy Socialism, Engineering Marvel, Evil Opposition, Extreme Energy, Feed the World, Feel Gooder, Financiers of the Apocalypse, Floodstorm, Food Insecurity, Foreign Interference, Foreign Investment, Fossilised Fuels, Fuel Poverty, Gamechanger, Global Warming, Green Gas, Green Investment, Green Power, Growth Paradigm, Human Nurture, Hydrocarbon Hegemony, Incalculable Disaster, Insulation, Libertarian Liberalism, Low Carbon Life, Mad Mad World, Major Shift, Marvellous Wonderful, Mass Propaganda, Media, Meltdown, Money Sings, National Energy, National Power, Near-Natural Disaster, Neverending Disaster, Not In My Name, Nudge & Budge, Optimistic Generation, Orwells, Paradigm Shapeshifter, Peace not War, Peak Coal, Peak Emissions, Peak Energy, Peak Natural Gas, Peak Oil, Pet Peeves, Petrolheads, Policy Warfare, Political Nightmare, Protest & Survive, Public Relations, Pure Hollywood, Realistic Models, Regulatory Ultimatum, Renewable Gas, Renewable Resource, Revolving Door, Social Capital, Social Change, Social Chaos, Social Democracy, Solar Sunrise, Solution City, Stirring Stuff, Sustainable Deferment, Technofix, Technological Sideshow, The Myth of Innovation, The Power of Intention, The Price of Gas, The Price of Oil, The Right Chemistry, The Science of Communitagion, The War on Error, Toxic Hazard, Tree Family, Unconventional Foul, Unqualified Opinion, Unsolicited Advice & Guidance, Unutterably Useless, Utter Futility, Vain Hope, Vote Loser, Western Hedge, Wind of Fortune, Zero Net
  • Gain in Transmission #2

    Posted on February 24th, 2014 Jo No comments

    Here is further email exchange with Professor Richard Sears, following on from a previous web log post.

    From: Richard A. Sears
    Date: 24 February 2014
    To: Jo Abbess
    Subject: Question from your TED talk


    I was looking back over older emails and saw that I had never responded to your note. It arrived as I was headed to MIT to teach for a week and then it got lost. Sorry about that.

    Some interesting questions. I don’t know anybody working specifically on wind power to gas options. At one time Shell had a project in Iceland using geothermal to make hydrogen. Don’t know what its status is but if you search on hydrogen and Iceland on the Shell website I’m sure there’s something. If the Germans have power to gas as a real policy option I’d poke around the web for information on who their research partners are for this.

    Here are a couple of high level thoughts. Not to discourage you because real progress comes from asking new questions, but there are some physical fundamentals that are important.

    Direct air capture of anything using current technology is prohibitively expensive to do at scale for energy. More energy will be expended in capture and synthesis than the fuels would yield.

    Gaseous fuels are problematic on their own. Gas doesn’t travel well and is difficult to contain at high energy densities as that means compressing or liquefying it. That doesn’t make anything impossible, but it raises many questions about infrastructure and energy balance. If we take the energy content of a barrel of oil as 1.0, then a barrel of liquefied natural gas is about 0.6, compressed natural gas which is typically at about 3600psi is around 0.3, and a barrel (as a measure of volume equal to 42 US gallons) of natural gas at room temperature and pressure is about 0.0015 (+/-). Also there’s a real challenge in storing and transporting gasses as fuel at scale, particularly motor fuel to replace gasoline and diesel.

    While there is some spare wind power potential that doesn’t get utilized because of how the grid must be managed, I expect it is a modest amount of energy compared to what we use today in liquid fuels. I think what that means is that while possible, it’s more likely to happen in niche local markets and applications rather than at national or global scales.

    If you haven’t seen it, a nice reference on the potential of various forms of sustainable energy is available free and online here.

    Hope some of this helps.


    Richard A. Sears
    Consulting Professor
    Department of Energy Resources Engineering
    Stanford University

    From: Jo Abbess
    Date: 24 February 2014
    To: Richard A. Sears

    Dear Richard,

    Many thanks for getting back to me. Responses are nice – even if they
    are months late. As they say – better late than never, although with
    climate change, late action will definitely be unwise, according to an
    increasing number of people.

    I have indeed seen the website, and bought and spilled coffee on the
    book of Professor David MacKay’s “Sustainable Energy Without The Hot
    Air” project. It is legendary. However, I have checked and he has only
    covered alternative gas in a couple of paragraphs – in notes. By
    contrast, he spent a long chapter discussing how to filter uranium out
    of seawater and other nuclear pursuits.

    Yet as a colleague of mine, who knows David better than I do, said to
    me this morning, his fascination with nuclear power is rather naive,
    and his belief in the success of Generation III and Generation IV
    lacks evidence. Plus, if we get several large carbon dioxide
    sequestration projects working in the UK – Carbon Capture and Storage
    (CCS) – such as the Drax pipeline (which other companies will also
    join) and the Shell Peterhead demonstration, announced today, then we
    won’t need new nuclear power to meet our 4th Carbon Budget – and maybe
    not even the 5th, either (to be negotiated in 2016, I hear) :-

    We don’t need to bury this carbon, however; we just need to recycle
    it. And the number of ways to make Renewable Hydrogen, and
    energy-efficiently methanate carbon monoxide and carbon dioxide with
    hydrogen, is increasing. People are already making calculations on how
    much “curtailed” or spare wind power is likely to be available for
    making gas in 10 years’ time, and if solar power in the UK is
    cranked/ramped up, then there will be lots of juicy cost-free power
    ours for the taking – especially during summer nights.

    Direct Air Capture of carbon dioxide is a nonsensical proposition.
    Besides being wrong in terms of the arrow of entropy, it also has the
    knock-on effect of causing carbon dioxide to come back out of the
    ocean to re-equilibrate. I recently read a paper by climate scientists
    that estimated that whatever carbon dioxide you take out of the air,
    you will need to do almost all of it again.

    Instead of uranium, we should be harvesting carbon dioxide from the
    oceans, and using it to make gaseous and liquid fuels.

    Gaseous fuels and electricity complement each other very well –
    particularly in storage and grid balancing terms – there are many
    provisions for the twins of gas and power in standards, laws, policies
    and elsewhere. Regardless of the limitations of gas, there is a huge
    infrastructure already in place that can store, pipe and use it, plus
    it is multi-functional – you can make power, heat, other fuels and
    chemicals from gas. In addition, you can make gas from a range of
    resources and feedstocks and processing streams – the key quartet of
    chemical gas species keep turning up : hydrogen, methane, carbon
    monoxide and carbon dioxide – whether you are looking at the exhaust
    from combustion, Natural Gas, industrial furnace producer gas,
    biological decomposition, just about everywhere – the same four gases.

    Energy transition must include large amounts of renewable electricity
    – because wind and solar power are quick to build yet long nuclear
    power lead times might get extended in poor economic conditions. The
    sun does not always shine and the wind does not always blow (and the
    tide is not always in high flux). Since demand profiles will never be
    able to match supply profiles exactly, there will always be spare
    power capacity that grids cannot use. So Power to Gas becomes the
    optimal solution. At least until there are ways to produce Renewable
    Hydrogen at plants that use process heat from other parts of the
    Renewable Gas toolkit. So the aims are to recycle carbon dioxide from
    gas combustion to make more gas, and recycle gas production process
    heat to make hydrogen to use in the gas production process, and make
    the whole lot as thermally balanced as possible. Yes. We can do that.
    Lower the inputs of fresh carbon of any form, and lower the energy
    requirements to make manufactured gas.

    I met somebody working with Jacobs who was involved in the Carbon
    Recycling project in Iceland. Intriguing, but an order of magnitude
    smaller than I think is possible.

    ITM Power in the UK are doing a Hydrogen-to-gas-grid and methanation
    project in Germany with one of the regions. They have done several
    projects with Kiwa and Shell on gas options in Europe. I know of the
    existence of feasibility reports on the production of synthetic
    methane, but I have not had the opportunity to read them yet…

    I feel quite encouraged that Renewable Gas is already happening. It’s
    a bit patchy, but it’s inevitable, because the narrative of
    unconventional fossil fuels has many flaws. I have been looking at
    issues with reserves growth and unconventionals are not really
    commensurate with conventional resources. There may be a lot of shale
    gas in the ground, but getting it out could be a long process, so
    production volumes might never be very good. In the USA you’ve had
    lots of shale gas – but that’s only been supported by massive drilling
    programmes – is this sustainable ?

    BP have just finished building lots of dollars of kit at Whiting to
    process sour Natural Gas. If they had installed Renewable Gas kit
    instead of the usual acid gas and sulfur processing, they could have
    been preparing for the future. As I understand it, it is possible to
    methanate carbon dioxide without first removing it from the rest of
    the gas it comes in – so methanating sour gas to uprate it is a viable
    option as far as I can see. The hydrogen sulfide would still need to
    be washed out, but the carbon dioxide needn’t be wasted – it can be
    made part of the fuel. And when the sour gas eventually thins out,
    those now methanating sour gas can instead start manufacturing gas
    from low carbon emissions feedstocks and recycled carbon.

    I’m thinking very big.



