Peak Oil : Kitchen Burlesque

An engineering buddy and I find ourselves in my kitchen, reading out loud from Jeremy Leggett’s 2013 book “The Energy of Nations : Risk Blindness and the Road to Renaissance”. The main topic of the work, I feel, is the failure of the energy sector and the political elites to develop a realistic plan for the future, and their blinkered adherence to clever arguments taken from failing and cracked narratives – such as the belief that unconventional fossil fuels, such as tar sands, can make up for declining conventional oil and gas production. It’s also about compromise of the highest order in the most influential ranks. The vignettes recalling conversations with the high and mighty are pure comedy.

“It’s very dramatic…”

“You can imagine it being taken to the West End theatres…”

“We should ask Ben Elton to take a look – adapt it for the stage…”

“It should really have costumes. Period costumes…Racy costumes…”

“Vaudeville ?”

“No…burlesque ! Imagine the ex-CEO of BP, John Browne, in a frou-frou tutu, slipping a lacy silk strap from his shoulder…What a Lord !”

“Do you think Jeremy Leggett would look good in a bodice ?”

Failing Narratives : Carbon Culprits

In the last few weeks I have attended a number of well-intentioned meetings on advances in the field of carbon dioxide emissions mitigation. My overall impression is that there are several failing narratives to be encountered if you make even the shallowest foray into the murky mix of politics and energy engineering.

As somebody rightly pointed out, no capitalist worth their share price is going to spend real money in the current economic environment on new kit, even if they have asset class status – so all advances will necessarily be driven by public subsidies – in fact, significant technological advance has only ever been accomplished by state support.

Disturbingly, free money is also being demanded to roll out decades-old low carbon energy technology – nuclear power, wind power, green gas, solar photovoltaics – so it seems to me the only way we will ever get appropriate levels of renewable energy deployment is by directed, positive public investment.

More to the point, we are now in an era where nobody at all is prepared to spend any serious money without a lucrative slap on the back, and reasons beyond reasons are being deployed to justify this position. For example, the gas-fired power plant operators make claims that the increase in wind power is threatening their profitability, so they are refusing to built new electricity generation capacity without generous handouts. This will be the Capacity Mechanism, and will keep gas power plants from being mothballed. Yes, there is data to support their complaint, but it does still seem like whinging and special pleading.

And the UK Government’s drooling and desperate fixation with new nuclear power has thrown the European Commission into a tizzy about the fizzy promises of “strike price” guaranteed sales returns for the future atomic electricity generation.

But here, I want to contrast two other energy-polity dialogues – one for developing an invaluable energy resource, and the other about throwing money down a hole.

First, let’s take the white elephant. Royal Dutch Shell has for many years been lobbying for state financial support to pump carbon dioxide down holes in the ground. Various oil and gas industry engineers have been selling this idea to governments, federal and sub-federal for decades, and even acted as consultants to the Civil Society process on emissions control – you just need to read the United Nations’ IPCC Climate Change Assessment Report and Special Report output to detect the filigree of a trace of geoengineering fingers scratching their meaning into global intention. Let us take your nasty, noxious carbon dioxide, they whisper suggestively, and push it down a hole, out of sight and out of accounting mind, but don’t forget to slip us a huge cheque for doing so. You know, they add, we could even do it cost-effectively, by producing more oil and gas from emptying wells, resulting from pumping the carbon dioxide into them. Enhanced Oil Recovery – or EOR – would of course mean that some of the carbon dioxide pumped underground would in effect come out again in the form of the flue gas from the combustion of new fossil fuels, but anyway…

And governments love being seen to be doing something, anything, really, about climate change, as long as it’s not too complicated, and involves big players who should be trustworthy. So, you get the Peterhead project picking up a fat cheque for a trial of Carbon Capture and Storage (CCS) in Scotland, and the sidestep hint that if Scotland decides to become independent, this project money could be lost…But this project doesn’t involve much of anything that is really new. The power station that will be used is a liability that ought to be closing now, really, according to some. And the trial will only last for ten years. There will be no EOR – at least – not in the public statements, but this plan could lead the way.

All of this is like pushing a fat kid up a shiny slide. Once Government take their greasy Treasury hands off the project, the whole narrative will fail, falling to an ignominious muddy end. This perhaps explains the underlying desperation of many – CCS is the only major engineering response to emissions that many people can think of – because they cannot imagine burning less fossil fuels. So this wobbling effigy has to be kept on the top of the pedestal. And so I have enjoyed two identical Shell presentations on the theme of the Peterhead project in as many weeks. CCS must be obeyed.

But, all the same, it’s big money. And glaring yellow and red photo opps. You can’t miss it. And then, at the other end of the scale of subsidies, is biogas. With currently low production volumes, and complexities attached to its utilisation, anaerobically digesting wastes of all kinds and capturing the gas for use as a fuel, is a kind of token technology to many, only justified because methane is a much stronger greenhouse gas than carbon dioxide, so it needs to be burned.

The subsidy arrangements for many renewable energy technologies are in flux. Subsidies for green gas will be reconsidered and reformulated in April, and will probably experience a degression – a hand taken off the tiller of driving energy change.

At an evening biogas briefing given by Rushlight this week, I could almost smell a whiff of despair and disappointment in the levels of official support for green gas. It was freely admitted that not all the planned projects around the country will see completion, not only because of the prevailing economic climate, but because of the vagaries of feedstock availability, and the complexity of gas cleaning regulations.

There was light in the tunnel, though, even if the end had not been reached – a new Quality Protocol for upgrading biogas to biomethane, for injection into the gas grid, has been established. You won’t find it on the official UK Goverment website, apparently, as it has fallen through the cracks of the rebranding to gov.uk, but here it is, and it’s from the Environment Agency, so it’s official :-

http://www.greengas.org.uk/pdf/biomethane-qp.pdf

http://www.r-e-a.net/news/rea-welcomes-environment-agencys-updated-anaerobic-digestion-quality-protocol

http://adbiogas.co.uk/2014/01/30/biomethane-qp-could-boost-renewable-gas-to-grid-market/
http://adbiogas.co.uk/2014/01/30/biomethane-quality-protocol-published/

Here’s some background :-

http://www.environment-agency.gov.uk/aboutus/wfo/epow/124111.aspx

To get some picture of the mess that British green energy policy is in, all you need do is take a glance at Germany and Denmark, where green gas is considered the “third leg of the stool”, stabilising renewable energy supply with easily-stored low carbon gas, to balance out the peaks and troughs in wind power and solar power provision.

Green gas should not be considered a nice-to-have minor addition to the solutions portfolio in my view. The potential to de-carbonise the energy gas supply is huge, and the UK are missing a trick here – the big money is being ladled onto the “incumbents” – the big energy companies who want to carry on burning fossil fuels but sweep their emissions under the North Sea salt cavern carpet with CCS, whilst the beer change is being reluctantly handed out as a guilt offering to people seeking genuinely low carbon energy production.

Seriously – where the exoplanet are we at ?

The General Lightness of Carbon Pricing

I was at a very interesting meeting this morning, entitled “Next Steps for Carbon Capture and Storage in the UK”, hosted by the Westminster Energy, Environment and Transport Forum :-

http://www.westminsterforumprojects.co.uk/forums/event.php?eid=713
http://www.westminsterforumprojects.co.uk/forums/agenda/CCS-2014-agenda.pdf

During the proceedings, there were liberal doses of hints at that the Chancellor of the Exchequer is about to freeze the Carbon Price Floor – the central functioning carbon pricing policy in the UK (since the EU Emissions Trading Scheme “isn’t working”).

All of the more expensive low carbon energy technologies rely on a progressively heavier price for carbon emissions to make their solutions more attractive.

Where does this leave the prospects for Carbon Capture and Storage in the 2030s ? Initial technology-launching subsidies will have been dropped, and the Contracts for Difference will have been ground down into obscurity. So how will CCS keep afloat ? It’s always going to remain more expensive than other technology options to prevent atmospheric carbon dioxide emissions, so it needs some prop.

What CCS needs is some Added Value. It will come partly from EOR – Enhanced Oil Recovery, as pumping carbon dioxide down depleting oil and gas fields will help stimulate a few percent of extra production.

But what will really make the difference is using carbon dioxide to make new fuel. That’s the wonder of Renewable Gas – it will be able to provide a valued product for capturing carbon dioxide.

This wasn’t talked about this morning. The paradigm is still “filter out the CO2 and flush it down a hole”. But it won’t stay that way forever. Sooner or later, somebody’s going to start mining carbon dioxide from CCS projects to make new chemicals and gas fuels. Then, who cares if there’s negative charging for emissions ? Or at what price ? The return on investment in carbon capture will simply bypass assumptions about needing to create a carbon market or set a carbon tax.

Gain in Transmission #2

Here is further email exchange with Professor Richard Sears, following on from a previous web log post.


From: Richard A. Sears
Date: 24 February 2014
To: Jo Abbess
Subject: Question from your TED talk

Jo,

I was looking back over older emails and saw that I had never responded to your note. It arrived as I was headed to MIT to teach for a week and then it got lost. Sorry about that.

Some interesting questions. I don’t know anybody working specifically on wind power to gas options. At one time Shell had a project in Iceland using geothermal to make hydrogen. Don’t know what its status is but if you search on hydrogen and Iceland on the Shell website I’m sure there’s something. If the Germans have power to gas as a real policy option I’d poke around the web for information on who their research partners are for this.

Here are a couple of high level thoughts. Not to discourage you because real progress comes from asking new questions, but there are some physical fundamentals that are important.

Direct air capture of anything using current technology is prohibitively expensive to do at scale for energy. More energy will be expended in capture and synthesis than the fuels would yield.

Gaseous fuels are problematic on their own. Gas doesn’t travel well and is difficult to contain at high energy densities as that means compressing or liquefying it. That doesn’t make anything impossible, but it raises many questions about infrastructure and energy balance. If we take the energy content of a barrel of oil as 1.0, then a barrel of liquefied natural gas is about 0.6, compressed natural gas which is typically at about 3600psi is around 0.3, and a barrel (as a measure of volume equal to 42 US gallons) of natural gas at room temperature and pressure is about 0.0015 (+/-). Also there’s a real challenge in storing and transporting gasses as fuel at scale, particularly motor fuel to replace gasoline and diesel.

While there is some spare wind power potential that doesn’t get utilized because of how the grid must be managed, I expect it is a modest amount of energy compared to what we use today in liquid fuels. I think what that means is that while possible, it’s more likely to happen in niche local markets and applications rather than at national or global scales.

If you haven’t seen it, a nice reference on the potential of various forms of sustainable energy is available free and online here. http://www.withouthotair.com/

Hope some of this helps.

Rich

Richard A. Sears
Consulting Professor
Department of Energy Resources Engineering
Stanford University


From: Jo Abbess
Date: 24 February 2014
To: Richard A. Sears

Dear Richard,

Many thanks for getting back to me. Responses are nice – even if they
are months late. As they say – better late than never, although with
climate change, late action will definitely be unwise, according to an
increasing number of people.

I have indeed seen the website, and bought and spilled coffee on the
book of Professor David MacKay’s “Sustainable Energy Without The Hot
Air” project. It is legendary. However, I have checked and he has only
covered alternative gas in a couple of paragraphs – in notes. By
contrast, he spent a long chapter discussing how to filter uranium out
of seawater and other nuclear pursuits.

Yet as a colleague of mine, who knows David better than I do, said to
me this morning, his fascination with nuclear power is rather naive,
and his belief in the success of Generation III and Generation IV
lacks evidence. Plus, if we get several large carbon dioxide
sequestration projects working in the UK – Carbon Capture and Storage
(CCS) – such as the Drax pipeline (which other companies will also
join) and the Shell Peterhead demonstration, announced today, then we
won’t need new nuclear power to meet our 4th Carbon Budget – and maybe
not even the 5th, either (to be negotiated in 2016, I hear) :-

http://www.heraldscotland.com/politics/referendum-news/peterhead-confirmed-for-carbon-capture-sitebut-its-not-a-bribe-says-ed-dave.1393232825

We don’t need to bury this carbon, however; we just need to recycle
it. And the number of ways to make Renewable Hydrogen, and
energy-efficiently methanate carbon monoxide and carbon dioxide with
hydrogen, is increasing. People are already making calculations on how
much “curtailed” or spare wind power is likely to be available for
making gas in 10 years’ time, and if solar power in the UK is
cranked/ramped up, then there will be lots of juicy cost-free power
ours for the taking – especially during summer nights.

Direct Air Capture of carbon dioxide is a nonsensical proposition.
Besides being wrong in terms of the arrow of entropy, it also has the
knock-on effect of causing carbon dioxide to come back out of the
ocean to re-equilibrate. I recently read a paper by climate scientists
that estimated that whatever carbon dioxide you take out of the air,
you will need to do almost all of it again.

Instead of uranium, we should be harvesting carbon dioxide from the
oceans, and using it to make gaseous and liquid fuels.

Gaseous fuels and electricity complement each other very well –
particularly in storage and grid balancing terms – there are many
provisions for the twins of gas and power in standards, laws, policies
and elsewhere. Regardless of the limitations of gas, there is a huge
infrastructure already in place that can store, pipe and use it, plus
it is multi-functional – you can make power, heat, other fuels and
chemicals from gas. In addition, you can make gas from a range of
resources and feedstocks and processing streams – the key quartet of
chemical gas species keep turning up : hydrogen, methane, carbon
monoxide and carbon dioxide – whether you are looking at the exhaust
from combustion, Natural Gas, industrial furnace producer gas,
biological decomposition, just about everywhere – the same four gases.

Energy transition must include large amounts of renewable electricity
– because wind and solar power are quick to build yet long nuclear
power lead times might get extended in poor economic conditions. The
sun does not always shine and the wind does not always blow (and the
tide is not always in high flux). Since demand profiles will never be
able to match supply profiles exactly, there will always be spare
power capacity that grids cannot use. So Power to Gas becomes the
optimal solution. At least until there are ways to produce Renewable
Hydrogen at plants that use process heat from other parts of the
Renewable Gas toolkit. So the aims are to recycle carbon dioxide from
gas combustion to make more gas, and recycle gas production process
heat to make hydrogen to use in the gas production process, and make
the whole lot as thermally balanced as possible. Yes. We can do that.
Lower the inputs of fresh carbon of any form, and lower the energy
requirements to make manufactured gas.

