Peak Oil Redux

Peak conventional crude petroleum oil production is apparently here already – the only thing that’s been growing global total liquids is North American unconventional oils : tight oil – which includes shale oil in the United States of America – and tar sands oil from bitumen in Canada – either refined into synthetic crude, or blended with other oils – both heavy and light.

But there’s a problem with unconventional oils – or rather several – but the key one is the commodity price of oil, which has been low for many months, and has caused unconventional oil producers to rein in their operations. It’s hitting conventional producers too. A quick check of Section 3 “Oil data : upstream” in OPEC’s 2016 Annual Statistical Bulletin shows a worrying number of negative 2014 to 2015 change values – for example “Active rigs by country”, “Wells completed in OPEC Members”, and “Producing wells in OPEC Members”.

But in the short term, it’s the loss of uneconomic unconventional oil production that will hit hardest. Besides problems with operational margins for all forms of unconventionals, exceptional air temperatures (should we mention global warming yet ?) in the northern part of North America have contributed to a seizure in Canadian tar sands oil production – because of extensive wildfires.

Here’s two charted summaries of the most recent data from the EIA on tight oil (which includes shale oil) and dry shale gas production in the United States – which is also suffering.

Once the drop in North American unconventionals begins to register in statistics for global total liquids production, some concern will probably be expressed. Peak Oil just might be sharper and harder and sooner than some people think.

Nigel Lawson : Unreferenced & Ill-Informed ?

An appeal was issued by David Andrews of the Claverton Energy Research Group, to respond to the Bath Lecture given by Nigel Lawson :-

“Dear All, this group is not meant to be a mere venting of frustration and opinion at what is perceived to be poor policy. So what would be really useful is to have the Lawson spiel with the countering fact interspersed. I can then publish this on the Claverton web site which does get a lot of hits and appears to be quite influential. Can I therefore first thank Ed Sears for making a good effort, but ask him to copy his bits into the Lawson article at the appropriate point. Then circulate it and get others to add in bits. Otherwise these good thoughts will simply be lost in the wind. Dave”

My reply of today :-

“Dear Dave, I don’t have time at the moment to answer all of Nigel Lawson’s layman ruminations, but I have written a few comments here (see below) which begin to give vent to frustration typical of that which his tactics cause in the minds of people who have some acquaintance with the actual science. The sheer volume of his output suggests an attempt to filibuster proper debate rather than foster it. To make life more complicated to those who wish to answer his what I think are absurd notions, he gives no accurate references to his supposed facts or cites any accredited, peer-reviewed documentation that could back up his various emotive generalisations and what appear to be aspersions. Regards, jo.”


http://www.thegwpf.org/nigel-lawson-the-bath-lecture/

Nigel Lawson: The Bath Lecture

Climate Alarmism Is A Belief System And Needs To Be Evaluated As Such

Nigel Lawson: Cool It

Standpoint, May 2014

This essay is based on the text of a speech given to the Institute for Sustainable Energy and the Environment at the University of Bath.

There is something odd about the global warming debate — or the climate change debate, as we are now expected to call it, since global warming has for the time being come to a halt.

[ joabbess.com : Contrary to what Nigel Lawson is claiming, there is no pause – global warming continues unabated. Of this there can be no doubt. All of the data that has been assessed – and there is a lot of it – confirms the theoretical framework – so it is odd that Nigel Lawson states otherwise, seemingly without any evidence to substantiate his assertion. Nigel Lawson appears to be taking advantage of fluctuations, or short-term wrinkles, in the records of air temperatures close to the Earth, to claim that up is down, dark is light and that truth is in error. Why are temperatures in the atmosphere close to the Earth’s surface, or “surface temperatures”, subject to variability ? Because heat can flow through matter, is the short answer. The longer answer is the interplay between the atmosphere and the oceans, where heat is being transfered between parts of the Earth system under conditions of flows such as the movement of air and water – what we call winds and ocean currents. There are detectable patterns in the flows of air and water – and some are oscillatory, so the temperature (taken at any one time) may appear to wriggle up and down (when viewed over a period of time). Despite these wobbles, the overall trend of temperature over several decades has been reliably detected. Despite Nigel Lawson’s attention to air temperatures, they are probably the least significant in detecting global warming, even though the data shows that baseline air temperatures, averaged over time, are rising. The vast proportion of heat being added to the Earth system is ending up in the oceans :-
http://www.skepticalscience.com/global-cooling-intermediate.htm
and the rise in ocean temperatures is consistent :-
https://www.skepticalscience.com/cherrypicking-deny-continued-ocean-global-warming.html
which indicates that circulatory patterns of heat exchange in the oceans have less effect on making temperatures fluctuate than the movement of masses of air in the atmosphere. This is exactly what you would expect from the study of basic physics. If you give only a cursory glance at the recent air temperatures at the surface of the Earth, you could think that temperatures have levelled off in the last decade or so, but taking a longer term view easily shows that global warming continues to be significant :-
http://data.giss.nasa.gov/gistemp/graphs_v3/
What is truly astonishing about this data is that the signal shows through the noise – that the trend in global warming is easily evident by eye, despite the wavy shakes from natural variability. For Nigel Lawson’s information, the reason why we refer to climate change is to attempt to encompass other evidence in this term besides purely temperature measurements. As the climate changes, rainfall patterns are altering, for example, which is not something that can be expressed in the term global warming. ]

I have never shied away from controversy, nor — for example, as Chancellor — worried about being unpopular if I believed that what I was saying and doing was in the public interest.

But I have never in my life experienced the extremes of personal hostility, vituperation and vilification which I — along with other dissenters, of course — have received for my views on global warming and global warming policies.

For example, according to the Climate Change Secretary, Ed Davey, the global warming dissenters are, without exception, “wilfully ignorant” and in the view of the Prince of Wales we are “headless chickens”. Not that “dissenter” is a term they use. We are regularly referred to as “climate change deniers”, a phrase deliberately designed to echo “Holocaust denier” — as if questioning present policies and forecasts of the future is equivalent to casting malign doubt about a historical fact.

[ joabbess.com : Climate change science is built on observations : all historical facts. Then, as in any valid science, a theoretical framework is applied to the data to check the theory – to make predictions of future change, and to validate them. It is an historical fact that the theoretical framework for global warming has not been falsified. The Earth system is warming – this cannot be denied. It seems to me that Nigel Lawwon usurps the truth with myth and unsubstantiated rumour, casting himself in the role of doubting dissenter, yet denying the evidence of the data. He therefore self-categorises as a denier, by the stance of denial that he takes. His denial is also an historical fact, but calling him a denier is not a value judgement. It is for each person to ascribe for themselves a moral value to the kind of denial he expresses. ]

The heir to the throne and the minister are senior public figures, who watch their language. The abuse I received after appearing on the BBC’s Today programme last February was far less restrained. Both the BBC and I received an orchestrated barrage of complaints to the effect that it was an outrage that I was allowed to discuss the issue on the programme at all. And even the Science and Technology Committee of the House of Commons shamefully joined the chorus of those who seek to suppress debate.

[ joabbess.com : Considering the general apathy of most television viewers, it is therefore quite refreshingly positive that so many people decided to complain about Nigel Lawson being given a platform to express his views about climate change, a subject about which it seems he is unqualified to speak with authority of learning. He may consider the complaints an “orchestrated barrage”. Another interpretation could be that the general mood of the audience ran counter to his contributions, and disagreed with the BBC’s decisiont to permit him to air his contrarian position, to the point of vexation. A parallel example could be the kind of outrage that could be expressed if Nigel Lawson were to deny that the Earth is approximately spherical, that gravity means that things actually move out to space rather than towards the ground, or that water is generally warmer than ice. He should expect opposition to his opinions if he is denying science. ]

In fact, despite having written a thoroughly documented book about global warming more than five years ago, which happily became something of a bestseller, and having founded a think tank on the subject — the Global Warming Policy Foundation — the following year, and despite frequently being invited on Today to discuss economic issues, this was the first time I had ever been asked to discuss climate change. I strongly suspect it will also be the last time.

The BBC received a well-organised deluge of complaints — some of them, inevitably, from those with a vested interest in renewable energy — accusing me, among other things, of being a geriatric retired politician and not a climate scientist, and so wholly unqualified to discuss the issue.

[ joabbess.com : It is a mark of integrity to put you money where your mouth is, not an indicator on insincerity. It is natural to expect people who accept climate change science to be taking action on carbon dioxide emissions, which includes investment in renewable energy. ]

Perhaps, in passing, I should address the frequent accusation from those who violently object to any challenge to any aspect of the prevailing climate change doctrine, that the Global Warming Policy Foundation’s non-disclosure of the names of our donors is proof that we are a thoroughly sinister organisation and a front for the fossil fuel industry.

As I have pointed out on a number of occasions, the Foundation’s Board of Trustees decided, from the outset, that it would neither solicit nor accept any money from the energy industry or from anyone with a significant interest in the energy industry. And to those who are not-regrettably-prepared to accept my word, I would point out that among our trustees are a bishop of the Church of England, a former private secretary to the Queen, and a former head of the Civil Service. Anyone who imagines that we are all engaged in a conspiracy to lie is clearly in an advanced stage of paranoia.

The reason why we do not reveal the names of our donors, who are private citizens of a philanthropic disposition, is in fact pretty obvious. Were we to do so, they, too, would be likely to be subject to the vilification and abuse I mentioned earlier. And that is something which, understandably, they can do without.

That said, I must admit I am strongly tempted to agree that, since I am not a climate scientist, I should from now on remain silent on the subject — on the clear understanding, of course, that everyone else plays by the same rules. No more statements by Ed Davey, or indeed any other politician, including Ed Milliband, Lord Deben and Al Gore. Nothing more from the Prince of Wales, or from Lord Stern. What bliss!

But of course this is not going to happen. Nor should it; for at bottom this is not a scientific issue. That is to say, the issue is not climate change but climate change alarmism, and the hugely damaging policies that are advocated, and in some cases put in place, in its name. And alarmism is a feature not of the physical world, which is what climate scientists study, but of human behaviour; the province, in other words, of economists, historians, sociologists, psychologists and — dare I say it — politicians.

[ joabbess.com : Au contraire, I would say to Nigel Lawson. At root, climate change is very much a scientific issue. Science defines it, describes it and provides evidence for it. Climate change is an epistemological concern, and an ontological challenge. How we know what we know about climate change is by study of a very large number of results from data collection and other kinds of research. The evidence base is massive. The knowledge expressed in climate change science is empirical – based on observations – which is how we are sure that what we know is assured. There is still scope for uncertainty – will the surface temperatures rise by X plus or minus some Y, owing to the dynamic between the atmosphere, the oceans, the ice cover and the land masses ? The results of the IPCC assessments are that we pretty much know what X is, and we have an improved clarity on a range of values for Y. The more science is done, the clearer these numbers emerge. Knowledge increases as more science is done, which is why the IPCC assessments are making firmer conclusions as time passes. Climate change science does not make value judgements on its results. It concludes that sea levels are rising and will continue to rise; that rainfall patterns are changing and will continue to change; that temperatures are rising and will continue to rise under current economic conditions and the levels of fossil fuel use and land use. Science describes the outcomes of these and other climate changes. It is for us as human beings, with humanity in our hearts, to place a meaning on predicted outcomes such as crop and harvest failures, displacement of peoples, unliveable habitats, loss of plant and animal species, extreme weather. You cannot take the human out of the scientist. Of course scientists will experience alarm at the thought of these outcomes, just as the rest of society will do. The people should not be denied the right to feeling alarm. ]

And en passant, the problem for dissenting politicians, and indeed for dissenting climate scientists for that matter, who certainly exist, is that dissent can be career-threatening. The advantage of being geriatric is that my career is behind me: there is nothing left to threaten.