  • But Uh-Oh – Those Summer Nights

    Posted on January 20th, 2014 Jo No comments

    A normal, everyday Monday morning at Energy Geek Central. Yes, this is a normal conversation for me to take part in on a Monday morning. Energy geekery at breakfast. Perfect.

    Nuclear Flower Power

    This whole UK Government nuclear power programme plan is ridiculous ! 75 gigawatts (GW) of Generation III nuclear fission reactors ? What are they thinking ? Britain would need to rapidly ramp up its construction capabilities, and that’s not going to happen, even with the help of the Chinese. (And the Americans are not going to take too kindly to the idea of China getting strongly involved with British energy). And then, we’d need to secure almost a quarter of the world’s remaining reserves of uranium, which hasn’t actually been dug up yet. And to cap it all, we’d need to have 10 more geological disposal repositories for the resulting radioactive spent fuel, and we haven’t even managed to negotiate one yet. That is, unless we can burn a good part of that spent fuel in Generation IV nuclear fission reactors – which haven’t even been properly demonstrated yet ! Talk about unconscionable risk !

    Baseload Should Be History By Now, But…

    Whatever the technological capability for nuclear power plants to “load follow” and reduce their output in response to a chance in electricity demand, Generation III reactors would not be run as anything except “baseload” – constantly on, and constantly producing a constant amount of power – although they might turn them off in summer for maintenance. You see, the cost of a Generation III reactor and generation kit is in the initial build – so their investors are not going to permit them to run them at low load factors – even if they could.

    There are risks to running a nuclear power plant at partial load – mostly to do with potential damage to the actual electricity generation equipment. But what are the technology risks that Hinkley Point C gets built, and all that capital is committed, and then it only runs for a couple of years until all that high burn up fuel crumbles and the reactors start leaking plutonium and they have to shut it down permanently ? Who can guarantee it’s a sound bet ?

    If they actually work, running Generation III reactors at constant output as “baseload” will also completely mess with the power market. In all of the scenarios, high nuclear, high non-nuclear, or high fossil fuels with Carbon Capture and Storage (CCS), there will always need to be some renewables in the mix. In all probability this will be rapidly deployed, highly technologically advanced solar power photovoltaics (PV). The amount of solar power that will be generated will be high in summer, but since you have a significant change in energy demand between summer and winter, you’re going to have a massive excess of electricity generation in summer if you add nuclear baseload to solar. Relative to the demand for energy, you’re going to get more Renewable Energy excess in summer and under-supply in winter (even though you get more offshore wind in winter), so it’s critical how you mix those two into your scenario.

    The UK Government’s maximum 75 GW nuclear scenario comprises 55 GW Generation III and 20 GW Generation IV. They could have said 40 GW Gen III to feed Gen IV – the spent fuel from Gen III is needed to kick off Gen IV. Although, if LFTR took off, if they had enough fluoride materials there could be a Thorium way into Gen IV… but this is all so technical, no MP [ Member of Parliament ] is going to get their head round this before 2050.

    The UK Government are saying that 16 GW of nuclear by 2030 should be seen as a first tranche, and that it could double or triple by 2040 – that’s one heck of a deployment rate ! If they think they can get 16 GW by 2030 – then triple that by 10 years later ? It’s not going to happen. And even 30 GW would be horrific. But it’s probably more plausible – if they can get 16 GW by 2030, they can arguably get double that by 2040.

    As a rule of thumb, you would need around 10 tonnes of fissionable fuel to kickstart a Gen IV reactor. They’ve got 106 tonnes of Plutonium, plus 3 or 4 tonnes they recently acquired – from France or Germany (I forget which). So they could start 11 GW of Gen IV – possibly the PRISM – the Hitachi thing – sodium-cooled. They’ve been trying them since the Year Dot – these Fast Reactors – the Breeders – Dounreay. People are expressing more confidence in them now – “Pandora’s Promise” hangs around the narrative that the Clinton administration stopped research into Fast Reactors – Oak Ridge couldn’t be commercial. Throwing sodium around a core 80 times hotter than current core heats – you can’t throw water at it easily. You need something that can carry more heat out. It’s a high technological risk. But then get some French notable nuclear person saying Gen IV technologies – “they’re on the way and they can be done”.

    Radioactive Waste Disposal Woes

    The point being is – if you’re commissioning 30 GW of Gen III in the belief that Gen IV will be developed – then you are setting yourself up to be a hostage to technological fortune. That is a real ethical consideration. Because if you can’t burn the waste fuel from Gen III, you’re left with up to 10 radioactive waste repositories required when you can’t even get one at the moment. The default position is that radioactive spent nuclear fuel will be left at the power stations where they’re created. Typically, nuclear power plants are built on the coast as they need a lot of cooling water. If you are going for 30 GW you will need a load of new sites – possibly somewhere round the South East of England. This is where climate change comes in – rising sea levels, increased storm surge, dissolving, sinking, washed-away beaches, more extreme storms […] The default spent fuel scenario with numerous coastal decommissioned sites with radioactive interim stores which contain nearly half the current legacy radioactive waste […]

    Based on the figures from the new Greenpeace report, I calculate that the added radioactive waste and radioactive spent fuel arisings from a programme of 16 GW of nuclear new build would be 244 million Terabequerel (TBq), compared to the legacy level of 87 million TBq.

    The Nuclear Decommissioning Authority (NDA) are due to publish their Radioactive Waste Inventory and their Report on Radioactive Materials not in the Waste Inventory at the end of January 2014. We need to keep a watch out for that, because they may have adapted their anticipated Minimum and Maxmium Derived Inventory.

    Politics Is Living In The Past

    What you hear from politicians is they’re still talking about “baseload”, as if they’ve just found the Holy Grail of Energy Policy. And failed nuclear power. Then tidal. And barrages. This is all in the past. Stuff they’ve either read – in an article in a magazine at the dentist’s surgery waiting room, and they think, alright I’ll use that in a TV programme I’ve been invited to speak on, like Question Time. I think that perhaps, to change the direction of the argument, we might need to rubbish their contribution. A technological society needs to be talking about gasification, catalysis. If you regard yourselves as educated, and have a technological society – your way of living in the future is not only in manufacturing but also ideas – you need to be talking about this not that : low carbon gas fuels, not nuclear power. Ministers and senior civil servants probably suffer from poor briefing – or no briefing. They are relying on what is literally hearsay – informal discussions, or journalists effectively representing industrial interests. Newspapers are full of rubbish and it circulates, like gyres in the oceans. Just circulates around and around – full of rubbish.

    I think part of the problem is that the politicians and chief civil servants and ministers are briefed by the “Old Guard” – very often the ex-nuclear power industry guard. They still believe in big construction projects, with long lead times and massive capital investment, whereas Renewable Electricity is racing ahead, piecemeal, and private investors are desperate to get their money into wind power and solar power because the returns are almost immediate and risk-free.

    Together in Electric Dreams

    Question : Why are the UK Government ploughing on with plans for so much nuclear power ?

    1. They believe that a lot of transport and heat can be made to go electric.
    2. They think they can use spent nuclear fuel in new reactors.
    3. They think it will be cheaper than everything else.
    4. They say it’s vital for UK Energy Security – for emissions reductions, for cost, and for baseload. The big three – always the stated aim of energy policy, and they think nuclear ticks all those three boxes. But it doesn’t.

    What they’ll say is, yes, you have to import uranium, but you’ve got a 4 year stock. Any war you’re going to get yourselves involved in you can probably resolve in 4 days, or 4 weeks. If you go for a very high nuclear scenario, you would be taking quite a big share of the global resource of uranium. There’s 2,600 TWh of nuclear being produced globally. And global final energy demand is around 100,000 TWh – so nuclear power currently produces around 2.6% of global energy supply. At current rates of nuclear generation, according to the World Nuclear Association, you’ve got around 80 years of proven reserves and probably a bit more. Let’s say you double nuclear output by 2050 or 2040 – but in the same time you might just have enough uranium – and then find a bit more. But global energy demand rises significantly as well – so nuclear will still only provide around 3% of global energy demand. That’s not a climate solution – it’s just an energy distraction. All this guff about fusion. Well.

    Cornering The Market In Undug Uranium

    A 75 GW programme would produce at baseload 590 TWh a year – divide by 2,600 – is about 23% of proven global uranium reserves. You’re having to import, regardless of what other countries are doing, you’re trying to corner the market – roughly a quarter. Not even a quarter of the market – a quarter of all known reserves – it’s not all been produced yet. It’s still in the ground. So could you be sure that you could actually run these power stations if you build them ? Without global domination of the New British Empire […]. The security issues alone – defending coastal targets from a tweeb with a desire to blow them up. 50 years down the line they’re full of radioactive spent fuel that won’t have a repository to go to – we don’t want one here – and how much is it going to cost ?

