Jumping off Mount Gideon

[Friends, I have suffered a little writer’s block, so I resolved to spark some creativity in myself by joining a little local writers group. The leader of the group suggested a title, I Googled the allegedly fictional location and found it existed, and that it was near a wind farm; and Google Maps led me to the rest of my research and inspiration for this piece. Caveat Lector : it’s fictional, even though a lot of it is factual. Also, it’s only a draft, but it needs to settle for a while before I can refine/sift it. ]

Jumping Off Mount Gideon [1]
by Jo Abbess
DRAFT

In the blue-green sun-kissed uplands, west of the sediment-spewing Chocolate River sprung at Petitcodiac village, and north of the shrunken Shepody Lake, its feeder tributaries re-engineered hundreds of years ago; north still of the shale flats jutting out into the Bay of Fundy, rises Mount Gideon, shrouded in managed native Canadian spruce, pine and fir. Part of the ranging, half-a-billion-year-old craton of the Caledonian Highlands of New Brunswick, it is solid ground, and its first European inhabitants must have been hardy. Looking up, the early settlers must have seen the once-bare hinterland looming over the mudstone and sandstone shoreline, with its steep gullied waterways carved by the receding pre-historic icesheets, and it must have been redolent of the mountainous “encampments of the just” [2] where the Biblical Gideon of the Book of Judges [3] trained his elite crack troops and plotted his revenge against the hordes of ravaging Midianites. The fur-trappers and gravel miners on the eve of the 18th Century built a community by the bay, and drove a winding road up through Mount Gideon’s ravines and over its heights, a byway long since eroded and erased and replaced by a functional forestry access track. Ethnic cleansing of the first-come Acadians in the summer of 1755 destroyed much of the larger settlements in the region of Chipoudy, henceforth anglicised to Shepody. Two groups of deportation vigilantes, originally tasked with taking prisoners, burned down the infrastructure and put to death those who hadn’t fled to the woods, and since that day, nobody really lives up on the mount, aside from the occasional lumberjack in his trailer home cached off New Ireland Road, and the odd temporary bivouac of touring hippy couples, en route from Hopewell Rocks to Laverty Falls on the Moosehorn Trail in the national park, via the Caledonia Gorge and Black Hole on the Upper Salmon River. These days there is no risk of social crisis, but an insidious slow-moving environmental crisis is underway. Streams falling from Mount Gideon, spider lines scratched on early parish maps, the West River and Beaver Brook, no longer flow year-round, and there’s very little freshwater locally, apart from a few scattered tarns, cradled in the impervious igneous, plutonic rock of the hinterland. Rainwater does support the timber plantations, for now, but drought and beetle are a rising threat, brought on by creeping climate change. Humans may no longer be setting fires, but Nature is, because human beings have interfered with the order of things.

Mount Gideon isn’t really a proper peak : from its summit it’s clear it’s only a local undulation like other protruding spine bones in the broad back of the hills. Its cap sprouts industrial woodland, planted in regular patterns visible from space, reached by gravel-bordered runnelled dirt track. The former ancient water courses that fall away sharply from the highest point on the weald are filled with perilously-rooted trees, leaning haphazardly out from the precipitous banks of the ravines. The plantations and roadside thickets obscure the view of Chignecto Bay and the strong-tided Minas Passage, where the tidal turbine energy project is still being developed. With no coastal horizon, this could be hundreds of kilometres from anywhere, in the centre of an endless Avalonian Terrane. A silvicultural and latterly agroforestry economy that grew from the wealth of wood eventually developed a dependence on fossil fuels, but what thin coal seams locally have long been exhausted, and the metamorphic mass underfoot salts no petroleum oil or gas beneath. Tanker ship and truck brought energy for tractor and homestead for decades, but seeing little future in the black stuff, local sparsely-populated Crown Land was designated for renewable energy. Just to the north of Mount Gideon lie the Kent Hills, a scene of contention and social protest when the wind farm was originally proposed. For some, wind turbines would mechanise the landscape, cause frequency vibration sickness, spark forest fires from glinting blades, induce mass migraine from flickering sweeps of metal. Windmills were seen as monsters, but sense prevailed, through the normal processes of local democracy and municipal authority, and even a wind farm expansion came about. It is true that engineering giants have cornered the market in the first development sweep of wind power – those hoping for small-scale, locally-owned new energy solutions to the carbon crisis have had to relent and accept that only big players have the economic power to kickstart new technologies at scale. There are some who suspect that the anti-turbine groups were sponsored secretly by the very firms who wanted to capitalise on the ensuing vacuum in local energy supply; and that this revolt went too far. There was speculation about sabotage when one of the wind turbine nacelles caught fire a while back and became a sneering viral internet sensation. When the shale gas 1970s extraction technology revival circus came to Nova Scotia, the wind power companies were thought to have been involved in the large protest campaign that resulted in a New Brunswick moratorium on hydraulic fracturing in the coastal lowlands. The geology was anyways largely against an expansion in meaningful fossil fuel mining in the area, and the central Precarboniferous massif would have held no gas of any kind, so this was an easily-won regulation, especially considering the risks to the Chignecto Bay fisheries from mining pollution.

TransAlta, they of “Clean Power, Today and Tomorrow”, sensed an prime moment for expansion. They had already forged useful alliances with the local logging companies during the development of Kent Hills Wind Farm, and so they knew that planning issues could be overcome. However, they wanted to appease the remnant of anti-technologists, so they devised a creative social engagement plan. They invited energy and climate change activists from all over Nova Scotia, Newfoundland, and the rest of Quebec to organise a pro-wind power camp and festival on the top of Mount Gideon. The idea was to celebrate wind power in a creative and co-operative way. The Crown Land was clearcut of trees as the first stage of the wind farm expansion, so the location was ideal. To enable the festival to function, water was piped to the summit, teepees and yurts were erected, and a local food delivery firm was hired to supply. The ambition of the cultural committee was to create an open, welcoming space with plenty of local colour and entertainment, inviting visitors and the media to review plans for the new wind farm. The festival was an international Twitter success, and attracted many North American, European and even Australasian revellers, although a small anarchist group from the French national territory in St Pierre et Miquelon created a bit of a diplomatic incident by accidentally setting fire to some overhanging trees in a ravine during a hash-smoking party.

Unbeknownst to the festival committee, a small and dedicated group of activists used the cover of the camp to plan a Gideon-style resistance to the Energy East pipeline plan. TransCanada wanted to bring heavy tar sands oil, blended with American light petroleum condensate, east from Alberta. The recent history of onshore oil pipelines and rail consignments was not encouraging – major spills had already taken place – and several disastrous accidents, such as the derailment and fireball at Plaster Rock, where the freight was routed by track to Irving Refinery. The original Energy East plan was to bring oil to the Irving Oil Canaport facility at Saint John, but a proposal had been made to extend the pipeline to the Atlantic coast. The new route would have to either make its circuitous way through Moncton, or cross under the Bay of Fundy, in order to be routed to Canso on the eastern side of Nova Scotia. The Energy East pipeline was already being criticised because of its planned route near important waterways and sensitive ecological sites. And the activist group had discovered that TransCanada had contracted a site evaluation at Cape Enrage on the western shore of the bay. Land jutted out into the water from here, making it the shortest crossing point to Nova Scotia. To route a pipeline here would mean it would have to cross Fundy National Park, sensitive fish and bird wading areas on the marshes and mudflats of the Waterside and Little Ridge, and cross over into the Raven Head Wilderness Area.

Gideon’s campaign had succeeded because of three things. His army had been whittled down to a compact, focused, elite force; they had used the element of surprise, and they had used the power of the enemy against itself. The activist group decided on a high level of secrecy about their alliance, but part of their plan was very public. They were divided into three groups : the Wasps, the Eagles and the Hawks. The Wasps would be the hidden force. They would construct and test drones, jumping off Mount Gideon, and flown out at night down the old river gullies, their route hidden by the topography, to spy on the TransCanada surface works. The plan was that when they had had enough practice the team would be ready to do this on a regular basis in future. If TransCanada did start building a pipeline here, the Wasps would be able to come back periodically and transport mudballs by drone to drop in the area. These squidgy payloads of dirt would contain special cultures of bacteria, including methanogens, that produce methane and other volatile chemicals. The environmental monitoring teams at the site would pick up spikes in hydrocarbon emissions, and this would inevitably bring into question the integrity of the pipeline. The Eagles would start a nationwide campaign for legal assistance, asking for lawyers to work pro bono to countermand the Energy East pipeline route, deploying the most recent scientific research on the fossil fuel industry, and all the factors that compromise oil and gas infrastructure. The Hawks would develop relationships with major energy investors, such as pension funds and insurance firms, and use public relations to highlight the risks of fossil fuel energy development, given the risks of climate change and the geological depletion of high quality resources. Nobody should be mining tar sands – the dirtiest form of energy ever devised. If TransCanada wanted to pipeline poisonous, toxic, air-damaging, climate-changing gloop all across the pristine biomes of precious Canada, the Mount Gideon teams were going to resist it in every way possible.

What the Mount Gideon teams did not know, but we know now, was that some of the activists at the camp were actually employees of the New Brunswick dynasties Irving and McCain. These families and their firms had saved the post-Confederation economy of the Maritime Provinces in the 20th Century, through vertical integration. Internally, within the Irving conglomerate, many recognised that fossil fuels had a limited future, even though some of the firms were part of the tar sands oil pipeline project. They were intending to take full advantage of the suspension of the light oil export ban from the United States for the purpose of liquefying Canadian heavy oils to make a more acceptable consumer product, as well as being something that could actually flow through pipes. They had held secret negotiations between their forestry units and the McCain family farming businesses. Research done for the companies had revealed that synthetic, carbon-neutral gas could be made from wood, grains and grasses, and that this would appeal to potential investors more than tar sands projects. They realised that if the Energy East project failed, they could step in to fill the gap in the energy market with their own brand of biomass-sourced renewables. They calculated that the potential for Renewable Gas was an order of magnitude larger than that of wind power, so they stood to profit as low carbon energy gained in popularity. Once again, in energy, big business intended to succeed, but they needed to do so in a way that was not confrontational. What better than to have a bunch of activists direct attention away from carbon-heavy environmentally-damaging energy to allow your clean, green, lean solutions to emerge victorious and virtuous ?

Notes

[1] This is a fictional, marginally futuristic account, but contains a number of factual, current accuracies.
[2] Bible, Psalm 34
[3] Bible, Judges 6-8

The Delta, The Ramp, The Stretch and The Duck #1

I gave a guest lecture at Birkbeck College, of the University of London on the evening of 22nd February 2017 in the evening, as part of the Energy and Climate Change module. I titled it, “Renewable Gas for Energy Storage : Scaling up the ‘Gas Battery’ to balance Wind and Solar Power and provide Low Carbon Heat and Transport”.

The basic concept is that since wind and solar power are variable in output, there has to be some support from other energy technologies. Some talk of batteries to store electrical energy as a chemical potential, and when they talk of batteries they think of large Lithium ion piles, or flow batteries, or other forms of liquid electrolyte with cathodes and anodes. When I talk about batteries, I think of electrical energy stored in the form of a gas. This gas battery doesn’t need expensive metal cathodes or anodes, and it doesn’t need an acid liquid electrolyte to operate. Gas that is synthesised from excess solar or wind power can be a fuel that can be used in chemical reactions, such as combustion, or burning, to generate electricity and heat when desired at some point in the future. It could be burned in a gas turbine, a gas boiler or a fuel cell, or in a vehicle engine. Or instead, a chemically inert gas can be stored under pressure, and this compressed gas can also be used to generate power on demand at a later date by harnessing energy from decompression. Another option would be holding a chemically reactive gas under pressure, allowing two stages of energy recovery.

As expected, the Birkbeck audience was very diverse, and had different social and educational backgrounds, and so there was little that could be assumed as common knowledge, especially since the topic was energy, which is normally only an interest for engineers, or at a stretch, economists.

I decided when preparing that I would attempt to use symbolism as a tool to build a narrative in the presentation. A bold move, perhaps, but I found it created an emblematic thread that ran through the slides quite nicely, and helped me tell the story. I used Mathematical and Physical notation, but I didn’t do any Mathematics or Physics.

I introduced the first concept : the Delta, or change. I explained this delta was not the same as a river delta, which gave me the excuse to show a fabulous night sky image of the Nile Delta taken from the International Space Station. I demonstrated the triangle shape that emerges from charting data that changes over time, and calculating its gradient, such as the temperature of the Earth’s surface.

I explained that the change in temperature of the Earth’s surface over the recent decades is an important metric to consider, not just in terms of scale, but in terms of speed. I showed that this rate of change appears in all the independent data sets.

I then went on to explain that the overall trend in the change in the temperature of the Earth’s surface is not the only phenomenon. Within regions, and within years and seasons, even between months and days, there are smaller scale changes that may not look like the overall delta. A lot of these changes give the appearance of cyclic phenomena, and they can have a periodicity of up to several decades, for example, “oscillations” in the oceans.

These discrete deltas and cycles could, to a casual observer, mask underlying trends, especially as the deltas can be larger than the trends; so climatologists look at a large set of measurements of all kinds, and have shown that some deltas are one way only, and are not cycling.

Teasing out the trends in all of the observations is a major enterprise that has been accomplished by thousands of scientists who have reported to the IPCC, the Intergovernmental Panel on Climate Change, part of the UNFCCC, the United Nations Framework Convention on Climate Change. The Fifth Assessment Report is the most comprehensive yet, and shows that global warming is almost certainly ramping up – in other words, global warming is getting faster, or accelerating.

Many projections for the future of temperature changes at the Earth’s surface have been done, with the overall view that temperatures are likely to carry on rising for hundreds of years without an aggressive approach to curtail net greenhouse gas emissions to the atmosphere – principally carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O).

From observations, it is clear that global warming causes climate change, and that the rate of temperature change is linked to the rate of climate change. In symbols, this reads : delta T for temperature over t for time leads to, or implies, a delta C for climate over t for time. The fact that global warming and its consequential climate change are able to continue worsening under the current emissions profile means that climate change is going to affect humanity for a long stretch. It also means that efforts to rein in emissions will also need to extend over time.