[ joabbess.com : Climate change science is not something you can “dissent” from if you are at all versed in it. For those who question any part of climate change science from inside the community of those who have appropriate knowledge and learning, their position is not one of dissent, but of being unable to assent completely to the conclusions of their peers. They lack a capacity to fully assent to the results of other people’s research because their own research indicates otherwise. As responsible members of the science community, they would then put their research conclusions and the research conclusions of others to the test. There is an integrity in this kind of questioning. It is a valid position, as long as the questions are posed in the language of scientific enquiry, and answered with scientific methods. For example, the Berkeley BEST team had questions about the evidence of global warming and set out to verify or falsify the results of others. Their own research led them to become convinced that their peers had been correct in the their conclusions. This is how science comes to consensus. Nigel Lawson should fund research in the field if he wishes to be taken seriously in denying the current consensus in climate change science. Instead of which, he invests in the publication of what appears to be uncorroborated hearsay and emotive politicking. ]

But to return: the climate changes all the time, in different and unpredictable (certainly unpredicted) ways, and indeed often in different ways in different parts of the world. It always has done and no doubt it always will. The issue is whether that is a cause for alarm — and not just moderate alarm. According to the alarmists it is the greatest threat facing humankind today: far worse than any of the manifold evils we see around the globe which stem from what Pope called “man’s inhumanity to man”.

[ joabbess.com : Nigel Lawson doesn’t need to tell anyone that weather is changeable and that climate changes. They can see it for themselves if they care to study the data. Climate change science has discovered that the current changes in the climate are unprecedented within at least the last 800,000 years. No previous period of rapid climate change in that era has been entirely similar to the changes we are experiencing today. This is definite cause for alarm, high level alarm, and not moderate. If there is a fire, it is natural to sound the alarm. If there is a pandemic, people spread the news. If there is a risk, as human beings, we take collective measures to avoid the threat. This is normal human precautionary behaviour. It is unreasonable for Nigel Lawson to insist that alarm is not an appropriate response to what is patently in the process of happening. ]

Climate change alarmism is a belief system, and needs to be evaluated as such.

[ joabbess.com : Belief in gravity, or thinking that protein is good to eat are also belief systems. Everything we accept as normal and true is part of our own belief system. For example, I believe that Nigel Lawson is misguided and has come to the wrong conclusions. The evidence lies before me. Is my opinion to be disregarded because I have a belief that Nigel Lawson is incorrect ? ]

There is, indeed, an accepted scientific theory which I do not dispute and which, the alarmists claim, justifies their belief and their alarm.

This is the so-called greenhouse effect: the fact that the earth’s atmosphere contains so-called greenhouse gases (of which water vapour is overwhelmingly the most important, but carbon dioxide is another) which, in effect, trap some of the heat we receive from the sun and prevent it from bouncing back into space.

Without the greenhouse effect, the planet would be so cold as to be uninhabitable. But, by burning fossil fuels — coal, oil and gas — we are increasing the amount of carbon dioxide in the atmosphere and thus, other things being equal, increasing the earth’s temperature.

But four questions immediately arise, all of which need to be addressed, coolly and rationally.

First, other things being equal, how much can increased atmospheric CO2 be expected to warm the earth? (This is known to scientists as climate sensitivity, or sometimes the climate sensitivity of carbon.) This is highly uncertain, not least because clouds have an important role to play, and the science of clouds is little understood. Until recently, the majority opinion among climate scientists had been that clouds greatly amplify the basic greenhouse effect. But there is a significant minority, including some of the most eminent climate scientists, who strongly dispute this.

[ joabbess.com : Simple gas chemistry and physics that is at least a century old is evidence that carbon dioxide allows sunlight to pass right through to warm the Earth, which then emits infrared light because it has warmed up. When the infrared radiation is emitted, the Earth cools down. Infrared is partially blocked by carbon dioxide, which absorbs it, then re-radiates it, partially back to the Earth, which warms up again. Eventually, the warming radiation will escape the carbon dioxide blanket, but because of this trapping effect, the net result is for more heat to remain in the atmosphere close to the Earth’s surface than you would expect. This is the main reason why the temperature of the Earth’s surface is warmer than space. As carbon dioxide accumulates in the atmosphere, the warming effect will be enhanced. This is global warming and it is undisputed by the overwhelming majority of scientists. Climate sensitivity, or Equilibrium Climate Sensitivity (ECS) is a calculated measure of the total temperature change that would be experienced (after some time) at the surface of the Earth for a doubling of atmospheric carbon dioxide concentrations compare to the pre-industrial age. The Transient Climate Response (TCR) is a measure of the temperature change that would be experienced in the shorter-term for a doubling of atmospheric carbon dioxide concentrations. The TCR can be easily calculated from basic physics. The shorter-term warming will cause climate change. Some of the changes will act to cool the Earth down from the TCR (negative feedbacks). Some of the changes will act to heat the Earth up from the TCR (positive feedbacks). These are some disagreements about the ECS, such as the net effects from the fertilisation effect of carbon dioxide on plant growth, the net effects of changes in weather and cloud systems, and the net effects of changes in ocean and atmospheric circulation. However, evidence from the deep past (paleoclimatology) is helping to determine the range of temperatures that ECS could be. ]

Second, are other things equal, anyway? We know that, over millennia, the temperature of the earth has varied a great deal, long before the arrival of fossil fuels. To take only the past thousand years, a thousand years ago we were benefiting from the so-called medieval warm period, when temperatures are thought to have been at least as warm, if not warmer, than they are today. And during the Baroque era we were grimly suffering the cold of the so-called Little Ice Age, when the Thames frequently froze in winter and substantial ice fairs were held on it, which have been immortalised in contemporary prints.

[ joabbess.com : The Medieval Warming Period (or Medieval Warm Period) was just a blip compared to the current global warming of the last 150 years. And the Little Ice Age was also a minor anomaly, being pretty much confined to the region of Europe, and some expect could have become the Rather Much Longer Icy Period had it not been for the use of fossil fuels, which warmed Europe up again. Burning coal and other fossil fuels releases carbon that would have originally been in the atmosphere in the form of carbon dioxide millions of years ago, that trees and other plants used to grow. Geological evidence shows that surface temperatures at those times were warmer than today. ]

Third, even if the earth were to warm, so far from this necessarily being a cause for alarm, does it matter? It would, after all, be surprising if the planet were on a happy but precarious temperature knife-edge, from which any change in either direction would be a major disaster. In fact, we know that, if there were to be any future warming (and for the reasons already given, “if” is correct) there would be both benefits and what the economists call disbenefits. I shall discuss later where the balance might lie.

[ joabbess.com : The evidence from the global warming that we have experienced so far since around 1880 is almost universally limiting in terms of the ability of species of animals and plants to survive. There are tiny gems of positive outcomes, compared to a sand pit of negatives. Yes, of course it matters. The mathematics of chaos with strong perturbations to any system do not permit it to coast on a precarious knife-edge for very long. Sooner or later there will be a major alteration, and the potential for some milder probable outcomes will collapse. ]

And fourth, to the extent that there is a problem, what should we, calmly and rationally, do about it?

[ joabbess.com : The most calm and rational thing to do is to compile all the evidence and report on it. Oh yes, we’ve already done that. It’s called the Intergovernmental Panel on Climate Change or IPCC. The concluisons of the compilation of over 100 years of science is that global warming is real, and it’s happening now, and that there is a wide range of evidence for climate change, and indicators that it is a major problem, and that we have caused it, through using fossil fuels and changing how we use land. ]

It is probably best to take the first two questions together.

According to the temperature records kept by the UK Met Office (and other series are much the same), over the past 150 years (that is, from the very beginnings of the Industrial Revolution), mean global temperature has increased by a little under a degree centigrade — according to the Met Office, 0.8ºC. This has happened in fits and starts, which are not fully understood. To begin with, to the extent that anyone noticed it, it was seen as a welcome and natural recovery from the rigours of the Little Ice Age. But the great bulk of it — 0.5ºC out of the 0.8ºC — occurred during the last quarter of the 20th century. It was then that global warming alarmism was born.

[ joabbess.com : Nigel Lawson calls it “alarmism”. I call it empirical science. And there are many scientific explanations for what he calls “fits and starts”, it’s just that they’re written in research papers, so he will probably never read them, going on his lack of attention to research publications in the past. ]

But since then, and wholly contrary to the expectations of the overwhelming majority of climate scientists, who confidently predicted that global warming would not merely continue but would accelerate, given the unprecedented growth of global carbon emissions, as China’s coal-based economy has grown by leaps and bounds, there has been no further warming at all. To be precise, the latest report of the Intergovernmental Panel on Climate Change (IPCC), a deeply flawed body whose non-scientist chairman is a committed climate alarmist, reckons that global warming has latterly been occurring at the rate of — wait for it — 0.05ºC per decade, plus or minus 0.1ºC. Their figures, not mine. In other words, the observed rate of warming is less than the margin of error.