    My view is that offshore wind will be a major contributor in a high or 100% Renewable Electricity scenario by 2050 or 2060. Maybe 180 GW, that will also be around 600 TWh a year – comparable to that maximum nuclear programme. DECC’s final energy demand 2050 – several scenarios – final energy demand from 6 scenarios came out as between roughly 1,500 TWh a year and the maximum 2,500 TWh. Broadly speaking, if you’re trying to do that just with Renewable Electricity, you begin to struggle quite honestly, unless you’re doing over 600 TWh of offshore wind, and even then you need a fair amount of heat pump stuff which I’m not sure will come through. The good news is that solar might – because of the cost and technology breakthroughs. That brings with it a problem – because you’re delivering a lot of that energy in summer. The other point – David MacKay would say – in his book his estimate was 150 TWh from solar by 2050, on the grounds that that’s where you south-facing roofs are – you need to use higher efficiency triple junction cells with more than 40% efficiency and this would be too expensive for a rollout which would double or triple that 150 TWh – that would be too costly – because those cells are too costly. But with this new stuff, you might get that. Not only the cost goes down, but the coverage goes down. Not doing solar across swathes of countryside. There have always been two issues with solar power – cost and where it’s being deployed.

    Uh-Oh, Summer Days. Uh-Oh, Summer Nights

    With the solar-wind headline, summer days and summer nights are an issue.

    With the nuclear headline, 2040 – they would have up to 50 GW, and that would need to run at somewhere between 75% and 95% capacity – to protect the investment and electric generation turbines.

    It will be interesting to provide some figures – this is how much over-capacity you’re likely to get with this amount of offshore wind. But if you have this amount of nuclear power, you’ll get this amount […]

    Energy demand is strongly variable with season. We have to consider not just power, but heat – you need to get that energy out in winter – up to 4 times as much during peak in winter evenings. How are you going to do that ? You need gas – or you need extensive Combined Heat and Power (CHP) (which needs gas). Or you need an unimaginable deployment of domestic heat pumps. Air source heat pumps won’t work at the time you need them most. Ground source heat pumps would require the digging up of Britain – and you can’t do that in most urban settings.

    District Heat Fields

    The other way to get heat out to everyone in a low carbon world – apart from low carbon gas – is having a field-based ground source heat pump scheme – just dig up a field next to a city – and just put in pipes and boreholes in a field. You’re not disturbing anybody. You could even grow crops on it next season. Low cost and large scale – but would need a District Heating (DH) network. There are one or two heat pump schemes around the world. Not sure if they are used for cooling in summer or heat extraction in the winter. The other thing is hot water underground. Put in an extra pipe in the normal channels to domestic dwellings. Any excess heat from power generation or electrolysis or whatever is put down this loop and heats the sub-ground. Because heat travels about 1 metre a month in soil, that heat should be retained for winter. A ground source heat sink. Geothermal energy could come through – they’re doing a scheme in Manchester. If there’s a nearby heat district network – it makes it easier. Just want to tee it into the nearest DH system. The urban heat demand is 150 TWh a year. You might be able to put DH out to suburban areas as well. There are 9 million gas-connected suburban homes – another about 150 TWh there as well – or a bit more maybe. Might get to dispose of 300 TWh in heat through DH. The Green Deal insulation gains might not be what is claimed – and condensing gas boiler efficiencies are not that great – which feeds into the argument that in terms of energy efficiency, you not only want to do insulation, but also DH – or low carbon gas. Which is the most cost-effective ? Could argue reasonable energy efficiency measures are cheapest – but DH might be a better bet. That involves a lot of digging.

    Gas Is The Logical Answer

    But everything’s already laid for gas. (…but from the greatest efficiency first perspective, if you’re not doing DH, you’re not using a lot of Renewable Heat you could otherwise use […] )

    The best package would be the use of low carbon gases and sufficient DH to use Renewable Heat where it is available – such as desalination, electrolysis or other energy plant. It depends where the electrolysis is being done.

    The Age of Your Carbon

    It also depends on which carbon atoms you’re using. If you are recycling carbon from the combustion of fossil fuels into Renewable Gas, that’s OK. But you can’t easily recapture carbon emissions from the built environment (although you could effectively do that with heat storage). You can’t do carbon capture from transport either. So your low carbon gas has to come from biogenic molecules. Your Renewable Gas has to be synthesised using biogenic carbon molecules rather than fossil ones.

    […] I’m using the phrase “Young Carbon”. Young Carbon doesn’t have to be from plants – biological things that grow.

    Well, there’s Direct Air Capture (DAC). It’s simple. David Sevier, London-based, is working on this. He’s using heat to capture carbon dioxide. You could do it from exhaust in a chimney or a gasification process – or force a load of air through a space. He would use heat and cooling to create an updraft. It would enable the “beyond capture” problem to be circumvented. Cost is non-competitive. Can be done technically. Using reject heat from power stations for the energy to do it. People don’t realise you can use a lot of heat to capture carbon, not electricity.

    Young Carbon from Seawater

    If you’re playing around with large amounts of seawater anyway – that is, for desalination for irrigation, why not also do Renewable Hydrogen, and pluck the Carbon Dioxide out of there too to react with the Renewable Hydrogen to make Renewable Methane ? I’m talking about very large amounts of seawater. Not “Seawater Greenhouses” – condensation designs mainly for growing exotic food. If you want large amounts of desalinated water – and you’re using Concentrated Solar Power – for irrigating deserts – you would want to grow things like cacti for biological carbon.

    Say you had 40 GW of wind power on Dogger Bank, spinning at 40% load factor a year. You’ve also got electrolysers there. Any time you’re not powering the grid, you’re making gas – so capturing carbon dioxide from seawater, splitting water for hydrogen, making methane gas. Wouldn’t you want to use flash desalination first to get cleaner water for electrolysis ? Straight seawater electrolysis is also being done.

    It depends on the relative quantities of gas concentrated in the seawater. If you’ve got oxygen, hydrogen and carbon dioxide, that would be nice. You might get loads of oxygen and hydrogen, and only poor quantities of carbon dioxide ?

    But if you could get hydrogen production going from spare wind power. And even if you had to pipe the carbon dioxide from conventional thermal power plants, you’re starting to look at a sea-based solution for gas production. Using seawater, though, chlorine is the problem […]

    Look at the relative density of molecules – that sort of calculation that will show if this is going to fly. Carbon dioxide is a very fixed, stable molecule – it’s at about the bottom of the energy potential well – you have to get that reaction energy from somewhere.

    How Much Spare Power Will There Be ?

    If you’ve got an offshore wind and solar system. At night, obviously, the solar’s not working (unless new cells are built that can run on infrared night-time Earthshine). But you could still have 100 GWh of wind power at night not used for the power grid. The anticipated new nuclear 40 GW nuclear by 2030 will produce about 140 GWh – this would just complicate problems – adding baseload nuclear to a renewables-inclusive scenario. 40 GW is arguably a reasonable deployment of wind power by 2030 – low if anything.

    You get less wind in a nuclear-inclusive scenario, but the upshot is you’ve definitely got a lot of power to deal with on a summer night with nuclear power. You do have with Renewable Electricity as well, but it varies more. Whichever route we take we’re likely to end up with excess electricity generation on summer nights.

    In a 70 GW wind power deployment (50 GW offshore, 20 GW onshore – 160 TWh a year), you might have something like 50 to 100 GWh per night of excess (might get up to 150 GWh to store on a windy night). But if you have a 16 GW nuclear deployment by 2030 (125 TWh a year), you are definitely going to have 140 GWh of excess per night (that’s 16 GW for 10 hours less a bit). Night time by the way is roughly between 9pm and 7am between peak demands.

    We could be making a lot of Renewable Gas !

    Can you build enough Renewable Gas or whatever to soak up this excess nuclear or wind power ?

    The energy mix is likely to be in reality somewhere in between these two extremes of high nuclear or high wind.

    But if you develop a lot of solar – so that it knocks out nuclear power – it will be the summer day excess that’s most significant. And that’s what Germany is experiencing now.

    Choices, choices, choices

    There is a big choice in fossil fuels which isn’t really talked about very often – whether the oil and gas industry should go for unconventional fossil fuels, or attempt to make use of the remaining conventional resources that have a lower quality. The unconventionals narrative – shale gas, coalbed methane, methane hydrates, deepwater gas, Arctic oil and gas, heavy oil, is running out of steam as it becomes clear that some of these choices are expensive, and environmentally damaging (besides their climate change impact). So the option will be making use of gas with high acid gas composition. And the technological solutions for this will be the same as needed to start major production of Renewable Gas.

    Capacity Payments

    But you still need to answer the balancing question. If you have a high nuclear power scenario, you need maybe 50 TWh a year of gas-fired power generation. If high Renewable Electricity, you will need something like 100 TWh of gas, so you need Carbon Capture and Storage – or low carbon gas.

    Even then, the gas power plants could be running only 30% of the year, and so you will need capacity payments to make sure new flexible plants get built and stay available for use.

    If you have a high nuclear scenario, coupled with gas, you can meet the carbon budget – but it will squeeze out Renewable Electricity. If high in renewables, you need Carbon Capture and Storage (CCS) or Carbon Capture and Recycling into Renewable Gas, but this would rule out nuclear power. It depends which sector joins up with which.

    Carbon Capture, Carbon Budget

    Can the Drax power plant – with maybe one pipeline 24 inches in diameter, carrying away 20 megatonnes of carbon dioxide per year – can it meet the UK’s Carbon Budget target ?

  • Hadeo- and Archaeo-Geobiology

    Posted on July 8th, 2013 Jo No comments

    What can deep time teach us ?

    Whilst doing a little background research into biological routes to hydrogen production, I came across a scientific journal paper, I can’t recall which, that suggested that the geological evidence indicates that Earth’s second atmosphere not only had a high concentration of methane, but also high levels of hydrogen gas.

