Mind the Gap : BBC Costing the Earth

I listened to an interesting mix of myth, mystery and magic on BBC Radio 4.

Myths included the notion that long-term, nuclear power would be cheap; that “alternative” energy technologies are expensive (well, nuclear power is, but true renewables are most certainly not); and the idea that burning biomass to create heat to create steam to turn turbines to generate electricity is an acceptably efficient use of biomass (it is not).

Biofuelwatch are hosting a public meeting on this very subject :-
http://www.biofuelwatch.org.uk/2013/burning_issue_public_event/
“A Burning Issue – biomass and its impacts on forests and communities”
Tuesday, 29th October 2013, 7-9pm
Lumen Centre, London (close to St Pancras train station)
http://www.lumenurc.org.uk/lumencontact.htm
Lumen Centre, 88 Tavistock Place, London WC1H 9RS

Interesting hints in the interviews I thought pointed to the idea that maybe, just maybe, some electricity generation capacity should be wholly owned by the Government – since the country is paying for it one way or another. A socialist model for gas-fired generation capacity that’s used as backup to wind and solar power ? Now there’s an interesting idea…




http://www.bbc.co.uk/programmes/b03cn0rb

“Mind the Gap”
Channel: BBC Radio 4
Series: Costing the Earth
Presenter: Tom Heap
First broadcast: Tuesday 15th October 2013

Programme Notes :

“Our energy needs are growing as our energy supply dwindles.
Renewables have not come online quickly enough and we are increasingly
reliant on expensive imported gas or cheap but dirty coal. Last year
the UK burnt 50% more coal than in previous years but this helped
reverse years of steadily declining carbon dioxide emissions. By 2015
6 coal fired power stations will close and the cost of burning coal
will increase hugely due to the introduction of the carbon price
floor. Shale gas and biomass have been suggested as quick and easy
solutions but are they really sustainable, or cheap?”

“Carbon Capture and Storage could make coal or gas cleaner and a new
study suggests that with CCS bio energy could even decrease global
warming. Yet CCS has stalled in the UK and the rest of Europe and the
debate about the green credentials of biomass is intensifying. So what
is really the best answer to Britain’s energy needs? Tom Heap
investigates.”

00:44 – 00:48
[ Channel anchor ]
Britain’s energy needs are top of the agenda in “Costing the Earth”…

01:17
[ Channel anchor ]
…this week on “Costing the Earth”, Tom Heap is asking if our
ambitions to go green are being lost to the more immediate fear of
blackouts and brownouts.

01:27
[ Music : Arcade Fire – “Neighbourhood 3 (Power Out)” ]

[ Tom Heap ]

Energy is suddenly big news – central to politics and the economy. The
countdown has started towards the imminent shutdown of many coal-fired
power stations, but the timetable to build their replacements has
barely begun.

It’ll cost a lot, we’ll have to pay, and the politicians are reluctant
to lay out the bill. But both the official regulator and industry are
warning that a crunch is coming.

So in this week’s “Costing the Earth”, we ask if the goal of clean,
green and affordable energy is being lost to a much darker reality.

02:14
[ Historical recordings ]

“The lights have started going out in the West Country : Bristol,
Exeter and Plymouth have all had their first power cuts this
afternoon.”

“One of the biggest effects of the cuts was on traffic, because with
the traffic lights out of commission, major jams have built up,
particularly in the town centres. One of the oddest sights I saw is a
couple of ladies coming out of a hairdressers with towels around their
heads because the dryers weren’t working.”

“Television closes down at 10.30 [ pm ], and although the cinemas are
carrying on more or less normally, some London theatres have had to
close.”

“The various [ gas ] boards on both sides of the Pennines admit to
being taken by surprise with today’s cold spell which brought about
the cuts.”

“And now the major scandal sweeping the front pages of the papers this
morning, the advertisement by the South Eastern Gas Board recommending
that to save fuel, couples should share their bath.”

[ Caller ]
“I shall write to my local gas board and say don’t do it in
Birmingham. It might be alright for the trendy South, but we don’t
want it in Birmingham.”