[ joabbess.com : It is not valid for Nigel Lawson to claim that there has been “no further warming at all”. Heat accumulation continues to be documented. Where is Nigel Lawson’s evidence to support his claim that the IPCC is a “deeply flawed body” ? Or is that another one of his entirely unsubstantiated dismissals of science ? Does he just fudge the facts, gloss over the details, pour scorn on scientists, impugn the academies of science, play with semantics, stir up antipathy, wave his hands and the whole history of science suddenly vanishes in a puff of dismissive smoke ? I doubt it ! Nigel Lawson says “the observed rate of warming is less than the margin of error.” This is ridiculous, because temperature is not something that you can add or subtract, like bags of sugar, or baskets of apples, or Pounds Sterling to the Global Warming Policy Foundation’s public relations fund. Two degrees Celsius, or Centigrade, is not twice as warm as one degree Celsius. 30 degrees C doesn’t indicate twice as much heat as 15 degrees C, or require twice as much heating. The range of figures that Nigel Lawson is quoting, minus 0.05 degrees C plus or minus 0.1 degrees C, that is, somewhere between a cooling of 0.05 degrees C and a warming of 0.15 degrees C, is a calculation of temperature trends averaged over the whole Earth’s surface for the last 15 years :-
http://www.climatechange2013.org/images/uploads/WGIAR5_WGI-12Doc2b_FinalDraft_Chapter09.pdf (Box 9.2)
It is not surprising that over such a short timescale it might appear that the Earth as experienced a mild cooling effect. In the last 15 years there have been a couple of years far hotter than average, and these spike the calculated trend. For example, 1998 was much hotter than the years before or after it, so if you were just to compare 1998 with 2008, it would look like the Earth is cooling down. But who would be foolish enough to look at just two calendar years of the data record on which to base their argument ? The last 15 years have to be taken in context. In “Climate Change 2013 : The Physical Science Basis”, the IPCC report from Working Group 1, in the Summary for Policymakers, page 5, Section B1, the IPCC write :-
http://www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf
“In addition to robust multi-decadal warming, global mean surface temperature exhibits substantial decadal and interannual variability […] Due to natural variability, trends based on short records are very sensitive to the beginning and end dates and do not in general reflect long-term climate trends. As one example, the rate of warming over the past 15 years (1998–2012; 0.05 [–0.05 to 0.15] °C per decade), which begins with a strong El Niño, is smaller than the rate calculated since 1951 (1951–2012; 0.12 [0.08 to 0.14] °C per decade).” (El Niño is a prominent pattern of winds and ocean currents in the Pacific Ocean with two main states – one that tends to produce a warming effect on the Earth’s surface temperatures, and the other, La Niña, which has a general cooling effect.) ] In other words, in the last fifteen years, the range of rate of change of temperature is calculated to be somewhere between the surface of the planet cooling by 0.05 degrees Centigrade, up to warming by 0.15 degrees Centigrade :-
http://data.giss.nasa.gov/gistemp/graphs_v3/Fig.C.gif
http://www.climate4you.com/GlobalTemperatures.htm#Recent%20global%20satellite%20temperature
However, this calculation of a trend line does not take account of three things. First, in the last decade or so, the variability of individual years could mask a trend, but relative to the last 50 years, everything is clearly hotter on average. Secondly, temperature is not a “discrete” quantity, it is a continuous field of effect, and it is going to have different values depending on location and time. The temperature for any January to December is only going to be an average of averages. If you were to measure the year from March to February instead, the average of averages could look different, because of the natural variability. Thirdly, there are lots of causes for local and regional temperature variability, all concurrent, so it is not until some time after a set of measurements has been taken, and other sets of measurements have been done, that it is possible to determine that a substantial change has taken place. ]

And that margin of error, it must be said, is implausibly small. After all, calculating mean global temperature from the records of weather stations and maritime observations around the world, of varying quality, is a pretty heroic task in the first place. Not to mention the fact that there is a considerable difference between daytime and night-time temperatures. In any event, to produce a figure accurate to hundredths of a degree is palpably absurd.

[ joabbess.com : Nigel Lawson could be said to mislead in his explanation of what “a figure accurate to hundredths of a degree” implies. Temperature is measured on an arbitrarily decided scale. To raise the whole of the Earth surface temperatures by 1 degree Celsius requires a lot of extra trapped energy. The surface temperature of the Earth is increasing by the absorption of energy that amounts roughly to 2 trillion Hiroshima atombic bombs since 1998, or 4 Hiroshimas a second. That is not a small number, although it has to be seen in the full context of the energy flows in and out of the Earth system :-
http://www.skepticalscience.com/4-Hiroshima-bombs-per-second-widget-raise-awareness-global-warming.html
http://blogs.discovermagazine.com/imageo/2013/12/03/climate-bomb-redux/#.U2tlfaI-hrQ
Nigel Lawson credits the global temperature monitoring exercise as “heroic”, but then berates its quality. However, climate change scientists do already appreciate that there are differences between daytime and nighttime temperatures – it is called the diurnal range. Besides differences between years, it is known that there are also differences between seasons, and latitudes, and climatic zones. Scientists are not claiming an absolute single value for the temperature of the Earth, accurate to within hundredths of a degree – that’s why they always give a margin of error. What is astonishing from reviews of the data is something that Nigel Lawson has completely missed. Global warming appears to have fractal resolution – that is – at whatever geographical scale you resolve the data, the trend in most cases appears to be similar. If you take a look at some of the websites offering graphs, for example :-
http://www.rimfrost.no/
http://data.giss.nasa.gov/gistemp/station_data/
the global warming trend is seen to be generally similar when averaged locally, regionally or at the global scale. This is an indicator that the global warming signal is properly being detected, as these trend lines are more or less what you would expect from basic physics and chemistry – the more carbon dioxide in the air, the more heat gets trapped, and the rate of carbon dioxide accumulation in the atmosphere has seen similar trendlines :-
http://cdiac.esd.ornl.gov/trends/co2/recent_mauna_loa_co2.html ]

The lessons of the unpredicted 15-year global temperature standstill (or hiatus as the IPCC calls it) are clear. In the first place, the so-called Integrated Assessment Models which the climate science community uses to predict the global temperature increase which is likely to occur over the next 100 years are almost certainly mistaken, in that climate sensitivity is almost certainly significantly less than they once thought, and thus the models exaggerate the likely temperature rise over the next hundred years.

[ joabbess.com : I repeat : there is no pause. The IPCC are not claiming that global warming has stopped, only that there is an apparent “hiatus” in global surface temperature averages. Some scientists have concluded from their work that Climate Sensitivity is less than once feared. However, Climate Sensitivity is calculated for an immediate, once-only doubling of carbon dioxide in the atmosphere, whereas the reality is that carbon dioxide is continuing to build up in the atmosphere, and if emissions continue unabated, there could be a tripling or quadrupling of carbon dioxide concentrations in the atmosphere, which would mean that you would need to multiply the Climate Sensitivity by 1.5 or 2 to arrive at the final top temperature – higher than previously calculated, regardless of whether the expected Climate Sensitivity were to be less than previously calculated. It is therefore illogical for Nigel Lawson to extrapolate from his understanding that Climate Sensitivity is lower than previously calculated to his conclusion that the final level of global warming will be lower than previously calculated. The more carbon dioxide we emit, the worse it will be. ]

But the need for a rethink does not stop there. As the noted climate scientist Professor Judith Curry, chair of the School of Earth and Atmospheric Sciences at the Georgia Institute of Technology, recently observed in written testimony to the US Senate:
“Anthropogenic global warming is a proposed theory whose basic mechnism is well understood, but whose magnitude is highly uncertain. The growing evidence that climate models are too sensitive to CO2 has implications for the attribution of late-20th-century warming and projections of 21st-century climate. If the recent warming hiatus is caused by natural variability, then this raises the question as to what extent the warming between 1975 and 2000 can also be explained by natural climate variability.”

[ joabbess.com : The IPCC reports constitute the world’s best attempts to “rethink” Climate Change. Professor Judith Curry, in the quotation given by Nigel Lawson, undervalues a great deal of her colleagues’ work by dismissing their valid attribution of Climate Change to the burning of fossil fuels and the change in land use. ]

It is true that most members of the climate science establishment are reluctant to accept this, and argue that the missing heat has for the time being gone into the (very cold) ocean depths, only to be released later. This is, however, highly conjectural. Assessing the mean global temperature of the ocean depths is — unsurprisingly — even less reliable, by a long way, than the surface temperature record. And in any event most scientists reckon that it will take thousands of years for this “missing heat” to be released to the surface.

[ joabbess.com : That the oceans are warming is not conjecture – it is a statement based on data. The oceans have a far greater capacity for heat retention than the atmosphere, so yes, it will take a long time for heat in the oceans to re-emerge into the atmosphere. However, the processes that directed heat into the oceans rather than the atmosphere in recent years could easily reverse, and in a short space of time the atmosphere could heat up considerably. In making his arguments, Nigel Lawson omits to consider this eventuality, which lowers considerably the value of his conclusions. ]

In short, the CO2 effect on the earth’s temperature is probably less than was previously thought, and other things — that is, natural variability and possibly solar influences — are relatively more significant than has hitherto been assumed.

[ joabbess.com : Nothing about science has changed. The Earth system continues to accumulate heat and respond to that. Carbon dioxide still contributes to the Greenhouse Effect, and extra carbon dioxide in the air will cause further global warming. The Transient Climate Response to carbon dioxide is still apparently linear. The Equilibrium Climate Sensitivity is still calculated to be roughly what it always has been – but that’s only for a doubling of atmospheric carbon dioxide. If more methane is emitted as a result of Arctic warming, for example, or the rate of fossil fuel use increases, then the temperature increase of the Earth’s surface could be more than previously thought. Natural variability and solar changes are all considered in the IPCC reports, and all calculations and models take account of them. However, the obvious possibility presents itself – that the patterns of natural variability as experienced by the Earth during the last 800,000 years are themseles being changed. If Climate Change is happening so quickly as to affect natural variability, then the outcomes could be much more serious than anticipated. ]

But let us assume that the global temperature hiatus does, at some point, come to an end, and a modest degree of global warming resumes. How much does this matter?

The answer must be that it matters very little. There are plainly both advantages and disadvantages from a warmer temperature, and these will vary from region to region depending to some extent on the existing temperature in the region concerned. And it is helpful in this context that the climate scientists believe that the global warming they expect from increased atmospheric CO2 will be greatest in the cold polar regions and least in the warm tropical regions, and will be greater at night than in the day, and greater in winter than in summer. Be that as it may, studies have clearly shown that, overall, the warming that the climate models are now predicting for most of this century (I referred to these models earlier, and will come back to them later) is likely to do more good than harm.

[ joabbess.com : The claim that warming will “overall […] do more good than harm” is erroneous, according to Climate Change Science. ]

Global warming orthodoxy is not merely irrational. It is wicked.

[ joabbess.com : My conclusions upon reading this lecture are that the evidence suggests that Nigel Lawson’s position is ill-informed. He should read the IPCC reports and re-consider. ]

Blink, and it’s logged





They took all the trees, and put ’em in a tree museum…“, or in this case – burned them in a biomass power plant.

Please read this very important report on global bioenergy strategy and ask yourself this question, “Who agreed to this ?”

And then, maybe consider coming to this meeting :-

“A Burning Issue – Biomass and its impacts on forests and communities”
29th October 2013
19:00 – 21:00
Lumen Centre, London

“At this event we are launching our new report “Biomass: the Chain of Destruction” which tracks the impacts of the rapidly growing industry using biomass for electricity generation – from the cleared forests of the Americas to the communities in the UK living in the shadow of it.”

“We will be hearing from speakers who will tell us about the thousands of hectares of eucalyptus plantations that have replaced diverse ecosystems and communities in the Brazillian state of Maranhão. We will also hear about the clear-felling of ancient wetland forests in the Southern US to fuel Drax and E-On’s switch to so-called “clean” biomass energy. Lastly we will hear about the struggles of communities in the UK fighting unfair planning, poor air quality and environmental injustice.”

“The event is free but please email us to let us know you are coming biofuelwatch@ymail.com

“For more details please see our website: http://www.biofuelwatch.org.uk/2013/burning_issue_public_event/

Mind the Gap : BBC Costing the Earth

I listened to an interesting mix of myth, mystery and magic on BBC Radio 4.

Myths included the notion that long-term, nuclear power would be cheap; that “alternative” energy technologies are expensive (well, nuclear power is, but true renewables are most certainly not); and the idea that burning biomass to create heat to create steam to turn turbines to generate electricity is an acceptably efficient use of biomass (it is not).