I met somebody working with Jacobs who was involved in the Carbon
Recycling project in Iceland. Intriguing, but an order of magnitude
smaller than I think is possible.

ITM Power in the UK are doing a Hydrogen-to-gas-grid and methanation
project in Germany with one of the regions. They have done several
projects with Kiwa and Shell on gas options in Europe. I know of the
existence of feasibility reports on the production of synthetic
methane, but I have not had the opportunity to read them yet…

I feel quite encouraged that Renewable Gas is already happening. It’s
a bit patchy, but it’s inevitable, because the narrative of
unconventional fossil fuels has many flaws. I have been looking at
issues with reserves growth and unconventionals are not really
commensurate with conventional resources. There may be a lot of shale
gas in the ground, but getting it out could be a long process, so
production volumes might never be very good. In the USA you’ve had
lots of shale gas – but that’s only been supported by massive drilling
programmes – is this sustainable ?

BP have just finished building lots of dollars of kit at Whiting to
process sour Natural Gas. If they had installed Renewable Gas kit
instead of the usual acid gas and sulfur processing, they could have
been preparing for the future. As I understand it, it is possible to
methanate carbon dioxide without first removing it from the rest of
the gas it comes in – so methanating sour gas to uprate it is a viable
option as far as I can see. The hydrogen sulfide would still need to
be washed out, but the carbon dioxide needn’t be wasted – it can be
made part of the fuel. And when the sour gas eventually thins out,
those now methanating sour gas can instead start manufacturing gas
from low carbon emissions feedstocks and recycled carbon.

I’m thinking very big.

Regards,

jo.

In Confab : Paul Elsner

Dr Paul Elsner of Birkbeck College at the University of London gave up some of his valuable time for me today at his little bijou garret-style office in Bloomsbury in Central London, with an excellent, redeeming view of the British Telecom Tower. Leader of the Energy and Climate Change module on Birkbeck’s Climate Change Management programme, he offered me tea and topical information on Renewable Energy, and some advice on discipline in authorship.

He unpacked the recent whirlwind of optimism surrounding the exploitation of Shale Gas and Shale Oil, and how Climate Change policy is perhaps taking a step back. He said that we have to accept that this is the way the world is at the moment.

I indicated that I don’t have much confidence in the “Shale Bubble”. I consider it mostly as a public relations exercise – and that there are special conditions in the United States of America where all this propaganda comes from. I said that there are several factors that mean the progress with low carbon fuels continues to be essential, and that Renewable Gas is likely to be key.

1. First of all, the major energy companies, the oil and gas companies, are not in a healthy financial state to make huge investment. For example, BP has just had the legal ruling that there will be no limit to the amount of compensation claims they will have to face over the Deepwater Horizon disaster. Royal Dutch Shell meanwhile has just had a serious quarterly profit warning – and if that is mostly due to constrained sales (“Peak Oil Demand”) because of economic collapse, that doesn’t help them with the kind of aggressive “discovery” they need to continue with to keep up their Reserves to Production ratio (the amount of proven resources they have on their books). These are not the only problems being faced in the industry. This problem with future anticipated capitalisation means that Big Oil and Gas cannot possibly look at major transitions into Renewable Electricity, so it would be pointless to ask, or try to construct a Carbon Market to force it to happen.

2. Secondly, despite claims of large reserves of Shale Gas and Shale Oil, ripe for the exploitation of, even major bodies are not anticipating that Peak Oil and Peak Natural Gas will be delayed by many years by the “Shale Gale”. The reservoir characteristics of unconventional fossil fuel fields do not mature in the same way as conventional ones. This means that depletion scenarios for fossil fuels are still as relevant to consider as the decades prior to horizontal drilling and hydraulic fracturing (“fracking”).

3. Thirdly, the reservoir characteristics of conventional fossil fuel fields yet to exploit, especially in terms of chemical composition, are drifting towards increasingly “sour” conditions – with sigificant levels of hydrogen sulfide and carbon dioxide in them. The sulphur must be removed for a variety of reasons, but the carbon dioxide remains an issue. The answer until recently from policy people would have been Carbon Capture and Storage or CCS. Carbon dioxide should be washed from acid Natural Gas and sequestered under the ocean in salt caverns that previously held fossil hydrocarbons. It was hoped that Carbon Markets and other forms of carbon pricing would have assisted with the payment for CCS. However, recently there has been reduced confidence that this will be significant.

Renewable Gas is an answer to all three of these issues. It can easily be pursued by the big players in the current energy provision system, with far less investment than wholesale change would demand. It can address concerns of gas resource depletion at a global scale, the onset of which could occur within 20 to 25 years. And it can be deployed to bring poor conventional fossil fuels into consideration for exploitation in the current time – answering regional gas resource depletion.

Outside, daffodils were blooming in Tavistock Square. In January, yes. The “freaky” weather continues…

But Uh-Oh – Those Summer Nights

A normal, everyday Monday morning at Energy Geek Central. Yes, this is a normal conversation for me to take part in on a Monday morning. Energy geekery at breakfast. Perfect.

Nuclear Flower Power

This whole UK Government nuclear power programme plan is ridiculous ! 75 gigawatts (GW) of Generation III nuclear fission reactors ? What are they thinking ? Britain would need to rapidly ramp up its construction capabilities, and that’s not going to happen, even with the help of the Chinese. (And the Americans are not going to take too kindly to the idea of China getting strongly involved with British energy). And then, we’d need to secure almost a quarter of the world’s remaining reserves of uranium, which hasn’t actually been dug up yet. And to cap it all, we’d need to have 10 more geological disposal repositories for the resulting radioactive spent fuel, and we haven’t even managed to negotiate one yet. That is, unless we can burn a good part of that spent fuel in Generation IV nuclear fission reactors – which haven’t even been properly demonstrated yet ! Talk about unconscionable risk !

Baseload Should Be History By Now, But…

Whatever the technological capability for nuclear power plants to “load follow” and reduce their output in response to a chance in electricity demand, Generation III reactors would not be run as anything except “baseload” – constantly on, and constantly producing a constant amount of power – although they might turn them off in summer for maintenance. You see, the cost of a Generation III reactor and generation kit is in the initial build – so their investors are not going to permit them to run them at low load factors – even if they could.

There are risks to running a nuclear power plant at partial load – mostly to do with potential damage to the actual electricity generation equipment. But what are the technology risks that Hinkley Point C gets built, and all that capital is committed, and then it only runs for a couple of years until all that high burn up fuel crumbles and the reactors start leaking plutonium and they have to shut it down permanently ? Who can guarantee it’s a sound bet ?

If they actually work, running Generation III reactors at constant output as “baseload” will also completely mess with the power market. In all of the scenarios, high nuclear, high non-nuclear, or high fossil fuels with Carbon Capture and Storage (CCS), there will always need to be some renewables in the mix. In all probability this will be rapidly deployed, highly technologically advanced solar power photovoltaics (PV). The amount of solar power that will be generated will be high in summer, but since you have a significant change in energy demand between summer and winter, you’re going to have a massive excess of electricity generation in summer if you add nuclear baseload to solar. Relative to the demand for energy, you’re going to get more Renewable Energy excess in summer and under-supply in winter (even though you get more offshore wind in winter), so it’s critical how you mix those two into your scenario.

The UK Government’s maximum 75 GW nuclear scenario comprises 55 GW Generation III and 20 GW Generation IV. They could have said 40 GW Gen III to feed Gen IV – the spent fuel from Gen III is needed to kick off Gen IV. Although, if LFTR took off, if they had enough fluoride materials there could be a Thorium way into Gen IV… but this is all so technical, no MP [ Member of Parliament ] is going to get their head round this before 2050.

The UK Government are saying that 16 GW of nuclear by 2030 should be seen as a first tranche, and that it could double or triple by 2040 – that’s one heck of a deployment rate ! If they think they can get 16 GW by 2030 – then triple that by 10 years later ? It’s not going to happen. And even 30 GW would be horrific. But it’s probably more plausible – if they can get 16 GW by 2030, they can arguably get double that by 2040.

As a rule of thumb, you would need around 10 tonnes of fissionable fuel to kickstart a Gen IV reactor. They’ve got 106 tonnes of Plutonium, plus 3 or 4 tonnes they recently acquired – from France or Germany (I forget which). So they could start 11 GW of Gen IV – possibly the PRISM – the Hitachi thing – sodium-cooled. They’ve been trying them since the Year Dot – these Fast Reactors – the Breeders – Dounreay. People are expressing more confidence in them now – “Pandora’s Promise” hangs around the narrative that the Clinton administration stopped research into Fast Reactors – Oak Ridge couldn’t be commercial. Throwing sodium around a core 80 times hotter than current core heats – you can’t throw water at it easily. You need something that can carry more heat out. It’s a high technological risk. But then get some French notable nuclear person saying Gen IV technologies – “they’re on the way and they can be done”.

Radioactive Waste Disposal Woes

The point being is – if you’re commissioning 30 GW of Gen III in the belief that Gen IV will be developed – then you are setting yourself up to be a hostage to technological fortune. That is a real ethical consideration. Because if you can’t burn the waste fuel from Gen III, you’re left with up to 10 radioactive waste repositories required when you can’t even get one at the moment. The default position is that radioactive spent nuclear fuel will be left at the power stations where they’re created. Typically, nuclear power plants are built on the coast as they need a lot of cooling water. If you are going for 30 GW you will need a load of new sites – possibly somewhere round the South East of England. This is where climate change comes in – rising sea levels, increased storm surge, dissolving, sinking, washed-away beaches, more extreme storms […] The default spent fuel scenario with numerous coastal decommissioned sites with radioactive interim stores which contain nearly half the current legacy radioactive waste […]

Based on the figures from the new Greenpeace report, I calculate that the added radioactive waste and radioactive spent fuel arisings from a programme of 16 GW of nuclear new build would be 244 million Terabequerel (TBq), compared to the legacy level of 87 million TBq.

The Nuclear Decommissioning Authority (NDA) are due to publish their Radioactive Waste Inventory and their Report on Radioactive Materials not in the Waste Inventory at the end of January 2014. We need to keep a watch out for that, because they may have adapted their anticipated Minimum and Maxmium Derived Inventory.

Politics Is Living In The Past

What you hear from politicians is they’re still talking about “baseload”, as if they’ve just found the Holy Grail of Energy Policy. And failed nuclear power. Then tidal. And barrages. This is all in the past. Stuff they’ve either read – in an article in a magazine at the dentist’s surgery waiting room, and they think, alright I’ll use that in a TV programme I’ve been invited to speak on, like Question Time. I think that perhaps, to change the direction of the argument, we might need to rubbish their contribution. A technological society needs to be talking about gasification, catalysis. If you regard yourselves as educated, and have a technological society – your way of living in the future is not only in manufacturing but also ideas – you need to be talking about this not that : low carbon gas fuels, not nuclear power. Ministers and senior civil servants probably suffer from poor briefing – or no briefing. They are relying on what is literally hearsay – informal discussions, or journalists effectively representing industrial interests. Newspapers are full of rubbish and it circulates, like gyres in the oceans. Just circulates around and around – full of rubbish.

I think part of the problem is that the politicians and chief civil servants and ministers are briefed by the “Old Guard” – very often the ex-nuclear power industry guard. They still believe in big construction projects, with long lead times and massive capital investment, whereas Renewable Electricity is racing ahead, piecemeal, and private investors are desperate to get their money into wind power and solar power because the returns are almost immediate and risk-free.

Together in Electric Dreams

Question : Why are the UK Government ploughing on with plans for so much nuclear power ?

1. They believe that a lot of transport and heat can be made to go electric.
2. They think they can use spent nuclear fuel in new reactors.
3. They think it will be cheaper than everything else.
4. They say it’s vital for UK Energy Security – for emissions reductions, for cost, and for baseload. The big three – always the stated aim of energy policy, and they think nuclear ticks all those three boxes. But it doesn’t.

What they’ll say is, yes, you have to import uranium, but you’ve got a 4 year stock. Any war you’re going to get yourselves involved in you can probably resolve in 4 days, or 4 weeks. If you go for a very high nuclear scenario, you would be taking quite a big share of the global resource of uranium. There’s 2,600 TWh of nuclear being produced globally. And global final energy demand is around 100,000 TWh – so nuclear power currently produces around 2.6% of global energy supply. At current rates of nuclear generation, according to the World Nuclear Association, you’ve got around 80 years of proven reserves and probably a bit more. Let’s say you double nuclear output by 2050 or 2040 – but in the same time you might just have enough uranium – and then find a bit more. But global energy demand rises significantly as well – so nuclear will still only provide around 3% of global energy demand. That’s not a climate solution – it’s just an energy distraction. All this guff about fusion. Well.

Cornering The Market In Undug Uranium

A 75 GW programme would produce at baseload 590 TWh a year – divide by 2,600 – is about 23% of proven global uranium reserves. You’re having to import, regardless of what other countries are doing, you’re trying to corner the market – roughly a quarter. Not even a quarter of the market – a quarter of all known reserves – it’s not all been produced yet. It’s still in the ground. So could you be sure that you could actually run these power stations if you build them ? Without global domination of the New British Empire […]. The security issues alone – defending coastal targets from a tweeb with a desire to blow them up. 50 years down the line they’re full of radioactive spent fuel that won’t have a repository to go to – we don’t want one here – and how much is it going to cost ?

My view is that offshore wind will be a major contributor in a high or 100% Renewable Electricity scenario by 2050 or 2060. Maybe 180 GW, that will also be around 600 TWh a year – comparable to that maximum nuclear programme. DECC’s final energy demand 2050 – several scenarios – final energy demand from 6 scenarios came out as between roughly 1,500 TWh a year and the maximum 2,500 TWh. Broadly speaking, if you’re trying to do that just with Renewable Electricity, you begin to struggle quite honestly, unless you’re doing over 600 TWh of offshore wind, and even then you need a fair amount of heat pump stuff which I’m not sure will come through. The good news is that solar might – because of the cost and technology breakthroughs. That brings with it a problem – because you’re delivering a lot of that energy in summer. The other point – David MacKay would say – in his book his estimate was 150 TWh from solar by 2050, on the grounds that that’s where you south-facing roofs are – you need to use higher efficiency triple junction cells with more than 40% efficiency and this would be too expensive for a rollout which would double or triple that 150 TWh – that would be too costly – because those cells are too costly. But with this new stuff, you might get that. Not only the cost goes down, but the coverage goes down. Not doing solar across swathes of countryside. There have always been two issues with solar power – cost and where it’s being deployed.