    Previously, my understanding was that the development of microbiological life included a good number of methanogens (micro-life that produces methane as a waste product) and methanotrophs (those that “trough” on methane), but that hydrogenogen (“respiring” hydrogen gas) and hydrogenotroph (metabolising hydrogen) species were a minority, and that this was reflected in modern-day decomposition, such as the cultures used in biogas plants for anaerobic digestion.

    If there were high densities of hydrogen cycle lifeforms in the early Earth, maybe there are remnants, descendants of this branch of the tree of life, optimal at producing hydrogen gas as a by-product, which could be employed for biohydrogen production, but which haven’t yet been scoped.

    After all, it has only been very recently that psychrophiles have been added to the range of microorganisms that have been found useful in biogas production – cold-loving, permafrost-living bugs to complement the thermophile and mesophile species.

    Since hydrogen and methane are both ideal gas fuels, for a variety of reasons, including gas storage, combustion profiles and simple chemistry, I decided I needed to learn a little more.

    I have now read a plethora of new theories and several books about the formation of the Earth (and the Moon) in the Hadean Eon, the development of Earth’s atmosphere, the development of life in the Archaean Eon, and the evolution of life caused by climate change, and these developments in living beings causing climate change in their turn.

    Most of this knowledge is mediated to us by geology, and geobiology. But right at its heart is catalytic chemistry, once again. Here’s Robert Hazen (Robert M. Hazen) from page 138 of “The Story of Earth” :-

    “Amino acids, sugars, and the components of DNA and RNA adsorb onto all of Earth’s most common rock-forming minerals […] We concluded that wherever the prebiotic ocean contacted minerals, highly concentrated arrangements of life’s molecules are likely to have emerged from the formless broth […] Many other researchers have also settled on such a conclusion – indeed, more than a few prominent biologists have also gravitated to minerals, because origins-of-life scenarios that involve only oceans and atmosphere face insurmountable problems in accounting for efficient mechanisms of molecular selection and concentration. Solid minerals have an unmatched potential to select, concentrate, and organize molecules. So minerals much have played a central role in life’s origins. Biochemistry is complex, with interwoven cycles and networks of molecular reactions. For those intricately layered processes to work, molecules have to have just the right sizes and shapes. Molecular selection is the task of finding the best molecule for each biochemical job, and template-directed selection on mineral surfaces is now the leading candidate for how nature did it […] left- and right-handed molecules […] It turns out that life is incredibly picky : cells almost exclusively employ left-handed amino acids and right-handed sugars. Chirality matters […] Our recent experiments have explored the possibility that chiral mineral surfaces played the starring role in selecting handed molecules, and perhaps the origins of life as well. […] Our experiments showed that certain left-handed molecules can aggregate on one set of crystal surfaces, while the mirror image […] on other sets […] As handed molecules are separated and concentrated, each surface becomes a tiny experiment in molecular selection and organization. On its own, no such natural experiment with minerals and molecules is likely to have generated life. But take countless trillions of trillions of trillions of mineral surfaces, each bathed in molecule-rich organic broth […] The tiny fraction of all those molecular combinations that wound up displaying easier self-assembly, or developed a stronger binding to mineral surfaces […] survived […] possibly to learn new tricks.”

  • Renewable Gas : Research Parameters

    Posted on May 25th, 2013 Jo No comments

    “So what do you do ?” is a question I quite frequently have to answer, as I meet a lot of new people, in a lot of new audiences and settings, on a regular basis, as an integral part of my personal process of discovery.

    My internal autocue answer has modified, evolved, over the years, but currently sounds a lot like this, “I have a couple of part-time jobs, office administration, really. I do a spot of weblogging in my spare time. But I’m also doing some research into the potential for Renewable Gas.” I then pause for roughly two seconds. “Renewable Gas ?” comes back the question.

    “Yes,” I affirm in the positive, “Industrial-scale chemistry to produce gas fuels not dug up out of the ground. It is useful to plug the gaps in Renewable Electricity when the sun isn’t shining and the wind isn’t blowing.”

    It’s not exactly an elevator pitch – I’m not really selling anything except a slight shift in the paradigm here. Renewable Energy. Renewable Electricity. Renewable Gas. Power and gas. Gas and power. It’s logical to want both to be as renewable and sustainable and as low carbon as possible.

    Wait another two seconds. “…What, you mean, like Biogas ?” comes the question. “Well, yes, and also high volumes of non-biological gas that’s produced above the ground instead of from fossil fuels.”

    The introductory chat normally fades after this exchange, as my respondent usually doesn’t have the necessary knowledge architecture to be able to make any sense of what my words represent. I think it’s fair to say I don’t win many chummy friends paradigm-bumping in this way, and some probably think I’m off the deep end psychologically, but hey, evolutionaries don’t ever have it easy.

    And I also find that it’s not easy to find a place in the hierarchy of established learning for my particular “research problem”. Which school could I possibly join ? Which research council would adopt me ?

    The first barrier to academic inclusion is that my research interest is clearly motivated by my concern about the risks of Climate Change – the degradation in the Earth’s life support systems from pumping unnaturally high volumes of carbon dioxide into the air – and Peak Fossil Fuels – the risks to humanity from a failure to grow subsurface energy production.

    My research is therefore “applied” research, according to the OECD definition (OECD, 2002). It’s not motivated simply by the desire to know new things – it is not “pure” research – it has an end game in mind. My research is being done in order to answer a practical problem – how to decarbonise gaseous, gas phase, energy fuel production.

    The second barrier to the ivory tower world that I have is that I do not have a technological contribution to make with this research. I am not inventing a chemical process that can “revolutionise” low carbon energy production. (I don’t believe in “revolutions” anyway. Nothing good ever happens by violent overthrow.) My research is not at the workbench end of engineering, so I am not going to work amongst a team of industrial technicians, so I am not going to produce a patent for clean energy that could save the world (or the economy).

    My research is more about observing and reporting the advances of others, and how these pieces add up to a journey of significant change in the energy sector. I want to join the dots from studies at the leading edge of research, showing how this demonstrates widespread aspiration for clean energy, and document instances of new energy technology, systems and infrastructure. I want to witness to the internal motivation of thousands of people working with the goal of clean energy across a very wide range of disciplines.

    This is positively positive; positivity, but it’s not positivism – it’s not pure, basic research. This piece of research could well influence people and events – it’s certainly already influencing me. It’s not hands-off neutral science. It interacts with its subjects. It intentionally intervenes.

    Since I don’t have an actual physical contribution or product to offer, and since I fully expect it to “interfere” with current dogma and political realities, what I am doing will be hard to acknowledge.

    This is not a PhD. But it is still a piece of philosophy, the love of wisdom that comes from the acquisition of knowledge.

    I have been clear for some time about what I should be studying. Call it “internal drive” if you like. The aim is to support the development of universal renewable energy as a response to the risks of climate change and peak fossil fuel energy production. That makes me automatically biased. I view my research subject through the prism of hope. But I would contend that this is a perfectly valid belief, as I already know some of what is possible. I’m not starting from a foundational blank slate – many Renewable Gas processes are already in use throughout industry and the energy sector. The fascinating part is watching these functions coalesce into a coherent alternative to the mining of fossil fuels. For the internal industry energy production conversation is changing its track, its tune.

    For a while now, “alternative” energy has been a minor vibration, a harmonic, accentuating the fossil fuel melody. As soon as the mid-noughties economic difficulties began to bite, greenwash activities were ditched, as oil and gas companies resorted to their core business. But the “green shoots” of green energy are still there, and every now and then, it is possible to see them poking up above the oilspill-desecrated soil. My role is to count blades and project bushes. Therefore my research is interpretivist or constructivist, although it is documenting positivist engineering progress. That’s quite hard for me to agree with, even though I reasoned it myself. I can still resist being labelled “post-positivist”, though, because I’m still interpreting reality not relativisms.

    So now, on from research paradigm to research methodologies. I was trained to be an experimentalist scientist, so this is a departure for me. In this case, I am not going to seek to make a physical contribution to the field by being actively involved as an engineer in a research programme, partly because from what I’ve read so far, most of the potential is already documented and scoped.

    I am going to use sociological methods, combining observation and rapportage, to and from various organisations through various media. Since I am involved in the narrative through my interactions with others, and I influence the outcomes of my research, this is partly auto-narrative, autoethnographic, ethnographic. An apt form for the research documentation is a weblog, as it is a longitudinal study, so discrete reports at time intervals are appropriate. Social media will be useful for joining the research to a potential audience, and Twitter has the kind of immediacy I prefer.

    My observation will therefore be akin to journalism – engineering journalism, where the term “engineering” covers both technological and sociological aspects of change. A kind of energy futures “travelogue”, an observer of an emerging reality.

    My research methods will include reading the science and interacting with engineers. I hope to do a study trip (or two) as a way of embedding myself into the new energy sector, with the explicit intention of ensuring I am not purely a commentator-observer. My research documentation will include a slow collation of my sources and references – a literature review that evolves over time.

    My personal contribution will be slight, but hopefully set archaic and inefficient proposals for energy development based on “traditional” answers (such as nuclear power, “unconventional” fossil fuel production and Carbon Capture and Storage for coal) in high relief.