Biofuelwatch are hosting a public meeting on this very subject :-
http://www.biofuelwatch.org.uk/2013/burning_issue_public_event/
“A Burning Issue – biomass and its impacts on forests and communities”
Tuesday, 29th October 2013, 7-9pm
Lumen Centre, London (close to St Pancras train station)
http://www.lumenurc.org.uk/lumencontact.htm
Lumen Centre, 88 Tavistock Place, London WC1H 9RS

Interesting hints in the interviews I thought pointed to the idea that maybe, just maybe, some electricity generation capacity should be wholly owned by the Government – since the country is paying for it one way or another. A socialist model for gas-fired generation capacity that’s used as backup to wind and solar power ? Now there’s an interesting idea…




http://www.bbc.co.uk/programmes/b03cn0rb

“Mind the Gap”
Channel: BBC Radio 4
Series: Costing the Earth
Presenter: Tom Heap
First broadcast: Tuesday 15th October 2013

Programme Notes :

“Our energy needs are growing as our energy supply dwindles.
Renewables have not come online quickly enough and we are increasingly
reliant on expensive imported gas or cheap but dirty coal. Last year
the UK burnt 50% more coal than in previous years but this helped
reverse years of steadily declining carbon dioxide emissions. By 2015
6 coal fired power stations will close and the cost of burning coal
will increase hugely due to the introduction of the carbon price
floor. Shale gas and biomass have been suggested as quick and easy
solutions but are they really sustainable, or cheap?”

“Carbon Capture and Storage could make coal or gas cleaner and a new
study suggests that with CCS bio energy could even decrease global
warming. Yet CCS has stalled in the UK and the rest of Europe and the
debate about the green credentials of biomass is intensifying. So what
is really the best answer to Britain’s energy needs? Tom Heap
investigates.”

00:44 – 00:48
[ Channel anchor ]
Britain’s energy needs are top of the agenda in “Costing the Earth”…

01:17
[ Channel anchor ]
…this week on “Costing the Earth”, Tom Heap is asking if our
ambitions to go green are being lost to the more immediate fear of
blackouts and brownouts.

01:27
[ Music : Arcade Fire – “Neighbourhood 3 (Power Out)” ]

[ Tom Heap ]

Energy is suddenly big news – central to politics and the economy. The
countdown has started towards the imminent shutdown of many coal-fired
power stations, but the timetable to build their replacements has
barely begun.

It’ll cost a lot, we’ll have to pay, and the politicians are reluctant
to lay out the bill. But both the official regulator and industry are
warning that a crunch is coming.

So in this week’s “Costing the Earth”, we ask if the goal of clean,
green and affordable energy is being lost to a much darker reality.

02:14
[ Historical recordings ]

“The lights have started going out in the West Country : Bristol,
Exeter and Plymouth have all had their first power cuts this
afternoon.”

“One of the biggest effects of the cuts was on traffic, because with
the traffic lights out of commission, major jams have built up,
particularly in the town centres. One of the oddest sights I saw is a
couple of ladies coming out of a hairdressers with towels around their
heads because the dryers weren’t working.”

“Television closes down at 10.30 [ pm ], and although the cinemas are
carrying on more or less normally, some London theatres have had to
close.”

“The various [ gas ] boards on both sides of the Pennines admit to
being taken by surprise with today’s cold spell which brought about
the cuts.”

“And now the major scandal sweeping the front pages of the papers this
morning, the advertisement by the South Eastern Gas Board recommending
that to save fuel, couples should share their bath.”

[ Caller ]
“I shall write to my local gas board and say don’t do it in
Birmingham. It might be alright for the trendy South, but we don’t
want it in Birmingham.”

03:13
[ Tom Heap ]

That was 1974.

Some things have changed today – maybe a more liberal attitude to
sharing the tub. But some things remain the same – an absence of
coal-fired electricity – threatening a blackout.

Back then it was strikes by miners. Now it’s old age of the power
plants, combined with an EU Directive obliging them to cut their
sulphur dioxide and nitrous oxide emissions by 2016, or close.

Some coal burners are avoiding the switch off by substituting wood;
and mothballed gas stations are also on standby.

But Dieter Helm, Professor of Energy Policy at the University of
Oxford, now believes power cuts are likely.

03:57
[ Dieter Helm ]

Well, if we take the numbers produced by the key responsible bodies,
they predict that there’s a chance that by the winter of 2-15 [sic,
meaning 2015] 2-16 [sic, meaning 2016], the gap between the demand for
electricity and the supply could be as low as 2%.

And it turns out that those forecasts are based on extremely
optimistic assumptions about how far demand will fall in that period
(that the “Green Deal” will work, and so on) and that we won’t have
much economic growth.

So basically we are on course for a very serious energy crunch by the
winter of 2-15 [sic, meaning 2015] 2-16 [sic, meaning 2016], almost
regardless of what happens now, because nobody can build any power
stations between now and then.

It’s sort of one of those slow motion car crashes – you see the whole
symptoms of it, and people have been messing around reforming markets
and so on, without addressing what’s immediately in front of them.

[ Tom Heap ]

And that’s where you think we are now ?

[ Dieter Helm ]

I think there’s every risk of doing so.

Fortunately, the [ General ] Election is a year and a half away, and
there’s many opportunities for all the political parties to get real
about two things : get real about the energy crunch in 2-15 [sic,
meaning 2015] 2-16 [sic, meaning 2016] and how they’re going to handle
it; and get real about creating the incentives to decarbonise our
electricity system, and deal with the serious environmental and
security and competitive issues which our electricity system faces.

And this is a massive investment requirement [ in ] electricity : all
those old stations retiring [ originally built ] back from the 1970s –
they’re all going to be gone.

Most of the nuclear power stations are coming to the end of their lives.

We need a really big investment programme. And if you really want an
investment programme, you have to sit down and work out how you’re
going to incentivise people to do that building.

[ Tom Heap ]

If we want a new energy infrastructure based on renewables and
carbon-free alternatives, then now is the time to put those incentives
on the table.

The problem is that no-one seems to want to make the necessary
investment, least of all the “Big Six” energy companies, who are
already under pressure about high bills.

[ “Big Six” are : British Gas / Centrica, EdF Energy (Electricite
de France), E.On UK, RWE npower, Scottish Power and SSE ]

Sam Peacock of the energy company SSE [ Scottish and Southern Energy ]
gives the commercial proof of Dieter’s prediction.

If energy generators can’t make money out of generating energy,
they’ll be reluctant to do it.

[ Sam Peacock ]

Ofgem, the energy regulator, has looked at this in a lot of detail,
and said that around 2015, 2016, things start to get tighter. The
reason for this is European Directives, [ is [ a ] ] closing down some
of the old coal plants. And also the current poor economics around [
or surround [ -ing ] ] both existing plant and potential new plant.

So, at the moment it’s very, very difficult to make money out of a gas
plant, or invest in a new one. So this leads to there being, you know,
something of a crunch point around 2015, 2016, and Ofgem’s analysis
looks pretty sensible to us.

[ Tom Heap ]

And Sam Peacock lays the blame for this crisis firmly at the Government’s door.

[ Sam Peacock ]

The trilemma, as they call it – of decarbonisation, security of supply
and affordability – is being stretched, because the Government’s
moving us more towards cleaner technologies, which…which are more
expensive.

However, if you were to take the costs of, you know, the extra costs
of developing these technologies off government [ sic, meaning
customer ] bills and into general taxation, you could knock about over
£100 off customer bills today, it’ll be bigger in the future, and you
can still get that much-needed investment going.

So, we think you can square the circle, but it’s going to take a
little bit of policy movement [ and ] it’s going to take shifting some
of those costs off customers and actually back where the policymakers
should be controlling them.

[ KLAXON ! Does he mean controlled energy prices ? That sounds a bit
centrally managed economy to me… ]

[ Tom Heap ]

No surprise that a power company would want to shift the pain of
rising energy costs from their bills to the tax bill.

But neither the Government nor the Opposition are actually proposing this.

Who pays the premium for expensve new energy sources is becoming like
a game of pass the toxic parcel.

[ Reference : http://en.wikipedia.org/wiki/Hot_potato_%28game%29 ]

I asked the [ UK Government Department of ] Energy and Climate Change
Secretary, Ed Davey, how much new money is required between now and
2020.

08:06

[ Ed Davey ]

About £110 billion – er, that’s critical to replace a lot of the coal
power stations that are closing, the nuclear power stations that are [
at the ] end of their lives, and replace a lot of the network which
has come to the end of its life, too.

So it’s a huge, massive investment task.

[ Tom Heap ]

So in the end we’re going to have to foot the bill for the £110 billion ?

[ Ed Davey ]

Yeah. Of course. That’s what happens now. People, in their bills that
they pay now, are paying for the network costs of investments made
several years, even several decades ago.

[ Yes – we’re still paying through our national nose to dispose of
radioactive waste and decommission old nuclear reactors. The liability
of it all weighs heavily on the country’s neck… ]

And there’s no escaping that – we’ve got to keep the lights on – we’ve
got to keep the country powered.

You have to look at both sides of the equation. If we’re helping
people make their homes more inefficient [ sic, meaning energy
efficient ], their product appliances more efficient, we’re doing
everything we possibly can to try to help the bills be kept down,

while we’re having to make these big investments to keep the lights
on, and to make sure that we don’t cook the planet, as you say.

[ Tom Heap ]

You mention the lights going out. There are predictions that we’re
headed towards just 2% of spare capacity in the system in a few years’
time.

Are you worried about the dangers of, I don’t know, maybe not lights
going out for some people, but perhaps big energy users being told
when and when [ sic, meaning where ] they can’t use power in the
winter ?

[ Ed Davey ]

Well, there’s no doubt that as the coal power stations come offline,
and the nuclear power plants, er, close, we’re going to have make sure
that new power plants are coming on to replace them.

And if we don’t, there will be a problem with energy security.

Now we’ve been working very hard over a long time now to make sure we
attract that investment. We’ve been working with Ofgem, the regulator;
with National Grid, and we’re…

[ Tom Heap ]

…Being [ or it’s being ] tough. I don’t see companies racing to come
and fill in the gap here and those coal power plants are going off
soon.

[ Ed Davey ]

…we’re actually having record levels of energy investment in the country.

The problem was for 13 years under the last Government
[ same old, same old Coalition argument ] we saw low levels of investment
in energy, and we’re having to race to catch up, but fortunately we’re
winning that race. And we’re seeing, you know, billions of pounds
invested but we’ve still got to do more. We’re not there. I’m not
pretending we’re there yet. [ Are we there, yet ? ] But we do have the
policies in place.

So, Ofgem is currently consulting on a set of proposals which will
enable it to have reserve power to switch on at the peak if it’s
needed.

We’re, we’ve, bringing forward proposals in the Energy Bill for what’s
called a Capacity Market, so we can auction to get that extra capacity
we need.

So we’ve got the policies in place.