Uh-Oh, Summer Days. Uh-Oh, Summer Nights

With the solar-wind headline, summer days and summer nights are an issue.

With the nuclear headline, 2040 – they would have up to 50 GW, and that would need to run at somewhere between 75% and 95% capacity – to protect the investment and electric generation turbines.

It will be interesting to provide some figures – this is how much over-capacity you’re likely to get with this amount of offshore wind. But if you have this amount of nuclear power, you’ll get this amount […]

Energy demand is strongly variable with season. We have to consider not just power, but heat – you need to get that energy out in winter – up to 4 times as much during peak in winter evenings. How are you going to do that ? You need gas – or you need extensive Combined Heat and Power (CHP) (which needs gas). Or you need an unimaginable deployment of domestic heat pumps. Air source heat pumps won’t work at the time you need them most. Ground source heat pumps would require the digging up of Britain – and you can’t do that in most urban settings.

District Heat Fields

The other way to get heat out to everyone in a low carbon world – apart from low carbon gas – is having a field-based ground source heat pump scheme – just dig up a field next to a city – and just put in pipes and boreholes in a field. You’re not disturbing anybody. You could even grow crops on it next season. Low cost and large scale – but would need a District Heating (DH) network. There are one or two heat pump schemes around the world. Not sure if they are used for cooling in summer or heat extraction in the winter. The other thing is hot water underground. Put in an extra pipe in the normal channels to domestic dwellings. Any excess heat from power generation or electrolysis or whatever is put down this loop and heats the sub-ground. Because heat travels about 1 metre a month in soil, that heat should be retained for winter. A ground source heat sink. Geothermal energy could come through – they’re doing a scheme in Manchester. If there’s a nearby heat district network – it makes it easier. Just want to tee it into the nearest DH system. The urban heat demand is 150 TWh a year. You might be able to put DH out to suburban areas as well. There are 9 million gas-connected suburban homes – another about 150 TWh there as well – or a bit more maybe. Might get to dispose of 300 TWh in heat through DH. The Green Deal insulation gains might not be what is claimed – and condensing gas boiler efficiencies are not that great – which feeds into the argument that in terms of energy efficiency, you not only want to do insulation, but also DH – or low carbon gas. Which is the most cost-effective ? Could argue reasonable energy efficiency measures are cheapest – but DH might be a better bet. That involves a lot of digging.

Gas Is The Logical Answer

But everything’s already laid for gas. (…but from the greatest efficiency first perspective, if you’re not doing DH, you’re not using a lot of Renewable Heat you could otherwise use […] )

The best package would be the use of low carbon gases and sufficient DH to use Renewable Heat where it is available – such as desalination, electrolysis or other energy plant. It depends where the electrolysis is being done.

The Age of Your Carbon

It also depends on which carbon atoms you’re using. If you are recycling carbon from the combustion of fossil fuels into Renewable Gas, that’s OK. But you can’t easily recapture carbon emissions from the built environment (although you could effectively do that with heat storage). You can’t do carbon capture from transport either. So your low carbon gas has to come from biogenic molecules. Your Renewable Gas has to be synthesised using biogenic carbon molecules rather than fossil ones.

[…] I’m using the phrase “Young Carbon”. Young Carbon doesn’t have to be from plants – biological things that grow.

Well, there’s Direct Air Capture (DAC). It’s simple. David Sevier, London-based, is working on this. He’s using heat to capture carbon dioxide. You could do it from exhaust in a chimney or a gasification process – or force a load of air through a space. He would use heat and cooling to create an updraft. It would enable the “beyond capture” problem to be circumvented. Cost is non-competitive. Can be done technically. Using reject heat from power stations for the energy to do it. People don’t realise you can use a lot of heat to capture carbon, not electricity.

Young Carbon from Seawater

If you’re playing around with large amounts of seawater anyway – that is, for desalination for irrigation, why not also do Renewable Hydrogen, and pluck the Carbon Dioxide out of there too to react with the Renewable Hydrogen to make Renewable Methane ? I’m talking about very large amounts of seawater. Not “Seawater Greenhouses” – condensation designs mainly for growing exotic food. If you want large amounts of desalinated water – and you’re using Concentrated Solar Power – for irrigating deserts – you would want to grow things like cacti for biological carbon.

Say you had 40 GW of wind power on Dogger Bank, spinning at 40% load factor a year. You’ve also got electrolysers there. Any time you’re not powering the grid, you’re making gas – so capturing carbon dioxide from seawater, splitting water for hydrogen, making methane gas. Wouldn’t you want to use flash desalination first to get cleaner water for electrolysis ? Straight seawater electrolysis is also being done.

It depends on the relative quantities of gas concentrated in the seawater. If you’ve got oxygen, hydrogen and carbon dioxide, that would be nice. You might get loads of oxygen and hydrogen, and only poor quantities of carbon dioxide ?

But if you could get hydrogen production going from spare wind power. And even if you had to pipe the carbon dioxide from conventional thermal power plants, you’re starting to look at a sea-based solution for gas production. Using seawater, though, chlorine is the problem […]

Look at the relative density of molecules – that sort of calculation that will show if this is going to fly. Carbon dioxide is a very fixed, stable molecule – it’s at about the bottom of the energy potential well – you have to get that reaction energy from somewhere.

How Much Spare Power Will There Be ?

If you’ve got an offshore wind and solar system. At night, obviously, the solar’s not working (unless new cells are built that can run on infrared night-time Earthshine). But you could still have 100 GWh of wind power at night not used for the power grid. The anticipated new nuclear 40 GW nuclear by 2030 will produce about 140 GWh – this would just complicate problems – adding baseload nuclear to a renewables-inclusive scenario. 40 GW is arguably a reasonable deployment of wind power by 2030 – low if anything.

You get less wind in a nuclear-inclusive scenario, but the upshot is you’ve definitely got a lot of power to deal with on a summer night with nuclear power. You do have with Renewable Electricity as well, but it varies more. Whichever route we take we’re likely to end up with excess electricity generation on summer nights.

In a 70 GW wind power deployment (50 GW offshore, 20 GW onshore – 160 TWh a year), you might have something like 50 to 100 GWh per night of excess (might get up to 150 GWh to store on a windy night). But if you have a 16 GW nuclear deployment by 2030 (125 TWh a year), you are definitely going to have 140 GWh of excess per night (that’s 16 GW for 10 hours less a bit). Night time by the way is roughly between 9pm and 7am between peak demands.

We could be making a lot of Renewable Gas !

Can you build enough Renewable Gas or whatever to soak up this excess nuclear or wind power ?

The energy mix is likely to be in reality somewhere in between these two extremes of high nuclear or high wind.

But if you develop a lot of solar – so that it knocks out nuclear power – it will be the summer day excess that’s most significant. And that’s what Germany is experiencing now.

Choices, choices, choices

There is a big choice in fossil fuels which isn’t really talked about very often – whether the oil and gas industry should go for unconventional fossil fuels, or attempt to make use of the remaining conventional resources that have a lower quality. The unconventionals narrative – shale gas, coalbed methane, methane hydrates, deepwater gas, Arctic oil and gas, heavy oil, is running out of steam as it becomes clear that some of these choices are expensive, and environmentally damaging (besides their climate change impact). So the option will be making use of gas with high acid gas composition. And the technological solutions for this will be the same as needed to start major production of Renewable Gas.

Capacity Payments

But you still need to answer the balancing question. If you have a high nuclear power scenario, you need maybe 50 TWh a year of gas-fired power generation. If high Renewable Electricity, you will need something like 100 TWh of gas, so you need Carbon Capture and Storage – or low carbon gas.

Even then, the gas power plants could be running only 30% of the year, and so you will need capacity payments to make sure new flexible plants get built and stay available for use.

If you have a high nuclear scenario, coupled with gas, you can meet the carbon budget – but it will squeeze out Renewable Electricity. If high in renewables, you need Carbon Capture and Storage (CCS) or Carbon Capture and Recycling into Renewable Gas, but this would rule out nuclear power. It depends which sector joins up with which.

Carbon Capture, Carbon Budget

Can the Drax power plant – with maybe one pipeline 24 inches in diameter, carrying away 20 megatonnes of carbon dioxide per year – can it meet the UK’s Carbon Budget target ?

Gain in Transmission

It constantly amazes and intrigues me how human individuals operate in networks to formulate, clarify and standardise ideas, tools, machines, procedures and systems. Several decades ago, Renewable Electricity from sources such as wind power was considered idealistic vapourware, esoteric, unworkable and uncertain, and now it’s a mainstream generator of reliable electricity in the UK’s National Grid. Who would have thought that invisible, odourless, tasteless gas phase chemicals would heat our homes ? It’s now just so normal, it’s impossible to imagine that Natural Gas was once considered to be so insignificant that it was vented – not even flared – from oil wells.

Judging by the sheer number of people working on aspects of Renewable Gas, I expect this too to be mainstream in the energy sector within a decade. What do others think ? I have begun the process of asking, for example, see below.

=x=x=x=x=x=x=x=x=

from: Jo Abbess
to: Richard A. Sears
date: Mon, May 2, 2011 at 11:59 PM
subject: Question from your TED talk

Dear [Professor] Sears,

I was intrigued by your TED talk that I recently viewed :-

http://www.ted.com/talks/richard_sears_planning_for_the_end_of_oil.html

Yes, I am interested in the idea of “printing” solar cells, which is what I think you might be alluding to with your reference to abalone shells.

But I am more interested in what you base your estimate of “Peak Gas” on. I recently did some very basic modelling of hydrocarbon resources and electricity, which look somewhat different from the IEA and EIA work and reports from BP and Royal Dutch Shell. My conclusion was that Peak Oil is roughly now, Peak Natural Gas will be around 2030, and Peak Electricity around 2060 :-

http://www.joabbess.com/2011/02/11/future-energy-tipping-points/

I am going to try to improve these charts before I submit my MSc Masters Thesis, so I am trying to find out what other people base their projections on. Could you help me by pointing me at the basis of your assessment of Peak Natural Gas ?

Thank you,

jo.

=x=x=x=x=x=x=

from: Richard A. Sears
to: Jo Abbess
date: Thu, Oct 24, 2013 at 5:30 PM

Jo,

I am just now finding a number of old emails that got archived (and ignored) when I moved from MIT to Stanford a few years ago. A quick answer is that I did about what Hubbert did in 1956. No detailed statistical modeling, just look at the trends, think about what’s happening in the industry, and make what seem like reasonable statements about it.

A number of interesting things have happened just in the last two years since you wrote to me. Significantly, US oil production is on the rise. When you count all hydrocarbon liquids, the US is or will soon be, the world largest producer. This just goes to one of my points from TED. Don’t expect oil and gas to go away any time soon. There are plenty of molecules out there. I first said this internally at Shell in the mid 1980’s when I was Manager of Exploration Economics and since then I’ve felt that I got it about right.

I did just look at your website and would caution you about extrapolating very recent trends into the future. The rate of growth in shale gas production has slowed, but there’s an important economic factor driving that. Gas prices in the US are very low compared to oil. With the development of fraccing technology to enable oil and liquids production from shale formations, the industry has shifted their effort to the liquids-rich plays. A few statistics. Gas is currently around $3.50/mcf. On an energy equivalent basis, this equates to an oil price of about $20/barrel. Brent currently sells for $110/barrel and the light oils produced from the shale plays in the US are getting between $90 and $100/barrel, depending on where they can be delivered. As a consequence, in the 3rd quarter of 2013, compared to one year ago, oil well completions are up 18% while natural gas well completions declined 30%.

Yes, you are right. Printing solar cells is an example of what I was talking about with Abalone shells. Similarly, what if you had paint that as it dried would self assemble into linked solar cells and your entire house is now generating electricity. I was totally amazed at the number of people that didn’t actually think about what I was saying and called me an !d!*t for imagining that I was going to transform coal itself into some magical new molecule. […]

In any case, I think it’s good that you’re thinking about these problems, and importantly it appears from your website that you’re thinking about the system and its complexity.

Best regards,
Rich Sears

Richard A. Sears
Visiting Scientist
MIT Energy Initiative
Massachusetts Institute of Technology

=x=x=x=x=x=x=x=x=x=

from: Jo Abbess
to: Richard A Sears
sent: Monday, May 02, 2011 3:59 PM

Dear [Professor] Sears,

Many thanks for your reply.

I had kinda given up of ever hearing back from you, so it’s lovely to
read your thoughts.

May I blog them ?

Regards,

jo.

=x=x=x=x=x=x=x=

from: Richard A Sears
date: Fri, Oct 25, 2013 at 5:03 PM
to: Jo Abbess

Jo,

I have personally avoided blogging because I don’t want to put up with people writing mean comments about me. But the data is worth sharing. You should also know the sources of that data otherwise you open yourself to more criticism.

The data on production comes from the International Energy Agency and a research firm PIRA. All of it was in recent press releases. The Energy Information Administration makes similar projections about future production. The data on well completions was recently released by API.

No need to reference me. The data is out there for all to see. But if you do, fair warning. You will get stupid comments about how I used to be a VP at Shell so of course these are the things I’m going to say. […]

By the way, there’s something else that’s very interesting in the world of peak oil and various peaks. I have long believed, as hinted in my TED talk that the most important aspect of peak oil is the demand driven phenomena, not the supply side. It’s worth noting in this context that US oil consumption peaked in 2005 and has declined about 10% since then. This data can be found easily in the BP Statistical Report on World Energy. This is real and is a result of economic shifts, greater efficiency, and the penetration of renewables. Future energy projections (references above) show that this trend continues. A big component of US energy consumption is gasoline, and US gasoline consumption peaked in 2007. I think that data can be found at http://www.eia.gov, although I haven’t looked for it lately. It’s a little factoid that I think I remember.

Rich

Richard A. Sears
Consulting Professor
Department of Energy Resources Engineering
Stanford University

=x=x=x=x=x=x=x=x=

from: Jo Abbess
to: Richard A Sears
date: Sun, Jan 12, 2014 at 11:47 AM

Dear Professor Sears,

HNY 2014 !