03:13
[ Tom Heap ]

That was 1974.

Some things have changed today – maybe a more liberal attitude to
sharing the tub. But some things remain the same – an absence of
coal-fired electricity – threatening a blackout.

Back then it was strikes by miners. Now it’s old age of the power
plants, combined with an EU Directive obliging them to cut their
sulphur dioxide and nitrous oxide emissions by 2016, or close.

Some coal burners are avoiding the switch off by substituting wood;
and mothballed gas stations are also on standby.

But Dieter Helm, Professor of Energy Policy at the University of
Oxford, now believes power cuts are likely.

03:57
[ Dieter Helm ]

Well, if we take the numbers produced by the key responsible bodies,
they predict that there’s a chance that by the winter of 2-15 [sic,
meaning 2015] 2-16 [sic, meaning 2016], the gap between the demand for
electricity and the supply could be as low as 2%.

And it turns out that those forecasts are based on extremely
optimistic assumptions about how far demand will fall in that period
(that the “Green Deal” will work, and so on) and that we won’t have
much economic growth.

So basically we are on course for a very serious energy crunch by the
winter of 2-15 [sic, meaning 2015] 2-16 [sic, meaning 2016], almost
regardless of what happens now, because nobody can build any power
stations between now and then.

It’s sort of one of those slow motion car crashes – you see the whole
symptoms of it, and people have been messing around reforming markets
and so on, without addressing what’s immediately in front of them.

[ Tom Heap ]

And that’s where you think we are now ?

[ Dieter Helm ]

I think there’s every risk of doing so.

Fortunately, the [ General ] Election is a year and a half away, and
there’s many opportunities for all the political parties to get real
about two things : get real about the energy crunch in 2-15 [sic,
meaning 2015] 2-16 [sic, meaning 2016] and how they’re going to handle
it; and get real about creating the incentives to decarbonise our
electricity system, and deal with the serious environmental and
security and competitive issues which our electricity system faces.

And this is a massive investment requirement [ in ] electricity : all
those old stations retiring [ originally built ] back from the 1970s –
they’re all going to be gone.

Most of the nuclear power stations are coming to the end of their lives.

We need a really big investment programme. And if you really want an
investment programme, you have to sit down and work out how you’re
going to incentivise people to do that building.

[ Tom Heap ]

If we want a new energy infrastructure based on renewables and
carbon-free alternatives, then now is the time to put those incentives
on the table.

The problem is that no-one seems to want to make the necessary
investment, least of all the “Big Six” energy companies, who are
already under pressure about high bills.

[ “Big Six” are : British Gas / Centrica, EdF Energy (Electricite
de France), E.On UK, RWE npower, Scottish Power and SSE ]

Sam Peacock of the energy company SSE [ Scottish and Southern Energy ]
gives the commercial proof of Dieter’s prediction.

If energy generators can’t make money out of generating energy,
they’ll be reluctant to do it.

[ Sam Peacock ]

Ofgem, the energy regulator, has looked at this in a lot of detail,
and said that around 2015, 2016, things start to get tighter. The
reason for this is European Directives, [ is [ a ] ] closing down some
of the old coal plants. And also the current poor economics around [
or surround [ -ing ] ] both existing plant and potential new plant.

So, at the moment it’s very, very difficult to make money out of a gas
plant, or invest in a new one. So this leads to there being, you know,
something of a crunch point around 2015, 2016, and Ofgem’s analysis
looks pretty sensible to us.

[ Tom Heap ]

And Sam Peacock lays the blame for this crisis firmly at the Government’s door.

[ Sam Peacock ]

The trilemma, as they call it – of decarbonisation, security of supply
and affordability – is being stretched, because the Government’s
moving us more towards cleaner technologies, which…which are more
expensive.

However, if you were to take the costs of, you know, the extra costs
of developing these technologies off government [ sic, meaning
customer ] bills and into general taxation, you could knock about over
£100 off customer bills today, it’ll be bigger in the future, and you
can still get that much-needed investment going.