    My research choices as they currently stand :-

    1. I do not think I want to join an academic group.

    2. I do not think I want to work for an energy engineering company.

    3. I do not want to claim a discovery in an experimental sense. Indeed, I do not need to, as I am documenting discoveries and experiments.

    4. I want to be clear about my bias towards promoting 100% renewable energy, as a desirable ambition, in response to the risks posed by climate change and peak fossil fuel production.

    5. I need to admit that my research may influence outcomes, and so is applied rather than basic (Roll-Hansen, 2009).


    OECD, 2002. “Proposed Standard Practice for Surveys on Research and Experimental Development”, Frascati Manual :-

    Roll-Hansen, 2009. “Why the distinction between basic (theoretical) and applied (practical) research is important in the politics of science”, Nils Roll-Hansen, Centre for the Philosophy of Natural and Social Science Contingency and Dissent in Science, Technical Report 04/09 :-

  • Gas Strategy “Dangerous Gamble”

    Posted on February 11th, 2013 Jo No comments

    I had a most refreshing evening at Portcullis House in Westminster this evening – apart from the fact that the Macmillan Room was overheated, so you couldn’t possibly deduce that energy conservation is intended to be part of the UK Government’s strategy, making an example with the public sector.

    Tonight was the launch of the Greenpeace and WWF-UK report “A Study into the Economics of Gas and Offshore Wind“, which was commissioned from Cambridge Econometrics.

    Professor Paul Ekins got up to speak and actually had the gall to declare the Government’s “Gas Strategy” to be a “dangerous gamble”. It was at this point that I took heart again – there are still some sane, rational people in the “national energy conversation”, even though Ekins did admit that he wasn’t sure that the “Gas Strategy” was an actual thing. Oh, but it is. All eighty pages of it.

    Today was not the first time Professor Paul Ekins called out the Government on this, apparently, although I didn’t have a recollection of seeing the the mention in New Scientist before today.

    Other highlights of the evening were provided by Laura Sandys MP naming her political opposition Alan Whitehead MP as the leader of a “parliamentary roadshow” on Energy and Climate Change, and questioning the use of the term “energy efficiency”. “It’s energy waste, guys”, she corrected and said we should be using that term instead of the “effete word efficiency”, and encouraged the energy waste prevention industry to get the rest of us engaged with their products.

    A chap from Scottish and Southern Energy (SSE) – I think it might have been Kevin MacLean – got up during questions from the floor, and almost begged for a long-term framework – a plan for renewable energy – a “binding framework” to encourage investment and “get costs down”.

    It was pointed out during the evening, that, logically enough, that policy is important to energy futures, “if you have more certainty, you get more investment”. And there was encouragement to get Government Departments to think about this more. Yes, some subsidies and other forms of support are going to be needed to get the renewable energy revolution kickstarted, but “if [we] get benefits – isn’t that a price worth paying ?” The benefits outlined included potential for some small growth in the economy, around about 0.8% GDP, but good prospects for high value employment in depressed coastal towns where much of the offshore wind industry will host engineers, both for construction and ongoing operations and maintenance.

    Laura Sandys MP was ashamed to say that she may no longer be able to claim she has the two largest offshore wind farms in her constituency – as progress is being made elsewhere.

    Sarah Merrick from Vestas, the wind power engineering firm, emphasised that the economics of wind power stacks up and that it’s important to communicate this – despite the current dismissive media agenda – where she said it is important to defend the industry against certain media claims.

    Lord Alan Haworth brought up the inevitable question of renewable energy intermittency – “days of dead calm and dark nights”. He raised the statistic that weather systems in Europe can cover 1,500 kilometres, so if wind power is down in the UK, it’s going to be down elsewhere in the EU electricity networks – the countries we have interconnectors with. What he didn’t elaborate on was this – just as the UK is beefing (and I don’t mean “up to 100% horsing about”) up its connections with the European electricity networks, so too, Europe as a whole is beginning to reach out with its networks to satellite countries. What that could mean is that even if wind-powered electrons in the UK take a dive, electrons could still appear in the power network from very far afield, and shunt power to the UK.

    The speaker from the Crown Estate said that it was “sensible” to push for a good quantity of wind power – and that the report was a compelling argument. He regretted that it could not be guaranteed that the wind power-ed economy would necessarily have more of its supply chain in the UK – as various bodies have to comply with EU trade rules – but that there was a commitment in one part of the industry to 50% indigenous resourcing and employment (if I noted that down correctly).

    Long-term policy clarity was espoused. Disappointment was expressed in the Coalition Government’s flip-flop about gas – emphasising the development of gas-powered electricity generation at the expense of projecting high levels of renewables (65%, says the report, is perfectly feasible) – and that it gave mixed messages – which weren’t helping investment decisions. Sarah Merrick repeated the E.On line that UK electricity should be “balanced by gas, not based on gas”, although she didn’t explain that they weren’t necessarily talking about wind power being the mainstay of new generation capacity.

    It was generally agreed that David Cameron should lead and adopt the EU 2030 renewable energy targets – to enable billions of new confidence in the UK energy sector.

    Not having a strong lead on renewable energy and energy waste reduction would be an “abdication of responsibility on the part of the policy-creating machine”. And, “even if shale gas does materialise”, it would not provide much stimulus.

  • Greenpeace Windgas : Renewable Hydrogen

    Posted on October 6th, 2012 Jo No comments

  • Un égard, un regard, un certain regard

    Posted on August 27th, 2012 Jo No comments

    Whatever it is, it starts with attention, paying attention.

    Attention to numbers, faces, needs, consideration of the rights and wrongs and probables.

    Thinking things through, looking vulnerable children and aggressive control freaks directly in the eye, being truly brave enough to face both radiant beauty and unbelievable evil with equanimity.

    To study. To look, and then look again.

    To adopt a manner of seeing, and if you cannot see, to learn to truly absorb the soundscape of your world – to pick up the detail, to fully engage.

    It is a way of filling up your soul with the new, the good, the amazing; and also the way to empty worthless vanity from your life.

    Simone Weil expressed this truth in these words : “Toutes les fois qu’on fait vraiment attention, on détruit du mal en soi.” If you pay close attention, you learn what is truly of value, and you jettison incongruities and waywardness. She also pronounced that “L’attention est la forme la plus rare et la plus pure de la générosité.” And she is right. People feel truly valued if you gaze at them, and properly listen to them.

    Those of us who have researched climate change and the limits to natural resources, those of us who have looked beyond the public relations of energy companies whose shares are traded on the stock markets – we are paying attention. We have been working hard to raise the issues for the attention of others, and sometimes this has depleted our personal energies, caused us sleepless nights, given us depression, fatalism, made us listless, aimless, frustrated.

    Some of us turn to prayer or other forms of meditation. We are enabled to listen, to learn, to try again to communicate, to bridge divides, to empathise.

    A transformation can take place. The person who pays close attention to others becomes trusted, attractive in a pure, transparent way. People know our hearts, they have confidence in us, when we give them our time and an open door.

    Read the rest of this entry »

  • Gas in the UK

    Posted on June 12th, 2012 Jo No comments

    “The role of gas in the UK’s energy mix” 12 June 2012 17:30 – 18:30, Committee Room 5, House of Commons with speakers Minister of State for Energy and Climate Change, Charles Hendry; David Cox, Managing Director of The Gas Forum and Dr Doug Parr, Chief Scientist of Greenpeace UK. Chaired by Dr Alan Whitehead MP, Chairman of PRASEG, the Parliamentary Renewable and Sustainable Energy Group, who called the seminar :

    UNVERIFIED COMMENTS : Please check with the speakers to confirm their statements and do not take this account as verbatim.

    [Alan Whitehead MP] Questions about gas. Will it be business as usual ? If not – too “much” gas ? What does that mean for Climate Change targets ? New gas generation – about 11 gigawatts coming on-stream in the next 5 years – “grandfathered” (no obligations to control emissions with Carbon Capture and Storage (CCS)) throughout the life of the power plant – does produce questions about Climate Change targets – CCS may change that landscape in the medium-term future. Question about emergence of biogas into system [which would bring] a down-trend in emissions.

    [David Cox] The wonderful future that gas offers us. Have to look at whole low carbon [framework] – gas has a place. Not a war [between gas and renewable energy technologies]. Both needed [in the advance towards carbon-free] energy. Without gas, not going to make it. Make sure we can afford it. Gas has a role. The recent [International Energy Agency] IEA report on the “Golden Age of Gas” – tight gas, shale gas – has doubled reserves. Nobody knows for sure – there’s so much there. Perhaps 250 years of gas – no shortage of gas [although some of it is in] sensitive areas. Getting it from those areas with political problems. [There are uncertainties about] unconventional gas. There is plenty around the world – “pretty good”. Gas is not at war with renewables. Gas isn’t just a transition fuel – it’s a destination fuel. Got to prove CCS technically. If we can do that gas becomes a destination fuel. Can decarbonise not only electricity. Heat. Heat pumps won’t do it on their own. Sorry. [Gas can help decarbonise] transport – electrify the transport system – that’s what we believe is possible. Hope the Government will support CCS.