This year I am hoping to attempt the climb on my own personal K2 by writing an academic book on Renewable Gas – sustainable, low-to-zero carbon emissions gas phase fuels.

I am not a chemist, nor a chemical engineer, and so I would value any suggestions on who I should approach in the gas (and oil) industry to interview about projects that lean in this direction.

Examples would be :-

* Power-to-Gas : Using “spare” wind power to make Renewable Hydrogen – for example by electrolysis of water. Part of the German Power-to-Gas policy. Some hydrogen can be added to gas grids safely without changing regulations, pipework or end appliances.

* Methanation : Using Renewable Hydrogen and young or recycled carbon gas to make methane (using the energy from “spare” wind power, for example). Also part of the German Power-to-Gas policy.

NB “Young” carbon would be either carbon monoxide or carbon dioxide, and be sourced from biomass, Direct Air Capture, or from the ocean. “Old” carbon would come from the “deeper” geological carbon cycle, such as from fossil fuel, or industrial processes such as the manufacture of chemicals from minerals and/or rocks.

Precursors to Renewable Gas also interest me, as transitions are important – transitions from a totally fossil fuel-based gas system to a sustainable gas system. I have recently looked at some basic analysis on the chemistry of Natural Gas, and its refinery. It seems that methanation could be useful in making sour gas available as sweetened, as long as Renewable Hydrogen is developed for this purpose. It seems that there is a lot of sour gas in remaining reserves, and the kind of CCS (Carbon Capture and Storage) that would be required under emissions controls could make sour gas too expensive to use if it was just washed of acids.

I don’t think the future of energy will be completely electrified – it will take a very long time to roll out 100% Renewable Electricity and there will always be problems transitioning out of liquid fuels to electricity in vehicular transportation.

If you could suggest any names, organisations, university departments, companies, governance bodies that I should contact, or research papers that I should read, I would be highly grateful.

Many thanks,

jo.

Curmudgeons Happen

I was talking with people at my friend’s big birthday bash yesterday. I mentioned I’m writing about Renewable Gas, and this led to a variety of conversations. Here is a kind of summary of one of the threads, involving several people.

Why do people continue to insist that the wind turbine at Reading uses more energy than it generates ?

Would it still be there if it wasn’t producing power ? Does David Cameron still have a wind turbine on his roof ? No. It wasn’t working, so it was taken down. I would ask – what are their sources of information ? What newspapers and websites do they read ?

They say that the wind turbine at Reading is just there for show.

Ah. The “Potemkin Village” meme – an idyllic-looking setting, but everything’s faked. The Chinese painting the desert green, etc.

And then there are people that say that the only reason wind farms continue to make money is because they run the turbines inefficiently to get the subsidies.

Ah. The “De-rating Machine” meme. You want to compare and contrast. Look at the amount of money, resources, time and tax breaks being poured into the UK Continental Shelf, and Shale Gas, by the current Government.

Every new technology needs a kick start, a leg up. You need to read some of the reports on wind power as an asset – for example, the Offshore Valuation – showing a Net Present Value. After it’s all deployed, even with the costs of re-powering at the end of turbine life, offshore North Sea wind power will be a genuine asset.

What I don’t understand is, why do people continue to complain that wind turbines spoil the view ? Look at the arguments about the Jurassic Coast in Dorset.

I have contacts there who forward me emails about the disputes. The yachtsmen of Poole are in open rebellion because the wind turbines will be set in in their channels ! The tourists will still come though, and that’s what really counts. People in Dorset just appear to love arguing, and you’ve got some people doing good impressions of curmudgeons at the head of the branches of the Campaign for the Protection of Rural England (CPRE) and English Heritage.

There are so many people who resist renewable energy, and refuse to accept we need to act on climate change. Why do they need to be so contrarian ? I meet them all the time.

People don’t like change, but change happens. The majority of people accept that climate change is significant enough to act on, and the majority of people want renewable energy. It may not seem like that though. It depends on who you talk with. There’s a small number of people who vocalise scepticism and who have a disproportionate effect. I expect you are talking about people who are aged 55 and above ?

Example : “Climate Change ? Haw haw haw !” and “Wind turbines ? They don’t work !” This is a cohort problem. All the nasty white racists are dying and being buried with respect by black undertakers. All the rabid xenophobes are in nursing homes being cared for in dignity by “foreigners”. Pretty soon Nigel Lawson could suffer from vascular dementia and be unable to appear on television.

The media have been insisting that they need a balance of views, but ignoring the fact that the climate change “sceptics” are very small in number and not backed up by the science.

Why does Nigel Lawson, with all his access and privilege, continue to insist that global warming is not a problem ?

Fortunately, even though he’s “establishment” and has more influence than he really should have, the people that are really in charge know better. He should talk to the climate change scientists – the Met Office continue to invite sceptics to come and talk with them. He should talk to people in the energy sector – engineers and project managers. He should talk to people in the cross-party Parliamentary groups who have access to the information from the expert Select Committees.

And what about Owen Paterson ? I cannot understand why they put a climate change sceptic in charge of the Department of the Environment.

Well, we’ve always done that, haven’t we ? Put Ministers in Departments they know nothing about, so that they can learn their briefs. We keep putting smokers in charge of health policy. Why do you think he was put in there ?

To pacify the Conservative Party.

But I know Conservative Party activists who are very much in favour of renewable energy and understand the problems of climate change. It’s not the whole Party.

We need to convince so many people.

We only need to convince the people who matter. And anyway, we don’t need to do any convincing. Leaders in the energy industry, in engineering, in science, in Government (the real government is the Civil Service), the Parliament, they already understand the risks of climate change and the need for a major energy transition.

People should continue to express their views, but people only vote on economic values. That’s why Ed Miliband has pushed the issue of the cost of energy – to try to bring energy to the forefront of political debate.

What about nuclear fusion ?

Nuclear fusion has been 35 years away for the last 35 years. It would be nice to have, because it could really solve the problem. Plus, it keeps smart people busy.

What about conventional nuclear fission power ?

I say, “Let them try !” The Hinkley Point C deal has so many holes in it, it’s nearly collapsed several times. I’m sure they will continue to try to build it, but I’m not confident they will finish it. Nuclear power as an industry is basically washed up in my view, despite the lengths that it goes to to influence society and lobby the Government.

It’s going to be too late to answer serious and urgent problems – there is an energy crunch approaching fast, and the only things that can answer it are quick-to-build options such as new gas-fired power plants, wind farms, solar farms, demand reduction systems such as shutting down industry and smart fridges.

How can the energy companies turn your fridge off ?

If the appliances have the right software, simple frequency modulation of the power supply should be sufficient to trip fridges and freezers off. Or you could connect them to the Internet via a gateway. The problem is peak power demand periods, twice a day, the evening peak worse than the morning. There has been some progress in managing this due to switching light bulbs and efficient appliances, but it’s still critical. Alistair Buchanan, ex of Ofgem, went out on a limb to say that we could lose all our power production margins within a couple of years, in winter.

But the refrigerators are being opened and closed in the early evening, so it would be the wrong time of day to switch them off. And anyway, don’t the fridges stop using power when they’re down to temperature ?

Some of these things will need to be imposed regardless of concerns, because control of peak power demand is critical. Smart fridges may be some years away, but the National Grid already have contracts with major energy users to shed their load under certain circumstances. Certain key elements of the energy infrastructure will be pushed through. They will need to be pushed through, because the energy crunch is imminent.

The time for democracy was ten years ago. To get better democracy you need much more education. Fortunately, young people (which includes young journalists) are getting that education. If you don’t want to be irritated by the views of climate change and energy sceptics, don’t bother to read the Daily Telegraph, the Daily Express, the Daily Mail, the online Register or the Spectator. The old school journalists love to keep scandal alive, even though any reason to doubt climate change science and renewable energy died in the 1980s.

Although I’ve long since stopped trusting what a journalist writes, I’m one of those people who think that you should read those sources.

I must admit I do myself from time to time, but just for entertainment.

Making The Sour Sweet

In the long view, some things are inevitable, and I don’t just mean death and taxes. Within the lifetime of children born today, there must be a complete transformation in energy. The future is renewable, and carefully deployed renewable energy systems can be reliable, sustainable and low cost, besides being low in carbon dioxide emissions to air. This climate safety response is also the answer to a degradation and decline in high quality mineral hydrocarbons – the so-called “fossil” fuels. Over the course of 2014 I shall be writing about Renewable Gas – sustainable, low emissions gas fuels made on the surface of the earth without recourse to mining for energy. Renewable Gas can store the energy from currently underused Renewable Electricity from major producers such as wind and solar farms, and help to balance out power we capture from the variable wind and sun. Key chemical players in these fuels : hydrogen, methane, carbon monoxide and carbon dioxide. Key chemistry : how to use hydrogen to recycle the carbon oxides to methane. How we get from here to there is incredibly important, and interestingly, methods and techniques for increasing the production volumes of Renewable Gas will be useful for the gradually fading fossil fuel industry. Much of the world’s remaining easily accessible Natural Gas is “sour” – laced with high concentrations of hydrogen sulfide and carbon dioxide. Hydrogen sulfide needs to be removed from the gas, but carbon dioxide can be recycled into methane, raising the quality of the gas. We can preserve the Arctic from fossil gas exploitation, and save ourselves from this economic burden and ecological risk, by employing relatively cheap ways to upgrade sour Natural Gas, from Iran, for example, while we are on the decades-long road of transitioning to Renewable Gas. The new burn is coming.

Ed Davey : Polish Barbecue



This week, both Caroline Flint MP and Ed Balls MP have publicly repeated the commitment by the UK’s Labour Party to a total decarbonisation of the power sector by 2030, should they become the governing political party. At PRASEG’s Annual Conference, Caroline Flint said “In around ten years time, a quarter of our power supply will be shut down. Decisions made in the next few years […] consequences will last for decades […] keeping the lights on, and [ensuring reasonably priced] energy bills, and preventing dangerous climate change. […] Labour will have as an election [promise] a legally binding target for 2030. […] This Government has no vision.”

And when I was in an informal conversation group with Ed Davey MP and Professor Mayer Hillman of the Policy Studies Institute at a drinks reception after the event hosted by PRASEG, the Secretary of State for Energy and Climate Change seemed to me to also be clear on his personal position backing the 2030 “decarb” target.

Ed Davey showed concern about the work necessary to get a Europe-wide commitment on Energy and Climate Change. He took Professor Hillman’s point that carbon dioxide emissions from the burning of fossil fuels are already causing dangerous climate change, and that the risks are increasing. However, he doubted that immediate responses can be made. He gave the impression that he singled out Poland of all the countries in the European Union to be an annoyance, standing in the way of success. He suggested that if Professor Hillman wanted to do something helpful, he could fly to Poland…at this point Professor Hillman interjected to say he hasn’t taken a flight in 70 years and doesn’t intend to now…and Ed Davey continued that if the Professor wanted to make a valuable contribution, he could travel to Poland, taking a train, or…”I don’t care how you get there”, but go to Poland and persuade the Poles to sign up to the 2030 ambition.

Clearly, machinations are already afoot. At the PRASEG Annual Conference were a number of communications professionals, tightly linked to the debate on the progress of national energy policy. Plus, one rather exceedingly highly-networked individual, David Andrews, the key driver behind the Claverton Energy Research Group forum, of which I am an occasional participant. He had ditched the normal navy blue polyester necktie and sombre suit for a shiveringly sharp and open-necked striped shirt, and was doing his best to look dapper, yet zoned. I found him talking to a communications professional, which didn’t surprise me. He asked how I was.

JA : “I think I need to find a new job.”
DA : “MI6 ?”
JA : “Too boring !”

What I really should have said was :-

JA : “Absolutely and seriously not ! Who’d want to keep State Secrets ? Too much travel and being nice to people who are nasty. And making unbelievable compromises. The excitement of privilege and access would wear off after about six minutes. Plus there’s the risk of ending up decomposing in something like a locked sports holdall in some strange bathroom in the semblance of a hostelry in a godforsaken infested hellhole in a desolate backwater like Cheltenham or Gloucester. Plus, I’d never keep track of all the narratives. Or the sliding door parallel lives. Besides, I’m a bit of a Marmite personality – you either like me or you really don’t : I respond poorly to orders, I’m not an arch-persuader and I’m not very diplomatic or patient (except with the genuinely unfortunate), and I’m well-known for leaping into spats. Call me awkward (and some do), but I think national security and genuine Zero Carbon prosperity can be assured by other means than dark arts and high stakes threats. I like the responsibility of deciding for myself what information should be broadcast in the better interests of the common good, and which held back for some time (for the truth will invariably out). And over and above all that, I’m a technologist, which means I prefer details over giving vague impressions. And I like genuine democratic processes, and am averse to social engineering. I am entirely unsuited to the work of a secret propaganda and diplomatic unit.”

I would be prepared to work for a UK or EU Parliamentary delegation to Poland, I guess, if I could be useful in assisting with dialogue, perhaps in the technical area. I do after all have several academic degrees pertinent to the questions of Energy and Climate Change.

But in a room full of politicians and communications experts, I felt a little like a fished fish. Here, then, is a demonstration. I was talking with Rhys Williams, the Coordinator of PRASEG, and telling him I’d met the wonderful Professor Geoff Williams, of Durham Univeristy, who has put together a system of organic light emitting diode (LED) lighting and a 3-D printed control unit, and, and, and Rhys actually yawned. He couldn’t contain it, it just kind of spilled out. I told myself : “It’s not me. It’s the subject matter”, and I promptly forgave him. Proof, though, of the threshold for things technical amongst Westminster fixers and shakers.

Poland. I mean, I know James Delingpole has been to Poland, and I thought at the time he was possibly going to interfere with the political process on climate change, or drum up support for shale gas. But I’m a Zero Carbon kind of actor. I don’t need to go far to start a dialogue with Poland by going to Poland – I have Poles living in my street, and I’m invited to all their barbecues. Maybe I should invite Professor Mayer Hillman to cycle over to Waltham Forest and address my near neighbours and their extended friendship circle on the importance of renewable energy and energy efficiency targets, and ask them to communicate with the folks back home with any form of influence.