So, we think you can square the circle, but it’s going to take a
little bit of policy movement [ and ] it’s going to take shifting some
of those costs off customers and actually back where the policymakers
should be controlling them.

[ KLAXON ! Does he mean controlled energy prices ? That sounds a bit
centrally managed economy to me… ]

[ Tom Heap ]

No surprise that a power company would want to shift the pain of
rising energy costs from their bills to the tax bill.

But neither the Government nor the Opposition are actually proposing this.

Who pays the premium for expensve new energy sources is becoming like
a game of pass the toxic parcel.

[ Reference : http://en.wikipedia.org/wiki/Hot_potato_%28game%29 ]

I asked the [ UK Government Department of ] Energy and Climate Change
Secretary, Ed Davey, how much new money is required between now and
2020.

08:06

[ Ed Davey ]

About £110 billion – er, that’s critical to replace a lot of the coal
power stations that are closing, the nuclear power stations that are [
at the ] end of their lives, and replace a lot of the network which
has come to the end of its life, too.

So it’s a huge, massive investment task.

[ Tom Heap ]

So in the end we’re going to have to foot the bill for the £110 billion ?

[ Ed Davey ]

Yeah. Of course. That’s what happens now. People, in their bills that
they pay now, are paying for the network costs of investments made
several years, even several decades ago.

[ Yes – we’re still paying through our national nose to dispose of
radioactive waste and decommission old nuclear reactors. The liability
of it all weighs heavily on the country’s neck… ]

And there’s no escaping that – we’ve got to keep the lights on – we’ve
got to keep the country powered.

You have to look at both sides of the equation. If we’re helping
people make their homes more inefficient [ sic, meaning energy
efficient ], their product appliances more efficient, we’re doing
everything we possibly can to try to help the bills be kept down,

while we’re having to make these big investments to keep the lights
on, and to make sure that we don’t cook the planet, as you say.

[ Tom Heap ]

You mention the lights going out. There are predictions that we’re
headed towards just 2% of spare capacity in the system in a few years’
time.

Are you worried about the dangers of, I don’t know, maybe not lights
going out for some people, but perhaps big energy users being told
when and when [ sic, meaning where ] they can’t use power in the
winter ?

[ Ed Davey ]

Well, there’s no doubt that as the coal power stations come offline,
and the nuclear power plants, er, close, we’re going to have make sure
that new power plants are coming on to replace them.

And if we don’t, there will be a problem with energy security.

Now we’ve been working very hard over a long time now to make sure we
attract that investment. We’ve been working with Ofgem, the regulator;
with National Grid, and we’re…

[ Tom Heap ]

…Being [ or it’s being ] tough. I don’t see companies racing to come
and fill in the gap here and those coal power plants are going off
soon.

[ Ed Davey ]

…we’re actually having record levels of energy investment in the country.

The problem was for 13 years under the last Government
[ same old, same old Coalition argument ] we saw low levels of investment
in energy, and we’re having to race to catch up, but fortunately we’re
winning that race. And we’re seeing, you know, billions of pounds
invested but we’ve still got to do more. We’re not there. I’m not
pretending we’re there yet. [ Are we there, yet ? ] But we do have the
policies in place.

So, Ofgem is currently consulting on a set of proposals which will
enable it to have reserve power to switch on at the peak if it’s
needed.

We’re, we’ve, bringing forward proposals in the Energy Bill for what’s
called a Capacity Market, so we can auction to get that extra capacity
we need.

So we’ve got the policies in place.

[ Tom Heap ]

Some of Ed Davey’s policies, not least the LibDem [ Liberal Democrat
Party ] U-turn on nuclear, have been guided by DECC [ Department of
Energy and Climate Change ] Chief Scientist David MacKay, author of
the influential book “Renewable Energy without the Hot Air” [ sic,
actually “Sustainable Energy without the Hot Air” ].

Does he think the lights will dim in the second half of this decade ?

[ David MacKay ]

I don’t think there’s going to be any problem maintaining the capacity
that we need. We just need to make clear where Electricity Market
Reform [ EMR, part of the Energy Bill ] is going, and the way in which
we will be maintaining capacity.