    [Doug Parr] First and foremost – we are not going to eliminate gas from energy systems any time soon – don’t think of gas as a destination – I would warn against policy that gas is allowed to become the default and become too dependent on gas. A lot of policy on gas – but only over part of the energy system [electricity]. Heat is going to rely on gas fo a long time. If follow the Committee on Climate Change (CCC) logic – [heat is a] strategic sector – to getting away from carbon emissions. If gas is going to be what gets us out of energy problems – the so-called “trilemma” of decarbonisation, security [of supply] and cost. [New gas power plants amount to] 11 gigawatts [GW] over the next 5 years – 120 TWh – a quarter of current gas [still in service] out to 2030. If one take CCC target of 50 gC / KWh (grammes of carbon per kilowatt hour). Look at CCGT [Combined Cycle Gas Turbine gas generation power plant in operation] – that target is a fraction of [current] unabated [CCGT] – not that great. Any substantial role of gas has to make some pretty strong assumptions about CCS. Remember, this is not yet working – let us not have a decarbonisation policy relying heavily on CCS when not at the first stage. The CCC have warned that grandfathering of the 11 GW new generation – emit without restrictions – and issue until 2045. Can’t say gas is somehow the answer to decarbonisation issues. In media – don’t [swallow] the media froth. [As for] security of supply – already going to be quite reliant on gas for heating for quite some time – hard to see [otherwise]. Heavily reliant on imports – around 80%. Where do we import our gas from ? Qatar and Norway mostly. The former head of the Navy argued [recently] changing gas prices is the single most significant factor. DECC [UK Government Department of Energy and Climate Change] recent report on price shock. REA [Renewable Energy Association] said that just by hitting renewables targets would displace £60 billion of imports. [As for] shale gas : both Ofgem research and Deutsche Bank reports that shale gas is very unlikely to help on security [of supply] issue. Citing American example [of shale gas exploitation] is just irrelevant. [So the UK Government must be] supporting gas because of costs ? The biggest rise in consumer bills is from fossil fuel [price increases]. Not renewable energy, not green energy [measures] – it’s the rise in the wholesale gas price. Is that going to stabilise and go down ? Not according to Merrill Lynch and DECC – [strong] prices for Liquid Natural Gas (LNG) and therefore for gas [as a whole, will stay]. Clearly we will be using gas – as [electricity grid load] balancing. What I’m railing about is that gas doesn’t get us out of our energy trilemma. Gas will not [save us]. We know we can deliver through renewable energy, wind – acceleration of new technologies [such as tidal] – perhaps CCS will work, who knows ? and efficient use for example Combined Heat and Power (CHP) on industrial scale. If we are using gas we are using at it’s most efficient.

    [Alan Whitehead MP] [recounts tale of how he got into trouble with Twitter commentators when he insisted the recent rise in consumer energy bills was due to the rise in the cost of wholesale gas, not green energy measures] [To Charles Hendry] I’m sure you don’t Tweet.

    [Charles Hendry MP] No. absolutely not. I have enough people telling me I’m wrong without… We have to look at the role of gas. It would a dereliction of Government not to look at the role of gas going forward. […mentions developments in gas production…] seismic profiling [enabling better understanding of gas fields] horizontal drilling [improving access to complex fields]. [As for] unconventional gas – the IEA “Golden Age of Gas” – but don’t assume [it’s that simple – supply may go up but] demand for gas is going to go up dramatically. Japan – major user of LNG and diesel. Consequence of Germany’s decision to close nuclear power plants – will use much more gas. China…India…growth rate – massive growth of demand. Anticipate new resources to be found – Iraq for example – but cannot assume [what has happened in the United States of America with the development of shale gas where gas prices are now] a quarter [of what they were] – a massive boost to America – will they allow this to be exported to Asia – or use cheap gas to [relocating] industry back to the USA ? Have to look at implications for us. Reasons why shale gas is different in Europe – legal [situation] – the mineral rights [in the US, these can be acquired from underneath a landowner]. Don’t have the same commercial drives as farmers in the US. The reason why gas prices collapsed in the US and not here – if we saw a price benefit here, it would go out through the [gas] interconnectors [to neighbouring countries]. For real practical reasons won’t see shal gas develop [significantly] here. [It is a] global gamechanger – but… The US is fundamentally shifting from coal to gas – with the implications for emissions. The change from coal to gas was a major driver in European control of emissions [in the 1990s] […] Investment…technology…practical constraints. EdF [Electricite de France] will go ahead with new nuclear [by the end of the year ?] but the plant will not come online until the end of the decade. Major renewable energy resources also in 2020s [not immediate] – the cost of offshore wind power is two times that of onshore. We’re saying to industry to reduce by 40% by the end of the decade – otherwise simply not affordable. Contributions from tidal, CCS ahead. It’s going to be very end of this decade to see if CCS can work. Worrying gap [in power generation between now and next decade]. Megawatts (MW) of coal being turned off in 2015. [Coal plants are] getting through their [legally permitted] generating hours too quickly. By 2023, the only nuclear plant still operational will be Sizewell B. We have to have more gas in the mix. As we look towards more intermittent resources (renewables), gas is an important source of backup. [Will have/need] a capacity mechanism to ensure [optimisation when] mismatch between supply and demand – auction to include gas – could be [North Sea] gas, gas from the interconnectors [from abroad] or demand side response [demand reduction] – a more sophisticated capacity mechanism than historical. I’m more optimistic about CCS [than Doug Parr]. CCS is a requirement. It is something we have to deliver – no scenario I’ve seen where we’re going [to be] using less coal, oil and gas than today. [Out to 2035] our basic needs [will still rely for a good percentage on] fossil fuels. Broadening CCS [demonstration competition] out to pre- and post-combustion on coal – [expand] to gas. Can be applied to gas as well as coal. I think CCS is a fundamentally critical part of this equation. If so, can see gas as a destination fuel. The GW of gas being built in the next few years [some questions] – currently gas is being mothballed [some plants being shut down effectively putting them into disuse] because of [fuel] prices. I consented more in gas and also wind on- and offshore last year. But that gas is not being built. If we want that gas built we need a more coherent strategy. Look at what is necessary to encourage that gas – and carbon emissions [reduction] alongside. EPS [Emissions Performance Standard] […] to stop unabated coal – limit 450 gC / kWh – significant proportion of plant would need CCS. But ddin’t want to disincentivise gas. Have also said a point where CCS on gas will be necessary. But if we had people building gas now and then 15, 20 years later they would have to fit very expensive [CCS] equipment… Volume of gas coming forward meets our supply issues. Over the next few years, grandfathering. If see enough gas coming through can change the mechanism in due course. [We will be] responding officially to the CCC in Autumn. Need to [fully] decarbonise electricity in the course of the 2030s if we want to meet out climate change objectives. I think that [the] reality [is that] gas and important element. Nuclear is important. Want to see significant amount of renewable energy and what Doug is calling for – significant commitment to [energy use] efficiency in the country. [We should concentrate particularly on] energy efficiency.

    The meeting then opened up to questions from the floor… To Be Continued

  • Apocalyptic Apoptosis

    Posted on March 26th, 2012 Jo No comments

    Image Credit : Carl-A. Fechner, fechnerMedia

    The Evangelist : “Climate change is so serious, we need to tell everybody about it. Everybody needs to wake up about it.” The Audience “We have heard this all before. Do pipe down.”

    The Social Engineer : “Everybody should be playing their part in acting on climate change.” The Audience : “This story is too heavy – you’re trying to make us feel guilty. You’re damaging your message by accusing people of being responsible for causing climate change.”

    The Social Psychologist : “By making such a big deal out of climate change, by using Apocalyptic language, audiences feel there is no hope.” The Audience : “Climate change is clearly not a big deal, otherwise the newspapers and TV would be full of it all the time.”

    The Post-Economist : “Climate change is caused by consumption. We need to reduce our consumption.” The Audience : “We don’t want to be told to live in cold caves, eating raw vegetables by candlelight, thanks.”

    The Defeatist : “It’s already too late. There’s nothing we can do about it. All I can do is sit back and watch it happen.” The Audience : “Isn’t that being a little too negative ? If you think there’s nothing that can be done, what hope have we got ?”

    The late, great Hermann Scheer said that “Today’s primary energy business will vanish – but it won’t give up without a fight…the greatest and the worst environmental pollution of all is when countless so-called energy experts keep on trying to talk society out of even contemplating this scenario [of 100% renewable energy] as a possibility for the near future – because that is what makes society apathetic and unmotivated…”

    So who or what is making us passive and unmoved ?

    Is climate change really our fault ? Or is it something we’ve inherited because of the irresponsible energy companies ?

    Are we responsible for responding to climate change or is it somebody else’s responsibility ?

    Read the rest of this entry »

  • Energy Independence : Scheer Truth

    Posted on March 26th, 2012 Jo No comments

    Image Credit : Carl-A. Fechner, fechnerMedia

    Renewable energy pessimists are everywhere.

    Some commentators, government leaders, energy companies and representatives of international institutions are keen to show that not only is the renewable energy deployment glass half empty, the water hasn’t even wet the bottom of the glass yet.

    Yet there are renewable energy architects – developers, promoters, politicians, scientists, engineers and academics – who document the evidence of the rapid growth in zero carbon energy – who show us that the sustainable energy glass could be brimming over.