Birdcage Walk : Cheesestick Rationing


Yesterday…no, it’s later than I think…two days ago, I attended the 2013 Conference of PRASEG, the Parliamentary Renewable and Sustainable Energy Group, at the invitation of Rhys Williams, the long-suffering Coordinator. “…Sorry…Are you upset ?” “No, look at my face. Is there any emotion displayed there ?” “No, you look rather dead fish, actually”, etc.

At the prestigious seat of the Institute of Mechanical Engineers (IMechE), One Birdcage Walk, we were invited down into the basement for a “drinks reception”, after hearing some stirring speeches and intriguing panel discussions. Despite being promised “refreshments” on the invitation, there had only been beverages and a couple of bikkies up until now, and I think several of the people in the room were starting to get quite hypoglycemic, so were grateful to see actual food being offered.

A market economy immediately sprang up, as there was a definite scarcity in the resources of cheesesticks, and people jostled amiably, but intentionally, so they could cluster closest to the long, crispy cow-based snacks. The trading medium of exchange was conversation. “Jo, meet Mat Hope from Carbon Brief, no Maf Smith from Renewable UK. You’ve both been eviscerated by Delingpole online”, and so on.

“Welcome to our own private pedestal”, I said to somebody, who it turned out had built, probably in the capacity of developer, a sugarcane bagasse Combined Heat and Power plant. The little table in the corner had only got room around it for three or at most four people, and yet had a full complement of snack bowls. Bonus. I didn’t insist on memorising what this fellow told me his name was. OK, I didn’t actually hear it above the hubbub. And he was wearing no discernible badge, apart from what appeared to be the tinge of wealth. He had what looked like a trailing truculent teenager with him, but that could have been a figment of my imagination, because the dark ghost child spoke not one word. But that sullenness, and general anonymity, and the talkative gentleman’s lack of a necktie, and his slightly artificial, orange skin tone, didn’t prevent us from engaging wholeheartedly in a discussion about energy futures – in particular the default options for the UK, since there is a capacity crunch coming very soon in electricity generation, and new nuclear power reactors won’t be ready in time, and neither will Carbon Capture and Storage-fitted coal-fired power plants.

Of course, the default options are basically Natural Gas and wind power, because large amounts can be made functional within a five year timeframe. My correspondent moaned that gas plants are closing down in the UK. We agreed that we thought that new Combined Cycle Gas Turbine plant urgently needs to be built as soon as possible – but he despaired of seeing it happen. He seemed to think it was essential that the Energy Bill should be completed as soon as possible, with built-in incentives to make Gas Futures a reality.

I said, “Don’t wait for the Energy Bill”. I said, “Intelligent people have forecast what could happen to Natural Gas prices within a few years from high European demand and UK dependence, and are going to build gas plant for themselves. We simply cannot have extensions on coal-fired power plants…” He agreed that the Large Combustion Plant Directive would be closing the coal. I said that there was still something like 20 gigawatts of permissioned gas plant ready to build – and with conditions shaping up like they are, they could easily get financed.

Earlier, Nigel Cornwall, of Cornwall Energy had put it like this :-

“Deliverability and the trilemma [meeting all three of climate change, energy security and end-consumer affordability concerns] [are key]. Needs to be some joined-up thinking. […] There is clearly a deteriorating capacity in output – 2% to 5% reduction. As long as I’ve worked in the sector it’s been five minutes to midnight, [only assuaged by] creative thinking from National Grid.”

However, the current situation is far from bog standard. As Paul Dickson of Glennmont Partners said :-

“£110 billion [is needed] to meet the [electricity generation] gap. We are looking for new sources of capital. Some of the strategic institutional capital – pension funds [for example] – that’s who policy needs to be directed towards. We need to look at sources of capital.”

Alistair Buchanan, formerly of Ofgem, the power sector regulator, and now going to KPMG, spent the last year or so of his Ofgem tenure presenting the “Crunch Winter” problem to as many people as he could find. His projections were based on a number of factors, including Natural Gas supply questions, and his conclusion was that in the winter of 2015/2016 (or 2016/2017) power supply could get thin in terms of expansion capacity – for moments of peak demand. Could spell crisis.

The Government might be cutting it all a bit fine. As Jenny Holland of the Association for the Conservation of Energy said :-

“[Having Demand Reduction in the Capacity Mechanism] Not our tip-top favourite policy outcome […] No point to wait for “capacity crunch” to start [Energy Demand Reduction] market.”

It does seem that people are bypassing the policy waiting queue and getting on with drawing capital into the frame. And it is becoming more and more clear the scale of what is required. Earlier in the afternoon, Caroline Flint MP had said :-

“In around ten years time, a quarter of our power supply will be shut down. Decisions made in the next few years. Consequences will last for decades. Keeping the lights on, and [ensuring reasonably priced] energy bills, and preventing dangerous climate change.”

It could come to pass that scarcity, not only in cheesesticks, but in electricity generation capacity, becomes a reality. What would policy achieve then ? And how should Government react ? Even though Lord Deben (John Gummer) decried in the early afternoon a suggestion implying carbon rationing, proposed to him by Professor Mayer Hillman of the Policy Studies Institute, it could yet turn out that electricity demand reduction becomes a measure that is imposed in a crisis of scarcity.

As I put it to my sugarcane fellow discussionee, people could get their gas for heating cut off at home in order to guarantee the lights and banks and industry stay on, because UK generation is so dependent on Natural Gas-fired power.

Think about it – the uptake of hyper-efficient home appliances has turned down owing to the contracting economy, and people are continuing to buy and use electronics, computers, TVs and other power-sucking gadgets. Despite all sizes of business having made inroads into energy management, electricity consumption is not shifting downwards significantly overall.

We could beef up the interconnectors between the UK and mainland Europe, but who can say that in a Crunch Winter, the French and Germans will have any spare juice for us ?

If new, efficient gas-fired power plants are not built starting now, and wind farms roll out is not accelerated, the Generation Gap could mean top-down Energy Demand Reduction measures.

It would certainly be a great social equaliser – Fuel Poverty for all !

Good Gas, Bad Gas

http://thinkprogress.org/climate/2013/07/07/1058051/must-see-gasland-part-ii-on-hbo-monday-natural-gas-once-a-bridge-now-a-gangplank/

That’s the bad gas. Now for the good gas – Renewable Gas :-

http://tribune.com.pk/story/573418/renewable-energy-kesc-aman-foundation-to-set-up-bio-gas-plant/

http://www.woodheadpublishing.com/en/book.aspx?bookID=2862

http://pubs.acs.org/doi/abs/10.1021/nl4016655

Joanna Kargul’s team :-
http://solar.biol.uw.edu.pl/index.php/lab-team
http://www.eera-set.eu/lw_resource/datapool/_items/item_795/ampea_2013_kargul.pdf

Slightly questionable gas (from a biosecurity point of view) :-

http://sb6.biobricks.org/poster/biohydrogen-production-in-e-coli-a-synthetic-biology-approach/

They Think It’s Not All Over



[ Image Credit : Lakeview Gusher : TotallyTopTen.com ]

So, the EIA say that the world has 10 years of shale oil resources which are technically recoverable. Woo hoo. We’ll pass over the question of why the American Department of Energy are guiding global energy policy, and why this glowing pronouncement looks just like the mass propaganda exercise for shale gas assessments that kicked off a few years ago, and move swiftly on to the numbers.

No, actually, not straight on to the numbers. It shouldn’t take a genius to work out the public relations strategy for promoting increasingly dirtier fossil fuels. First, they got us accustomed to the idea of shale gas, and claimed without much evidence, that it was as “clean” as Natural Gas, and far, far cleaner than coal. Data that challenges this myth continues to be collected. Meanwhile, now we are habituated to accepting without reason the risks of subsurface and ground water reservoir destruction by hydraulic fracturing, we should be pliable enough to accept the next step up – oil shale oil fracking. And then the sales team can move on to warm us up to cruddier unconventionals, like bitumen exhumed from tar sands, and mining unstable sub-sea clathrates.

Why do the oil and gas companies of the world and their trusted allies in the government energy departments so desperately want us to believe in the saving power of shale oil and gas ? Why is it necessary for them to pursue such an environmentally threatening course of product development ? Can it be that the leaders of the developed world and their industry experts recognise, but don’t want to admit to, Peak Oil, and its twin wraith, Peak Natural Gas, that will shadow it by about 10 to 15 years ?

A little local context – UK oil production is falling like a stoneover the whole North Sea area. Various efforts have been made to stimulate new investment in exploration and discovery. The overall plan for the UK Continental Shelf has included opening up prospects via licence to smaller players in the hope of getting them to bet the farm, and if they come up trumps, permitted the larger oil and gas companies to snaffle up the small fry.

But really, the flow of Brent crude oil is getting more expensive to guarantee. And it’s not just the North Sea – the inverse pyramid of the global oil futures market is teeteringly wobbly, even though Natural Gas Liquids (NGL) are now included in petroleum oil production figures. Cue panic stations at the Coalition (Oilition) Government offices – frantic rustling of review papers ahoy.

To help them believe it’s not all over, riding into view from the stables of Propaganda Central, come the Six Horsemen of Unconventional Fossil Fuels : Tar Sands, Shale Gas, Shale Oil (Oil Shale Oil), Underground Coal Gasification, Coalbed Methane and Methane Hydrates.

Shiny, happy projections of technically recoverable unconventional (night)mares are always lumped together, like we are able to suddenly open up the ground and it starts pouring out hydrocarbon goodies at industrial scale volumes. But no. All fossil fuel development is gradual – especially at the start of going after a particular resource. In the past, sometimes things started gushing or venting, but those days are gone. And any kind of natural pump out of the lithosphere is entirely absent for unconventional fossil fuels – it all takes energy and equipment to extract.

And so we can expect trickles, not floods. So, will this prevent field depletion in any region ? No. It’s not going to put off Peak Oil and Peak Natural Gas – it literally cannot be mined fast enough. Even if there are 10 years of current oil production volumes that can be exploited via mining oil shale, it will come in dribs and drabs, maybe over the course of 50 to 100 years. It might prolong the Peak Oil plateau by a year or so – that’s barely a ripple. Unconventional gas might be more useful, but even this cannot delay the inevitable. For example, despite the USA shale gas “miracle”, as the country continues to pour resources and effort into industrialising public lands, American Peak Natural Gas is still likely to be only 5 years, or possibly scraping 10 years, behind Global Peak Natural Gas which will bite at approximately 2030 or 2035-ish. I suspect this is why EIA charts of future gas production never go out beyond 2045 or so :-

Ask a mathematician to model growth in unconventional fossil fuels compared to the anticipated and actual decline in “traditional” fossil fuels, and ask if unconventionals will compensate. They will not.

The practice for oil and gas companies is to try to maintain shareholder confidence by making sure they have a minimum of 10 years of what is known as Reserves-to-Production ratio or R/P. By showing they have at least a decade of discovered resources, they can sell their business as a viable investment. Announcing that the world has 10 years of shale oil it can exploit sounds like a healthy R/P, but in actual fact, there is no way this can be recovered in that time window. The very way that this story has been packaged suggests that we are being encouraged to believe that the fossil fuel industry are a healthy economic sector. Yet it is so facile to debunk that perspective.

People, it’s time to divest your portfolios of oil and gas concerns. If they have to start selling us the wonders of bitumen and kerogen, the closing curtain cannot be far away from dropping.

They think it’s not all over, but it so clearly must be.

A Question of Resilience

Again, the evil and greedy oil, gas and mining companies have proved their wickedness by manipulating public opinion, by directly financing conspiracy theorists who deny climate change science. The irony is tangibly acidic. The paranoid have actually been duped by a genuine conspiracy. They have drunk the Kool Aid; they have believed the lies; they have continued to communicate doubt. They think they are challenging corruption in high places, but what they are really doing is reinforcing apathy in the face of genuine risk.

The questions posed so unrelentingly by the climate change deniers have sewn a patchwork tapestry of disinformation, which continues to poison genuine dialogue and is undermining political progress. We cannot take these people with us into constructive engagement, and ask them to help us forge a broad consensus. It is as if they exist in a parallel universe. Some of us will continue to attempt to conduct dialogue, but will end up wasting our time. The documentation by the media is faulty, and perpetuates the success of the denier strategy of divide and rule.

But hold on a minute. There are problems with the stance of climate change denial, but what about the positioning of climate change activists ? Let’s try that first paragraph one more time :-

[ Again, the “evil” and “greedy” oil, gas and mining companies have proved their “wickedness” by manipulating public opinion, by directly financing conspiracy theorists who deny climate change science. The irony is tangibly acidic. The paranoid have actually been duped by a genuine conspiracy. They have drunk the Kool Aid; they have believed the lies; they have continued to communicate doubt. They think they are challenging corruption in high places, but what they are really doing is reinforcing apathy in the face of genuine risk. ]

By casting the fossil fuel and mining corporations as wrongly motivated, by using negative emotive labels, the dominant narrative of political activists has failed, once again, to move us all forward. These kinds of revelations about underhand corporate public relations activities are by now unsurprising. The news cannot shock, although it may disgust. Yet, since nothing is offered to counter-balance or correct the inappropriate behaviour of the “fossil fuellers”, they win the game they invented, the game they wrote the rules for. Protesting at a petrol station achieves nothing of any note, not even when there’s a camera-friendly polar bear. We hear the message of pain, but there is no ointment. There is a disconnect between the gruesome discovery and any way out of this mess. The revelation of intent of the carbon dinosaurs, the recounting of the anti-democratic activities, does not result in change.

Environmental pollution is a “victimless” crime – no matter how much we sympathise or empathise with the plight of poisoned floating fish, dying bees, asthmatic kids, or cancer-laden people. Fines and taxes cannot rectify the scourge of environmental pollution, because there is no ultimate accountability. Regulation cannot be enforced. The misbehaviour just carries on, because there is systemic momentum. There is no legal redress (“due process” in Americanese) for those who are suffering the worsening effects of climate change, and there is no treaty that can be made to curb greenhouse gas emissions that anybody can be bound to by international sanctions.

And so when we hear the same old story – that the energy industry is propagandising – we cannot respond. We don’t know what we can do. We are paralysed. This narrative is so tired, it snores.

Truth may have been a victim, but the energy industry are also vulnerable – they are acting in self-defence mode. Let’s take the big vista in : there is stress in the global production of fossil fuel energy, and all routes to an easy fix, even if it’s only a short-term fix, are choked.