[ Tom Heap ]

Some of Ed Davey’s policies, not least the LibDem [ Liberal Democrat
Party ] U-turn on nuclear, have been guided by DECC [ Department of
Energy and Climate Change ] Chief Scientist David MacKay, author of
the influential book “Renewable Energy without the Hot Air” [ sic,
actually “Sustainable Energy without the Hot Air” ].

Does he think the lights will dim in the second half of this decade ?

[ David MacKay ]

I don’t think there’s going to be any problem maintaining the capacity
that we need. We just need to make clear where Electricity Market
Reform [ EMR, part of the Energy Bill ] is going, and the way in which
we will be maintaining capacity.

[ Tom Heap ]

But I don’t quite understand that, because it seems to me, you know,
some of those big coal-fired power stations are going to be going off.
What’s going to be coming in their place ?

[ David MacKay ]

Well, the biggest number of power stations that’s been built in the
last few years are gas power stations, and we just need a few more gas
power stations like that, to replace the coal
, and hopefully some
nuclear power stations will be coming on the bars, as well as the wind
farms that are being built at the moment.

[ Tom Heap ]

And you’re happy with that increase in gas-fired power stations, are
you ? I mean, you do care deeply, personally, about reducing our
greenhouse gases, and yet you’re saying we’re going to have to build
more gas-fired power stations.

[ David MacKay ]

I do. Even in many of the pathways that reach the 2050 target, there’s
still a role for gas in the long-term, because some power sources like
wind and solar power are intermittent, so if you want to be keeping
the lights on in 2050 when there’s no wind and there’s no sun, you’re
going to need some gas power stations there
. Maybe not operating so
much of the time as they do today, but there’ll still be a role in
keeping the lights on.

[ KLAXON ! If gas plants are used only for peak periods or for backup to
renewables, then the carbon emissions will be much less than if they are
running all the time. ]

[ Tom Heap ]

Many energy experts though doubt that enough new wind power or nuclear
capacity could be built fast enough to affect the sums in a big way by
2020.

But that isn’t the only critical date looming over our energy system.
Even more challenging, though more distant, is the legally binding
objective of cutting greenhouse gas emissions in 2050.

David MacKay wants that certainty to provide the foundation for energy
decisions, and he showed me the effect of different choices with the
“Ultimate Future Energy App”. I was in his office, but anyone can try it online.

[ David MacKay ]

It’s a 2050 calculator. It computes energy demand and supply in
response to your choices, and it computes multiple consequences of
your choices. It computes carbon consequences. It also computes for
you estimates of air quality, consequences of different choices;
security of supply, consequences; and the costs of your choices.

So with this 2050 calculator, it’s an open source tool, and anyone can
go on the web and use the levers to imagine different futures in 2050
of how much action we’ve taken in different demand sectors and in
different supply sectors.

The calculator has many visualisations of the pathway that you’re choosing
and helps people understand all the trade-offs… There’s no silver
bullet for any of this. If I dial up a pathway someone made earlier,
we can visualise the implications in terms of the area occupied for
the onshore wind farms, and the area in the sea for the offshore wind
farms, and the length of the wave farms that you’ve built, and the
land area required for energy crops.

And many organisations have used this tool and some of them have given
us their preferred pathway. So you can see here the Friends of the
Earth have got their chosen pathway, the Campaign to Protect Rural
England, and various engineers like National Grid and Atkins have got
their pathways.

So you can see alternative ways of achieving our targets, of keeping
the lights on and taking climate change action. All of those pathways
all meet the 2050 target, but they do so with different mixes.

[ Tom Heap ]

And your view of this is you sort of can’t escape from the scientific
logic and rigour of it. You might wish things were different or you
could do it differently, but you’re sort of saying “Look, it’s either
one thing or the other”. That’s the point of this.

[ David MacKay ]

That’s true. You can’t be anti-everything. You can’t be anti-wind and
anti-nuclear and anti-home insulation. You won’t end up with a plan
that adds up.

[ KLAXON ! But you can be rationally against one or two things, like
expensive new nuclear power, and carbon and particulate emissions-heavy
biomass for the generation of electricity. ]

[ Tom Heap ]

But isn’t that exactly kind of the problem that we’ve had, without
pointing political fingers, that people rather have been
anti-everything, and that’s why we’re sort of not producing enough new
energy sources ?

[ David MacKay ]

Yeah. The majority of the British public I think are in favour of many
of these sources, but there are strong minorities who are vocally
opposed to every one of the major levers in this calculator. So one
aspiration I have for this tool is it may help those people come to a
position where they have a view that’s actually consistent with the
goal of keeping the lights on.

[ Tom Heap ]

Professor MacKay’s calculator also computes pounds and pence,
suggesting that both high and low carbon electricity work out pricey
in the end.

[ David MacKay ]

The total costs of all the pathways are pretty much the same.
“Business as Usual” is cheaper in the early years, and then pays more,
because on the “Business as Usual”, you carry on using fossil fuels,
and the prices of those fossil fuels are probably going to go up.

All of the pathways that take climate change action have a similar
total cost, but they pay more in the early years, ’cause you have to
pay for things like building insulation and power stations, like
nuclear power stations, or wind power, which cost up-front, but then
they’re very cheap to run in the future.

[ KLAXON ! Will the cost of decommissioning nuclear reactors and the
costs of the waste disposal be cheap ? I think not… ]

So the totals over the 40 or 50 year period here, are much the same for these.

[ Tom Heap ]

The cheapest immediate option of all is to keep shovelling the coal.
And last year coal overtook gas to be our biggest electricity
generation source, pushing up overall carbon emissions along the way
by 4.5%

[ KLAXON ! This is not very good for energy security – look where the
coal comes from… ]

As we heard earlier, most coal-fired power stations are scheduled for
termination, but some have won a reprieve, and trees are their
unlikely saviour.

Burning plenty of wood chip [ actually, Tom, it’s not wood “chip”, it’s
wood “pellets” – which often have other things mixed in with the wood,
like coal… ] allows coal furnaces to cut the sulphur dioxide and nitrous
oxide belching from their chimneys to below the level that requires their
closure under European law.

But some enthusiasts see wood being good for even more.

16:19

[ Outside ]

It’s one of those Autumn days that promises to be warm, but currently
is rather moist. I’m in a field surrounded by those dew-laden cobwebs
you get at this time of year.

But in the middle of this field is a plantation of willow. And I’m at
Rothamsted Research with Angela Karp who’s one of the directors here.

Angela, tell me about this willow I’m standing in front of here. I
mean, it’s about ten foot high or so, but what are you seeing ?

[ Angela Karp ]

Well, I’m seeing one of our better varieties that’s on display here.
We have a demonstration trial of about ten different varieties. This
is a good one, because it produces a lot of biomass, quite easily,
without a lot of additional fertilisers or anything. And as you can
see it’s got lovely straight stems. It’s got many stems, and at the
end of three years, we would harvest all those stems to get the
biomass from it. It’s nice and straight – it’s a lovely-looking, it’s
got no disease, no insects on it, very nice, clean willow.

[ Tom Heap ]

So, what you’ve been working on here as I understand it is trying to
create is the perfect willow – the most fuel for the least input – and
the easiest to harvest.

[ Angela Karp ]

That’s absolutely correct, because the whole reason for growing these
crops is to get the carbon from the atmosphere into the wood, and to
use that wood as a replacement for fossil fuels. Without putting a lot
of inputs in, because as soon as you add fertilisers you’re using
energy and carbon to make them, and that kind of defeats the whole
purpose of doing this.

[ KLAXON ! You don’t need to use fossil fuel energy or petrochemicals or
anything with carbon emissions to make fertiliser ! … Hang on, these
are GM trees, right ? So they will need inputs… ]

[ Tom Heap ]

And how much better do you think your new super-variety is, than say,
what was around, you know, 10 or 15 years ago. ‘Cause willow as an
idea for burning has been around for a bit. How much of an improvement
is this one here ?

[ Angela Karp ]

Quite a bit. So, these are actually are some of the, if you like,
middle-term varieties. So we started off yielding about 8 oven-dry
tonnes per hectare, and now we’ve almost doubled that.

[ Tom Heap ]

How big a place do you think biomass can have in the UK’s energy
picture in the future ?

[ Angela Karp ]

I think that it could contribute between 10% and 15% of our energy. If
we were to cultivate willows on 1 million hectares, we would probably
provide about 3% to 4% of energy in terms of electricity, and I think
that’s kind of a baseline figure. We could cultivate them on up to 3
million hectares, so you can multiply things up, and we could use them
in a much more energy-efficient way.

[ KLAXON ! Is that 4% of total energy or 4% of total electricity ?
Confused. ]

[ Tom Heap ]

Do we really have 3 million hectares going a-begging for planting willow in ?

[ Angela Karp ]

Actually, surprisingly we do. So, people have this kind of myth
there’s not enough land, but just look around you and you will find
there’s lots of land that’s not used for cultivating food crops.

We don’t see them taking over the whole country. We see them being
grown synergistically with food crops.

[ KLAXON ! This is a bit different than the statement made in 2009. ]

[ Tom Heap ]

But I’d just like to dig down a little bit more into the carbon cycle
of the combustion of these things, because that’s been the recent
criticism of burning a lot of biomass, is that you put an early spike
in the amount of carbon in the atmosphere, if you start burning a lot
of biomass, because this [ sounds of rustling ], this plant is going
to be turned into, well, partly, CO2 in the atmosphere.

[ Angela Karp ]

Yes, I think that’s probably a simple and not totally correct way of
looking at it. ‘Cause a lot depends on the actual conversion process
you are using.

So some conversion processes are much more efficient at taking
everything and converting it into what you want.

Heat for example is in excess of 80%, 90% conversion efficiency.

Electricity is a little bit more of the problem. And there, what
they’re looking at is capturing some of the carbon that you lose, and
converting that back in, in carbon storage processes, and that’s why
there’s a lot of talk now about carbon storage from these power
stations.

That I think is the future. It’s a question of connecting up all parts
of the process, and making sure that’s nothing wasted.

20:02

[ Tom Heap ]

So, is wood a desirable greener fuel ?

Not according to Almuth Ernsting of Biofuelwatch, who objects to the
current plans for large-scale wood burning, its use to prop up coal,
and even its low carbon claims.

[ Almuth Ernsting ]

The currently-announced industry plans, and by that I mean existing
power stations, but far more so, power stations which are in the
planning process [ and ] many of which have already been consented –
those [ biomass ] power stations, would, if they all go ahead,
require to burn around 82 million tonnes of biomass, primarily wood,
every year. Now by comparison, the UK in total only produces around
10 million tonnes, so one eighth of that amount, in wood, for all
industries and purposes, every year.

We are looking on the one hand at a significant number of proposed,
and in some cases, under-construction or operating new-build biomass
power stations, but the largest single investment so far going into
the conversion of coal power station units to biomass, the largest and
most advanced one of which at the moment is Drax, who are, have
started to move towards converting half their capacity to burning wood
pellets.

[ Tom Heap ]

Drax is that huge former, or still currently, coal-fired power station
in Yorkshire, isn’t it ?