I finished this first section of my presentation by showing a list of what I call “Solution Principles” :-

1. Delays embed and extend the problem, making it harder to solve. So don’t delay.

2. Solve the problem at least as fast as creating it.

3. For maximum efficiency, minimum cost, and maximum speed, re-deploy agents of the problem in its solution.

In other words, make use of the existing energy, transport, agriculture, construction and chemical industries in approaching answers to the imperative to address global warming and climate change.

Fields of Diesel Generators

Recently, I had a very helpful telephone conversation with somebody I shall call Ben – because that’s his name, obviously, so there’s no point in trying to camoflage that fact. It was a very positive conversation, with lots of personal energy from both parties – just the sort of constructive engagement I like.

Amongst a range of other things, we were batting about ideas for what could constitute a business model or economic case for the development of Renewable Gas production – whether Renewable Hydrogen or Renewable Methane. Our wander through the highways and byways of energy markets and energy policy led us to this sore point – that the National Grid is likely to resort to “fields of diesel generators” for some of its emergency backup for the power grid in the next few years – if new gas-fired power plants don’t get built. Various acronyms you might find in this space include STOR and BM.

Now, diesel is a very dirty fuel – so dirty that it appears to be impossible to build catalytic exhaust filters for diesel road vehicles that meet any of the air pollution standards and keep up fuel consumption performance. It’s not just VW that have had trouble meeting intention with faction – all vehicle manufacturers have difficulties balancing all the requirements demanded of them. Perhaps it’s time to admit that we need to ditch the diesel fuel itself, rather than vainly try to square the circle.

The last thing we really need is diesel being used as the fuel to prop up the thin margins in the power generation network – burned in essentially open cycle plant – incurring dirty emissions and a massive waste of heat energy. Maybe this is where the petrorefiners of Great Britain could provide a Renewable Gas alternative. Building new plant or reconfiguring existing plant for Renewable Gas production would obviously entail capital investment, which would create a premium price on initial operations. However, in the event of the National Grid requiring emergency electricity generation backup, the traded prices for that power would be high – which means that slightly more expensive Renewable Gas could find a niche use which didn’t undermine the normal economics of the market.

If there could be a policy mandate – a requirement that Renewable Gas is used in open cycle grid-balancing generation – for example when the wind dies down and the sun sets – then we could have fields of Renewable Gas generators and keep the overall grid carbon emissions lower than they would otherwise have been.

Both Ben and I enjoyed this concept and shared a cackle or two – a simple narrative that could be adopted very easily if the right people got it.

Renewable Gas – that’s the craic.

What To Do Next

Status-checking questions. I’m sure we all have them. I certainly do. Several times a week, or even day, I ask myself two little questions of portent : “What am I doing ?” and “Why am I here ?”. I ask myself these questions usually because my mind’s wandered off again, just out of reach, and I need to call myself to attention, and focus. I ask these little questions of myself when I do that thing we all do – I’ve set off with great purpose into another room, and then completely forgotten why I went there, or what I came to find or get. I also use these forms of enquiry when I’m at The Crossroads of Purpose – to determine what exactly it is I’m deciding to aim for. What are my goals this day, week, month, age ? Can I espy my aims, somewhere on the horizon ? Can I paddle labouriously towards them – against the tide – dodge/defeat the sharks ? Can I muster the will to carry this out – “longhauling it” ?

I’ve spent a long time writing a book, which I’m sure to bore everybody about for the next aeon. My intention in writing the book was to stimulate debate about what I consider to be the best direction for balanced energy systems – a combination of renewable electricity and Renewable Gas. I wanted to foster debate amongst the academics and engineers who may be my peers, certainly, hopefully providing a little seed for further research. Hopefully also having a small influence on energy policy, perhaps, or at least, getting myself and my ideas asked to various policy meetings for a little airing. But, if I could in some way, I also wanted to offer a bit of fizz to the internal conversations of companies in the energy sector. You see, it may be obvious, or it may not be, but action on climate change, which principally involves the reduction in the mining, drilling and burning of fossil fuels, principally also involves the co-operation of the fossil fuel extraction companies. Their products are nearly history, and so it must be that inside the headquarters of every transnational energy giant, corporate heads are churning through their options with a very large what-if spoon.

Click to continue reading

A Partial Meeting of Engineering Minds

So I met somebody last week, at their invitation, to talk a little bit about my research into Renewable Gas.

I can’t say who it was, as I didn’t get their permission to do so. I can probably (caveat emptor) safely say that they are a fairly significant player in the energy engineering sector.

I think they were trying to assess whether my work was a bankable asset yet, but I think they quickly realised that I am nowhere near a full proposal for a Renewable Gas system.

Although there were some technologies and options over which we had a meeting of minds, I was quite disappointed by their opinions in connection with a number of energy projects in the United Kingdom.

Click to Read More !

DECC Dungeons and Dragnets

Out of the blue, I got an invitation to a meeting in Whitehall.

I was to join industrial developers and academic researchers at the Department of Energy and Climate Change (DECC) in a meeting of the “Green Hydrogen Standard Working Group”.

The date was 12th June 2015. The weather was sunny and hot and merited a fine Italian lemonade, fizzing with carbon dioxide. The venue was an air-conditioned grey bunker, but it wasn’t an unfriendly dungeon, particularly as I already knew about half the people in the room.

The subject of the get-together was Green Hydrogen, and the work of the group is to formulate a policy for a Green Hydrogen standard, navigating a number of issues, including the intersection with other policy, and drawing in a very wide range of chemical engineers in the private sector.

My reputation for not putting up with any piffle clearly preceded me, as somebody at the meeting said he expected I would be quite critical. I said that I would not be saying anything, but that I would be listening carefully. Having said I wouldn’t speak, I must admit I laughed at all the right places in the discussion, and wrote copious notes, and participated frequently in the way of non-verbal communication, so as usual, I was very present. At the end I was asked for my opinion about the group’s work and I was politely congratulational on progress.

So, good. I behaved myself. And I got invited back for the next meeting. But what was it all about ?

Most of what it is necessary to communicate is that at the current time, most hydrogen production is either accidental output from the chemical industry, or made from fossil fuels – the main two being coal and Natural Gas.

Hydrogen is used extensively in the petroleum refinery industry, but there are bold plans to bring hydrogen to transport mobility through a variety of applications, for example, hydrogen for fuel cell vehicles.

Clearly, the Green Hydrogen standard has to be such that it lowers the bar on carbon dioxide (CO2) emissions – and it could turn out that the consensus converges on any technologies that have a net CO2 emissions profile lower than steam methane reforming (SMR), or the steam reforming of methane (SRM), of Natural Gas.

[ It’s at this very moment that I need to point out the “acronym conflict” in the use of “SMR” – which is confusingly being also used for “Small Modular Reactors” of the nuclear fission kind. In the context of what I am writing here, though, it is used in the context of turning methane into syngas – a product high in hydrogen content. ]

Some numbers about Carbon Capture and Storage (CCS) used in the manufacture of hydrogen were presented in the meeting, including the impact this would have on CO2 emissions, and these were very intriguing.

I had some good and useful conversations with people before and after the meeting, and left thinking that this process is going to be very useful to engage with – a kind of dragnet pulling key players into low carbon gas production.

Here follow my notes from the meeting. They are, of course, not to be taken verbatim. I have permission to recount aspects of the discussion, in gist, as it was an industrial liaison group, not an internal DECC meeting. However, I should not say who said what, or which companies or organisations they are working with or for.

Click to Read More !

Nuclear Power Is Not An Energy Policy

The British Government do not have an energy policy. They may think they have one, and they may regularly tell us that they have one, but in reality, they don’t. There are a number of elements of regulatory work and market intervention that they are engaged with, but none of these by itself is significant enough to count as a policy for energy. Moreover, all of these elements taken together do not add up to energy security, energy efficiency, decarbonisation and affordable energy.

What it takes to have an energy policy is a clear understanding of what is a realistic strategy for reinvestment in energy after the dry years of privatisation, and a focus on energy efficiency, and getting sufficient low carbon energy built to meet the Carbon Budget on time. Current British Government ambitions on energy are not realistic, will not attract sufficient investment, will not promote increased energy efficiency and will not achieve the right scale and speed of decarbonisation.

I’m going to break down my critique into a series of small chunks. The first one is a quick look at the numbers and outcomes arising from the British Government’s obsessive promotion of nuclear power, a fantasy science fiction that is out of reach, not least because the industry is dog-tired and motheaten.

Click to Read More !

Shell and BP : from “Delay and Deny” to “Delay and Distract”

Shell, BP and some of their confederates in the European oil and gas industry have inched, or perhaps “centimetred”, forward in their narrative on climate change. Previously, the major oil and gas companies were regularly outed as deniers of climate change science; either because of their own public statements, or because of secretive support of organisations active in denying climate change science. It does seem, finally, that Shell in particular has decided to drop this counter-productive “playing of both sides”. Not that there are any “sides” to climate change science. The science on climate change is unequivocal : changes are taking place across the world, and recent global warming is unprecedented, and has almost definitely been attributed to the burning of fossil fuels and land use change.

So Shell and BP have finally realised that they need to shed the mantle of subtle or not-so-subtle denial, although they cling to the shreds of dispute when they utter doubts about the actual numbers or impacts of global warming (for example : http://www.joabbess.com/2015/06/01/shells-public-relations-offensive/). However, we have to grant them a little leeway on that, because although petrogeologists need to understand the science of global warming in order to know where to prospect for oil and gas, their corporate superiors in the organisation may not be scientists at all, and have no understanding of the global carbon cycle and why it’s so disruptive to dig up all that oil and gas hydrocarbon and burn it into the sky. So we should cut the CEOs of Shell and BP a little slack on where they plump for in the spectrum of climate change narrative – from “utter outright doom” to “trifling perturbation”. The central point is that they have stopped denying climate change. In fact, they’re being open that climate change is happening. It’s a miracle ! They have seen the light !

But not that much light, though. Shell and BP’s former position of “scepticism” of the gravity and actuality of global warming and climate change was deployed to great effect in delaying any major change in their business strategies. Obviously, it would have been unseemly to attempt to transmogrify into renewable energy businesses, which is why anybody in the executive branches who showed signs of becoming pro-green has been shunted. There are a number of fairly decent scalps on the fortress pikes, much to their shame. Shell and BP have a continuing duty to their shareholders – to make a profit from selling dirt – and this has shelved any intention to transition to lower carbon energy producers. Granted, both Shell and BP have attempted to reform their internal businesses by applying an actual or virtual price on carbon dioxide emissions, and in some aspects have cleaned up and tidied up their mining and chemical processing. The worsening chemistry of the cheaper fossil fuel resources they have started to use has had implications on their own internal emissions control, but you have to give them credit for trying to do better than they used to do. However, despite their internal adjustments, their external-facing position of denial of the seriousness of climate change has supported them in delaying major change.

With these recent public admissions of accepting climate change as a fact (although CEOs without appropriate science degrees irritatingly disagree with some of the numbers on global warming), it seems possible that Shell and BP have moved from an outright “delay and deny” position, which is to be applauded.

However, they might have moved from “delay and deny” to “delay and distract”. Since the commencement of the global climate talks, from about the 1980s, Shell and BP have said the equivalent of “if the world is serious about acting on global warming (if global warming exists, and global warming is caused by fossil fuels), then the world should agree policy for a framework, and then we will work within that framework.” This is in effect nothing more than the United Nations Framework Convention on Climate Change (UNFCCC) has put forward, so nobody has noticed that Shell and BP are avoiding taking any action themselves here, by making action somebody else’s responsibility.

Shell and BP have known that it would take some considerable time to get unanimity between governments on the reality and severity of climate change. Shell and BP knew that it would take even longer to set up a market in carbon, or a system of carbon dioxide emissions taxation. Shell and BP knew right from the outset that if they kept pushing the ball back to the United Nations, nothing would transpire. The proof of the success of this strategy was the Copenhagen conference in 2009. The next proof of the durability of this delaying tactic will be the outcomes of the Paris 2015 conference. The most that can come out of Paris is another set of slightly improved targets from governments, but no mechanism for translating these into real change.

Shell and BP and the other oil and gas companies have pushed the argument towards a price on carbon, and a market in carbon, and expensive Carbon Capture and Storage technologies. Not that a price on carbon is likely to be anywhere near high enough to pay for Carbon Capture and Storage. But anyway, the point is that these are all distractions. What really needs to happen is that Shell and BP and the rest need to change their products from high carbon to low carbon. They’ve delayed long enough. Now is the time for the United Nations to demand that the fossil fuel companies change their products.

This demand is not just about protecting the survival of the human race, or indeed, the whole biome. Everybody is basically on the same page on this : the Earth should remain liveable-inable. This demand for change is about the survival of Shell and BP as energy companies. They have already started to talk about moving their businesses away from oil to gas. There are high profile companies developing gas-powered cars, trains, ships and possibly even planes. But this will only be a first step. Natural Gas needs to be a bridge to a fully zero carbon world. The oil and gas companies need to transition from oil to gas, and then they need to transition to low carbon gas.

Renewable Gas is not merely “vapourware” – the techniques and technologies for making low carbon gas are available, and have been for decades, or in some cases, centuries. Shell and BP know they can manufacture gas instead of digging it up. They know they can do the chemistry because they already have to do much of the same chemistry in processing fossil hydrocarbons now to meet environmental and performance criteria. BP has known since the 1970s or before that it can recycle carbon in energy systems. Shell is currently producing hydrogen from biomass, and they could do more. A price on carbon is not going to make this transition to low carbon gas. While Shell and BP are delaying the low carbon transition by placing focus on the price of carbon, they could lose a lot of shareholders who shy away from the “carbon bubble” risk of hydrocarbon investment. Shell and BP need to decide for themselves that they want to survive as energy companies, and go public with their plans to transition to low carbon gas, instead of continuing to distract attention away from themselves.

Why Shell is Wrong

So, some people do not understand why I am opposed to the proposal for a price on carbon put forward by Royal Dutch Shell and their oil and gas company confederates.

Those who have been following developments in climate change policy and the energy sector know that the oil and gas companies have been proposing a price on carbon for decades; and yet little has been achieved in cutting carbon dioxide emissions, even though carbon markets and taxes have been instituted in several regions.