So let’s ask the question – why do the energy companies deceive ? Do they think they are being deceptive ? Why do fossil fuel miners seek to massage public opinion ? This is a question of resilience, of Darwinian survival – seeking advantage by altering policy by tampering with public assent. They believe in their product, they construct their mission – they are protecting their future profits, they’re making a living. They’re humans in human organisations. They’re not “evil”, “greedy” or “lying” – as a rule. There are no demons here, nor can we convincingly summon them.

Look at the activist game plan – we announce the deliberate actions of the fossil fuel companies to influence the political mandate. But these scandals are only ever voiced, never acted upon. They cannot be acted upon because those who care have no power, no agency, to correct or prevent the outcomes. And those who should care, do not care, because they themselves have rationalised the misdemeanours of the fossil fuellers. They too have drunk from the goblet of doubt. Amongst English-speaking politicians, I detect a good number who consider climate change to be a matter for wait-and-see rather than urgent measures. Besides those who continue to downplay the seriousness of climate change.

Look also at the difference between the covert nature of the support for climate change deniers, and the open public relations activities of the fossil fuel and mining companies. They speak in the right way for their audiences. That’s smart.

In time, the end of the fossil fuel age will become apparent, certain vague shapes on the horizon will come out of the blur and into sharp focus. But in the meantime, the carbon dinosaurs are taking action to secure market share, maintain the value of their stock, prop up the value of their shareholders’ assets. The action plan for survival of the oil, gas, coal and mining operations now includes the promotion of extreme energy – so-called unconventional fossil fuels, the once-dismissed lower quality resources such as tight gas, shale gas, shale oil and coalbed methane (coal seam methane). Why are the energy industry trying to gild the rotten lily ? Is the support for unconventional fossil fuels a move for certain countries, such as the United States of America, to develop more indigenous sources of energy – more homegrown energy to make them independent of foreign influence ? This could be the main factor – most of the public relations for shale gas, for example, seems to come from USA.

The answer could come by responding to another question. Could it be that the production of petroleum oil has in fact peaked – that decline has set in for good ? Could it be that the Saudis are not “turning off the taps” to force market prices, because in actual fact the taps are being turned off for them, by natural well depletion ? The Arab Spring is a marvellous distraction – the economic sanctions and military and democratic upheaval are excellent explanations for the plateau in global oil production.

It seems possible from what I have looked at that Peak Oil is a reality, that decline in the volumes of produced petroleum is inevitable. The fossil fuel producers, the international corporations who have their shareholders and stock prices to maintain, have been pushing the narrative that the exploitation of unconventional fossil fuels can replace lost conventional production. They have been painting a picture of the horn of plenty – a cornucopia of unconventional fossil fuels far exceeding conventional resources. To please their investors, the fossil fuel companies are lying about the future.

Sure, brute force and some new technology are opening up “unconventionals” but this will not herald the “golden age” of shale gas or oils from shale. Shale gas fields deplete rapidly, and tar sands production is hugely polluting and likely to be unsustainable in several ways because of that. There might be huge reserves – but who knows how quickly heavy oils can be produced ? And how much energy input is required to create output energy from other low grade fossil strata ? It is simply not possible to be certain that the volumes of unconventional fossil fuel production can match the decline in conventionals.

The facts of the matter need admitting – there is no expansion of sweet crude oil production possible. There’s no more crude – there’s only crud. And slow crud, at that.

Peak Oil is a geological fact, not a market artefact. The production levels of crude and condensate may not recover, even if military-backed diplomacy wins the day for the energy industry in the Middle East and North Africa.

Peak Oil has implications for resilience of the whole global economy – the conversion of social and trade systems to use new forms of energy will take some considerable time – and their integrity is at risk if Peak Oil cannot be navigated smoothly. Peak Oil is dangerous – it seems useful to deny it as long as possible.

It’s pretty clear that we’ve been handed lots of unreliable sops over the years. The energy industry promised us that biofuels could replace gasoline and diesel – but the realisation of this dream has been blocked at every turn by inconvenient failings. The energy industry has, to my mind, been deploying duds in order to build in a delay while they attempt to research and develop genuine alternatives to conventional fossil fuels – but they are failing. The dominant narrative of success is at risk – will all of this continue to hold together ? Can people continue to believe in the security of energy systems – the stability of trade and economic wealth creation ? Oh yes, people raise concerns – for example about disruption in the Middle East and North Africa, and then propose “solutions” – regime change, military support for opposition forces, non-invasive invasions. But overall, despite these all too evident skirmishes, the impression of resilience is left intact. The problem is being framed as one of “edge issues” – not systemic. It’s not clear how long they can keep up with this game.

The facade is cracking. The mask is slipping. BP and Centrica in a bout of hyper-realism have said that the development of shale gas in the UK will not be a “game changer”. It may be that their core reasoning is to drag down the market value of Cuadrilla, maybe in order to purchase it. But anyway, they have defied the American energy industry public relations – hurrah ! Shale gas is not the milk of a honey-worded mother goddess after all – but what’s their alternative story ? That previously under-developed gas in Iran and Iraq will be secured ? And what about petroleum ? Will the public relations bubble about that be punctured too ? Telling people about Peak Oil – how useful is that ? They won’t do it because it has to be kept unbelievable and unbelieved in order to save face and keep global order. Academics talk about Peak Oil, but it is not just a dry, technical question confined to ivory towers. Attention is diverted, but the issue remains. Looking at it doesn’t solve it, so we are encouraged not to look at it.

So, why do the energy industry purposely set out to manipulate public opinion ? Well, the reason for their open advertising strategy is clear – to convince investors, governments, customers, that all is well in oil and gas – that there is a “gas glut” – that the world is still awash in petroleum and Natural Gas – that the future will be even more providential than the past – that the only way is up. All the projections of the oil and gas industry and the national, regional and international agencies are that energy demand will continue to rise – the underlying impression you are intended to be left with is that, therefore, global energy supply will also continue to rise. Business has never been better, and it can only get more profitable. We will need to turn to unconventional resources, but hey, there’s so much of the stuff, we’ll be swimming in it.

But what is the purpose of the covert “public relations” of the energy industry ? Why do they seek to put out deception via secretly-funded groups ? When the truth emerges, as it always does in the end, the anger and indignation of the climate change activists is guaranteed. And angry and indignant activists can easily be ignored. So, the purpose in funding climate change deniers is to emotionally manipulate climate change activists – rattle their cages, shake their prison bars. Let them rail – it keeps the greens busy, too occupied with their emotional disturbance. By looking at these infractions in depth are we being distracted from the bigger picture ? Can we make any change in global governance by bringing energy industry deception to light ?

Even as commentators peddle conspiracy theories about the science and politics of a warming planet, the “leader of the free world” is inaugurated into a second term and announces action on climate change. Although progressives around the world applaud this, I’m not sure what concrete action the President and his elite colleague team of rich, mostly white, middle-aged men can take. I am listening to the heartbeat of the conversation, and my take away is this : by announcing action on climate change, Barack Obama is declaring war on the sovereignty of the oil and gas producing nations of the Middle East and North Africa.

You see, the Middle East and North Africa are awash in Natural Gas. Untapped Natural Gas. The seismic surveys are complete. The secret services have de-stabilised democracy in a number of countries now, and this “soft power” will assist in constructing a new narrative – that unruliness in the Middle East and North Africa is preventing progress – that the unstable countries are withholding Natural Gas from the world – the fossil fuel that can replace petroleum oil in vehicles when chemically processed, the fossil fuel that has half the carbon emissions of coal when generating electricity. Resources of Natural Gas need “protecting”, securing, “liberating”, to save the world’s economy from collapse.

Obama stands up and declares “war” on climate change. And all I hear is a klaxon alarm for military assault on Iran.

But even then, if the world turns to previously untapped Natural Gas, I believe this is only a short-term answer to Peak Oil. Because waiting in the wings, about ten years behind, is Peak Natural Gas. And there is no answer to Peak Natural Gas, unless it includes a genuine revolution in energy production away from what lies beneath. And that threatens the sustenance of the oil and gas industry.

No wonder, then, that those who fund climate change denial – who stand to profit from access to untapped fossil fuels, secured by military aggresssion in the Middle East and North Africa – also fund opposition to renewable energy. The full details of this are still emerging. Will we continue to express horror and distaste when the strategy becomes more transparent ? Will that achieve anything ? Or will we focus on ways to bring about the only possible future – a fossil-fuel-free energy economy ? This will always take more action than words, but messaging will remain key. The central message is one that will sound strange to most people, but it needs to be said : fossil fuels will not continue to sustain the global economy : all will change.

Funnily enough, that is exactly the summary of the statements from the World Economic Forum in Davos – only the world’s administration are still not admitting to Peak Fossil Fuels. Instead, they are using climate change as the rationale for purposeful decarbonisation.

Well, whichever way it comes, let’s welcome it – as long as it comes soon. It’s not just the survival of individual oil and gas companies that is at stake – the whole global economy is at risk from Peak Fossil Fuels – and climate change. I use the word “economy”, because that is the word used by MBAs. What I mean is, the whole of human civilisation and life on Earth is at risk from Peak Fossil Fuels and climate change. Unconventional fossil fuels are the most polluting answer to any question, and expansion of their use will undoubtedly set off “climate bombs“.

Don’t get me wrong – Natural Gas is a good bridge to the future, but it is only a transition fuel, not a destination. Please, can we not have war against Iran. Please let’s have some peaceful trade instead. And some public admissions of the seriousness of both Peak Fossil Fuels and climate change by all the key players in governance and energy.

Futureproof Renewable Sustainable Energy #3

PRASEG Annual Conference 2012
http://www.praseg.org.uk/save-the-date-praseg-annual-conference/
“After EMR: What future for renewable and sustainable energy?”
31st October 2012
One Birdcage Walk, Westminster
Twitter hashtag : #PRASEG12

Addendum to Part 1 and Part 2

Dr Mayer Hillman of the Policy Studies Institute has contributed a summary of the questions that he raised at the PRASEG Annual Conference on Wednesday 31st October 2012, together with more background detail, and I am pleased to add this to the record of the day, and wish him a happy 82nd year !


PRASEG Conference 31 October 2012

Questions raised by Dr. Mayer Hillman (Policy Studies Institute) in the following sessions

The Future of Renewable and Sustainable Energy: Panel Session

I can only assume from the statements of each of the panellists of this session that their point of departure is that consumers have an inalienable right to engage in as much energy-intensive activity as they wish. Thereafter, it is the Government’s responsibility to aim to meet as much of the consequent demand as possible, subject only to doing so in the most cost-effective and least environmentally-damaging ways possible.

However as Laura Sandys pointed out in her introduction, “policy must reflect the realities of the world we live in”. The most fundamental of these realities is that the planet’s atmosphere only has a finite capacity to safely absorb further greenhouse gas emissions. Surely, that must be the point of departure for policy if we are to ensure a long-term future for life on earth. That future can only be assured by the adoption of zero-carbon lifestyles as soon as conceivably possible. Simply aiming to increase the contribution of the renewables and of the efficiency with which fossil fuels are used is clearly bound to prove inadequate as the process of climate change is already irreversible.

Demand side policy: The missing element?: Panel Session

Given that the process of climate change cannot now be reversed, at best only slowed down by our actions, continued development of means of matching the predicted huge increase in energy demand whilst minimising its contribution to climate change is seen to be the logical way forward. However, any burning of fossil fuels adds to the already excessive concentration of CO2 in the atmosphere.

The only solution now is the one advocated by the Global Commons Institute since 1996. The extent of GCI’s success, both national and international, is very apparent by looking at the Institute’s website http://www.gci.org.uk. Contraction and Convergence is the framework, that is the contraction of greenhouse gases to a safe level and their convergence to equal per capita shares across the world’s population.

Our chair for this session has been a supporter for several years. Why cannot the panellists see this to be the way ahead rather than taking small steps which, in aggregate, cannot conceivably prevent catastrophe in the longer term?

Keynote address by the Right Hon. Edward Davey, Secretary of State, DECC

The Secretary-of-State has just confirmed the fears that I expressed in the first session of this conference, namely that he sees it to be the Government’s responsibility, if not duty, to ensure that, if at all possible, the burgeoning growth in energy demand predicted for the future is met. To that end, he has just outlined stages of a strategy intended to enable comparisons to be made on “a level playing field” between different types of electricity generation as energy is increasingly likely to be supplied in the form of electricity. To do so, in his view, it is essential that a market price for the release of a tonne of CO2 emissions into the atmosphere is determined.

I have two great reservations about such a process. First, if the price is to cover all the costs incurred then, for instance, the real costs of large scale migration of vast populations fleeing the regions that will be rendered uninhabitable by climate change caused by the increase in the concentration of CO2 in the atmosphere (with more than 100 years continuous impacts) would have to be included. I fail to see how that could be realistically established, let alone its moral implications being acceptable.

Second, we know that we have already passed the stage that would have allowed us to reverse the process of global climate change – just consider the melting of the Arctic ice cap. That market price for the tonne of CO2 emissions, insofar as it could be determined, would have to rise exponentially owing to the planet’s non-negotiable capacity to safely absorb further emissions. Yet the market requires a fixed price to enable decisions affecting the future to be made.


The Art of Non-Persuasion

I could never be in sales and marketing. I have a strong negative reaction to public relations, propaganda and the sticky, inauthentic charm of personal persuasion.

Lead a horse to water, show them how lovely and sparkling it is, talk them through their appreciation of water, how it could benefit their lives, make them thirsty, stand by and observe as they start to lap it up.

One of the mnemonics of marketing is AIDA, which stands for Attention, Interest, Desire, Action, leading a “client” through the process, guiding a sale. Seize Attention. Create Interest. Inspire Desire. Precipitate Action. Some mindbenders insert the letter C for Commitment – hoping to be sure that Desire has turned into certain decision before permitting, allowing, enabling, contracting or encouraging the Action stage.

You won’t get that kind of psychological plasticity nonsense from me. Right is right, and wrong is wrong, and ethics should be applied to every conversion of intent. In fact, the architect of a change of mind should be the mind who is changing – the marketeer or sales person should not proselytise, evangelise, lie, cheat, sneak, creep and massage until they have control.