[ Almuth Ernsting ]

Right, and they still want to keep burning coal as well. I mean, their
long-term vision, as they’ve announced, would be for 50:50 coal and
biomass.

[ Tom Heap ]

What do you think about that potential growth ?

[ Almuth Ernsting ]

Well, we’re seriously concerned. We believe it’s seriously bad news
for climate change, it’s seriously bad news for forests, and it’s
really bad news for communities, especially in the Global South, who
are at risk of losing their land for further expansion of monoculture
tree plantations, to in future supply new power stations in the UK.

A really large amount, increasingly so, of the wood being burned,
comes from slow-growing, whole trees that are cut down for that
purpose, especially at the moment in temperate forests in North
America. Now those trees will take many, many decades to grow back
and potentially re-absorb that carbon dioxide, that’s if they’re
allowed and able to ever grow back.

[ Tom Heap ]

There’s another technology desperate for investment, which is critical
to avoiding power failure, whilst still hitting our mid-century carbon
reduction goals – CCS – Carbon Capture and Storage, the ability to
take the greenhouse gases from the chimney and bury them underground.

It’s especially useful for biomass and coal, with their relatively
high carbon emissions, but would also help gas be greener.

The Chancellor has approved 30 new gas-fired power stations, so long
as they are CCS-ready [ sic, should be “capture ready”, or
“carbon capture ready” ].

Jon Gibbons is the boss of the UK CCS Research Centre, based in an
industrial estate in Sheffield.

[ Noise of processing plant ]

Jon’s just brought me up a sort of 3D maze of galvanized steel and
shiny metal pipes to the top of a tower that must be 20 or so metres
high.

Jon, what is this ?

[ Jon Gibbons ]

OK, so this is our capture unit, to take the CO2 out of the combustion
products from gas or coal. In the building behind us, in the test rigs
we’ve got, the gas turbine or the combustor rig, we’re burning coal or
gas, or oil, but mainly coal or gas.

We’re taking the combustion products through the green pipe over
there, bringing it into the bottom of the unit, and then you can see
these big tall columns we’ve got, about 18 inches diameter, half a
metre diameter, coming all the way up from the ground up to the level
we’re at.

It goes into one of those, it gets washed clean with water, and it
goes into this unit over here, and there it meets an amine solvent, a
chemical that will react reversibly with CO2, coming in the opposite
direction, over packing. So, it’s like sort of pebbles, if you can
imagine it, there’s a lot of surface area. The gas flows up, the
liquid flows down, and it picks up the CO2, just mainly the CO2.

[ Tom Heap ]

And that amine, that chemical as you call it, is stripping the CO2 out
of that exhaust gas. This will link to a storage facility.

What would then happen to the CO2 ?

[ Jon Gibbons ]

What would then happen is that the CO2 would be compressed up to
somewhere in excess of about 100 atmospheres. And it would turn from
being a gas into something that looks like a liquid, like water, about
the same density as water. And then it would be taken offshore in the
UK, probably tens or hundreds of kilometres offshore, and it would go
deep, deep down, over a kilometre down into the ground, and basically
get squeezed into stuff that looks like solid rock. If you go and look
at a sandstone building – looks solid, but actually, maybe a third of
it is little holes. And underground, where you’ve got cubic kilometres
of space, those little holes add up to an awful lot of free space. And
the CO2 gets squeezed into those, over time, and it spreads out, and
it just basically sits there forever, dissolves in the water, reacts
with the rocks, and will stay there for millions of years.

[ Tom Heap ]

Back in his office, I asked Jon why CCS seemed to be stuck in the lab.

[ Jon Gibbons ]

We’re doing enough I think on the research side, but what we really
need to do, is to do work on a full-scale deployment. Because you
can’t work on research in a vacuum. You need to get feedback –
learning by doing – from actual real projects.

And a lot of the problems we’ve got on delivering CCS, are to do with
how you handle the regulation for injecting CO2, and again, you can
only do that in real life.

So what we need to do is to see the commercialisation projects that
are being run by the Department of Energy and Climate Change actually
going through to real projects that can be delivered.

[ Tom Heap ]

Hmm. When I talk to engineers, they’re always very passionate and
actually quite optimistic about Carbon Capture and Storage. And when
I talk to people in industry, or indeed read the headlines, not least
a recent cancellation in Norway, it always seems like a very bleak picture.

[ Jon Gibbons ]

I think people are recognising that it’s getting quite hard to get
money for low carbon technologies.

So – recent presentation we had at one of our centre meetings, was
actually a professor from the United States, Howard Herzog. And he
said “You think you’re seeing a crisis in Carbon Capture and Storage.
But what you’re actually seeing is a crisis in climate change
mitigation.”

[ KLAXON ! Priming us for a scaling back of commitment to the
Climate Change Act ? I do hope not. ]

Now, Carbon Capture and Storage, you do for no other purpose than
cutting CO2 emissions to the atmosphere, and it does that extremely
effectively. It’s an essential technology for cutting emissions. But
until you’ve got a global process that says – actually we’re going to
get on top of this problem; we’re going to cut emissions – get them to
safe level before we actually see people dying in large numbers from
climate change effects – ’cause, certainly, if people start dying,
then we will see a response – but ideally, you’d like to do it before
then. But until you get that going, then actually persuading people to
spend money for no other benefit than sorting out the climate is
difficult.

There’s just no point, you know, no country can go it alone, so you
have to get accommodation. And there, we’re going through various
processes to debate that. Maybe people will come to an accommodation.
Maybe the USA and China will agree to tackle climate change. Maybe
they won’t.

What I am fairly confident is that you won’t see huge, you know,
really big cuts in CO2 emissions without that global agreement. But
I’m also confident that you won’t see big cuts in CO2 emissions
without CCS deployment.

And my guess is there’s about a 50:50 chance that we do CCS before we
need to, and about a 50:50 chance we do it after we have to. But I’m
pretty damn certain we’re going to do it.

[ Tom Heap ]

But we can’t wait for a global agreement that’s already been decades
in the making, with still no end in sight.

We need decisions now to provide more power with less pollution.

[ Music lyrics : “What’s the plan ? What’s the plan ?” ]

[ Tom Heap ]

Dieter Helm, Professor of Energy Policy at the University of Oxford
believes we can only deliver our plentiful green energy future if we
abandon our attitude of buy-now pay-later.

[ KLAXON ! Does he mean a kind of hire purchase energy economy ?
I mean, we’re still paying for nuclear electricity from decades ago,
in our bills, and through our taxes to the Department of Energy and
Climate Change. ]

[ Dieter Helm ]

There’s a short-term requirement and a long-term requirement. The
short-term requirement is that we’re now in a real pickle. We face
this energy crunch. We’ve got to try to make the best of what we’ve
got. And I think it’s really like, you know, trying to get the
Spitfires back up again during the Battle of Britain. You know, you
patch and mend. You need somebody in command. You need someone
in control. And you do the best with what you’ve got.

In that context, we then have to really stand back and say, “And this
is what we have to do to get a serious, long-term, continuous, stable
investment environment, going forward.” In which, you know, we pay the
costs, but of course, not any monopoly profits, not any excess
profits, but we have a world in which the price of electricity is
related to the cost.”

[ KLAXON ! Is Dieter Helm proposing state ownership of energy plant ? ]

29:04

[ Programme anchor ]

“Costing the Earth” was presented by Tom Heap, and made in Bristol by
Helen Lennard.

[ Next broadcast : 16th October 2013, 21:00, BBC Radio 4 ]

Herşeyi Yak : Burn Everything

There’s good renewable energy and poorly-choiced renewable energy. Converting coal-burning power stations to burn wood is Double Plus Bad – it’s genuiunely unsustainable in the long-term to plan to combust the Earth’s boreal forests just to generate electricity. This idea definitely needs incinerating.

Gaynor Hartnell, chief executive of the Renewable Energy Association recently said, “Right now the government seems to have an institutional bias against new biomass power projects.” And do you know, from my point of view, that’s a very fine thing.

Exactly how locally-sourced would the fuel be ? The now seemingly abandoned plan to put in place a number of new biomass burning plants would rely on wood chip from across the Atlantic Ocean. That’s a plan that has a number of holes in it from the point of view of the ability to sustain this operation into the future. Plus, it’s not very efficient to transport biomass halfway across the world.

And there’s more to the efficiency question. We shouldn’t be burning premium wood biomass. Trees should be left standing if at all possible – or used in permanent construction – or buried so that they don’t decompose – if new trees need to be grown. Rather than burning good wood that could have been used for carbon sequestration, it would be much better, if we have to resort to using wood as fuel, to gasify wood waste and other wood by-products in combination with other fuels, such as excavated landfill, food waste and old rubber tyres.

Co-gasifying of mixed fuels and waste would allow cheap Carbon Capture and Storage (CCS) or Carbon Capture and (Re)Utilisation (CCU) options – and so if we have to top up the gasifiers with coal sometimes, at least it wouldn’t be leaking greenhouse gas to the atmosphere.

No, we shouldn’t swap out burning coal for incinerating wood, either completely or co-firing with coal. We should build up different ways to produce Renewable Gas, including the gasification of mixed fuels and waste, if we need fuels to store for later combustion. Which we will, to back up Renewable Electricity from wind, solar, geothermal, hydropower and marine resources – and Renewable Gas will be exceptionally useful for making renewable vehicle fuels.

Bioenergy with Carbon Capture and Storage : the wrong way :-
http://www.biofuelwatch.org.uk/wp-content/uploads/BECCS-report.pdf

Bioenergy with Carbon Capture and Storage : the right way :-
http://www.ecolateral.org/Technology/gaseifcation/gasificationnnfc090609.pdf
“The potential ability of gasifiers to accept a wider range of biomass feedstocks than biological routes. Thermochemical routes can use lignocellulosic (woody) feedstocks, and wastes, which cannot be converted by current biofuel production technologies. The resource availability of these feedstocks is very large compared with potential resource for current biofuels feedstocks. Many of these feedstocks are also lower cost than current biofuel feedstocks, with some even having negative costs (gate fees) for their use…”
http://www.uhde.eu/fileadmin/documents/brochures/gasification_technologies.pdf
http://www.gl-group.com/pdf/BGL_Gasifier_DS.pdf
http://www.energy.siemens.com/fi/en/power-generation/power-plants/carbon-capture-solutions/pre-combustion-carbon-capture/pre-combustion-carbon-capture.htm

Bosworth: “We are not going soft on coal”

At the annual Stop Climate Chaos coalition chin-wag on Friday 20th July 2012, I joined a table discussion led by Tony Bosworth of the environmental group Friends of the Earth.

He was laying out plans for a campaign focus on the risks and limitations of developing shale gas production in the United Kingdom.

During open questions, I put it to him that a focus on shale gas was liable to lay Friends of the Earth open to accusations of taking the pressure off high carbon fuels such as coal. He said that he had already encountered that accusation, but emphasised that the shale gas licencing rounds are frontier – policy is actively being decided and is still open to resolution on issues of contention. Placing emphasis on critiquing this fossil fuel resource and its exploitation is therefore timely and highly appropriate. But he wanted to be clear that “we are not going soft on coal”.