Supporters of pricing carbon dioxide emissions urge the “give it time” approach, believing that continuing down the road of tweaking the price of energy in the global economy will cause a significant change in the types of resources being extracted.

My view is that economic policy and the strengthening of carbon markets and cross-border carbon taxes cannot provide a framework for timely and major shifts in the carbon intensity of energy resources, and here’s a brief analysis of why.

1.   A price on carbon shifts the locus of action on to the energy consumer and investor

A price on carbon could be expected to alter the profitability of certain fossil fuel mining, drilling and processing operations. For example, the carbon dioxide emissions of a “tank of gas” from a well-to-wheel or mine-to-wheel perspective, could be made to show up in the price on the fuel station forecourt pump. Leaving aside the question of how the carbon tax or unit price would be applied and redistributed for the moment, a price on carbon dioxide emissions could result in fuel A being more expensive than fuel B at the point of sale. Fuel A could expect to fall in popularity, and its sales could falter, and this could filter its effect back up the chain of production, and have implications on the capital expenditure on the production of Fuel A, and the confidence of the investors in investing in Fuel A, and so the oil and gas company would pull out of Fuel A.

However, the business decisions of the oil and gas company are assumed to be dependent on the consumer and the investor. By bowing to the might god of unit price, Shell and its confederates are essentially arguing that they will act only when the energy consumers and energy investors act. There are problems with this declaration of “we only do what we are told by the market” position. What if the unit price of Fuel A is only marginally affected by the price on carbon ? What if Fuel A is regarded as a superior product because of its premium price or other marketing factors ? This situation actually exists – the sales of petroleum oil-based gasoline and diesel are very healthy, despite the fact that running a car on Natural Gas, biogas or electricity could be far cheaper. Apart from the fact that so many motor cars in the global fleet have liquid fuel-oriented engines, what else is keeping people purchasing oil-based fuels when they are frequently more costly than the alternative options ?

And what about investment ? Fuel A might become more costly to produce with a price on carbon, but it will also be more expensive when it is sold, and this could create an extra margin of profit for the producers of Fuel A, and they could then return higher dividends to their shareholders. Why should investors stop holding stocks in Fuel A when their rates of return are higher ?

If neither consumers nor investors are going to change their practice because Fuel A becomes more costly than Fuel B because of a price on carbon, then the oil and gas company are not going to transition out of Fuel A resources.

For Shell to urge a price on carbon therefore, is a delegation of responsibility for change to other actors. This is irresponsible. Shell needs to lead on emissions reduction, not insist that other people change.

2.   A price on carbon will not change overall prices or purchasing decsions

In economic theory, choices about products, goods and services are based on key factors such as trust in the supplier, confidence in the product, availability and sustainability of the service, and, of course, the price. Price is a major determinant in most markets, and artificially altering the price of a vital commodity will certainly alter purchasing decisions – unless, that is, the price of the commodity in question increases across the board. If all the players in the field start offering a more expensive product, for example, because of supply chain issues felt across the market, then consumers will not change their choices.

Now consider the global markets in energy. Upwards of 80% of all energy consumed in the global economy is fossil fuel-based. Putting a price on carbon will raise the prices of energy pretty much universally. There will not be enough cleaner, greener product to purchase, so most purchasing decisions will remain the same. Price differentiation in the energy market will not be established by asserting a price on carbon.

A key part of Shell’s argument is that price differentiation will occur because of a price on carbon, and that this will drive behaviour change, and yet there is nothing to suggest it could do that effectively.

3.   A price on carbon will not enable Carbon Capture and Storage

Athough a key part of Shell’s argument about a price on carbon is the rationale that it would stimulate the growth in Carbon Capture and Storage (CCS), it seems unlikely that the world will ever agree to a price on carbon that would be sufficient to stimulate significant levels of CCS. A price on carbon will be deemed to be high enough when it creates a difference in the marginal extra production cost of a unit of one energy resource compared to another. A carbon price can only be argued for on the basis of this optimisation process – after all – a carbon price will be expected to be cost-efficient, and not punitive to markets. In other words, carbon prices will be tolerated if they tickle the final cost of energy, but not if they mangle with it. However, CCS could imply the use of 20% to 45% extra energy consumption at a facility or plant. In other words, CCS would create a parasitic load on energy resources that is not slim enough to be supported by a cost-optimal carbon price.

Some argue that the technology for CCS is improving, and that the parasitic load of CCS at installations could be reduced to around 10% to 15% extra energy consumption. However, it is hard to imagine a price on carbon that would pay even for this. And additionally, CCS will continue to require higher levels of energy consumption which is highly inefficient in the use of resources.

Shell’s argument that CCS is vital, and that a price on carbon can support CCS, is invalidated by this simple analysis.

4.   Shell needs to be fully engaged in energy transition

Calling for a price on carbon diverts attention from the fact that Shell itself needs to transition out of fossil fuels in order for the world to decarbonise its energy.

Shell rightly says that they should stick to their “core capabilities” – in other words geology and chemistry, instead of wind power and solar power. However, they need to demonstrate that they are willing to act within their central business activities.

Prior to the explosion in the exploitation of deep geological hydrocarbon resources for liquid and gas fuels, there was an energy economy that used coal and chemistry to manufacture gas and liquid fuels. Manufactured gas could still replace Natural Gas, if there are climate, economic or technological limits to how much Natural Gas can be resourced or safely deployed. Of course, to meet climate policy goals, coal chemistry would need to be replaced by biomass chemistry, and significant development of Renewable Hydrogen technologies.

Within its own production facilities, Shell has the answers to meet this challenge. Instead of telling the rest of the world to change its economy and its behaviour, Shell should take up the baton of transition, and perfect its production of low carbon manufactured gas.

The Price on Carbon

Although The Guardian newspaper employs intelligent people, sometimes they don’t realise they’ve been duped into acting as a mouthpiece for corporate propaganda. The “strapline” for the organisation is “Owned by no one. Free to say anything.”, and so it seemed like a major coup to be granted an interview with Ben Van Beurden of Royal Dutch Shell, recorded for a podcast that was uploaded on 29th May 2015.

However, the journalists, outoing editor Alan Rusbridger, Damian Carrington and Terry McAllister probably didn’t fully appreciate that this was part of an orchestrated piece of public relations. The same day as the podcast was published, Shell, along with five other oil and gas companies wrote a letter to officials of the United Nations Framework Convention on Climate Change (UNFCCC).

Favourable copy appeared in various places, for example, at Climate Central, The Daily Telegraph and in the Financial Times where a letter also appeared.

In the letter to Christiana Figueres and Laurent Fabius of the UNFCCC, Shell and fellow companies BP, BG Group, Eni, Total and Statoil, wrote that they appreciate the risks of the “critical challenge” of climate change and that they “stand ready to play their part”. After listing their contributions towards a lower carbon energy economy, they wrote :-

“For us to do more, we need governments across the world to provide us with clear, stable, long-term, ambitious policy frameworks. This would reduce uncertainty and help stimulate investments in the right low carbon technologies and the right resources at the right pace.”

“We believe that a price on carbon should be a key element of these frameworks. If governments act to price carbon, this discourages high carbon options and encourages the most efficient ways of reducing emissions widely, including reduced demand for the most carbon intensive fossil fuels, greater energy efficiency, the use of natural gas in place of coal, increased investment in carbon capture and storage, renewable energy, smart buildings and grids, off-grid access to energy, cleaner cars and new mobility business models and behaviors.”

The obvious problem with this call is that the oil and gas companies are pushing responsibility for change out to other actors in the economy, namely, the governments; yet the governments have been stymied at every turn by the lobbying of the oil and gas companies – a non-virtuous cycle of pressure. Where is the commitment by the oil and gas companies to act regardless of regulatory framework ?

I think that many of the technological and efficiency gains mentioned above can be achieved without pricing carbon, and I also think that efforts to assert a price on carbon dioxide emissions will fail to achieve significant change. Here are my top five reasons :-

1. Large portions of the economy will probably be ringfenced from participating in a carbon market or have exemptions from paying a carbon tax. There will always be special pleading, and it is likely that large industrial concerns, and centralised transportation such as aviation, will be able to beat back at a liability for paying for carbon dioxide emissions. Large industrial manufacture will be able to claim that their business is essential in sustaining the economy, so they should not be subject to a price on carbon. International industry and aviation, because of its international nature, will be able to claim that a carbon tax or a market in carbon could infringe their cross-border rights to trade without punitive regulatory charges.

2. Those who dig up carbon will not pay the carbon price. Fossil fuel producers will pass any carbon costs placed on them to the end consumers of fossil fuels. A price on carbon will inevitably make the cost of energy more expensive for every consumer, since somewhere in the region of 80% of global energy is fossil fuel-derived. Customers do not have a non-carbon option to turn to, so will be forced to pay the carbon charges.

3. A price on carbon dioxide emissions will not stop energy producers digging up carbon. An artificial re-levelising of the costs of high carbon energy will certainly deter some projects from going ahead, as they will become unprofitable – such as heavy oil, tar sands and remote oil, such as in the Arctic. However, even with jiggled energy prices from a price on carbon, fossil fuel producers will continue to dig up carbon and sell it to be burned into the sky.

4. A price on carbon dioxide emissions is being touted as a way to incentivise carbon capture and storage (CCS) by the authors of the letter – and we’ve known since they first started talking about CCS in the 1990s that they believe CCS can wring great change. Yet CCS will only be viable at centralised facilities, such as mines and power plants. It will not be possible to apply CCS in transport, or in millions of homes with gas-fired boilers.

5. A price on carbon dioxide emissions will not cause the real change that is needed – the world should as far as possible stop digging up carbon and burning it into the sky. What fossil carbon that still enters energy systems should be recycled where possible, using Renewable Gas technologies, and any other carbon that enters the energy systems should be sourced from renewable resources such as biomass.

Shell’s Public Relations Offensive #2

And so it has begun – Shell’s public relations offensive ahead of the 2015 Paris climate talks. The substance of their “advocacy” – and for a heavyweight corporation, it’s less lobbying than badgering – is that the rest of the world should adapt. Policymakers should set a price on carbon, according to Shell. A price on carbon might make some dirty, polluting energy projects unprofitable, and there’s some value in that. A price on carbon might also stimulate a certain amount of Carbon Capture and Storage, or CCS, the capturing and permanent underground sequestration of carbon dioxide at large mines, industrial plant and power stations. But how much CCS could be incentivised by pricing carbon is still unclear. Egging on the rest of the world to price carbon would give Shell the room to carry on digging up carbon and burning it and then capturing it and burying it – because energy prices would inevitably rise to cover this cost. Shell continues with the line that they started in the 1990s – that they should continue to dig up carbon and burn it, or sell it to other people to burn, and that the rest of the world should continue to pay for the carbon to be captured and buried – but Shell has not answered a basic problem. As any physicist could tell you, CCS is incredibly energy-inefficient, which makes it cost-inefficient. A price on carbon wouldn’t solve that. It would be far more energy-efficient, and therefore cost-efficient, to either not dig up the carbon in the first place, or, failing that, recycle carbon dioxide into new energy. Shell have the chemical prowess to recycle carbon dioxide into Renewable Gas, but they are still not planning to do it. They are continuing to offer us the worst of all possible worlds. They are absolutely right to stick to their “core capabilities” – other corporations can ramp up renewable electricity such as wind and solar farms – but Shell does chemistry, so it is appropriate for them to manufacture Renewable Gas. They are already using most of the basic process steps in their production of synthetic crude in Canada, and their processing of coal and biomass in The Netherlands. They need to join the dots and aim for Renewable Gas. This will be far less expensive, and much more efficient, than Carbon Capture and Storage. The world does not need to shoulder the expense and effort of setting a price on carbon. Shell and its fellow fossil fuel companies need to transition out to Renewable Gas.

Amber Rudd : First Skirmish

As if to provide proof for the sneaking suspicion that Great Britain is run by the wealthy, rather than by the people, and that energy policy is decided by a close-knit circle of privileged dynasties, up bubbles Amber Rudd MP’s first whirl of skirmish as Secretary of State for Energy and Climate Change : her brother Roland is chairperson of a lobbying firm, Finsbury, which is seeking to get state approval for a controversial gas storage scheme at Preesall, near Fleetwood, on behalf of the developers, Halite Energy of Preston, Lancashire.

Whilst some claim there is a starkly obvious conflict of interest for Rudd to take part in the decision-making process, the Department of Energy and Climate Change (DECC) could have denied it, but have instead confirmed that the potential reversal of a 2013 decision will be made, not by Rudd, but by Lord Bourne.

New gas storage in the United Kingdom is a crucial piece of the energy infrastructure provision, as recognised by successive governments. Developments have been ongoing, such as the opening of the Holford facility at Byley in Cheshire. Besides new gas storage, there are anticipated improvements for interconnectors with mainland Europe. These are needed for raising the volume of Natural Gas available to the British market, and for optimising Natural Gas flows and sales in the European regional context – a part of the EC’s “Energy Union”.

An underlying issue not much aired is that increased gas infrastructure is necessary not just to improve competition in the energy markets – it is also to compensate for Peak Natural Gas in the North Sea – something many commentators regularly strive to deny. The new Conservative Government policy on energy is not fit to meet this challenge. The new Secretary of State has gone public about the UK Government’s continued commitment to the exploitation of shale gas – a resource that even her own experts can tell her is unlikely to produce more than a footnote to annual gas supplies for several decades. In addition, should David Cameron be forced to usher in a Referendum on Europe, and the voters petulantly pull out of the Europe project, Britain’s control over Natural Gas imports is likely to suffer, either because of the failure of the “Energy Union” in markets and infrastructure, or because of cost perturbations.

Amber Rudd MP is sitting on a mountain of trouble, undergirded by energy policy vapourware : the promotion of shale gas is not going to solve Britain’s gas import surge; the devotion to new nuclear power is not going to bring new atomic electrons to the grid for decades, and the UK Continental Shelf is going to be expensive for the Treasury to incentivise to mine. What Amber needs is a proper energy policy, based on focused support for low carbon technologies, such as wind power, solar power and Renewable Gas to back up renewable electricity when the sun is not shining and wind is not blowing.