    What do experts say ? Here’s the belated Hermann Scheer from the film “The 4th Revolution : Energy Autonomy” :-

    Read the rest of this entry »

    Advancing Africa, Advertise Freely, Assets not Liabilities, Bait & Switch, Be Prepared, Big Number, Big Picture, Big Society, Carbon Commodities, Climate Change, Conflict of Interest, Contraction & Convergence, Corporate Pressure, Deal Breakers, Delay and Deny, Demoticratica, Direction of Travel, Disturbing Trends, Divide & Rule, Dreamworld Economics, Economic Implosion, Emissions Impossible, Energy Autonomy, Energy Denial, Energy Disenfranchisement, Energy Insecurity, Energy Revival, Energy Socialism, Engineering Marvel, Evil Opposition, Feed the World, Foreign Interference, Foreign Investment, Fossilised Fuels, Freemarketeering, Global Warming, Green Investment, Green Power, Growth Paradigm, Hide the Incline, Hydrocarbon Hegemony, Low Carbon Life, Major Shift, Marvellous Wonderful, Mass Propaganda, Media, Military Invention, National Energy, National Power, National Socialism, No Blood For Oil, Not In My Name, Nuclear Nuisance, Nuclear Shambles, Obamawatch, Oil Change, Optimistic Generation, Paradigm Shapeshifter, Peace not War, Peak Coal, Peak Emissions, Peak Energy, Peak Natural Gas, Peak Oil, Petrolheads, Policy Warfare, Political Nightmare, Public Relations, Pure Hollywood, Regulatory Ultimatum, Renewable Gas, Renewable Resource, Resource Curse, Resource Wards, Revolving Door, Social Capital, Social Change, Social Democracy, Solar Sunrise, Solution City, Stirring Stuff, Stop War, Sustainable Deferment, Technofix, Technological Fallacy, Technological Sideshow, Technomess, The Myth of Innovation, The Power of Intention, The War on Error, Ungreen Development, Voluntary Behaviour Change, Wasted Resource, Western Hedge, Wind of Fortune, Zero Net
  • Carbon Captured #2 : Socialising Cost, Privatising Profits

    Posted on March 22nd, 2012 Jo 1 comment

    Image Credit : Michael Sterner

    Carbon dioxide is a fuel. And I don’t mean plant food.

    As petroleum oil and Natural Gas production hit peaks that cannot be surpassed, and the world begins to realise that depletion is inevitable, the world’s energy producers will turn to alternatives, including various forms of fuel and gas made from carbon dioxide, chemically adjusted with hydrogen derived from renewable resources.

    It seems to me hypocritical for the large oil and gas companies to pitch for public funds to support their investment in Carbon Capture and Storage. Why ? Because this public funding will get converted into private profits the day they start to pump the carbon dioxide back out of storage to make Renewable Gas.

    From a personal perspective, I find the argument for public financing of Carbon Capture and Storage particularly toxic when it is proposed to raise the revenue by placing an artificial price or tax on carbon. This would mean that the taxpaper-consumer pays for the emissions burden of hydrocarbon fossil fuel energy, and then gets to pay again for alternative energy, produced using the stored waste gases that they already paid for.

    Charge energy customers twice. What a great bailout for fossil fuels !

    I suspect that the only reason that Royal Dutch Shell and BP admit to climate change is so they can push their Carbon Capture and Storage schemes – bid tendering for public subsidy.

    Forget the subsidies currently in place around the world for wind and solar power. Global carbon finance pushed at Carbon Capture and Storage will be of a much higher order of expenditure.

    If the oil and gas companies want to build Carbon Capture and Storage facilities – let them pay for them themselves. After all, in many cases, they have been able to economically justify them by using carbon dioxide pumping to increase oil production – what’s known as Enhanced Oil Recovery.

    Or if they insist on public finance for geo-sequestration of carbon dioxide in Carbon Capture and Storage projects, let them give us the carbon dioxide back for free when we need it for Renewable Gas production in the coming decades.

  • Living Life and LOAFing It

    Posted on February 5th, 2012 Jo No comments

    Living Life and LOAFing It – Green Christians ask churches to “Use your LOAF !” on sourcing sustainable food

    In the run up to Easter, Christian Ecology Link is asking supporters to think and act on how they source food for their church communities, with the aim of reducing the impact of unsustainable agriculture on their local area, and the wider world.

    CEL have launched a new colour leaflet on the LOAF programme principles in time for Shrove Tuesday (Mardi Gras), or Pancake Day, on 21st February 2012.

    Read the rest of this entry »

  • Carbon Detox 2012

    Posted on January 19th, 2012 Jo 1 comment


    Carbon Detox 2012 : Shed Unwanted Pounds With Our Unique Formulation

    George Marshall, well-known sustainable living guru, will be asking us to challenge ourselves, our routines and bad habits, and make a 2012 all-year resolution to shed the excess carbon from our lives.

    On 21st January 2012 at a convenient central London location, he will ask us to take action to get control of our personal energy, and add vitality to our lives with new aims and goals.

    The aim of the event is to help us acquire the psychological tools we need to lead slimmer, healthier and more ethically satisfying lifestyles.

    Speaking from the experience gained from his decades of research and practice in the field, and giving tips and tricks from his bestseller “Carbon Detox“, George will be guiding us expertly through the carbon counting maze.

    One of our leaner life activities group said : “Cutting down has been hard work, but has become much more fun now I am involved in my local group. I am looking forward to meeting my buddies on Saturday.”

    Tony Emerson, the coordinator for the ecocell 2 programme said : “In three years our household has managed to halve the amount of greenhouse gases we produce – by topping up loft insulation, converting to double glazing, installing a wood stove and learning how to best use it, new heavier curtains, wall insulation, changing to a green electricity supplier, continued monitoring of timings and temperature of the central heating – and of course taking part in the ecocell 2 programme. However we still have further to go and I am looking forward to hear what George Marshall has to say. One way we are encouraging people in ecocell 2 is to have a buddy system, whereby people pair up, or group up, by phone, so that people with similar houses can support each other.”

    To register for this free, all day event, including a selection of facilitated workshops and to receive your take-home worksheet pack, please email Tony at

    For photographs of the day’s events, and feedback from the workshops, please contact Jo on 0845 45 98 46 0



    a. Climate change activist and author George Marshall will be addressing green Christians during an all-day conference on Saturday 21st January 2012 in Central London.

    b. The Christian Ecology Link ecocell project team will facilitate workshops on “living the truly sustainable life” at the Magdalen Centre, St Mary’s Church, Eversholt Street near Euston train station between 10.00 am and 5.00 pm [1]

    c. George Marshall, author of the easy-to-read book “Carbon Detox : Your step-by-step guide to getting real about climate change” will be offering his fact-packed and lighthearted insights into action on climate change, drawn from his experience of over a decade of community and policy work. [2]

    d. The event will be suitable for anybody already taking part in the ecocell project, or anybody interested in starting. The workshops on the day will be pitched at several levels.

    e. The ecocell-1 workshop group will look at the introductory programme to help your family or church group take their first steps to reducing their impact on the environment. [3]

    f. The ecocell-2 workshop will look at the more in-depth project, to provide mutual support for those who want to reduce their carbon emissions to sustainable levels within five years. [4]


    [1] The Magdalen Centre, St Mary’s Church, Eversholt Street, London NW1 1BN is located about 7 minutes’ walk north of Euston train station.






    For details of Christian Ecology Link, please phone Jo on 0845 45 98 46 0 or email

  • Feet in first

    Posted on January 2nd, 2012 Jo No comments

    My lovely friends.

    I received a wonderful gift over Christmas – bamboo socks.

    The gift of socks is a massive present cliche – often a “faux pas”.

    Describing a gift of foot socks as a “faux pas” is highly amusing, because that expression is French for “false step(s)”.

    But this particular present of footwear was not embarrassing or laughable in the slightest.

    It was extremely well thought out – inspiring, Zeitgeistian, educational, novel and fun – it even came in a bright orange pouch.

    In Summer, by chance I was at an event where I heard the outlines and some conclusions of Lucy Siegle’s research into clothing fabrics.

    Essentially, cotton is under threat worldwide – if you buy anything made from cotton, you should perhaps consider it an investment and hold onto it as long as you can. It could become quite irreplaceable.

    There are solutions, even in a climate changed world – bamboo and hemp being two avenues for sourcing sustainable clothing fibres.

    Fabric made from bamboo is soft and comforting, and in this particular case, quite, quite funky.

    I have the obvious criticism of the use of retail – that we cannot expect to green up our lives purely through shopping – because consumerism is part of the climate change and energy crisis.

    But I think that something functional like organic and recycled clothing can come into the category of truly green spending – after all, we do need to replace our clothes from time to time.

    To cap it all, the socks had green stripes !

    So top marks to my clever friend for cracking a superb seasonal joke and demonstrating the future of fabrics at the same time.

    Raising a toast to a Sustainable 2012.

  • Alchemic for the people

    Posted on January 2nd, 2012 Jo No comments

    I was less than a metre above current sea level, rooting about in the holy bookshelves of my Evangelical host, searching for a suitable title.

    I pulled out “Who Made God ?” from underneath a pile of books on their sides, letting the column slump downwards, alerting my companions to the fact that I had definitively made my choice for the evening’s reading.