I suggested that some experts are downplaying the risks of shale gas development because of the limitations of the resource – because shale gas could only contribute a few percent of national fuel provision, some think is is unwise to concentrate so much campaign effort on resisting its development. Bosworth countered this by saying that in the near future, the British Geological Survey are expected to revise their estimates of shale gas resource upwards by a very significant amount.

He quoted one source as claiming that the UK could have around 55 years of shale gas resource within its borders. I showed some scepticism about this, posing the question “But can it be mined at any significant rate ?” It is a very common public relations trick to mention the total estimated size of a fossil fuel resource without also giving an estimate of how fast it can be extracted – leading to entirely mistaken conclusions about how useful a field, well or strata can be.

Tony Bosworth said that shale gas reserve estimates keep changing all the time. The estimate for shale gas reserves in Poland have just been revised downwards, and the Marcellus Shale in the United States of America has also been re-assessed negatively.

Bosworth said that although campaigners who are fighting shale gas development had found it useful to communicate the local environmental damage caused by shale gas extraction – such as ozone pollution, traffic noise, water pollution and extraction, landscape clearance – the best argument against shale gas production was the climate change emissions one. He said academics are still being recruited to fight on both sides of the question of whether the lifecycle emissions of shale gas are higher than for coal, but that it was becoming clear that so-called “fugitive emissions” – where gas unintentionally escapes from well works and pipeline networks – is the key global warming risk from shale gas.

Opinion around the table was that the local environmental factors associated with shale gas extraction may be the way to draw the most attention from people – as these would be experienced personally. The problem with centring on this argument is that the main route of communication about these problems, the film Gasland, has been counter-spun by an industry-backed film “Truthland”.

The Royal Society recently pronounced shale gas extraction acceptable as long as appropriate consideration was paid to following regulatory control, but even cautious development of unconventional fossil fuels does not answer the climate change implications.

There is also the extreme irony that those who oppose wind farm development on the basis of “industrialisation of the landscape” can also be the same group of people who are in favour of the development of shale gas extraction – arguably doing more, and more permanently, to destroy the scenery by deforestation, water resource sequestration and toxification of soils, air and water.

Tony Bosworth told the group about the Friends of the Earth campaign to encourage Local Authorities to declare themselves “Frack-Free Zones” (in a similar way to the “Fair Trade Towns” campaign that was previously so successful). He said that FoE would be asking supporters to demand that their local governments had a “No Fracking” policy in their Local Plans. It was suggested in the discussion group that with the current economic slowdown and austerity measures, that Local Authorities may not have the capacity to do this. Tony Bosworth suggested that in this case, it might be worth addressing the issue to church parish councils, who can be very powerful in local matters. It was pointed out that frequently, parish councils have been busy declaring themselves “Wind Free Zones”.

It was considered that it would be ineffective to attempt to fight shale gas production on a site-by-site direct action basis as the amount of land in the UK that has already and will soon be licenced for shale gas exploration made this impossible. Besides which, people often had very low awareness of the potential problems of shale gas extraction and the disruption and pollution it could bring to their areas – so local support for direct action could be poor.

One interesting suggestion was to create a map of the United Kingdom showing the watersheds where people get their tap supplies from superimposed on where the proposed shale gas exploration areas are likely to be – to allow people to understand that even if they live far away from shale gas production, their drinking water supplies could be impacted.

In summary, there are several key public relations fronts on which the nascent shale gas “industry” are fighting. They have been trying to seed doubt on low estimates of actual shale gas production potential – they have been hyping the potentially massive “gamechanging” resource assessments, without clear evidence of how accessible these resources are. They have also been pouring scorn on the evidence of how much damage shale gas could do to local environments. And they have also been promoting academic research that could be seen to make their case that shale gas is less climate-damaging than other energy resources.

Shale gas, and the issue of the risks of hydraulic fracturing for unconventional fossil fuels, is likely to remain a hot ecological topic. Putting effort into resisting its expansion is highly appropriate in the British context, where the industry is fledgeling, and those who are accusing Friends of the Earth and others of acting as “useful idiots” for the ambitions of the coal industry just haven’t taken a look at the wider implications. If shale gas is permitted dirty development rights, then that would open the gateway for even more polluting unconventional fossil fuel extraction, such as oil shale and underground coal gasification, and that really would be a major win for the coal industry.

Friends of the Earth Briefing : Shale gas : energy solution or fracking hell ?

BP Biofuels : Murders & Acquisitions ?

[ The empty billboard at Highams Park train station, that had previously boasted an advertisement for BP’s Olympic public relations mission, after I complained about it. ]

I can see it now – a shimmering summer London afternoon – the heat radiating from the newly constructed sports track, and all television eyes on the shiny BP Biofuels filling station.

Oh, you’ll have choice. Which “green” fuel shall we choose for the Olympic village van ? Bioethanol, biodiesel or biobutanol ? The bright white and metal filling station will be glowing like an saving angel in a storm, with the friendly, homely green and yellow BP star flower tattooed across it.

But while you’re drinking in the public relations, “Oh look ! BP goes green !”, you will be living a distraction, like a child hypnotised by glinting gemstones. You will not be looking further than the pump station podium, to the full context, where lies a narrative rich in troubling complexity, harrowing tales that somehow never quite make it to the bread-and-circus mainstream media.

1. BP Biofuels is growing by acquisition, not in-house development

It is clear from the outset that BP Biofuels is a greenwash mirage – the “world class” fossil fuel oil and gas company are not tending to dirty their engineers’ hands with actually making biofuels themselves. What BP Biofuels has been doing is leveraging their ecological reputation by making purchases of already-existing companies – for example, Tropical Bioenergia in Brazil.

Where they have entered into a more joint venture, things are a bit rocky, for example, at Vivergo Fuels in Hull, England, which was due to open in early 2012, no, I mean “late spring”, no actually “later in the year”.

And where they have been unable to acquire or merger, they’ve been taking to the law courts to suppress the competition, as with Gevo in Minnesota in the United States of America.

2. Land grabbing in the Brazilian Cerrado and the socioeconomic fallout

Although BP Biofuels are claiming that they are developing advanced biofuels with due care for sustainability, there are continuing problems with land use change in the Brazilian Cerrado, which is documented as displacing indigenous people, and perhaps even partly behind the murder of social activists in the region.

BP Biofuels is making use of the highly unequal Brazilian economy by using low-skilled or unskilled landless people in the area. As usual, the BP company reports focus on the safety of their employees – they claim that mechanisation of sugarcane harvesting is improving the wellbeing of their workers – but they are not addressing the economic disadvantage that forces people to work for extremely low wages in this business.

3. Ecosystem destruction by agrifuel/agrofuel farming

Sugarcane plantations have been highlighted as causing detrimental effects to soils, even causing stress on local water supplies.

4. The GM crop menace

At least one company specialising in the sale of agrochemicals, I mean genetically modified crops adapted for use with patented agrochemicals, is active alongside the BP Biofuels concerns. It is possible that there will be extensive crossover between the energy and GM crops companies – not only in the ownership of the genome of energy crops such as GM sugarcane, but also GM trees – to be used to build carbon credits for the large international companies growing plantations in Brazil.

5. Buggy biofuels will remain a niche in the vehicle fuel market

Biofuels made by any process that involves microorganisms suffer from one unique problem – speed – or rather, lack of it. There does not appear to be much evidence that any bio-activated production of biofuels – whether it be fermentation for ethanol, or algae grown for oil – can be sped up. This indicates that biofuels grown from bugs are likely to remain relatively small-scale in the global fuels markets – adding weight to the arguments from companies such as BP for drilling for fossil fuels in the Arctic Ocean and offshore in Africa, South America and Asia.

[ NOTE WELL : Before you mentino it, yes, this post does not have much in the way of links, in fact, none at all. That’s because I’m still compiling sources on this subject and hope to write it up properly later on. If you’re keen to find out more, Google knows everything, just about. ]

Debunking the GWPF Briefing Paper No2 – The Sahel Is Greening


Image Credit : Global Warming Policy Foundation

This article was written by M. A. Rodger and was originally posted at DeSmogBlog and is syndicated by an informal agreement and with the express permission of both the author and DeSmogBlog, without payment or charge.
This is the second in a series of posts on the educational charity and climate sceptic “think-tank” Global Warming Policy Foundation (GWPF). The first post examined GWPF”s organisation and its principles (or lack of them). Here we examine GWPF”s Briefing Paper No2 – The Sahel Is Greening by Philipp Mueller who is the Assistant Director of the GWPF. Coverage of the greening Sahel has been in the media for a decade now, so this cannot be too controversial a subject, can it?

GWPF BRIEFING PAPER No2 – SIGNIFICANCE OF THE SUBJECT
Mueller explains what this Briefing Paper No2 is about in the first three sentences.

“Global warming has both positive and negative impacts. However, very often only the negative consequences are reported and the positive ones omitted. This article will show an example of a positive effect of warming.” 

Mueller then sets out to show how the Sahel is enjoying a “positive impact” of global warming.

Yet already here is a glaring omission. Despite this being an ideal opportunity to list out all the other “positive impacts”, Mueller fails even to hint at what any of the others might be. Never mind. We still have the Sahel. Or do we?

THE GREENING OF THE SAHEL – MUELLER”S VERSION
Mueller”s account can be summarised thus:

Between the 1950s and 1980s reducing rainfalls across the Sahel (the region of Africa immediately South of the Sahara Desert) caused severe drought and famine. But, according to Mueller, since the early 1980s this process has gone into reverse with the Sahel greening, harvests more plentiful and the Sahara shrinking.

The reason for this improvement is more than simply increasing rainfall. The climate of the Sahel region is delicate. Additional rainfall results in higher levels of vegetation. This induces yet more rain while reducing soil erosion. However, there is more at work than just this one “feedback” mechanism. Mueller says the extra factor that might be responsible is “the rise of atmospheric CO2 levels.” It seems the elevated levels of atmospheric CO2 let plants grow better, especially in arid regions. Clever stuff, that!

Mueller does not leave it there. He discusses the cause of the underlying increase in rainfall citing papers that suggest the rainfall was due to a warmer climate in the Sahara or a warmer North Atlantic, a process “partially caused by greenhouse gas emissions.”

Mueller”s shrinking Sahara is not unprecedented. In the past the Sahara, far from being a desert, was once a grass-covered savannah. This was over 6,000 years ago during the Holocene Climate Optimum (when temperatures were 2-5 deg C hotter than now according to Mueller but not according to others) and also during two other times in last 120,000 years.

Mueller says the future isn”t certain. The Sahel may become wetter or it may become drier. But, he concludes, today the Sahel is undoubtedly wetter and suddenly Mueller becomes far more certain about those speculative causes of the greening of the Sahel.  “The increase in rainfall, which was probably caused by rising temperatures, and rising CO2 concentrations, might even – if sustained for a few more decades – green the Sahara. This would be a truly tremendous prospect.”

This account makes bold statements but can it all be true?