The Great Transition to Gas

Hello, hello; what have we here then ? Royal Dutch Shell buying out BG Group (formerly known as British Gas). Is this the start of the great transition out of petroleum oil into gas fuels ?

Volatile crude petroleum oil commodity prices over the last decade have played some undoubted havoc with oil and gas company strategy. High crude prices have pushed the choice of refinery feedstocks towards cheap heavy and immature gunk; influenced decisions about the choices for new petrorefineries and caused ripples of panic amongst trade and transport chiefs : you can’t keep the engine of globalisation ticking over if the key fuel is getting considerably more expensive, and you can’t meet your carbon budgets without restricting supplies.

Low crude commodity prices have surely caused oil and gas corporation leaders to break out into the proverbial sweat. Heavy oil, deep oil, and complicated oil suddenly become unprofitable to mine, drill and pump. Because the economic balance of refinery shifts. Because low commodity prices must translate into low end user refined product prices.

There maybe isn’t an ideal commodity price for crude oil. All the while, as crude oil commodity prices jump around like a medieval flea, the price of Natural Gas, and the gassy “light ends” of slightly unconventional and deep crude oil, stay quite cheap to produce and cheap to use. It’s a shame that there are so many vehicles on the road/sea/rails that use liquid fuels…all this is very likely to change.

Shell appear to be consolidating their future gas business by buying out the competition. Hurrah for common sense ! The next stage of their evolution, after the transition of all oil applications to gas, will be to ramp up Renewable Gas production : low carbon gas supplies will decarbonise every part of the economy, from power generation, to transport, to heating, to industrial chemistry.

This is a viable low carbon solution – to accelerate the use of renewable electricity – wind power and solar principally – and at the same time, transition the oil and gas companies to become gas companies, and thence to Renewable Gas companies.

Zero Careers In Plainspeaking

There are many ways to make a living, but there appear to be zero careers in plainspeaking.

I mean, who could I justify working with, or for ? And would any of them be prepared to accept me speaking my mind ?

Much of what I’ve been saying over the last ten years has been along the lines of “that will never work”, but people generally don’t get consulted or hired for picking holes in an organisation’s pet projects or business models.

Could I imagine myself taking on a role in the British Government ? Short answer : no.

The slightly longer answer : The British Government Department of Energy and Climate Change (DECC) ? No, they’re still hooked on the failed technology of nuclear power, the stupendously expensive and out-of-reach Carbon Capture and Storage (CCS), and the mythical beast of shale gas. OK, so they have a regular “coffee club” about Green Hydrogen (whatever that turns out to be according to their collective ruminations), and they’ve commissioned reports on synthetic methane, but I just couldn’t imagine they’re ever going to work up a serious plan on Renewable Gas. The British Government Department for Transport ? No, they still haven’t adopted a clear vision of the transition of the transport sector to low carbon energy. They’re still chipping away at things instead of coming up with a strategy.

Could I imagine myself taking on a role with a British oil and gas multinational ? Short and very terse and emphatic answer : no.

The extended answer : The oil and gas companies have had generous support and understanding from the world’s governments, and are respected and acclaimed. Yet they are in denial about “unburnable carbon” assets, and have dismissed the need for Energy Change that is the outcome of Peak Oil (whether on the supply or the demand side). Sneakily, they have also played both sides on Climate Change. Several major oil and gas companies have funded or in other ways supported Climate Change science denial. Additionally, the policy recommendations coming from the oil and gas companies are what I call a “delayer’s game”. For example, BP continues to recommend the adoption of a strong price on carbon, yet they know this would be politically unpalatable and take decades (if ever) to bring into effect. Shell continues to argue for extensive public subsidy support for Carbon Capture and Storage (CCS), knowing this would involve such huge sums of money, so it’s never going to happen, at least not for several decades. How on Earth could I work on any project with these corporations unless they adopt, from the centre, a genuine plan for transition out of fossil fuels ? I’m willing to accept that transition necessitates the continued use of Natural Gas and some petroleum for some decades, but BP and Royal Dutch Shell do need to have an actual plan for a transition to Renewable Gas and renewable power, otherwise I would be compromising everything I know by working with them.

Could I imagine myself taking on a role with a large engineering firm, such as Siemens, GE, or Alstom, taking part in a project on manufactured low carbon gas ? I suppose so. I mean, I’ve done an IT project with Siemens before. However, they would need to demonstrate that they are driving for a Renewable Gas transition before I could join a gas project with them. They might not want to be so bold and up-front about it, because they could risk the wrath of the oil and gas companies, whose business model would be destroyed by engineered gas and fuel solutions.

Could I imagine myself building fuel cells, or designing methanation catalysts, or improving hydrogen production, biocoke/biocoal manufacture or carbon dioxide capture from the oceans… with a university project ? Yes, but the research would need to be funded by companies (because all applied academic research is funded by companies) with a clear picture on Energy Change and their own published strategy on transition out of fossil fuels.

Could I imagine myself working on rolling out gas cars, buses and trucks ? Yes. The transition of the transport sector is the most difficult problem in Energy Change. However, apart from projects that are jumping straight to new vehicles running entirely on Hydrogen or Natural Gas, the good options for transition involve converting existing diesel engine vehicles to running mostly on Natural Gas, such as “dual fuel”, still needing roughly 20% of liquid diesel fuel for ignition purposes. So I would need to be involved with a project that aims to supply biodiesel, and have a plan to transition from Natural Gas to Renewable Gas.

Could I imagine myself working with a team that has extensive computing capabilities to model carbon dioxide recycling in power generation plant ? Yes.

Could I imagine myself modelling the use of hydrogen in petroleum refinery, and making technological recommendations for the oil and gas industry to manufacture Renewable Hydrogen ? Possibly. But I would need to be clear that I’m doing it to enable Energy Change, and not to prop up the fossil fuel paradigm – a game that is actually already bust and needs helping towards transition.

Could I imagine myself continuing to research the growth in Renewable Gas – both Renewable Hydrogen and Renewable Methane – in various countries and sectors ? Possibly. It’s my kind of fun, talking to engineers.

But whatever future work I consider myself doing, repeatedly I come up against this problem – whoever asked me to work with them would need to be aware that I do not tolerate non-solutions. I will continue to say what doesn’t work, and what cannot work.

If people want to pay me to tell them that what they’re doing isn’t working, and won’t work, then fine, I’ll take the role.

I’d much rather stay positive, though, and forge a role where I can promote the things that do work, can work and will work.

The project that I’m suitable for doesn’t exist yet, I feel. I’m probably going to continue in one way or another in research, and after that, since I cannot see a role that I could fit easily or ethically, I can see I’m going to have to write my own job description.

Renewable Gas : A Presentation #1

Last week, on the invitation of Dr Paul Elsner at Birkbeck, University of London, I gave a brief address of my research so far into Renewable Gas to this year’s Energy and Climate Change class, and asked and answered lots of questions before demolishing the mythical expert/student hierarchy paradigm – another incarnation of the “information deficit model”, perhaps – and proposed everyone work in breakout groups on how a transition from fossil fuel gas to Renewable Gas could be done.

A presentation of information was important before discussing strategies, as we had to cover ground from very disparate disciplines such as chemical process engineering, the petroleum industry, energy statistics, and energy technologies, to make sure everybody had a foundational framework. I tried to condense the engineering into just a few slides, following the general concept of UML – Unified Modelling Language – keeping everything really simple – especially as processing, or work flow (workflow) concepts can be hard to describe in words, so diagrams can really help get round the inevitable terminology confusions.

But before I dropped the class right into chemical engineering, I thought a good place to start would be in numbers, and in particular the relative contributions to energy in the United Kingdom from gas and electricity. Hence the first slide.

The first key point to notice is that most heat demand in the UK in winter is still provided by Natural Gas, whether Natural Gas in home boilers, or electricity generated using Natural Gas.

The second is that heat demand in energy terms is much larger than power demand in the cold months, and much larger than both power and heat demand in the warm months.

The third is that power demand when viewed on annual basis seems pretty regular (despite the finer grain view having issues with twice-daily peaks and weekday demand being much higher than weekends).

The reflection I gave was that it would make no sense to attempt to provide all that deep winter heat demand with electricity, as the UK would need an enormous amount of extra power generation, and in addition, much of this capacity would do nothing for most of the rest of the year.

The point I didn’t make was that nuclear power currently provides – according to official figures – less than 20% of UK electricity, however, this works out as only 7.48% of total UK primary energy demand (DUKES, 2014, Table 1.1.1, Mtoe basis). The contribution to total national primary energy demand from Natural Gas by contrast is 35.31%. The generation from nuclear power plants has been falling unevenly, and the plan to replace nuclear reactors that have reached their end of life is not going smoothly. The UK Government Department of Energy and Climate Change have been pushing for new nuclear power, and project that all heating will convert to electricity, and that nuclear power will provide for much of this (75 GW by 2050). But if their plan relies on nuclear power, and nuclear power development is unreliable, it is hard to imagine that it will succeed.

Only Just Getting Started

In the last couple of years I have researched and written a book about the technologies and systems of Renewable Gas – gas energy fuels that are low in net carbon dioxide emissions. From what I have learned so far, it seems that another energy world is possible, and that the transition is already happening. The forces that are shaping this change are not just climate or environmental policy, or concerns about energy security. Renewable Gas is inevitable because of a range of geological, economic and industrial reasons.

I didn’t train as a chemist or chemical process engineer, and I haven’t had a background in the fossil fuel energy industry, so I’ve had to look at a number of very basic areas of engineering, for example, the distillation and fractionation of crude petroleum oil, petroleum refinery, gas processing, and the thermodynamics of gas chemistry in industrial-scale reactors. Why did I need to look at the fossil fuel industry and the petrochemical industry when I was researching Renewable Gas ? Because that’s where a lot of the change can come from. Renewable Gas is partly about biogas, but it’s also about industrial gas processes, and a lot of them are used in the petrorefinery and chemicals sectors.

In addition, I researched energy system technologies. Whilst assessing the potential for efficiency gains in energy systems through the use of Renewable Electricity and Renewable Gas, I rekindled an interest in fuel cells. For the first time in a long time, I began to want to build something – a solid oxide fuel cell which switches mode to an electrolysis unit that produces hydrogen from water. Whether I ever get to do that is still a question, but it shows how involved I’m feeling that I want to roll up my sleeves and get my hands dirty.

Even though I have covered a lot of ground, I feel I’m only just getting started, as there is a lot more that I need to research and document. At the same time, I feel that I don’t have enough data, and that it will be hard to get the data I need, partly because of proprietary issues, where energy and engineering companies are protective of developments, particularly as regards actual numbers. Merely being a university researcher is probably not going to be sufficient. I would probably need to be an official within a government agency, or an industry institute, in order to be permitted to reach in to more detail about the potential for Renewable Gas. But there are problems with these possible avenues.

You see, having done the research I have conducted so far, I am even more scornful of government energy policy than I was previously, especially because of industrial tampering. In addition, I am even more scathing about the energy industry “playing both sides” on climate change. Even though there are some smart and competent people in them, the governments do not appear to be intelligent enough to see through expensive diversions in technology or unworkable proposals for economic tweaking. These non-solutions are embraced and promoted by the energy industry, and make progress difficult. No, carbon dioxide emissions taxation or pricing, or a market in carbon, are not going to make the kind of changes we need on climate change; and in addition they are going to be extremely difficult and slow to implement. No, Carbon Capture and Storage, or CCS, is never going to become relatively affordable in any economic scenario. No, nuclear power is too cumbersome, slow and dodgy – a technical term – to ever make a genuine impact on the total of carbon emissons. No, it’s not energy users who need to reduce their consumption of energy, it’s the energy companies who need to reduce the levels of fossil fuels they utilise in the energy they sell. No, unconventional fossil fuels, such as shale gas, are not the answer to high emissions from coal. No, biofuels added to petrofuels for vehicles won’t stem total vehicle emissions without reducing fuel consumption and limiting the number of vehicles in use.

I think that the fossil fuel companies know these proposals cannot bring about significant change, which is precisely why they lobby for them. They used to deny climate change outright, because it spelled the end of their industry. Now they promote scepticism about the risks of climate change, whilst at the same time putting their name to things that can’t work to suppress major amounts of emissions. This is a delayer’s game.

Because I find the UK Government energy and climate policy ridiculous on many counts, I doubt they will ever want me to lead with Renewable Gas on one of their projects. And because I think the energy industry needs to accept and admit that they need to undergo a major change, and yet they spend most of their public relations euros telling the world they don’t need to, and that other people need to make change instead, I doubt the energy industry will ever invite me to consult with them on how to make the Energy Transition.

I suppose there is an outside chance that the major engineering firms might work with me, after all, I have been an engineer, and many of these companies are already working in the Renewable Gas field, although they’re normally “third party” players for the most part – providing engineering solutions to energy companies.

Because I’ve had to drag myself through the equivalent of a “petro degree”, learning about the geology and chemistry of oil and gas, I can see more clearly than before that the fossil fuel industry contains within it the seeds of positive change, with its use of technologies appropriate for manufacturing low carbon “surface gas”. I have learned that Renewable Gas would be a logical progression for the oil and gas industry, and also essential to rein in their own carbon emissions from processing cheaper crude oils. If they weren’t so busy telling governments how to tamper with energy markets, pushing the blame for emissions on others, and begging for subsidies for CCS projects, they could instead be planning for a future where they get to stay in business.

The oil and gas companies, especially the vertically integrated tranche, could become producers and retailers of low carbon gas, and take part in a programme for decentralised and efficient energy provision, and maintain their valued contribution to society. At the moment, however, they’re still stuck in the 20th Century.

I’m a positive person, so I’m not going to dwell too much on how stuck-in-the-fossilised-mud the governments and petroindustry are. What I’m aiming to do is start the conversation on how the development of Renewable Gas could displace dirty fossil fuels, and eventually replace the cleaner-but-still-fossil Natural Gas as well.

Renewable Energy : Google Blind

In an interesting article by two Google engineers, Ross Koningstein and David Fork, "What It Would Really Take to Reverse Climate Change : Today’s renewable energy technologies won’t save us. So what will?", the authors concluded from their modelling scenarios that :-

"While a large emissions cut sure sounded good, this scenario still showed substantial use of natural gas in the electricity sector. That’s because today’s renewable energy sources are limited by suitable geography and their own intermittent power production."