[ Tom Heap ]

But I don’t quite understand that, because it seems to me, you know,
some of those big coal-fired power stations are going to be going off.
What’s going to be coming in their place ?

[ David MacKay ]

Well, the biggest number of power stations that’s been built in the
last few years are gas power stations, and we just need a few more gas
power stations like that, to replace the coal
, and hopefully some
nuclear power stations will be coming on the bars, as well as the wind
farms that are being built at the moment.

[ Tom Heap ]

And you’re happy with that increase in gas-fired power stations, are
you ? I mean, you do care deeply, personally, about reducing our
greenhouse gases, and yet you’re saying we’re going to have to build
more gas-fired power stations.

[ David MacKay ]

I do. Even in many of the pathways that reach the 2050 target, there’s
still a role for gas in the long-term, because some power sources like
wind and solar power are intermittent, so if you want to be keeping
the lights on in 2050 when there’s no wind and there’s no sun, you’re
going to need some gas power stations there
. Maybe not operating so
much of the time as they do today, but there’ll still be a role in
keeping the lights on.

[ KLAXON ! If gas plants are used only for peak periods or for backup to
renewables, then the carbon emissions will be much less than if they are
running all the time. ]

[ Tom Heap ]

Many energy experts though doubt that enough new wind power or nuclear
capacity could be built fast enough to affect the sums in a big way by
2020.

But that isn’t the only critical date looming over our energy system.
Even more challenging, though more distant, is the legally binding
objective of cutting greenhouse gas emissions in 2050.

David MacKay wants that certainty to provide the foundation for energy
decisions, and he showed me the effect of different choices with the
“Ultimate Future Energy App”. I was in his office, but anyone can try it online.

[ David MacKay ]

It’s a 2050 calculator. It computes energy demand and supply in
response to your choices, and it computes multiple consequences of
your choices. It computes carbon consequences. It also computes for
you estimates of air quality, consequences of different choices;
security of supply, consequences; and the costs of your choices.

So with this 2050 calculator, it’s an open source tool, and anyone can
go on the web and use the levers to imagine different futures in 2050
of how much action we’ve taken in different demand sectors and in
different supply sectors.

The calculator has many visualisations of the pathway that you’re choosing
and helps people understand all the trade-offs… There’s no silver
bullet for any of this. If I dial up a pathway someone made earlier,
we can visualise the implications in terms of the area occupied for
the onshore wind farms, and the area in the sea for the offshore wind
farms, and the length of the wave farms that you’ve built, and the
land area required for energy crops.

And many organisations have used this tool and some of them have given
us their preferred pathway. So you can see here the Friends of the
Earth have got their chosen pathway, the Campaign to Protect Rural
England, and various engineers like National Grid and Atkins have got
their pathways.

So you can see alternative ways of achieving our targets, of keeping
the lights on and taking climate change action. All of those pathways
all meet the 2050 target, but they do so with different mixes.

[ Tom Heap ]

And your view of this is you sort of can’t escape from the scientific
logic and rigour of it. You might wish things were different or you
could do it differently, but you’re sort of saying “Look, it’s either
one thing or the other”. That’s the point of this.

[ David MacKay ]

That’s true. You can’t be anti-everything. You can’t be anti-wind and
anti-nuclear and anti-home insulation. You won’t end up with a plan
that adds up.

[ KLAXON ! But you can be rationally against one or two things, like
expensive new nuclear power, and carbon and particulate emissions-heavy
biomass for the generation of electricity. ]

[ Tom Heap ]

But isn’t that exactly kind of the problem that we’ve had, without
pointing political fingers, that people rather have been
anti-everything, and that’s why we’re sort of not producing enough new
energy sources ?

[ David MacKay ]

Yeah. The majority of the British public I think are in favour of many
of these sources, but there are strong minorities who are vocally
opposed to every one of the major levers in this calculator. So one
aspiration I have for this tool is it may help those people come to a
position where they have a view that’s actually consistent with the
goal of keeping the lights on.