    We were treated to gentle Christmassy music for an hour or so as we all gave up talking to read by candlelight and compact fluorescent.

    I didn’t read fast, as at first I didn’t have my newly-necessary reading glasses, and when I was encouraged to fetch them, the light was too dim to make reading easy. Those fashionable uplighters.

    I read into the second part, and I had already formed in my mind several disagreements with the author, Professor Edgar Andrews, despite him having taken several good lines of reasoning and made some humourous points which I had duly responded to with a slight audible giggle.

    I instinctively didn’t like his pitch about the impossibility of organic chemistry and I froze a little : personally I see no need for God’s personal, literal, physical intervention to make the ladders and spirals of genes – the DNA and RNA forming from the appropriate nucleotide bases – A, T, G, C.

    And then the book’s author blew away his credibility, for me, at least, by getting bogged down in the absolutes of Physics, and ignoring Chemistry. He quoted the Laws of Thermodynamics, and claimed Entropy as proof that God doesn’t play dice because he’s in the garage playing mechanic. The direction of the universe, the arrow of time, plays towards randomness, the author of the book proclaimed. Order cannot come from inorganic matter – Life is the organising force.

    At this, I took several forms of dispute, and immediately found in my mind the perfect counter-example – the formation of crystals from saturated solution – the building of the stalgamite and stalagtite from the sedimentary filtering of rainwater. Another example, I think, is chiral forms of molecular compounds – some chemicals behave in different ways if formed lefthandedly or righthandedly. The different forms behave predictably and consistently and this is an ordered behaviour that I believe – without the necessary university instruction in Chemistry – is an imposed denial of chaos.

    In fact, the whole of Chemistry, its world of wonder in alchemy, I think points to a kind of natural negation of the Laws of Physics. There is the Micro World, where Newton, and more introspectively, Einstein, are correct in their theoretical pragmas. But in the Macro World, there is Chemistry, and there are precursor compounds to organic essentials. Life forms itself from dead stone. For a Physicist this is “just not cricket”, it is a whole new universe.

    Why can Aluminium be used for containers in microwave ovens, but steel cannot ? And why is Aluminium so light ? Why does water expand when it freezes ? Here the Physicists can help out. But they cannot, when it comes to explaining, or even accurately predicting, all the chemical properties of alloys and compounds.

    I have been pondering, in a crude, uneducated way, about industrial chemistry for the last couple of months. How large volume reactions are encouraged, catalysed. How fluids work. How gases breathe. My conclusion is that most chemical engineering is a bit brutish, like the workings of the internal combustion engine. Things are a tad forced. It is probably not possible for chemical engineers to replicate photosynthesis entirely – it’s too dainty for them. But that is the kind of chemistry we need to overcome our climate and energy problems.

    We may not be able to match the leaves on the trees, but we can do gas chemistry and electricity and semiconductor physics, and it is gas chemistry and electricity and semiconductor physics that will save the planet. Electricity to replace much fuel. Semiconductor physics to bypass photosynthesis. And Renewable Gas chemistry – engineering the chemical building blocks of the future and providing backup to the other green energies.

  • Urbanity, Durbanity

    Posted on December 12th, 2011 Jo 1 comment

    People working for non-governmental, and governmental, organisations can be rather defensive when I criticise the United Nations Framework Convention on Climate Change or UNFCCC. What ? I don’t back the international process ? Climate change, after all, is a borderless crime, and will take global policing. Well, I back negotiations for a global treaty in principle, but not in practice.

    The annual wearisome jousting and filibustering events just before Christmas do not constitute for me a healthy, realistic programme of engagement, imbued with the full authority and support of global leadership structures and civil society. People can try to spin it and claim success, but that’s just whitewash on an ungildable tomb.

    The Climate Change talks that have just taken place in Durban, South Africa, were exemplary of a peculiar kind of collective madness that has resulted from trying to navigate and massage endless special interests, national jostling, brinkmanship, unworkable and inappropriate proposals from economists, communications failures and corporate interference in governance.

    The right people with real decisionmaking powers are not at the negotiating table. The organisations with most to contribute are still acting in opposition – that’s the energy industry, to be explicit. And the individual national governments are still not concerned enough about climate change, even though it impacts strongly on the things they do consider to be priorities – economic health, trade and political superiority.

    Over 20 years ago, the debate on what to do to tackle global warming and still maintain good international relations was already won, by the commonsense approach of Contraction and Convergence – fair shares for all. Each country should count on their fair share of carbon emissions based on their population – and we would get there by starting from where we are now and agreeing mutual cuts. The big emitters would agree to steeper cuts than the lower emitters – and after some time, everybody in the world would have the same, safe emissions rights.

    What has prevented this logical approach from being implemented ? Well, we have had the so-called “flexible mechanisms” pushed on us – such as the Clean Development Mechanism which essentially boils down to the idea that the richer high-emitting countries can offset their carbon by paying for poorer low emissions countries to cut their carbon instead. Some have been attempting to make the CDM carbon credits into a commercial product for the Carbon Trading market. Some may contest it, but the CDM and carbon trading haven’t really been working very well, and anyway, the CDM doesn’t aim for emissions reductions, just offsets.

    Other carbon trade has been implemented, such as the European Union Emissions Trading Scheme (EU ETS), which doesn’t appear to have caused high emissions industries to diversify out of carbon, or created a viable price for carbon dioxide, so its usefulness is questionable.

    Many people have put forward the idea of straight carbon pricing, mostly by taxation. The trouble with this idea should be obvious, but rarely is. Over four-fifths of the world’s energy is fossil fuel based. Taxing carbon emissions from the burning of fossil fuels would just make everything, everywhere, more expensive. It wouldn’t necessarily create new lower carbon energy resources, as the taxes would probably be put into a giant climate change adaptation fund – a financial institution proposed by several people including Oliver Tickell and Nicholas Stern, although in Stern’s case, he is calling for direct grants from countries to keep the fund topped up.

    On the policy front, there has been a continuing, futile attempt to force the historially high-emitting countries to accept very radical carbon cuts, as a sign of accountability. This “grandfathering” of emissions responsibilities is something that no sane person in government in the richer nations could ever agree with, not even when being smothered with ethical guilt. One of the forms of this proposal is “Greenhouse Development Rights“, essentially allowing countries like China to continue growing their emissions in order to grow their economies to guarantee development. The emissions cuts required by countries like the United States of America would be impossible to achieve, not even if their economy completely toppled.

    Sadly, a number of charities, aid and development agencies and other non-governmental organisations with concern for the world’s poor, have signed up to Greenhouse Development Rights not realising it is completely untenable.

    The only approach that can work, that both high- and low-emitting countries can ever possibly be made to agree on, is a system of population-proportional shares of the global carbon pie. And the way to get there has to be based on relative current emissions, ignoring the emissions of the past – your cuts should be larger if your current emissions are large. And it should be based on the relative size of the population, and their individual emissions rates, rather than taking a country as a whole. Yes, there will be room for a little carbon trade between nations, to enable the transfer of low carbon technologies from wealthy nations to un-resourced nations. Yes, there will be space for enterprise, as corporations have to face regulation to cut emissions, and will need innovation in technology to divest themselves of fossil fuel production and consumption.

    This is Contraction and Convergence – and you ignore it at our peril.

    A few suggestions for further reading :-

    Contraction and Convergence The Global Solution to Climate Change” by Aubrey Meyer. Schumacher Briefings, Green Books, December 2000. ISBN-13: 978-1870098946

    The Greenhouse Effect : Science and Policy” by Professor Stephen H. Schneider, Science, Volume 243, Issue 4892, Pages 771 – 781, DOI: 10.1126/science.243.4892.771, 10 February 1989.

    “Climate Change : Science and Policy“, edited by Stephen H. Schneider, Armin Rosencranz, Michael D. Mastrandea and Kristin Kuntz-Duriseti. Island Press, 10 February 2010. ISBN-13: 978-1597265669

    “The Greenhouse Effect : Negotiating Targets” by Professor Michael Grubb, published by the Royal Institute of International Affairs (RIIA) in London, 1990.

    “Equity, Greenhouse Gas Emissions, and Global Common Resources” by Paul Baer, Chapter 15 in “Climate Change Policy : A Survey” by Stephen H. Schneider, Armin Rosencranz and John O. Niles, Island Press, 2002. ISBN-10: 1-55963-881-8 (Paper), ISBN-13: 978-1-55963-881-4 (Paper)

    Kyoto 2 : How to Manage the Global Greenhouse” by Oliver Tickell, ISBN-13: 978-1848130258, Zed Books Ltd, 25 July 2008

  • Advent Joy : Christmas Rose

    Posted on December 11th, 2011 Jo No comments
    Audete, Gaudete !
    Christus est natus
    Ex Maria Virgine,
    Gaudete !

    Tempus adest gratiae,
    Hoc quod optabamus;
    Carmina laetitiae,
    Devote reddamus.

    Deus homo factus est,
    Natura mirante;
    Mundus renovatus est
    A Christo regnante…

    Welcome, little Christmas rose, into a big and troubled world. We are so happy you’ve made your journey safely, we could sing heartily.

    The world is no closer to a binding, enactable accord on preventing catastrophic climate change, but at least the Durban United Nations conference is over, and many are therefore sleepily rejoicing.

    Read the rest of this entry »