Erm. Yes. Renewable electricity is variable and sometimes not available, because, well, the wind doesn’t always blow and the sun doesn’t always shine, you know. This has been known for quite some time, actually. It’s not exactly news. Natural Gas is an excellent complement to renewable electricity, and that’s why major industrialised country grid networks rely on the pairing of gas and power, and will do so for some time to come. Thus far, no stunner.

What is astonishing is that these brain-the-size-of-a-planet guys do not appear to have asked the awkwardly obvious question of : "so, can we decarbonise the gas supply, then ?" Because the answer is "yes, very largely, yes."

And if you have Renewable Gas backing up Renewable Power, all of a sudden, shazam !, kabam ! and kapoom !, you have An Answer. You can use excess wind power and excess solar power to make gas, and you can store the gas to use when there’s a still, cold period on a wintry night. And at other times of low renewable power, too. And besides using spare green power to make green gas, you can make Renewable Gas in other ways, too.

The Google engineers write :-

"Now, [Research and Development] dollars must go to inventors who are tackling the daunting energy challenge so they can boldly try out their crazy ideas. We can’t yet imagine which of these technologies will ultimately work and usher in a new era of prosperity – but the people of this prosperous future won’t be able to imagine how we lived without them."

Actually, Renewable Gas is completely non-crazy. It’s already being done all over the world in a variety of locations – with a variety of raw resources. We just need to replace the fossil fuel resources with biomass – that’s all.

And there’s more – practically all the technology is over a century old – it just needs refining.

I wonder why the Google boys seem to have been so unaware of this. Maybe they didn’t study the thermodynamics of gas-to-gas reactions at kindergarten, or something.

Thanks to the deliberate misinterpretation of the Google "brothers" article, The Register, James Delingpole’s Breitbart News and Joanne Nova are not exactly helping move the Technological Debate forward, but that’s par for the course. They rubbished climate change science. Now they’ve been shown to be wrong, they’ve moved on, it seems, to rubbishing renewable energy systems. And they’re wrong there, too.

Onwards, my green engineering friends, and upwards.

UKERC : Gas by Design (2)

This week, I had the opportunity to join the launch of the UKERC’s latest research into the future of gas. The esteemed delegates included members of a Russian Trade Delegation and several people from the US Embassy. Clearly, the future of gas is an international thing.


[continued from Gas by Design ]

Mike Bradshaw, Warwick Business School = [MB]

[MB] I’m somewhat daunted by this audience – the report is aimed perhaps for informed public audience. The media [ambushed us on the question of shale gas, shale gas attracted more attention] but things we didn’t cover much about there we can cover here. It’s been a real rollercoaster ride in the gas industry. Any flights of fancy (in the report) are our faults and not theirs [reference to work of colleagues, such as Jonathan Stern at Oxford Institute for Energy Studies]. A set of shortcomings dealing with the issue of Energy Security. There is a tendency to think that oil and gas are the same. They’re not. The framework, the actors and the networks, trade statistics, policies [much different for gas than for oil]. [In the UK for example we are seeing] a rapid increase in import dependence [and in other countries]. Need to [pay] particular understanding on what will happen in far-flung places. Today, the US-China agreement could influence gas demand. [In the literature on gas, some anomalies, perhaps]. Academics may not understand markets. [What we are seeing here is] the globalisation of UK gas security – primarily Europeanisation. There is growing uncertainty [about] the material flow of gas. [Threshold] balance in three sectors – strong seasonality, impact of climate and temperature [on gas demand]. The Russian agreement with Ukraine [and Europe] – the one thing everybody was hoping for was a warm winter. While the gas market is important [industrial use and energy use], domestic/residential demand is still very significant [proportion of total demand], so we need to look at energy efficiency [building insulation rates] and ask will people rip out their gas boilers ? For the UK, we are some way across the gas bridge – gas has enabled us to meet [most of] our Kyoto Protocol commitments. Not long until we’ve crossed it. Our coal – gone. With coal gone, what fills the gaps ? Renewable electricity – but there is much intermittency already. We’re not saying that import dependency is necessarily a problem. Physical security is not really the problem – but the [dependence on] the interconnectors, the LNG (Liquefied Natural Gas) imports – these create uncertainties. The UK also plays a role as a gas exporter – and in landing Norwegian gas [bringing it into the European market]. I’m a geographer – have to have at least one map – of gas flows [in and out of the country]. The NTS (National Transmission System – the high pressure Natural Gas-carrying pipeline network – the “backbone” of the gas transmission and distribution system of National Grid] has responded to change – for example in the increasing sources of LNG [and “backflow” and “crossflow” requirements]. There are 9 points of entry for gas into the UK at the moment. If the Bowland Shale is exploited, there could be 100s of new points of entry [the injection of biogas as biomethane into the gas grid would also create new entry points]. A new challenge to the system. [The gas network has had some time to react in the past, for example] LNG imports – the decision to ramp up the capacity was taken a long time ago. [Evolution of] prices in Asia have tracked the gas away [from the European markets] after the Fukushima Dai-ichi disaster. And recently, we have decided to “fill up the tanks” again [LNG imports have risen in the last 24 or so months]. Very little LNG is “firm” – it needs to follow the market. It’s not good to simply say that “the LNG will come” [without modelling this market]. The literature over-emphasises the physical security of the upstream supplies of gas. [The projections have] unconventional gas growing [and growing amounts of biogas]. But it’s far too early to know about shale gas – far too early to make promises about money when we don’t even have a market [yet]. Policy cannot influence the upstream especially in a privatised market. The interconnectors into the European Union means we have to pay much more attention to the Third EU Energy Package. Colleagues in Oxford are tracking that. The thorny question of storage. We have less than 5 bcm (billion cubic metres). We’d like 10% perhaps [of the winter period demand ?] Who should pay for it ? [A very large proportion of our storage is in one place] the Rough. We know what happens – we had a fire at the Rough in 2006… Everyone worries about geopolitics, but there are other potential sources of problems – our ageing infrastructure […] if there is a technical problem and high demand [at the same time]. Resilience [of our gas system is demonstrated by the fact that we have] gas-on-gas competition [in the markets] – “liquid” gas hub trading – setting the NBP (National Balancing Point). [There are actually 3 kinds of gas security to consider] (a) Security of Supply – not really a problem; (b) Security of Transport (Transit) – this depends on markets and (c) Security of Demand – [which strongly depends on whether there is a] different role for gas in the future. But we need to design enough capacity even though we may not use all of it [or not all of the time]. We have mothballed gas-fired power plants already, for reasons you all know about. We already see the failure of the ETS (European Union Emissions Trading Scheme) [but if this can be reformed, as as the Industrial Emissions Directive bites] there will be a return to gas as coal closes. The role of Carbon Capture and Storage (CCS) becomes critical in retaining gas. CCS however doesn’t answer issues of [physical energy security, since CCS requires higher levels of fuel use].

[Question from the floor] Gas has a role to play in transition. But how do we need to manage that role ? Too much focus on building Renewable Energy system. What is the impact on the current infrastructure ? For managing that decline in the incumbent system – gas is there to help – gas by design rather than gas by default.

[Question from the floor, Jonathan Stern] [In your graphs/diagrams] the Middle East is a major contributor to gas trade. We see it differently. The Qataris [could/may/will] hold back [with expanding production] until 2030. Iran – our study [sees it as] a substitute contributor. Oil-indexed gas under threat and under challenge. If you could focus more on the global gas price… [New resources of gas could be very dispersed.]Very difficult to get UK people to understand [these] impacts on the gas prices [will] come from different places than they can think of.

[Question from the floor] Availability of CCS capacity ? When ? How much ? Assumptions of cost ?

[Question from the floor : Tony Bosworth, Friends of the Earth] Gas as a bridge – how much gas do we need for [this process] ? What about unburnable carbon ? Do we need more gas to meet demands ?

[Answer – to Jonathan Stern – from Christophe McGlade ?] The model doesn’t represent particularly well political probabilities. Iran has a lot of gas – some can come online. It will bring it online if it wants to export it. Some simplifications… might be over optimistic. Your work is helpful to clarify.

On gas prices – indexation versus global gas price – all the later scenarios assumed a globalised gas price. More reasonable assumptions.

On CCS : first [coming onstream] 2025 – initially quite a low level, then increasing by 10% a year. The capital costs are approximately 60% greater than other options and causes a drop in around 10% on efficiency [because making CCS work costs you in extra fuel consumed]. If the prices of energy [including gas] increase, then CCS will have a lesser relative value [?].

On availability of gas : under the 2 degrees Celsius scenario, we could consume 5 tcm (trillion cubic metres) of gas – and this can come from reserves and resources. There are a lot of resources of Natural Gas, but some of it will be at a higher price. In the model we assume development of some new resources, with a growth in shale gas, and other unconventional gas. Because of the climate deal, we need to leave some gas underground.

[Answer from the panel] Indexation of gas prices to oil… Further gas demand is in Asia – it’s a question of whose gas gets burnt. [Something like] 70% of all Natural Gas gets burned indigenously [within the country in which it is produced]. When we talk about “unburnable gas”, we get the response “you’re dreaming” from some oil companies, “it won’t be our fossil fuels that get stranded”. LNG models envisage a different demand profile [in the future, compared to now]. When China [really gets] concerned about air quality [for example]. Different implications.

[Question from the floor, from Centrica ?] What’s in the model for the globalised gas price – Henry Hub plus a bit ? There is not a standard one price.

[Question from the floor] On the question of bridging – the long-term bridge. What issues do you see when you get to 2030 for investment ? [We can see] only for the next few years. What will investors think about that ?

[Question from the floor] [With reference to the Sankey diagram of gas use in the UK] How would that change in a scenario of [electrification – heat and transport being converted to run on electrical power] ?

[Question from the floor] Stranded assets. How the markets might react ? Can you put any numbers on it – especially in the non-CCS scenario ? When do we need to decide [major strategy] for example, [whether we could or should be] shutting off the gas grid ? How would we fund that ? Where are the pinch points ?

[Answer from the panel] On the global gas price – the model does not assume a single price – [it will differ over each] region. [The price is allowed to change regionally [but is assumed to arise from global gas trading without reference to oil prices.] Asian basin will always be more expensive. There will be a temperature differential between different hubs [since consumption is strongly correlated with seasonal change]. On stranded assets – I think you mean gas power plants ? The model is socially-optimal – all regions working towards the 2 degrees Celsius global warming target. The model doesn’t limit stranded assets – and do get in the non-CCS scenario. Build gas plants to 2025 – then used at very low load factors. Coal plants need to reduce [to zero] given that the 2 degrees Celsius targets are demanding. Will need gas for grid balancing – [new gas-fired power generation assets will be] built and not used at high load factors.

[Answer from the panel] Our report – we have assume a whole system question for transition. How successful will the Capacity Mechanism be ? UKERC looking at electrification of heating – but they have not considered the impact on gas (gas-to-power). Will the incentives in place be effective ? The Carbon Budget – what are the implications ? Need to use whole system analysis to understand the impact on gas. Issue of stranded assets : increasingly important now [not at some point in the future]. On pinch point : do we need to wait another three years [for more research] ? Researchers have looked more at what to spend – what to build – and less on how to manage the transition. UKERC have started to explore heat options. It’s a live issue. Referenced in the report.

[Question from the floor, from Richard Sverrisson, News Editor of Montel] Will reform to the EU ETS – the Market Stability Reserve (MSR) – will that be enough to bring gas plant into service ?

[Question from the floor] On oil indexation and the recent crash in the crude price – what if it keeps continuing [downwards] ? It takes gas prices down to be competitive with hub prices. [What about the impact on the economic profitability of] shale oil – where gas driving related prices ? Are there some pricing [functions/variables] in the modelling – or is it merely a physical construct ?

[Question from the floor, from Rob Gross of UCL] On intermittency and the flexibility of low carbon capacity. The geographical units in the modelling are large – the role of gas depends on how the model is constrained vis-a-vis intermittency.

[Answer from the panel, from Christophe McGlade] On carbon dioxide pricing : in the 2 degrees Celsius scenario, the price is assumed to be $200 per tonne. In the non-CCS scenario, the price is in the region of $400 – $500 per tonne [?] From 2020 : carbon price rises steeply – higher than the Carbon Floor Price. How is the the 2 degrees Celsius target introduced ? If you place a temperature constraint on the energy system, the model converts that into carbon emissions. The latest IPCC report shows that there remains an almost linear trend between carbon budget and temperature rise – or should I say a greenhouse gas budget instead : carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The emissions pledges of the [European Union ?] have been adopted by this model – also the development of renewable energy and fuel standards. No exogenous assumptions on carbon pricing. On intermittency – the seasonality is represented by summer, winter and intermediate; and time day generalised as morning, night, evening and peak (morning peak). [Tighter modelling would provide more] certainty which would remove ~40% of effective demand [?] Each technology has a contribution to make to peak load. Although, we assume nothing from wind power – cannot capture hour to hour market. The model does build capacity that then it doesn’t use.

[Answer from the panel] On carbon pricing and the EU ETS reform : I wouldn’t hold my breath [that this will happen, or that it will have a major impact]. We have a new commission and their priority is Poland – nothing serious will happen on carbon pricing until 2020. Their emphasis is much more on Central European issues. I don’t expect [us] to have a strong carbon price since policy [will probably be] more focussed on social democracy issues. Moving to a relatively lower price on oil : Asia will hedge. Other explorters currently sticking to indexation with oil. The low price of wet gas (condensate) in the USA is a result of the over-supply, which followed an over-supply in NGLs (Natural Gas Liquids) – a bumpy road. Implications from USA experience ? Again, comes back to watching what is happening in Asia.

[to be continued…]

UKERC : Gas by Design

Today I attended a meeting of minds.

It’s clear to me that the near-term and mid-term future for energy in the United Kingdom and the European Union will best be centred on Natural Gas and Renewable Electricity, and now the UK Energy Research Centre has modelled essentially the same scenario. This can become a common narrative amongst all parties – the policy people, the economists, the technologists, the non-governmental groups, as long as some key long-term de-carbonisation and energy security objectives are built into the plan.