[ Tom Heap ]

Professor MacKay’s calculator also computes pounds and pence,
suggesting that both high and low carbon electricity work out pricey
in the end.

[ David MacKay ]

The total costs of all the pathways are pretty much the same.
“Business as Usual” is cheaper in the early years, and then pays more,
because on the “Business as Usual”, you carry on using fossil fuels,
and the prices of those fossil fuels are probably going to go up.

All of the pathways that take climate change action have a similar
total cost, but they pay more in the early years, ’cause you have to
pay for things like building insulation and power stations, like
nuclear power stations, or wind power, which cost up-front, but then
they’re very cheap to run in the future.

[ KLAXON ! Will the cost of decommissioning nuclear reactors and the
costs of the waste disposal be cheap ? I think not… ]

So the totals over the 40 or 50 year period here, are much the same for these.

[ Tom Heap ]

The cheapest immediate option of all is to keep shovelling the coal.
And last year coal overtook gas to be our biggest electricity
generation source, pushing up overall carbon emissions along the way
by 4.5%

[ KLAXON ! This is not very good for energy security – look where the
coal comes from… ]

As we heard earlier, most coal-fired power stations are scheduled for
termination, but some have won a reprieve, and trees are their
unlikely saviour.

Burning plenty of wood chip [ actually, Tom, it’s not wood “chip”, it’s
wood “pellets” – which often have other things mixed in with the wood,
like coal… ] allows coal furnaces to cut the sulphur dioxide and nitrous
oxide belching from their chimneys to below the level that requires their
closure under European law.

But some enthusiasts see wood being good for even more.

16:19

[ Outside ]

It’s one of those Autumn days that promises to be warm, but currently
is rather moist. I’m in a field surrounded by those dew-laden cobwebs
you get at this time of year.

But in the middle of this field is a plantation of willow. And I’m at
Rothamsted Research with Angela Karp who’s one of the directors here.

Angela, tell me about this willow I’m standing in front of here. I
mean, it’s about ten foot high or so, but what are you seeing ?

[ Angela Karp ]

Well, I’m seeing one of our better varieties that’s on display here.
We have a demonstration trial of about ten different varieties. This
is a good one, because it produces a lot of biomass, quite easily,
without a lot of additional fertilisers or anything. And as you can
see it’s got lovely straight stems. It’s got many stems, and at the
end of three years, we would harvest all those stems to get the
biomass from it. It’s nice and straight – it’s a lovely-looking, it’s
got no disease, no insects on it, very nice, clean willow.

[ Tom Heap ]

So, what you’ve been working on here as I understand it is trying to
create is the perfect willow – the most fuel for the least input – and
the easiest to harvest.

[ Angela Karp ]

That’s absolutely correct, because the whole reason for growing these
crops is to get the carbon from the atmosphere into the wood, and to
use that wood as a replacement for fossil fuels. Without putting a lot
of inputs in, because as soon as you add fertilisers you’re using
energy and carbon to make them, and that kind of defeats the whole
purpose of doing this.

[ KLAXON ! You don’t need to use fossil fuel energy or petrochemicals or
anything with carbon emissions to make fertiliser ! … Hang on, these
are GM trees, right ? So they will need inputs… ]

[ Tom Heap ]

And how much better do you think your new super-variety is, than say,
what was around, you know, 10 or 15 years ago. ‘Cause willow as an
idea for burning has been around for a bit. How much of an improvement
is this one here ?

[ Angela Karp ]

Quite a bit. So, these are actually are some of the, if you like,
middle-term varieties. So we started off yielding about 8 oven-dry
tonnes per hectare, and now we’ve almost doubled that.

[ Tom Heap ]

How big a place do you think biomass can have in the UK’s energy
picture in the future ?

[ Angela Karp ]

I think that it could contribute between 10% and 15% of our energy. If
we were to cultivate willows on 1 million hectares, we would probably
provide about 3% to 4% of energy in terms of electricity, and I think
that’s kind of a baseline figure. We could cultivate them on up to 3
million hectares, so you can multiply things up, and we could use them
in a much more energy-efficient way.