I refuse to do “Suggestive Sell”. I only do “Show and Tell”.

I am quite observant, and so in interpersonal interactions I am very sensitive to rejection, the “no” forming in the mind of the other. I can sense when somebody is turned off by an idea or a proposal, sometimes even before they know it clearly themselves. I am habituated to detecting disinclination, and I am resigned to it. There is no bridge over the chasm of “no”. I know that marketing people are trained to not accept negative reactions they perceive – to keep pursuing the sale. But I don’t want to. I want to admit, permit, allow my correspondent to say “no” and mean “no”, and not be harrassed, deceived or cajoled to change it to a “yes”.

I have been accused of being on the dark side – in my attempts to show and tell on climate change and renewable energy. Some assume that because I am part of the “communications team”, I am conducting a sales job. I’m not. My discovery becomes your discovery, but it’s not a constructed irreality. For many, it’s true that they believe they need to follow the path of public relations – deploying the “information deficit model” of communication – hierarchically patronising. Me, expert. You, poor unknowing punter. Me, inform you. You, believe, repent, be cleaned and change your ways. In this sense, communications experts have made climate change a religious cult.

In energy futures, I meet so many who are wild-eyed, desperate to make a sale – those who have genuine knowledge of their subject – and who realise that their pitch is not strong enough in the eyes of others. It’s not just a question of money or funding. The engineers, often in large corporations, trying to make an impression on politicians. The consultants who are trying to influence companies and civil servants. The independent professionals trying to exert the wisdom of pragmatism and negotiated co-operation. The establishment trying to sell technical services. Those organisations and institutions playing with people – playing with belonging, with reputation, marketing outdated narratives. People who are in. People who are hands-off. People who are tipped and ditched. Those with connections who give the disconnected a small rocky platform. The awkwardness of invested power contending with radical outsiders. Denial of changing realities. The dearth of ready alternatives. Are you ready to be captured, used and discarded ? Chase government research and development grants. Steal your way into consultations. Play the game. Sell yourself. Dissociate and sell your soul.

I have to face the fact that I do need to sell myself. I have to do it in a way which remains open and honest. To sell myself and my conceptual framework, my proposals for ways forward on energy and climate change, I need a product. My person is often not enough of a product to sell – I am neuro-atypical. My Curriculum Vitae CV in resume is not enough of a product to sell me. My performance in interviews and meetings is often not enough of a product. My weblog has never been a vehicle for sales. I didn’t want it to be – or to be seen as that – as I try to avoid deceit in communications.

Change requires facilitation. You can’t just walk away when the non-persuasional communications dialogue challenge gets speared with distrust and dismissal. Somehow there has to be a way to present direction and decisions in a way that doesn’t have a shadow of evil hovering in the wings.

“A moment to change it all, is all it takes to start anew.
To the other side.”


Why do I need to “sell” myself ? Why do I need to develop a product – a vehicle with which to sell myself ?

1. In order to be recognised, in order to be welcomed, invited to make a contribution to the development of low carbon energy, the optimisation of the use of energy, and effective climate change policy.

2. In order to put my internal motivations and drive to some practical use. To employ my human energy in the service of the future of energy engineering and energy systems.



Cross-Motivation

A fully renewable energy future is not only possible, it is inevitable.

We need to maximise the roll out of wind and solar renewable electricity systems, and at the same time fully develop marine, geothermal and hydropower energy, and of course, energy storage.

We need strong energy conservation and energy efficiency directives to be enacted in every state, sector and region.

But we need to get from here to there. It requires the application of personal energy from all – from governments, from industry, from society.

In arguing for focus on the development of Renewable Gas, which I believe can and will be a bridge from here to a fully renewable energy future, I am making an appeal to those who view themselves as environmentalists, and also an appeal to those who view themselves as part of the energy industry.

Those who cast themselves as the “good guys”, those who want to protect the environment from the ravages of the energy industry, have for decades set themselves in opposition, politically and socially, to those in the energy production and supply sectors, and this has created a wall of negativity, a block to progress in many areas.

I would ask you to accept the situation we find ourselves in – even those who live off-grid and who have very low personal energy and material consumption – we are all dependent on the energy industry – we have a massive fossil fuel infrastructure, and companies that wield immense political power, and this cannot be changed overnight by some revolutionary activity, or by pulling public theatrical stunts.

It definitely cannot be changed by accusation, finger-pointing and blame. We are not going to wake up tomorrow in a zero carbon world. There needs to be a transition – there needs to be a vision and a will. Instead of a depressive, negative, cynical assessment of today that erects and maintains barriers to co-operation, we need optimistic, positive understanding.

In the past there has been naievety – and some environmentalists have been taken in by public relations greenwash. This is not that. The kind of propaganda used to maintain market share for the energy industry continues to prevent and poison good communications and trust. I no more believe in the magic snuff of the shale gas “game changer” than I believe in the existence of goblins and fairies. The shine on the nuclear “renaissance” wore off ever before it was buffed up. And the hopeless dream of Carbon Capture and Storage (CCS) becoming a global-scale solution for carbon emissions is about as realistic to me as the geoengineering described in Tolkein’s “The Lord of the Rings”.

Nuclear power and CCS are actually about mining and concrete construction – they’re not energy or climate solutions. I’m not taken in by token gestures of a small slice of wind or solar power or the promise of a segment of biofuels from large oil and gas companies. Public relations and lobbying are the lowest form of faked, usurping power – but simply attacking brands will fail to make real change. I think honesty, realism and pragmatism are the way forward – and there is nothing more practical than pushing for Renewable Gas to back up the accelerated deployment of renewable electricity to its fullest scale.

My appeal to those in control of energy provision is – to see through the fog to the unstoppable. State support, both political and financial, of new energy technologies and infrastructure has to be a short- to medium-term goal – because of the volatility of the economy, and the demands of your shareholders. The need to build public support for new energy means that we the citizens must all be offered the opportunity to own energy – and so that means building a common purpose between the energy sector and society – and that purpose must be Zero Carbon.

There is and will continue to be a porous border between the energy industry and governments – energy is a social utility of high political value. However, the privilege and access that this provides should not automatically mean that the energy industry can plunder public coffers for their own profit. What contribution can the energy industry make to society – apart from the provision of energy at cost – in addition to the subsidies ? Energy, being so vital to the economy, will mean that the energy sector will continue to survive, but it has to change its shape.

You can dance around the facts, but climate change is hitting home, and there is no point in continuing to be in denial about Peak Oil, Peak Coal and Peak Natural Gas. These are genuine risks, not only to the planet, or its people, but also your business plans. We need to be using less energy overall, and less carbon energy within the eventual envelope of energy consumption. So the energy sector needs to move away from maximising sales of energy to optimising sales of energy services and selling low carbon energy systems, power and fuels.

You would be wrong to dismiss me as an “eco warrior” – I’m an engineer – and I’ve always believed in co-operation, expertise, professionalism, technology and industrial prowess. What impresses me is low carbon energy deployment and zero carbon energy research. Progress is in evidence, and it is showing the way to the future. Realistically speaking, in 20 years’ time, nobody will be able to dismiss the risks and threats of climate change and energy insecurity – the evidence accumulates. We, the zero carbon visionaries, are not going to stop talking about this and acting on it – as time goes by, the reasons for all to engage with these issues will increase, regardless of efforts to distract.

Nothing is perfect. I no more believe in a green utopia than I do in unicorns. But without reacting to climate change and energy insecurity, the stock market will not carry you, even though the governments must for the mean time, until clean and green energy engineering and service organisations rise up to replace you. Lobbying for pretences will ultimately fail – fail not only governments or peoples, but you. You, the energy industry, must start acting for the long-term or you will be ousted. As your CEOs retire, younger heads will fill leadership shoes – and younger minds know and accept the perils of climate change and energy insecurity.

This is the evolution, not revolution. It is time to publicly admit that you do know that economically recoverable fossil fuels are limited, and that climate change is as dangerous to your business models as it is to human settlements and the biosphere. Admit it in a way that points to a sustainable future – for you and the climate. The pollution of economically borderline unconventional fuels is wrong and avoidable – what we need are renewable energies, energy conservation and energy efficiency. One without the others is not enough.

How can your business succeed ? In selling renewable energy, energy conservation and energy efficiency. You have to sell the management of energy. You have to be genuinely “world class” and show us how. No more spills, blowouts and emissions. No more tokenistic sponsorship of arts, culture and sports. The veneer of respectability is wearing thin.

As an engineer, I understand the problems of system management – all things within the boundary wall need to be considered and dealt with. One thing is certain, however. Everything is within the walls. And that means that all must change.


http://houstonfeldenkrais.com/tag/cross-motivation/ “…Of course, the money would be great. But adding in the reward/punishment dimension is a sure way to sabotage brilliant performance. Moshe Feldenkrais observed that when one is striving to meet an externally imposed goal, the spine shortens, muscles tense, and the body (and mind) actually works against itself. He called this “cross motivation,” and it occurs when one forsakes one’s internal truth to maintain external equilibrium. There are lots of examples of this: the child stops doing what she’s doing because of the fear of losing parental approval, love, protection. The employee cooks the books to keep his job. The candidate delivers the sound bite, and dies a little inside. Feldenkrais attributed most of our human mental and physical difficulties to the problem of cross motivation. If you watch Michael Phelps swim, you can’t help but notice that he makes it look easy. He is clearly strong and powerful, but all of his strength and power are focused on moving him through the water with the greatest speed and efficiency. There’s no wasted effort, no struggle, no straining. He is free of cross-motivation! Would straining make him faster? Of course not. Unnecessary muscular effort would make him less buoyant, less mobile, less flexible. Will dangling a million dollars at the finish line make him swim faster? Probably just the opposite, unless Michael Phelps has some great inner resources to draw upon. The young Mr. Phelps has already learned how to tune out a lot of the hype. He’ll need to rely on “the cultivation of detachment,” the ability to care without caring…”

Greenpeace Windgas : Renewable Hydrogen

http://www.lngworldnews.com/gasunie-greenpeace-energy-choose-suderburg-as-windgas-location-germany/
http://www.greenpeace-energy.de/presse/pressedetails/article/neuer-schwung-fuer-die-energiewende-windgas-made-in-suderburg.html
http://www.greenpeace-energy.de/windgas.html
http://vimeo.com/44094925

Enron, Fudging and the Magic Flute

Allegedly, the United Kingdom is about to break free from the Dark Ages of subsidies, and enter the glorious light of a free and light-touch regulated, competitive electricity market.

The Electricity Market Reform is being sold to us as the way to create a level playing field between low carbon electricity generation technologies, whether they be established or new, baseload or variable, costly-up-front or cheap-and-quick-to-grid.


Personally, I do not accept the mythology of the Free Market. I do not accept that a fully competitive, privatised energy sector can be delivered, regardless of the mechanisms proposed. The Electricity Market Reform is less Englightenment and more Obscurantism, in my view – the call of the Magic Flute is going to fall on deaf ears.

Who will play the pipe ? Who will call the tune ? Who will be the Counterparty ?
At the National Grid’s Future Energy Scenarios day conference-seminar on Thursday 27th September 2012, I listened carefully to several spokesmen from the companies, quangos and agencies deny that they would have anything to do with determining, underwriting or administering deals for the EMR’s proposed “Contracts for Difference” (CfD) – essentially setting a guaranteed lowest price for selling electricity to the grid, regardless of market movement. Mark Ripley of the EMR team at National Grid was very clear “National Grid will not be the contractual counterparty for the CfD”. I asked Jonathan Brearley of the UK Government Department of Energy and Climate Change (DECC) at a break who would be independent enough to set the “strike price” – the minimum price for which electricity generators could expect to sell electricity ? He suggested that perhaps the UK Government would set up an independent governing body – gesturing at arm’s length. I asked him rhetorically who could reasonably be expected to be seconded to this new quango – how could they be truly independent…I did not get an opportunity to ask how the CfD revenues and payouts would be administered. I didn’t know at that time about the rumours that Ofgem – the current electricity generation quango regulator – could be closed down under a new Labour Government.

The shadow cast by the nuclear industry
During the presentation by Jonathan Brearley of DECC, he indicated that back room discussions are going on between large potential electricity generation investors and the UK Government. Even before the ink has hit the paper on the EMR draft, it seems the UK Government is inviting large investors to come and talk to them about deals for guaranteed generation sales prices. As far as my notes indicate, he said “The first nuclear project has already approached us for a contract.” I asked him directly in the break if this kind of pre-legislation arrangement was going to allow the nuclear industry to cream off subsidies. He denied that Contracts for Difference would be allocated for current nuclear power plants. He did not admit that there are strong indications that the so-called Capacity Mechanism of the EMR could be applied, propping up the profits of the nuclear power plants already running, and encouraging them to apply for extension licences for their cracked reactors to keep running after they should have been shut down for safety reasons.

After the National Grid meeting, I went to an EcoConnect meeting, where Eric Machiels of Infinis said, in reference to the strong influence of EdF (Electricite de France) in proposing new nuclear reactors in the UK, “The EMR was set up to meet two requirements. [First] to justify incredibly high investments. [And] nuclear – if you need to invest £10 billion or more, 10 years away, you need regulatory certainty…[But you have to know, decisions on nuclear development] will rely on decisions made in the Elysee Palace and not in Number 10.”

Well, it seems clear that the steer is still towards the UK taxpayers and billpayers stumping up to support the ailing French atomic power fleet.

A bit of a big fudge
There is no reason to believe that the Curse of Enron will not haunt the UK energy trading halls if the EMR goes ahead with its various microeconomic policies. Everybody will play for profits, and the strength of over-competitive behaviour between the current market actors will not encourage or permit new market entrants.

At the EcoConnect meeting, Diane Dowdell of Tradelink Solutions warned of the risks of going back to the kind of electricity markets of former decades, “Unless you worked under the Pool, you wouldn’t know how it works. It is a derivative…DECC need to look at Ireland – their Pool system has been utterly destroyed. Please don’t follow in the footsteps of Ireland – get the balancing right.”