The researchers wanted to emphasise from their report that the use of Natural Gas should not be a default option in the case that other strategies fail – they want to see a planned transition to a de-carbonised energy system using Natural Gas by design, as a bridge in that transition. Most of the people in the room found they could largely agree with this. Me, too. My only caveat was that when the researchers spoke about Gas-CCS – Natural Gas-fired power generation with Carbon Capture and Storage attached, my choice would be Gas-CCU – Natural Gas-fired power generation with Carbon Capture and Re-utilisation – carbon recycling – which will eventually lead to much lower emissions gas supply at source.

What follows is a transcription of my poorly-written notes at the meeting, so you cannot accept them as verbatim.

Jim Watson, UKERC = [JW]
Christophe McGlade, University College London (UCL) = [CM]
Mike Bradshaw, Warwick Business School = [MB]

[JW] Thanks to Matt Aylott. Live Tweeting #FutureOfGas. Clearly gas is very very important. It’s never out of the news. The media all want to talk about fracking… If we want to meet the 2 degrees Celsius target of the United Nations Framework Convention on Climate Change, how much can gas be a part of this ? Is Natural Gas a bridge – how long a ride will that gas bridge be ?

[CM] Gas as a bridge ? There is healthy debate about the Natural Gas contribution to climate change [via the carbon dioxide emissions from burning Natural Gas, and also about how much less in emissions there is from burning Natural Gas compared to burning coal]. The IPCC said that “fuel switching” from coal to gas would offer emissions benefits, but some research, notably McJeon et al. (2014) made statements that switching to Natural Gas cannot confer emissions benefits. Until recently, there have not been many disaggregated assessments on gas as a bridge. We have used TIAM-UCL. The world is divided into 16 regions. The “climate module” seeks to constrain the global temperature rise to 2 degrees Celsius. One of the outcomes from our model was that export volumes [from all countries] would be severaly impacted by maintaining the price indexation between oil and gas. [Reading from chart on the screen : exports would peak in 2040s]. Another outcome was that gas consumption is not radically affected by different gas market structures. However, the over indexation to the oil price may destroy gas export markets. Total exports of natural gas are higher under the 2 degrees Celsius scenario compared to the 4 degrees Celsius scenario – particularly LNG [Liquefied Natural Gas]. A global climate deal will support gas exports. There will be a higher gas consumption under a 2 degrees Celsius deal compared to unconstrained scenario [leading to a 4 degrees Celsius global temperature rise]. The results of our modelling indicate that gas acts as a bridge fuel out to 2035 [?] in both absolute and relative terms. There is 15% greater gas consumption in the 2 degrees Celsius global warming scenario than in the 4 degrees Celsius global warming scenario. Part of the reason is that under the 4 degrees Celsius scenario, Compressed Natural Gas vehicles are popular, but a lot less useful under the 2 degrees Celsius scenario [where hydrogen and other fuels are brought into play].

There are multiple caveats on these outcomes. The bridging period is strictly time-limited. Some sectors need to sharply reduce consumption [such as building heating by Natural Gas boilers, which can be achieved by mass insulation projects]. Coal must be curtailed, but coal-for-gas substitution alone is not sufficient. Need a convincing narrative about how coal can be curtailed. In an absence of a global binding climate deal we will get consumption increases in both coal and gas. In the model, gas is offsetting 15% of coal by 2020, and 85% by 2030. With Carbon Capture and Storage (CCS), gas’s role is drastically reduced – after 2025 dropping by 2% a year [of permitted gas use]. Not all regions of the world can use gas as a bridge. [Reading from the chart : with CCS, gas is a strong bridging fuel in the China, EU, India, Japan and South Korea regions, but without CCS, gas is only strong in China. With CCS, gas’s bridging role is good in Australasia, ODA presumably “Offical Development Assistance” countries and USA. Without CCS, gas is good for Africa, Australasia, EU, India, Japan, South Korea, ODA and USA.]

In the UK, despite the current reliance on coal, there is little scope to use it as a transition fuel. Gas is unlikely to be removed from UK energy system by 2050.

[Question from the floor] The logic of gas price indexation with the oil price ?

[CM] If maintain oil indexation, exports will reduce as countries turn more towards indigenous at-home production of gas for their domestic demand. This would not be completely counter-balanced by higher oil and therefore gas prices, which should stimulate more exports.

[Point from the floor] This assumes logical behaviour…

[Question from the floor] [Question about Carbon Capture and Storage (CCS)]

[CM] The model does anticipate more CCS – which permits some extra coal consumption [at the end of the modelling period]. Gas-CCS [gas-fired power generation with CCS attached] is always going to generate less emissions than coal-CCS [coal-fired power generation with CCS attached] – so the model prefers gas-CCS.

[to be continued…]

Climbing the Concern Ladder

How do we get things changed in a democracy ? The model of political campaigning that has been established over the last century is failing us. In the past, if there was a problem, a small group of people could create a fuss about it, march some placards to somewhere relevant, write some letters, talk to some dignitaries, chain themselves to some railings, occupy a lobby, get some press, and after some years, maybe, get something done.

These days there are just too many complaints for them all to be heard. Philanthropic, charitable and political messages crowd the stage. In this age of social media, the campaign metaphor has been replaced by a ladder of concern. Concern is expressed. Hopefully others will find that they too are sufficiently concerned, and reflect that concern through some medium. And slowly, it is hoped, this concern climbs the ladder of attention, until it is visible, audible. The entitled and endowed middle classes catch the concern, and repeat it. Lots of emails fly. George Monbiot writes about it in The Guardian. Some speeches are made at serious meetings. Angelina Jolie is invited to grace a conference. And then, hopefully, this concern hits the people who have some kind of leverage over the problem, and they act.

Action is almost guaranteed if the concern is the result of a specific outrage, committed by a specific person or group, and has a specific solution. But otherwise, who knows ? How universal and impactful does a concern need to be before it gets acted upon ? And surely some things don’t need campaigns, because the governments already know enough about problems such as people trafficking, slavery, animal welfare, crime and torture ? After all, things such as prostitution and illegal drug trade are included in national economic statistics.

I took public transport today in London and I was doused in outrage pouring from advertisements asking for charitable giving to prevent the inhuman practice of Female Genital Mutilation (FGM). As I read these appeals, I felt two overwhelming sensations – one of intense anger that children are being permanently injured because of insane and unjustifiable, hateful beliefs about female sexuality. And a second feeling of dragging despair that giving a small donation every month to this organisation would have very little impact on abusive culture, which leads to many forms of violation, not just the unimaginably painful and destructive incision and even resection of a child’s clitoris and the sewing together of her labia, leading to permanent nerve damage, lasting wounds, loss of sexual function, complications from incontinence, ruined relationships, injuries from sexual intercourse, and serious medical risks during childbirth, and possibly the need for reconstructive surgery.

This is a problem which cannot be fixed by expressing normal murmurs of concern, building a wave of concern that climbs a ladder of concern, or making monthly token charitable payments. This concern is not susceptible to a campaign. What this problem needs is regulation, legislation, policing. This concern shouldn’t have to compete with all the other concerns out there, like distressed retired donkeys, threatened butterflies, meltdown polar bears, de-forested orangutans and by-catch dolphins. Some things just shouldn’t happen. They just shouldn’t be tolerated. And they shouldn’t be lost amongst an avalanche of other concerns. This problem is so serious that it should be an automatic priority for all the authorities, co-ordinating to detect and prevent it. This concern shouldn’t have to campaign for funds. Or attention.

Switch to BBC News. Roger Harrabin reports that “The UK’s chief scientist says the oceans face a serious and growing risk from man-made carbon emissions. […] Sir Mark Walport warns that the acidity of the oceans has increased by about 25% since the industrial revolution, mainly thanks to manmade emissions. […] He told BBC News: “If we carry on emitting CO2 [carbon dioxide] at the same rate, ocean acidification will create substantial risks to complex marine food webs and ecosystems.” […] The consequences of acidification are likely to be made worse by the warming of the ocean expected with climate change, a process which is also driven by CO2.”

Media Lens Editors reported this piece. My reaction was – who would be paying attention to this ? This is not the “dangerous climate change comes from global warming” story, this is the “other” carbon problem, the decimation of marine productivity and the whole pyramid of life, resulting from increasing levels of dissolved carbon dioxide in seawater because of higher levels of carbon dioxide in the air. The overwhelmingly major causes of this problem are irrefutably and definitely fossil fuel combustion, and its seriousness is hard to deny, even though Roger Harrabin attempts to make light of it by devoting column inches to a laboratory crab who isn’t getting with the programme.

Ocean acidification is a concern that shouldn’t get lost in amongst other concerns. It should be paid serious levels of attention. And not just by middle class philanthropists who work for non-governmental organisations and charities. And yet, cursory analysis of the segmentation of the population who treat BBC News as a main and trusted information source may suggest that the only readers who would act on this piece are exactly these middle class charity staff, or at a push, retired middle class charity staff.

My Media Lens comment was, “Right expert. Right message. Wrong audience. Wrong medium. The UK Government’s chief scientist. OK. Good. Ocean acidification. OK. Good. No quibbles about whether or not extra carbon dioxide in the atmosphere is a real problem or not (as known as “climate change” or “global warming”, which is real by the way). The BBC News. Wrong medium. Wrong audience. The only people going to listen to this are those who already know about the problem but are still as powerless to act as they were yesterday. The UK Government should present this information to the oil, gas and coal companies with a polite request for them to unveil their plan of action in the face of this undeniable problem.”

There is no reason why this story should be covered in BBC News by Roger Harrabin. What can anybody reading it do about the problem ? There is no purpose for this article. It is a pointless statement of concern, or rather, a belittling rehearsal of the concern. Unless this article, and the thousands like it, lead to the Government demanding answers on Energy Change from the fossil fuel companies, there is no point in reporting it, or in this case, disparaging it with faint humour.

The only time that ocean acidification should appear in a media piece is to report that the problem has been presented to the architects of increased ocean carbon dioxide, and answers have been requested.

And who are the architects of increased atmospheric and ocean carbon dioxide ? Those who mine fossil fuels. Those companies like BP and Shell, ExxonMobil, and all the coal extraction companies should act. They should offer us alternative non-fossil fuel energy. And the news should be about how these companies are taking action to offer us Renewable Hydrogen, Renewable Methane, solar power, wind power and Zero Carbon transport fuels.

Answers from the past will simply not do. Trying to assert that somebody needs to pay for pollution won’t prevent pollution occurring. Carbon taxes or carbon pricing won’t work – since they won’t prevent the mining of fossil fuels – and if fossil fuels are mined, of course they will be burned. Carbon combustion quotas won’t work – since economic wealth is based on burning carbon, so many forces will conspire to maintain levels of fossil fuel combustion. Carbon mining quotas won’t work, since the forces for increasing mining quotas are strong. Carbon trading won’t work, since it won’t reduce the amount of fossil fuels mined – because, obviously, if fossil fuels are mined, they will be burned.

I am tired of reading about climate change, global warming, freshwater stress and ocean acidification in the news. It seems there is nothing I can do that I have not already done that can provide a solution to these problems. Enough with communicating the disaster. I want to read about engineering and energy companies who have switched business models to producing Zero Carbon energy. I want to hear how energy security concern is taking oil, gas and coal companies towards Renewable Everything.

This Too Will Fail

I will probably fail to make myself understood, yet again, but here goes…

The reasons the United Nations Climate Change process is failing are :-

1.   The wrong people are being asked to shoulder responsibility

It is a well-rumoured possibility that the fossil fuel industry makes sure it has sympathisers and lobbyists at the United Nations Framework Convention on Climate Change (UNFCCC) conferences. It is only natural that they should want to monitor proceedings, and influence outcomes. But interventions by the energy sector has a much wider scope. Delegates from the countries with national oil and gas companies are key actors at UNFCCC conferences. Their national interests are closely bound to their fossil fuel exports. Many other countries understand their national interest is bound to the success of energy sector companies operating within their borders. Still others have governments with energy policy virtually dictated by international energy corporations. Yet when the UNFCCC discusses climate change, the only obligations discussed are those of nations – the parties to any treaty are the governments and regimes of the world. The UNFCCC does not hold oil and gas (and coal) companies to account. BP and Shell (and Exxon and Chevron and Total and GDF Suez and Eni and so on) are not asked to make undertakings at the annual climate talks. Governments are hoped to forge a treaty, but this treaty will create no leverage for change; no framework of accountability amongst those who produce oil, gas and coal.

2.   The right people are not in the room

It’s all very well for Governments to commit to a treaty, but they cannot implement it. Yes, their citizens can make a certain amount of changes, and reduce their carbon emissions through controlling their energy consumption and their material acquisitions. But that’s not the whole story. Energy has to be decarbonised at source. There are technological solutions to climate change, and they require the deployment of renewable energy systems. The people who can implement renewable energy schemes should be part of the UNFCCC process; the engineering companies who make wind turbines, solar photovoltaic panels, the people who can build Renewable Gas systems. Companies such as Siemens, GE, Alstom. Energy engineering project companies. Chemical engineering companies.

3.   The economists are still in the building

In the United Kingdom (what will we call it if Scotland becomes independent ? And what will the word “British” then mean ?) the Parliament passed the Climate Change Act. But this legislation is meaningless without a means to implement the Carbon Budgets it institutes. The British example is just a minor parallel to the UNFCCC situation – how can a global climate treaty be made to work ? Most of the notions the economists have put forward so far to incentivise energy demand reduction and stimulate low carbon energy production have failed to achieve much. Carbon trading ! Carbon pricing ! All rather ineffective. Plus, there’s the residual notion of different treatment for developed and developing nations, which is a road to nowhere.

4.   Unilateral action is frowned upon

Apparently, since Climate Change is a global problem, we all have to act in a united fashion to solve it. But that’s too hard to ask, at least to start with. When countries or regions take it upon themselves to act independently, the policy community seem to counsel against it. There are a few exceptions, such as the C40 process, where individual cities are praised for independent action, but as soon as the European Community sets up something that looks like a border tax on carbon, that’s a no-no. Everybody is asked to be part of a global process, but it’s almost too hard to get anything done within this framework.