DO PIGS FLY?
Mueller”s account contains many omissions and misrepresentations. The list is so long that the full account of Mueller”s errors are appended to the bottom of this post and just a summary is presented here.

After droughts end, things grow greener. That is natural. The Sahel has a delicate climate and research shows that increased human emissions were more likely the cause of the initial drought rather than the cause of the re-greening. The recovery is also very patchy. Drought and famine, declining crops as well as encroaching deserts continue to plague parts of the Sahel, to the point that the description “greening” remains a subject for debate. Mueller”s rosy account fails to tell us any of this.

It is wild speculation to assert that any recovery in the Sahel is a result of global warming and to dangle the prospect of a future green Sahara is the exact opposite of the message provided by Mueller”s reference on the matter. However welcome the re-greening of parts of the Sahel, it cannot be relied on.

Mueller does mention this in passing but he fails to mention the confident scientific finding that any re-greening will eventually be reversed in the future. So if this greening of the Sahel is the prime example of the “positive impacts” of global warming, it is no surprise that Mueller fails to list any of the others.

CONCLUSION
GWPF Briefing paper No2 is an entirely flawed document. The views it expresses are those of the author (as the disclaimer on the cover says), not those views of the GWPF. Yet the author works with a “distinguished team of GWPF Academic Advisors.” Further, it remains a wonder that a registered charity whose task is to educate the public on global warming could ever put its name on such a report. If this is representative of GWPF Briefing Papers as a whole, it would be a cause of grave concern.

A second GWPF Briefing Paper will be the subject of the next post in this series. Hopefully it will prove to be more factual in nature than Briefing Paper No2.

APPENDIX – Details of Omissions & Misrepresentations within Mueller”s paper.

A1 – OMISSION
Mueller”s account began with mention of a drought between the 1950s & 1980s. This drought requires greater consideration than just a mention. Would we not expect a region to become greener in the period following a drought? Strangely, while Mueller discusses theories for the greening, he fails to mention the causes of the initial drought and its continuing legacy. This is not some minor event. The drought has been described as “…among the most undisputed and largest recent climate changes recognized by the climate research community.”

The causes of the drought have slowly become better understood. Rising population and over-grazing by livestock was the first theory but studies now show the drought resulted from changes in ocean surface temperatures Folland et al (1986) Giannini et al (2003)which are likely due in part to the sulphate aerosol pollution of Europe and North America Rotstayn & Lohmann (2002) Biasutti & Gainnini (2006) and thus it is the cleaning of emissions from power stations that has likely allowed the rains to return.

Mueller remains entirely silent about the potential role of sulphate aerosols in causing the drought and the subsequent greening. It is difficult to understand his silence as these findings are well known. Perhaps the potential role of human pollution in causing a “devastating drought” sits too uncomfortably with the intended message of “positive impacts” from global warming.

A2 – OMISSION
To emphasis his “positive impact”, Mueller tells us the greening is “a very welcome and very beneficial development for the people living in the Sahel.” What Mueller omits to tell us is that conditions have yet to return to the levels seen in the 1950s and that drought and famine still stalk the Sahel. His rosy reporting is even used by one sceptical commentator as proof that the continuing drought in the Sahel is but a “pseudo-catastrophe.”

Climatology may not provide the best reports of the events but the Sahel drought is reported in newspapers and the humanitarian aid networks. “In 2005, drought and famine hit the Sahel, claiming many lives. The pattern was repeated in 2010 with the crisis most acute in Niger. And now the early warning signs are there for problems again in 2012.” For Mueller to entirely miss such prominent reporting in the age of the internet is truly remarkable!

A3 – OMISSION
It is also remarkable how Mueller writes of improving agricultural outputs across the Sahel. Mueller cites the findings of Chris Reij in a small region of Burkina Faso and also Olsson (2008), from where he quotes half a sentence about improved agricultural output in Burkina Faso and Mali.

What Mueller totally misses in Olsson”s paper is the preceding sentence and the following half sentence which says – “After many years of dwindling food production in the Sahel, only two countries show signs of improved agricultural performance. …while the other Sahelian countries show decreases in their production.” So Mueller omits to mention the situation in the other nine countries of the Sahel, instead concentrating on the two countries where the evidence doesn”t directly contradict his theorizing.

A4 – MISREPRESENTATION
To reinforce his greening Sahel message Mueller strays geographically. He embellishes part of a Heartland Institute report that quotes a second-hand report from geologist Stephan Kropelin.

This concerns greening within the deserts of Western Sahara, a much-troubled country that is in Africa but definitely not part of the Sahel! It is from the same Heartland report that Mueller times the start of the greening as “since the early 1980s” when if he had read the other more reliable references he cited he would have known the greening began in 1994.

The entirety of the Sahel is not greening as Mueller would have us believe. It is patchy and there remains enough areas still suffering encroaching desert to make the term "greening" debatable. Somehow Mueller fails to notice.

A5 – MISREPRESENTATION
Mueller does manage to notice that there are signs of greening even in some areas where rainfall is still decreasing. Mueller asserts this might well be due to increased levels of atmospheric CO2. To support his CO2 claim Muller cites Sherwood Idso who has long espoused such theories and claims certain forest studies show evidence of it

But when it comes to the greening of the Sahel, Idso makes clear the CO2 link is only speculation and makes do with pointing out where researchers fail to mention his brave theorising.
There is one logical problem with Mueller”s claim which may be why Idso does not pursue a similar argument. It is difficult to reconcile patchy Sahel greening with a widespread (indeed worldwide) phenomenon like rising CO2 levels. The most likely reason for patchy greening (other than patchy rainfall) is very, very, widely discussed and observed on the ground. It is farmers changing their methods of cultivation, something Mueller fails to even mention, preferring instead to advance his ridiculous CO2 claim

A6 – MISREPRESENTATION
The prehistoric green Sahara of the mid-Holocene with its lakes and rivers is used by Mueller to reinforce his argument that global warming may trigger a return to such conditions and so provide a truly tremendous “positive impact” from global warming. Again he manages to misrepresent the words of others. On this matter Mueller concludes “(Professor Martin) Claussen has considered the likelihood of a greening of the Sahara due to global warming and concluded that an expansion of vegetation into today”s Sahara is possible as a consequence of CO2 emissions.”

This is an exceedingly bizarre interpretation of the source document! Claussen”s quote actually says “some expansion of vegetation into today”s Sahara is theoretically possible”,(end quote, emphasis added) words too pessimistic for Mueller so he changed them.

Not only does Mueller misquote Claussen, he wholly ignores the explicit warning that Claussen makes against any belief in a future green Sahara. “But he(Claussen) warns against believing the mid-Holocene climate optimum will be recreated.” This source document continues by pointing to the continuing tree-loss in the Sahel and the shrinkage of Lake Chad; this despite the improved levels of rainfall.

Indeed, Claussen is not alone in dismissing a green Sahara.  Yet Mueller”s report concludes that a green Sahara is a distinct possibility, the exact opposite of the very authority that he claims is supporting his conclusions.

A7 – OMISSION
Finally, Mueller is silent about one “negative impact” of a greening Sahel. He intimates that any greening due to global warming will be permanent but this is incorrect. Climatology shows that the Sahel has a very sensitive climate such that it can be stated “with confidence” that “any greening of the Sahel and Sahara in the near future will eventually be reversed.”  The greening is unreliable. It is thus hardly an encouraging example of a “positive impact” from global warming.


 

Living Life and LOAFing It

CHRISTIAN ECOLOGY LINK
PRESS RELEASE

Living Life and LOAFing It – Green Christians ask churches to “Use your LOAF !” on sourcing sustainable food

In the run up to Easter, Christian Ecology Link is asking supporters to think and act on how they source food for their church communities, with the aim of reducing the impact of unsustainable agriculture on their local area, and the wider world.

CEL have launched a new colour leaflet on the LOAF programme principles in time for Shrove Tuesday (Mardi Gras), or Pancake Day, on 21st February 2012.

Continue reading Living Life and LOAFing It

Biomassacre : Agrofuels Aggro

Stop Biomassacre Subsidies from You and I Films on Vimeo.

The UK Government has a neat plan – meet a considerable proportion of the nation’s electricity needs by burning biomass and biofuels : wood, waste wood, agricultural residues, palm oil, maize ethanol and such-like.

They are even considering setting up a generous subsidy, the kind of subsidy that would encourage massive imports of biomass and bioliquids.

Without care and regulatory checks and balances, the net effect will almost certainly be rainforest deforestation, land grabbing in under-developed nations, and economic problems for the growing biomass heat movement in the UK.

Most people probably think burning wood, wood waste and plant-derived fuels to make power sounds like a good energy idea – stop burning coal and start burning trees – has to be better for the planet, surely ?

There are a number of really deep problems with this agenda. Almuth Ernsting of Biofuelwatch told me this weekend that burning biomass for electricity generation is incredibly inefficient.

She said the UK Government has apparently heard concerns about the burning of bioliquids such as the biofuel bioethanol for power generation, and it shouldn’t be included in the subsidy arrangement.

However, biomass-fired power generation is still set to receive support – although it is still being depicted as making use of agroforestry residues, and all sourced within the country – judging by a recent permission for a biomass burning plant in Yorkshire.

Generous subsidies for burning biofuels to generate electricity will encourage the combustion of food-quality oils, imported from across the world, exacerbating the existing problems with the destruction of tropical rainforest for commercial gain.

Offering significant subsidies for burning biomass for power generation will most probably trigger further logging of virgin rainforest, as it would be cheap to produce and export to Britain.

Even if biomass were sourced in the United Kingdom – with restrictions on imports from areas of the world where there is extensive land grabbing and deforestation occurring – the subsidy would encourage the burning of wood products for generating power instead of being used in the most efficient way – to heat homes.

Almuth Ernsting said, “the big energy companies are going to burn that much wood, small heat providers won’t be able to compete.” The same would be true of street-scale biomass combined heat and power (CHP) proposals.

Almuth Ernsting and others have pointed out that the UK Government public consultation on the subsidy ends on 12th January 2012, but that even after that date, people are being encouraged to write to their Member of Parliament to express views.

Another group, nope, is also calling for citizen action :-

http://nope.org.uk/

In an e-mail to joabbess.com, Almuth Ernsting offered extra resources :-

“All the materials related to our campaign against subsidies for biomass and biofuel electricity can be found here :-”

http://www.biofuelwatch.org.uk/uk-campaign/rocs_overview/

“A briefing about the impacts of ROCs for biomass, biofuels and waste incineration :-”
http://www.biofuelwatch.org.uk/2011/rocs_impacts/

“A briefing to hand or send to MPs :-”
http://www.biofuelwatch.org.uk/2011/rocs_mps/

“A guide to lobbying MPs on this :-” http://www.biofuelwatch.org.uk/2011/mp_guidance_rocs/

“We have got two email alerts on one page just now (http://www.biofuelwatch.org.uk/2011/rocs-alerts/), though we will take down the one to respond to the DECC Consultation when that closes next Thursday, while keeping the one to MPs. However, we very much encourage people to write personal letters or, even better, visit their MPs, which will have much more impact than taking part in a standard email alert.”