[ KLAXON ! Is that 4% of total energy or 4% of total electricity ?
Confused. ]

[ Tom Heap ]

Do we really have 3 million hectares going a-begging for planting willow in ?

[ Angela Karp ]

Actually, surprisingly we do. So, people have this kind of myth
there’s not enough land, but just look around you and you will find
there’s lots of land that’s not used for cultivating food crops.

We don’t see them taking over the whole country. We see them being
grown synergistically with food crops.

[ KLAXON ! This is a bit different than the statement made in 2009. ]

[ Tom Heap ]

But I’d just like to dig down a little bit more into the carbon cycle
of the combustion of these things, because that’s been the recent
criticism of burning a lot of biomass, is that you put an early spike
in the amount of carbon in the atmosphere, if you start burning a lot
of biomass, because this [ sounds of rustling ], this plant is going
to be turned into, well, partly, CO2 in the atmosphere.

[ Angela Karp ]

Yes, I think that’s probably a simple and not totally correct way of
looking at it. ‘Cause a lot depends on the actual conversion process
you are using.

So some conversion processes are much more efficient at taking
everything and converting it into what you want.

Heat for example is in excess of 80%, 90% conversion efficiency.

Electricity is a little bit more of the problem. And there, what
they’re looking at is capturing some of the carbon that you lose, and
converting that back in, in carbon storage processes, and that’s why
there’s a lot of talk now about carbon storage from these power
stations.

That I think is the future. It’s a question of connecting up all parts
of the process, and making sure that’s nothing wasted.

20:02

[ Tom Heap ]

So, is wood a desirable greener fuel ?

Not according to Almuth Ernsting of Biofuelwatch, who objects to the
current plans for large-scale wood burning, its use to prop up coal,
and even its low carbon claims.

[ Almuth Ernsting ]

The currently-announced industry plans, and by that I mean existing
power stations, but far more so, power stations which are in the
planning process [ and ] many of which have already been consented –
those [ biomass ] power stations, would, if they all go ahead,
require to burn around 82 million tonnes of biomass, primarily wood,
every year. Now by comparison, the UK in total only produces around
10 million tonnes, so one eighth of that amount, in wood, for all
industries and purposes, every year.

We are looking on the one hand at a significant number of proposed,
and in some cases, under-construction or operating new-build biomass
power stations, but the largest single investment so far going into
the conversion of coal power station units to biomass, the largest and
most advanced one of which at the moment is Drax, who are, have
started to move towards converting half their capacity to burning wood
pellets.

[ Tom Heap ]

Drax is that huge former, or still currently, coal-fired power station
in Yorkshire, isn’t it ?

[ Almuth Ernsting ]

Right, and they still want to keep burning coal as well. I mean, their
long-term vision, as they’ve announced, would be for 50:50 coal and
biomass.

[ Tom Heap ]

What do you think about that potential growth ?

[ Almuth Ernsting ]

Well, we’re seriously concerned. We believe it’s seriously bad news
for climate change, it’s seriously bad news for forests, and it’s
really bad news for communities, especially in the Global South, who
are at risk of losing their land for further expansion of monoculture
tree plantations, to in future supply new power stations in the UK.

A really large amount, increasingly so, of the wood being burned,
comes from slow-growing, whole trees that are cut down for that
purpose, especially at the moment in temperate forests in North
America. Now those trees will take many, many decades to grow back
and potentially re-absorb that carbon dioxide, that’s if they’re
allowed and able to ever grow back.

[ Tom Heap ]

There’s another technology desperate for investment, which is critical
to avoiding power failure, whilst still hitting our mid-century carbon
reduction goals – CCS – Carbon Capture and Storage, the ability to
take the greenhouse gases from the chimney and bury them underground.

It’s especially useful for biomass and coal, with their relatively
high carbon emissions, but would also help gas be greener.

The Chancellor has approved 30 new gas-fired power stations, so long
as they are CCS-ready [ sic, should be “capture ready”, or
“carbon capture ready” ].