5.   Civil Society is hamstrung and tongue-tied

There is very little that people groups can achieve within the UNFCCC process, because there is a disconnect between the negotiations and practical action. The framework of the treaty discussions does not encompass the real change makers. The UNFCCC does not build the foundation for the architecture of a new green economy, because it only addresses itself to garnering commitments from parties that cannot fulfill them. Civil Society ask for an egg sandwich and they are given a sandy eggshell. If Civil Society groups call for technology, they are given a carbon credit framework. If they call for differential investment strategies that can discredit carbon dependency, they are given an opportunity to put money into the global adaptation fund.

Positively Against Negative Campaigning

How to organise a political campaign around Climate Change : ask a group of well-fed, well-meaning, Guardian-reading, philanthropic do-gooders into the room to adopt the lowest common denominator action plan. Now, as a well-fed, well-meaning, Guardian-reading (well, sometimes), philanthropic do-gooder myself, I can expect to be invited to attend such meetings on a regular basis. And always, I find myself frustrated by the outcomes : the same insipid (but with well-designed artwork) calls to our publics and networks to support something with an email registration, a signed postcard, a fistful of dollars, a visit to a public meeting of no consequence, or a letter to our democratic representative. No output except maybe some numbers. Numbers to support a government decision, perhaps, or numbers to indicate what kind of messaging people need in future.

I mean, with the Fair Trade campaign, at least there was some kind of real outcome. Trade Justice advocates manned stall tables at churches, local venues, public events, and got money flowing to the international co-operatives, building up the trade, making the projects happen, providing schooling and health and aspirations in the target countries. But compare that to the Make Poverty History campaign which was largely run to support a vain top-level political attempt to garner international funding promises for social, health and economic development. Too big to succeed. No direct line between supporting the campaign and actually supporting the targets. Passing round the hat to developed, industrialised countries for a fund to support change in developing, over-exploited countries just isn’t going to work. Lord Nicholas Stern tried to ask for $100 billion a year by 2020 for Climate Change adaptation. This has skidded to a halt, as far as I know. The economic upheavals, don’t you know ?

And here we are again. The United Nations Framework Convention on Climate Change (UNFCCC), which launched the Intergovernmental Panel on Climate Change (IPCC) reports on climate change, oh, so, long, ago, through the person of its most charismatic and approachable Executive Secretary, Christiana Figueres, is calling for support for a global Climate Change treaty in 2015. Elements of this treaty, being drafted this year, will, no doubt, use the policy memes of the past – passing round the titfer begging for a couple of billion squid for poor, hungry people suffering from floods and droughts; proposing some kind of carbon pricing/taxing/trading scheme to conjure accounting bean solutions; trying to implement an agreement around parts per million by volume of atmospheric carbon dioxide; trying to divide the carbon cake between the rich and the poor.

Somehow, we believe, that being united around this proposed treaty, few of which have any control over the contents of, will bring us progress.

What can any of us do to really have input into the building of a viable future ? Christiana – for she is now known frequently only by her first name – has called for numbers – a measure of support for the United Nations process. She has also let it be known that if there is a substantial number of people who, with their organisations, take their investments out of fossil fuels, then this could contribute to the mood of the moment. Those who are advocating divestment are yet small in number, and I fear that they will continue to be marginal, partly because of the language that is being used.

First of all, there are the Carbon Disclosers. Their approach is to conjure a spectre of the “Carbon Bubble” – making a case that investments in carbon dioxide-rich enterprises could well end up being stranded by their assets, either because of wrong assumptions about viable remaining resources of fossil fuels, or because of wrong assumptions about the inability of governments to institute carbon pricing. Well, obviously, governments will find it hard to implement effective carbon pricing, because governments are in bed with the energy industry. Politically, governments need to keep big industry sweet. No surprise there. And it’s in everybody’s interests if Emperor Oil and Prince Regent Natural Gas are still wearing clothes. In the minds of the energy industry, we still have a good four decades of healthy fossil fuel assets. Royal Dutch Shell’s CEO can therefore confidently say at a public AGM that There Is No Carbon Bubble. The Carbon Discloser language is not working, it seems, as any kind of convincer, except to a small core of the concerned.

And then there are the Carbon Voices. These are the people reached by email campaigns who have no real idea how to do anything practical to affect change on carbon dioxide emissions, but they have been touched by the message of the risks of climate change and they want to be seen to be supporting action, although it’s not clear what action will, or indeed can, be taken. Well-designed brochures printed on stiff recycled paper with non-toxic inks will pour through their doors and Inboxes. Tick it. Send it back. Sign it. Send it on. Maybe even send some cash to support the campaign. This language is not achieving anything except guilt.

And then there are the Carbon Divestors. These are extremely small marginal voices who are taking a firm stand on where their organisations invest their capital. The language is utterly dated. The fossil fuel industry are evil, apparently, and investing in fossil fuels is immoral. It is negative campaigning, and I don’t think it stands a chance of making real change. It will not achieve its goal of being prophetic in nature – bearing witness to the future – because of the non-inclusive language. Carbon Voices reached by Carbon Divestor messages will in the main refuse to respond, I feel.

Political action on Climate Change, and by that I mean real action based on solid decisions, often taken by individuals or small groups, has so far been under-the-radar, under-the-counter, much like the Fair Trade campaign was until it burst forth into the glorious day of social acceptability and supermarket supply chains. You have the cyclists, the Transition Towners, the solar power enthusiasts. Yet to get real, significant, economic-scale transition, you need Energy Change – that is, a total transformation of the energy supply and use systems. It’s all very well for a small group of Methodist churches to pull their pension funds from investments in BP and Shell, but it’s another thing entirely to engage BP and Shell in an action plan to diversify out of petroleum oil and Natural Gas.

Here below are my email words in my feeble attempt to challenge the brain of Britain’s charitable campaigns on what exactly is intended for the rallying cry leading up to Paris 2015. I can pretty much guarantee you won’t like it – but you have to remember – I’m not breaking ranks, I’m trying to get beyond the Climate Change campaigning and lobbying that is currently in play, which I regard as ineffective. I don’t expect a miraculous breakthrough in communication, the least I can do is sow the seed of an alternative. I expect I could be dis-invited from the NGO party, but it doesn’t appear to be a really open forum, merely a token consultation to build up energy for a plan already decided. If so, there are probably more important things I could be doing with my time than wasting hours and hours and so much effort on somebody else’s insipid and vapid agenda.

I expect people might find that attitude upsetting. If so, you know, I still love you all, but you need to do better.


[…]

A lot of campaigning over the last 30 years has been very negative and divisive, and frequently ends in psychological stalemate. Those who are cast as the Bad Guys cannot respond to the campaigning because they cannot admit to their supporters/employees/shareholders that the campaigners are “right”. Joe Average cannot support a negative campaign as there is no apparent way to make change happen by being so oppositional, and because the ask is too difficult, impractical, insupportable. [Or there is simply too much confusion or cognitive dissonance.]

One of the things that was brought back from the […] working group breakout on […] to the plenary feedback session was that there should be some positive things about this campaign on future-appropriate investment. I think […] mentioned the obvious one of saying effectively “we are backing out of these investments in order to invest in things that are more in line with our values” – with the implicit encouragement for fossil fuel companies to demonstrate that they can be in line with our values and that they are moving towards that. There was some discussion that there are no bulk Good Guy investment funds, that people couldn’t move investments in bulk, although some said there are. […] mentioned Ethex.

Clearly fossil fuel production companies are going to find it hard to switch from oil and gas to renewable electricity, so that’s not a doable we can ask them for. Several large fossil fuel companies, such as BP, have tried doing wind and solar power, but they have either shuttered those business units, or not let them replace their fossil fuel activities.

[…] asked if the [divestment] campaign included a call for CCS – Carbon Capture and Storage – and […] referred to […] which showed where CCS is listed in a box on indicators of a “good” fossil fuel energy company.

I questioned whether the fossil fuel companies really want to do CCS – and that they have simply been waiting for government subsidies or demonstration funds to do it. (And anyway, you can’t do CCS on a car.)

I think I said in the meeting that fossil fuel producer companies can save themselves and save the planet by adopting Renewable Gas – so methods for Carbon Capture and Utilisation (CCU) or “carbon recycling”. Plus, they could be making low carbon gas by using biomass inputs. Most of the kit they need is already widely installed at petrorefineries. So – they get to keep producing gas and oil, but it’s renewably and sustainably sourced with low net carbon dioxide emissions. That could be turned into a positive, collaborative ask, I reckon, because we could all invest in that, the fossil fuel companies and their shareholders.

Anyway, I hope you did record something urging a call to positive action and positive engagement, because we need the co-operation of the fossil fuel companies to make appropriate levels of change to the energy system. Either that, or they go out of business and we face social turmoil.

If you don’t understand why this is relevant, that’s OK. If you don’t understand why a straight negative campaign is a turn-off to many people (including those in the fossil fuel industry), well, I could role play that with you. If you don’t understand what I’m talking about when I talk about Renewable Gas, come and talk to me about it again in 5 years, when it should be common knowledge. If you don’t understand why I am encouraging positive collaboration, when negative campaigning is so popular and marketable to your core segments, then I will resort to the definition of insanity – which is to keep doing the same things, expecting a different result.

I’m sick and tired of negative campaigning. Isn’t there a more productive thing to be doing ?

There are no enemies. There are no enemies. There are no enemies.

——-

As far as I understand the situation, both the […] and […] campaigns are negative. They don’t appear to offer any positive routes out of the problem that could engage the fossil fuel companies in taking up the baton of Energy Change. If that is indeed the main focus of […] and […] efforts, then I fear they will fail. Their work will simply be a repeat of the negative campaigning of the last 30 years – a small niche group will take up now-digital placards and deploy righteous, holy social media anger, and that will be all.

Since you understand this problem, then I would suggest you could spend more time and trouble helping them to see a new way. You are, after all, a communications expert. And so you know that even Adolf Hitler used positive, convening, gathering techniques of propaganda to create power – and reserved the negative campaigning for easily-marginalised vulnerable groups to pile the bile and blame on.

Have a nicer day,

—–

The important thing as far as I understand it is that the “campaigning” organisations need to offer well-researched alternatives, instead of just complaining about the way things are. And these well-researched alternatives should not just be the token sops flung at the NGOs and UN by the fossil fuel companies. What do I mean ?

Well, let’s take Carbon Capture and Storage (CCS). The injection of carbon dioxide into old oil and gas caverns was originally proposed for Enhanced Oil Recovery (EOR) – that is – getting more oil and gas out the ground by pumping gas down there – a bit like fracking, but with gas instead of liquid. The idea was that the expense of CCS would be compensated for by the new production of oil and gas – however, the CCS EOR effect has shown to be only temporary. So now the major oil and gas companies say they support carbon pricing (either by taxation or trading), to make CCS move forward. States and federations have given them money to do it. I think the evidence shows that carbon pricing cannot be implemented at a sufficiently high level to incentivise CCS, therefore CCS is a non-answer. Why has […] not investigated this ? CCS is a meme, but not necessarily part of the carbon dioxide solution. Not even the UNFCCC IPCC reports reckon that much CCS can be done before 2040. So, why does CCS appear in the […] criteria for a “good” fossil fuel company ? Because it’s sufficiently weak as a proposal, and sufficiently far enough ahead that the fossil fuel companies can claim they are “capture ready”, and in the Good Book, but in reality are doing nothing.

Non-starters don’t just appear from fossil fuel companies. From my point of view, another example of running at and latching on to things that cannot help was the support of the GDR – Greenhouse Development Rights, of which there has been severe critique in policy circles, but the NGOs just wrote it into their policy proposals without thinking about it. There is no way that the emissions budgets set out in the GDR policy could ever get put into practice. For a start, there is no real economic reason to divide the world into developing and developed nations (Kyoto [Protocol]’s Annex I and Annex II).

If you give me some links, I’m going to look over your […] and think about it.

I think that if a campaign really wants to get anywhere with fossil fuel companies, instead of being shunted into a siding, it needs to know properly what the zero carbon transition pathways really are. Unequal partners do not make for a productive engagement, I reckon.

—–

I’m sorry to say that this still appears to be negative campaigning – fossil fuel companies are “bad”; and we need to pull our money out of fossil fuel companies and put it in other “good” companies. Where’s the collective, co-operative effort undertaken with the fossil fuel companies ? What’s your proposal for helping to support them in evolving ? Do you know how they can technologically transition from using fossil fuels to non-fossil fuels ? And how are you communicating that with them ?

——

They call me the “Paradigm Buster”. I’m not sure if “the group” is open to even just peeking into that kind of approach, let alone “exploring” it. The action points on the corporate agenda could so easily slip back into the methods and styles of the past. Identify a suffering group. Build a theory of justice. Demand reparation. Make Poverty History clearly had its victims and its saviours. Climate change, in my view, requires a far different treatment. Polar bears cannot substitute for starving African children. And not even when climate change makes African children starve, can they inspire the kind of action that climate change demands. A boycott campaign without a genuine alternative will only touch a small demographic. Whatever “the group” agrees to do, I want it to succeed, but by rehashing the campaigning strategies and psychology of the past, I fear it will fail. Even by adopting the most recent thinking on change, such as Common Cause, [it] is not going to surmount the difficulties of trying to base calls to action on the basis of us-and-them thinking – polar thinking – the good guys versus the bad guys – the body politic David versus the fossil fuel company Goliath. By challenging this, I risk alienation, but I am bound to adhere to what I see as the truth. Climate change is not like any other disaster, aid or emergency campaign. You can’t just put your money in the [collecting tin] and pray the problem will go away with the help of the right agencies. Complaining about the “Carbon Bubble” and pulling your savings from fossil fuels is not going to re-orient the oil and gas companies. The routes to effective change require a much more comprehensive structure of actions. And far more engagement that agreeing to be a flag waver for whichever Government policy is on the table. I suppose it’s too much to ask to see some representation from the energy industry in “the group”, or at least […] leaders who still believe in the fossil fuel narratives, to take into account their agenda and their perspective, and a readiness to try positive collaborative change with all the relevant stakeholders ?


Christiana Figueres : Love Bug

It was probably a side-effect of the flu’, but as I was listening to Christiana Figueres speaking at St Paul’s Cathedral, London, this evening, I started to have tunnel vision, and the rest of the “hallowed halls” just melted away, and I felt she was speaking to me individually, woman to woman.