The big issue is the macroeconomic need to incentivise investment in new electricity generation plant and infrastructure – something that will not be achieved by flipping microeconomic market trading conditions to benefit low carbon generators. How can new low carbon generators come onto the grid ? By placing focus on investment decisions. New generation has to clear a higher hurdle than how much it can sell green power for on the half-hourly market. Funds and financing are not going to be directed to choose low carbon investment just because marginal costs (the Carbon Floor Price and the European Union Emissions Trading Scheme) are applied to high carbon players already in the market. The guarantees of profits into the future from the institution of Contracts for Difference (Feed in Tariff) and the Capacity Mechanism will maybe trigger a slice of investment in new nuclear power, but it won’t ensure that new gas-fired power plants are built with Carbon Capture and Storage.

At the EcoConnect meeting later on, another DECC man reported back on the UK Government’s call for evidence on the EMR. DECC’s Matt Coyne said that amongst the conclusions from the consultation with industry there were concerns about the conditions for Power Purchase Agreements (PPAs) under the EMR. (Securing a PPA is the guarantee that investors need to be able to commit to backing new electricity generation capacity). He said that developers are finding it hard to secure finance for new generation investment and that it was a widely-held view that the EMR would not improve that, although he said that “it is our view that the Contracts for Difference will improve things.” Other people at the meeting were not so sure. Diane Dowdell said, “I desperately hope the EMR works. It’s got to work. [Conditions] seem to be edging out the small- and mid-sized players.” Eric Machiels said, “The Big Six vertically integrated energy suppliers are in the best position to retain their position.”

In my notes, I scribbled that Michael Ware, a dealmaking matchmaker for renewable energy projects, offered the view that “Government does resemble toddlers driving a steam train – there are lots of buttons to push…[The UK is] just a rainy little island at the edge of Europe. Capital is truly international. It all feels much easier to do business elsewhere. [The EMR looks] almost designed to turn off investors.”

There were several calls to retain the Renewables Obligation – to oblige energy suppliers to keep signing up new clean power from smaller players if they couldn’t make it themselves.

No Cause for Alarm

London Skies

Image Credit : epeigne37

Yesterday evening, I was caught by the intensity of the London Sky – there was little air movement in most of the lower summer-heat space above the city, and virtually no cloud except very high strands and sprurls and bones and smears.

Most of the cloud was clearly the result of aeroplane contrails – numerable to small children and their educational grandparents on various buses.

As the sun began to set, or rather, as the Earth rolled to curve away from facing the sun, the sky took on the colour of bright duck egg blue with a hint of pale green, and the sprays of high contrail-cloud took on a glorious orange-fuchsia colour with flashes of gold, bronze and vanadium reds, fading slowly to chromium reds as twilight approached.

At a certain moment, I understood something – as I watched an aeroplane high up, make its way west to Heathrow, the angle of the sunset showed its contrail as a murky ink, messing up the rest of the clouds as it brushstroked its way along, with its slate and muddy hues. As I watched, other parts of the clouds began to appear brown and grey, and since I knew that most of the cloud was jet engine exhaust that hadn’t moved because of the lack of high winds, I finally realised I was watching dirt, high up in the troposphere – careless, unthinking toxic waste. Continue reading London Skies

Energy Together : I’m just getting warmed up

The human race – we have to solve energy together. And to do that, we need to harness all our personal, purposeful, positive energies, and let me tell you, personally, I feel electric – and I’m only just getting warmed up.

So let’s hear less of the nonsense from authoritatively-accredited people who want to put a dampener on green energy, who say that saving energy cannot, simply cannot be done, sigh, sigh, sigh, collective groan. We have so much energy together, we can do this.

We have the will power, the staying power, the investment power, and we will navigate the obstacles in our path.

Let’s not waste any more time on expensive trinkets, and iddy-biddy fancies with high unit costs and low compatibility to the future. Yes, I’m talking nuclear power. I’m talking the nobody-really-wants-to-do-it-and-nobody-thinks-it-can-be-cheap-enough-to-work-at-scale Carbon Capture and Storage. And yes, I’m talking carbon markets – tell me again, where are they now ? Oh yes, still in the starting blocks.

And don’t even start to talk about pricing carbon to me – in this world of rollercoaster, highly volatile energy prices, what on Earth could costing or taxing carbon actually achieve ? And fusion power ? Nah, mate, forget it. It’s been 50 years away for the last 50 years.

Shale gas, oil from shales, tar sands, coal bed methane collection and underground coal gasification are once-abandoned messy ideas from way back. They’re still messy, and they’re still retro, and they’re not going to get us anywhere. If the United States of America want to completely ruin their lithosphere, well, that’s up to them, but don’t come around here toxifying our aquifers and poisoning our European trees !

What we need is marine energy, geothermal energy, hydropower, solar power, wind power, and Renewable Gas, because gaseous fuels are so flexible and store-able and can come from many, many processes. And we need the next optimistic generation of leaders to push through the administration ceiling and get green energy policy really rolling, attracting all the green investment will.

If I were a power plant, I would be cranking out the current and making everything shine very, very brightly just now.

Un égard, un regard, un certain regard

Whatever it is, it starts with attention, paying attention.

Attention to numbers, faces, needs, consideration of the rights and wrongs and probables.

Thinking things through, looking vulnerable children and aggressive control freaks directly in the eye, being truly brave enough to face both radiant beauty and unbelievable evil with equanimity.

To study. To look, and then look again.

To adopt a manner of seeing, and if you cannot see, to learn to truly absorb the soundscape of your world – to pick up the detail, to fully engage.

It is a way of filling up your soul with the new, the good, the amazing; and also the way to empty worthless vanity from your life.

Simone Weil expressed this truth in these words : “Toutes les fois qu’on fait vraiment attention, on détruit du mal en soi.” If you pay close attention, you learn what is truly of value, and you jettison incongruities and waywardness. She also pronounced that “L’attention est la forme la plus rare et la plus pure de la générosité.” And she is right. People feel truly valued if you gaze at them, and properly listen to them.

Those of us who have researched climate change and the limits to natural resources, those of us who have looked beyond the public relations of energy companies whose shares are traded on the stock markets – we are paying attention. We have been working hard to raise the issues for the attention of others, and sometimes this has depleted our personal energies, caused us sleepless nights, given us depression, fatalism, made us listless, aimless, frustrated.

Some of us turn to prayer or other forms of meditation. We are enabled to listen, to learn, to try again to communicate, to bridge divides, to empathise.

A transformation can take place. The person who pays close attention to others becomes trusted, attractive in a pure, transparent way. People know our hearts, they have confidence in us, when we give them our time and an open door.

Continue reading Un égard, un regard, un certain regard

What is my agenda ?


Tamino’s Arctic Sea Ice Poll


For some time I have not felt a keen sense of “mission” – a direction for my climate change and energy activities. However, I am beginning to formulate a plan – or rather – I have one important item on my agenda. I am aware that perception can be fatal – and that people in many “camps” are going to dismiss me because of this.

Suddenly I don’t fit into anybody’s pigeonhole – so the needle on the dial will probably swing over to “dismiss”. However, I think it’s necessary to pursue this. I think I have to try.

I am prepared to hold several conflicting ideas in the balance at one time, and let the data add mass to one version of the truth or another.

I’m prepared to accept the possibility of low climate change sensitivity (the reaction of the Earth biosystem to global warming) – apart from the fact that the evidence is accumulating – pointing heavily towards rapid instabilities emerging on short timescales. I don’t think I ever really left behind the hope – and I’m crossing my fingers here – that some massive negative carbon feedback will arise, heroically, and stem the full vigour of climate chaos. But as time slips by, and the Arctic cryosphere continues to de-materialise before our very eyes, that hope is worn down to the barest of threads.

And on energy security, I am prepared to accept the reasoning behind the IEA, BP, Shell and other projections of increasing overall energy demand between now and 2035, and the percentage of fossil fuel use that will inevitably require – apart from the fact that some evidence points towards increasing uncertainties in energy provision – if we are relying on more complex and inaccessible resources, within the framework of an increasingly patchy global economy.

If access to energy becomes threatened for more people globally, and also if climate change becomes highly aggressive in terms of freshwater stress, then I doubt that human population growth can carry on the way it has been – and in addition the global economy may never recover – which means that overall energy demand will not grow in the way that oil and gas companies would like their shareholders to accept.

My impression is that energy producing companies and countries are not openly admitting the risks. If energy supply chaos sets in, then the political and governance ramifications will be enormous, especially since the energy industry is so embedded in administrations. It is time, in my view, that projections of world energy use to 2035 included error bars based on economic failure due to energy chaos.

What do I need to do – given these pragmatic positions ? I need to include realists in the crisis talks – pragmatic, flexible thinkers from the energy industry. Just as we are not going to solve climate change without addressing energy provision, we are not going to solve energy insecurity without addressing climate change impacts on energy infrastructure. And so I need to find the energy industry people, meet them and invite them to the discussions on the risks of chaos. I need people to take in the data. I need people to understand the problems with slipping back into “thinking as usual”.

As to the setting – whether I should be an employee or an independent advisor/adviser, consultant or a researcher, I don’t have any idea what would be best. Collaborators would be useful – as I am but one person with a track record of being rather awkward – despite trying to engage my best behaviour. But then, nobody’s perfect. In a sense it doesn’t matter who does the job, but we have to break the public relations-guided psychology of denial. People are not generally stupid, and many are snapping out of their drip-fed propaganda delusions. I wonder exactly how many other imperfect people are out there who are coming to the same conclusions ? And what will be the game changer ?

Bosworth: “We are not going soft on coal”

At the annual Stop Climate Chaos coalition chin-wag on Friday 20th July 2012, I joined a table discussion led by Tony Bosworth of the environmental group Friends of the Earth.

He was laying out plans for a campaign focus on the risks and limitations of developing shale gas production in the United Kingdom.

During open questions, I put it to him that a focus on shale gas was liable to lay Friends of the Earth open to accusations of taking the pressure off high carbon fuels such as coal. He said that he had already encountered that accusation, but emphasised that the shale gas licencing rounds are frontier – policy is actively being decided and is still open to resolution on issues of contention. Placing emphasis on critiquing this fossil fuel resource and its exploitation is therefore timely and highly appropriate. But he wanted to be clear that “we are not going soft on coal”.

I suggested that some experts are downplaying the risks of shale gas development because of the limitations of the resource – because shale gas could only contribute a few percent of national fuel provision, some think is is unwise to concentrate so much campaign effort on resisting its development. Bosworth countered this by saying that in the near future, the British Geological Survey are expected to revise their estimates of shale gas resource upwards by a very significant amount.

He quoted one source as claiming that the UK could have around 55 years of shale gas resource within its borders. I showed some scepticism about this, posing the question “But can it be mined at any significant rate ?” It is a very common public relations trick to mention the total estimated size of a fossil fuel resource without also giving an estimate of how fast it can be extracted – leading to entirely mistaken conclusions about how useful a field, well or strata can be.

Tony Bosworth said that shale gas reserve estimates keep changing all the time. The estimate for shale gas reserves in Poland have just been revised downwards, and the Marcellus Shale in the United States of America has also been re-assessed negatively.

Bosworth said that although campaigners who are fighting shale gas development had found it useful to communicate the local environmental damage caused by shale gas extraction – such as ozone pollution, traffic noise, water pollution and extraction, landscape clearance – the best argument against shale gas production was the climate change emissions one. He said academics are still being recruited to fight on both sides of the question of whether the lifecycle emissions of shale gas are higher than for coal, but that it was becoming clear that so-called “fugitive emissions” – where gas unintentionally escapes from well works and pipeline networks – is the key global warming risk from shale gas.

Opinion around the table was that the local environmental factors associated with shale gas extraction may be the way to draw the most attention from people – as these would be experienced personally. The problem with centring on this argument is that the main route of communication about these problems, the film Gasland, has been counter-spun by an industry-backed film “Truthland”.

The Royal Society recently pronounced shale gas extraction acceptable as long as appropriate consideration was paid to following regulatory control, but even cautious development of unconventional fossil fuels does not answer the climate change implications.

There is also the extreme irony that those who oppose wind farm development on the basis of “industrialisation of the landscape” can also be the same group of people who are in favour of the development of shale gas extraction – arguably doing more, and more permanently, to destroy the scenery by deforestation, water resource sequestration and toxification of soils, air and water.

Tony Bosworth told the group about the Friends of the Earth campaign to encourage Local Authorities to declare themselves “Frack-Free Zones” (in a similar way to the “Fair Trade Towns” campaign that was previously so successful). He said that FoE would be asking supporters to demand that their local governments had a “No Fracking” policy in their Local Plans. It was suggested in the discussion group that with the current economic slowdown and austerity measures, that Local Authorities may not have the capacity to do this. Tony Bosworth suggested that in this case, it might be worth addressing the issue to church parish councils, who can be very powerful in local matters. It was pointed out that frequently, parish councils have been busy declaring themselves “Wind Free Zones”.

It was considered that it would be ineffective to attempt to fight shale gas production on a site-by-site direct action basis as the amount of land in the UK that has already and will soon be licenced for shale gas exploration made this impossible. Besides which, people often had very low awareness of the potential problems of shale gas extraction and the disruption and pollution it could bring to their areas – so local support for direct action could be poor.

One interesting suggestion was to create a map of the United Kingdom showing the watersheds where people get their tap supplies from superimposed on where the proposed shale gas exploration areas are likely to be – to allow people to understand that even if they live far away from shale gas production, their drinking water supplies could be impacted.

In summary, there are several key public relations fronts on which the nascent shale gas “industry” are fighting. They have been trying to seed doubt on low estimates of actual shale gas production potential – they have been hyping the potentially massive “gamechanging” resource assessments, without clear evidence of how accessible these resources are. They have also been pouring scorn on the evidence of how much damage shale gas could do to local environments. And they have also been promoting academic research that could be seen to make their case that shale gas is less climate-damaging than other energy resources.

Shale gas, and the issue of the risks of hydraulic fracturing for unconventional fossil fuels, is likely to remain a hot ecological topic. Putting effort into resisting its expansion is highly appropriate in the British context, where the industry is fledgeling, and those who are accusing Friends of the Earth and others of acting as “useful idiots” for the ambitions of the coal industry just haven’t taken a look at the wider implications. If shale gas is permitted dirty development rights, then that would open the gateway for even more polluting unconventional fossil fuel extraction, such as oil shale and underground coal gasification, and that really would be a major win for the coal industry.

Friends of the Earth Briefing : Shale gas : energy solution or fracking hell ?