She talked a lot about investments, injustices and inertia, but I felt like she was personally calling me, nagging me, bugging me to show more love. She said she didn’t want us to leave thinking “That was interesting”, or even “That was inspiring”, but that we would leave resolved to do one more concrete thing to show our love for our world, and our fellow human beings.

I was a little defensive inside – I’m already trying to get some big stuff done – how could I do anything else that could be effective ? She said that we couldn’t ask people to do more if we weren’t prepared to do more ourselves. I wasn’t sure that any of the things she suggested I could try would have any impact, but I suppose I could try again to write to my MP Iain Duncan Smith – after all, Private Eye tells me he’s just hired a communications consultant, so he might be willing to communicate with me about climate change, perhaps.

Of her other suggestions, I have already selected investments that are low carbon, so there would be little point in writing to them about carbon-based “stranded assets”. My diet is very largely vegetarian; I buy food and provisions from co-operatives where I can; I don’t own a car; I’ve given up flying; I’ve installed solar electricity; my energy consumption is much lower than average; I buy secondhand; I reuse, repair, reclaim, recycle.

I don’t want to “campaign” on climate change – I don’t think that would be very loving. This should not be a public relations mission, it needs to be authentic and inclusive, so I don’t know what the best way is to engage more people in “the struggle”. I’ve sent enough email in my life. People already know about climate change, I don’t need to evangelise them. They already know some of the things they could do to mitigate their fossil fuel energy consumption, I don’t need to educate them. The organisations that are still pushing fossil fuels to society have more to do to get with the transition than everyday energy consumers, surely ?

So, how is it that this “love bug” bites me ? What do I feel bugged to be getting on with ? Researching low carbon gas energy systems is my main action at the moment, but what could I do that would be an answer to Christiana’s call for me to do something extra ? Join in the monthly fast and prayer that’s due to start on 1st November ? Well, sure I will, as part of my work duties. Network for Our Voices that will funnel the energy of the monthly call to prayer into a Civil Society “tornado” in support of the UNFCCC Paris Treaty ? Yes, of course. Comes with the territory. But more… ?

I noticed that Christiana Figueres had collegiate competition from the bells of St Paul’s, and it sounded like the whole cathedral was ringing. Then my cough started getting bad and I started to feel quite unwell, so I had to leave before the main debate took place, to medicate myself with some fresh orange juice from a company I chose because it tracks its carbon, and has a proper plan for climate sustainability, so I never answered my question – what do I need to do, to do more about climate change ?

All Kinds of Gas

Amongst the chink-clink of wine glasses at yesterday evening’s Open Cities Green Sky Thinking Max Fordham event, I find myself supping a high ball orange juice with an engineer who does energy retrofits – more precisely – heat retrofits. “Yeah. Drilling holes in Grade I Listed walls for the District Heating pipework is quite nervewracking, as you can imagine. When they said they wanted to put an energy centre deep underneath the building, I asked them, “Where are you going to put the flue ?””

Our attention turns to heat metering. We discuss cases we know of where people have installed metering underground on new developments and fitted them with Internet gateways and then found that as the rest of the buildings get completed, the meter can no longer speak to the world. The problems of radio-meets-thick-concrete and radio-in-a-steel-cage. We agree that anybody installing a remote wifi type communications system on metering should be obliged in the contract to re-commission it every year.

And then we move on to shale gas. “The United States of America could become fuel-independent within ten years”, says my correspondent. I fake yawn. It really is tragic how some people believe lies that big. “There’s no way that’s going to happen !”, I assert.

“Look,” I say, (jumping over the thorny question of Albertan syncrude, which is technically Canadian, not American), “The only reason there’s been strong growth in shale gas production is because there was a huge burst in shale gas drilling, and now it’s been shown to be uneconomic, the boom has busted. Even the Energy Information Administration is not predicting strong growth in shale gas. They’re looking at growth in coalbed methane, after some years. And the Arctic.” “The Arctic ?”, chimes in Party Number 3. “Yes,” I clarify, “Brought to you in association with Canada. Shale gas is a non-starter in Europe. I always think back to the USGS. They estimate that the total resource in the whole of Europe is a whole order of magnitude, that is, ten times smaller than it is in Northern America.” “And I should have thought you couldn’t have the same kind of drilling in Europe because of the population density ?”, chips in Party Number 3. “They’re going to be drilling a lot of empty holes,” I add, “the “sweet spot” problem means they’re only likely to have good production in a few areas. And I’m not a geologist, but there’s the stratigraphy and the kind of shale we have here – it’s just not the same as in the USA.” Parties Number 2 and 3 look vaguely amenable to this line of argument. “And the problems that we think we know about are not the real problems,” I out-on-a-limbed. “The shale gas drillers will probably give up on hydraulic fracturing of low density shale formations, which will appease the environmentalists, but then they will go for drilling coal lenses and seams inside and alongside the shales, where there’s potential for high volumes of free gas just waiting to pop out. And that could cause serious problems if the pressures are high – subsidence, and so on. Even then, I cannot see how production could be very high, and it’s going to take some time for it to come on-stream…” “…about 10 years,” says Party Number 2.

“Just think about who is going for shale gas in the UK,” I ventured, “Not the big boys. They’ve stood back and let the little guys come in to drill for shale gas. I mean, BP did a bunch of onshore seismic surveys in the 1950s, after which they went drilling offshore in the North Sea, so I think that says it all, really. They know there’s not much gas on land.” There were some raised eyebrows, as if to say, well, perhaps seismic surveys are better these days, but there was agreement that shale gas will come on slowly.

“I don’t think shale gas can contribute to energy security for at least a decade,” I claimed, “even if there’s anything really there. Shale gas is not going to answer the problems of the loss of nuclear generation, or the problems of gas-fired generation becoming uneconomic because of the strong growth in renewables.” There was a nodding of heads.

“I think,” I said, “We should forget subsidies. UK plc ought to purchase a couple of CCGTS [Combined Cycle Gas Turbine electricity generation units]. That will guarantee they stay running to load balance the power grid when we need them to. Although the UK’s Capacity Mechanism plan is in line with the European Union’s plans for supporting gas-fired generation, it’s not achieving anything yet.” I added that we needed to continue building as much wind power as possible, as it’s quick to put in place. I quite liked my radical little proposal for energy security, and the people I was talking with did not object.

There was some discussion about Green Party policy on the ownership of energy utilities, and how energy and transport networks are basically in the hands of the State, but then Party Number 2 said, “What we really need is consistency of policy. We need an Energy Bill that doesn’t get gutted by a change of administration. I might need to vote Conservative, because Labour would mess around with policy.” “I don’t know,” I said, “it’s going to get messed with whoever is in power. All those people at DECC working on the Electricity Market Reform – they all disappeared. Says something, doesn’t it ?”

I spoke to Parties Number 2 and 3 about my research into the potential for low carbon gas. “Basically, making gas as a kind of energy storage ?”, queried Party Number 2. I agreed, but omitted to tell him about Germany’s Power-to-Gas Strategy. We agreed that it would be at least a decade before much could come of these technologies, so it wouldn’t contribute immediately to energy security. “But then,” I said, “We have to look at the other end of this transition, and how the big gas producers are going to move towards Renewable Gas. They could be making decisions now that make more of the gas they get out of the ground. They have all the know-how to build kit to make use of the carbon dioxide that is often present in sour conventional reserves, and turn it into fuel, by reacting it with Renewable Hydrogen. If they did that, they could be building sustainability into their business models, as they could transition to making Renewable Gas as the Natural Gas runs down.”

I asked Parties Number 2 and 3 who they thought would be the first movers on Renewable Gas. We agreed that companies such as GE, Siemens, Alstom, the big engineering groups, who are building gas turbines that are tolerant to a mix of gases, are in prime position to develop closed-loop Renewable Gas systems for power generation – recycling the carbon dioxide. But it will probably take the influence of the shareholders of companies like BP, who will be arguing for evidence that BP are not going to go out of business owing to fossil fuel depletion, to roll out Renewable Gas widely. “We’ve all got our pensions invested in them”, admitted Party Number 2, arguing for BP to gain the ability to sustain itself as well as the planet.

David MacKay : Heating London

I took some notes from remarks made by Professor David MacKay, the UK Government’s Chief Scientific Advisor, yesterday, 1st May 2014, at an event entitled “How Will We Heat London ?”, held by Max Fordhams as part of the Green Sky Thinking, Open City week. I don’t claim to have recorded his words perfectly, but I hope I’ve captured the gist.


[David MacKay] : [Agreeing with others on the panel – energy] demand reduction is really important. [We have to compensate for the] “rebound effect”, though [where people start spending money on new energy services if they reduce their demand for their current energy services].

SAP is an inaccurate tool and not suitable for the uses we put it too :-
http://www.eden.gov.uk/planning-and-development/building-control/building-control-guidance-notes/sap-calculations-explained/
http://www.dimplex.co.uk/products/renewable_solutions/building_regulations_part_l.htm

Things seem to be under-performing [for example, Combined Heat and Power and District Heating schemes]. It would be great to have data. A need for engineering expertise to get in.

I’m not a Chartered Engineer, but I’m able to talk to engineers. I know a kilowatt from a kilowatt hour [ (Laughter from the room) ]. We’ve [squeezed] a number of engineers into DECC [the Department of Energy and Climate Change].

I’m an advocate of Heat Pumps, but the data [we have received from demonstration projects] didn’t look very good. We hired two engineers and asked them to do the forensic analysis. The heat pumps were fine, but the systems were being wrongly installed or used.

Now we have a Heat Network team in DECC – led by an engineer. We’ve published a Heat Strategy. I got to write the first three pages and included an exergy graph.

[I say to colleagues] please don’t confuse electricity with energy – heat is different. We need not just a green fluffy solution, not just roll out CHP [Combined Heat and Power] [without guidance on design and operation].

Sources of optimism ? Hopefully some of the examples will be available – but they’re not in the shop at the moment.

For example, the SunUp Heat Battery – works by having a series of chambers of Phase Change Materials, about the size of a fridge that you would use to store heat, made by electricity during the day, for use at night, and meet the demand of one home. [Comment from Paul Clegg, Senior Partner at Feilden Clegg Bradley Studios : I first heard about Phase Change Materials back in the 1940s ? 1950s ? And nothing’s come of it yet. ] Why is that a good idea ? Well, if you have a heat pump and a good control system, you can use electricity when it’s cheapest… This is being trialled in 10 homes.

Micro-CHP – [of those already trialled] definitely some are hopeless, with low temperature and low electricity production they are just glorified boilers with a figleaf of power.

Maybe Fuel Cells are going to deliver – power at 50% efficiency [of conversion] – maybe we’ll see a Fuel Cell Micro-Combined Heat and Power unit ?

Maybe there will be hybrid systems – like the combination of a heat pump and a gas boiler – with suitable controls could lop off peaks of demand (both in power and gas).

We have designed the 2050 Pathways Calculator as a tool in DECC. It was to see how to meet the Carbon Budget. You can use it as an energy security calculator if you want. We have helped China, Korea and others to write their own calculators.

A lot of people think CHP is green and fluffy as it is decentralised, but if you’re using Natural Gas, that’s still a Fossil Fuel. If you want to run CHP on biomass, you will need laaaaaarge amounts of land. You can’t make it all add up with CHP. You would need many Wales’-worth of bioenergy or similar ways to make it work.

Maybe we should carry on using boilers and power with low carbon gas – perhaps with electrolysis [A “yay !” from the audience. Well, me, actually]. Hydrogen – the the 2050 Calculator there is no way to put it back into the beginning of the diagram – but it could provide low carbon heat, industry and transport. At the moment we can only put Hydrogen into Transport [in the 2050 Calculator. If we had staff in DECC to do that… It’s Open Source, so if any of you would like to volunteer…

Plan A of DECC was to convert the UK to using lots of electricity [from nuclear power and other low carbon technologies, to move to a low carbon economy], using heat pumps at the consumer end, but there’s a problem in winter [Bill Watts of Max Fordham had already shown a National Grid or Ofgem chart of electricity demand and gas demand over the year, day by day. Electricity demand (in blue) fluctuates a little, but it pretty regular over the year. Gas demand (in red) however, fluctuates a lot, and is perhaps 6 to 10 times larger in winter than in summer.]

If [you abandon Plan A – “electrification of everything”] and do it the other way, you will need a large amount of Hydrogen, and a large Hydrogen store. Electrolysers are expensive, but we are doing/have done a feasibility study with ITM Power – to show the cost of electrolysers versus the cost of your wind turbines [My comment : but you’re going to need your wind turbines to run your electrolysers with their “spare” or “curtailed” kilowatt hours.]

[David Mackay, in questions from the floor] We can glue together [some elements]. Maybe the coming smart controls will help…can help save a load of energy. PassivSystems – control such things as your return temperature [in your Communal or District Heating]…instead of suing your heat provider [a reference to James Gallagher who has problems with his communal heating system at Parkside SE10], maybe you could use smart controls…

[Question] Isn’t using smart controls like putting a Pirelli tyre on a Ford Cortina ? Legacy of poor CHP/DH systems…

[David MacKay in response to the question of insulation] If insulation were enormously expensve, we wouldn’t have to be so enthusastic about it…We need a well-targeted research programme looking at deep retrofitting, instead of letting it all [heat] out.

[Adrian Gault, Committee on Climate Change] We need an effective Government programme to deliver that. Don’t have it in the Green Deal. We did have it [in the previous programmes of CERT and CESP], but since they were cancelled in favour of the Green Deal, it’s gone off a cliff [levels of insulation installations]. We would like to see an initiative on low cost insulation expanded. The Green Deal is not producing a response.

[Bill Watts, Max Fordham] Agree that energy efficiency won’t run on its own. But it’s difficult to do. Not talking about automatons/automation. Need a lot of pressure on this.

[Adrian Gault] Maybe a street-by-street approach…

[Michael Trousdell, Arup] Maybe a rule like you can’t sell a house unless you’ve had the insulation done…

[Peter Clegg] … We can do heat recovery – scavenging the heat from power stations, but we must also de-carbonise the energy supply – this is a key part of the jigsaw.