Jon Gibbons is the boss of the UK CCS Research Centre, based in an
industrial estate in Sheffield.

[ Noise of processing plant ]

Jon’s just brought me up a sort of 3D maze of galvanized steel and
shiny metal pipes to the top of a tower that must be 20 or so metres
high.

Jon, what is this ?

[ Jon Gibbons ]

OK, so this is our capture unit, to take the CO2 out of the combustion
products from gas or coal. In the building behind us, in the test rigs
we’ve got, the gas turbine or the combustor rig, we’re burning coal or
gas, or oil, but mainly coal or gas.

We’re taking the combustion products through the green pipe over
there, bringing it into the bottom of the unit, and then you can see
these big tall columns we’ve got, about 18 inches diameter, half a
metre diameter, coming all the way up from the ground up to the level
we’re at.

It goes into one of those, it gets washed clean with water, and it
goes into this unit over here, and there it meets an amine solvent, a
chemical that will react reversibly with CO2, coming in the opposite
direction, over packing. So, it’s like sort of pebbles, if you can
imagine it, there’s a lot of surface area. The gas flows up, the
liquid flows down, and it picks up the CO2, just mainly the CO2.

[ Tom Heap ]

And that amine, that chemical as you call it, is stripping the CO2 out
of that exhaust gas. This will link to a storage facility.

What would then happen to the CO2 ?

[ Jon Gibbons ]

What would then happen is that the CO2 would be compressed up to
somewhere in excess of about 100 atmospheres. And it would turn from
being a gas into something that looks like a liquid, like water, about
the same density as water. And then it would be taken offshore in the
UK, probably tens or hundreds of kilometres offshore, and it would go
deep, deep down, over a kilometre down into the ground, and basically
get squeezed into stuff that looks like solid rock. If you go and look
at a sandstone building – looks solid, but actually, maybe a third of
it is little holes. And underground, where you’ve got cubic kilometres
of space, those little holes add up to an awful lot of free space. And
the CO2 gets squeezed into those, over time, and it spreads out, and
it just basically sits there forever, dissolves in the water, reacts
with the rocks, and will stay there for millions of years.

[ Tom Heap ]

Back in his office, I asked Jon why CCS seemed to be stuck in the lab.

[ Jon Gibbons ]

We’re doing enough I think on the research side, but what we really
need to do, is to do work on a full-scale deployment. Because you
can’t work on research in a vacuum. You need to get feedback –
learning by doing – from actual real projects.

And a lot of the problems we’ve got on delivering CCS, are to do with
how you handle the regulation for injecting CO2, and again, you can
only do that in real life.

So what we need to do is to see the commercialisation projects that
are being run by the Department of Energy and Climate Change actually
going through to real projects that can be delivered.

[ Tom Heap ]

Hmm. When I talk to engineers, they’re always very passionate and
actually quite optimistic about Carbon Capture and Storage. And when
I talk to people in industry, or indeed read the headlines, not least
a recent cancellation in Norway, it always seems like a very bleak picture.

[ Jon Gibbons ]

I think people are recognising that it’s getting quite hard to get
money for low carbon technologies.

So – recent presentation we had at one of our centre meetings, was
actually a professor from the United States, Howard Herzog. And he
said “You think you’re seeing a crisis in Carbon Capture and Storage.
But what you’re actually seeing is a crisis in climate change
mitigation.”

[ KLAXON ! Priming us for a scaling back of commitment to the
Climate Change Act ? I do hope not. ]

Now, Carbon Capture and Storage, you do for no other purpose than
cutting CO2 emissions to the atmosphere, and it does that extremely
effectively. It’s an essential technology for cutting emissions. But
until you’ve got a global process that says – actually we’re going to
get on top of this problem; we’re going to cut emissions – get them to
safe level before we actually see people dying in large numbers from
climate change effects – ’cause, certainly, if people start dying,
then we will see a response – but ideally, you’d like to do it before
then. But until you get that going, then actually persuading people to
spend money for no other benefit than sorting out the climate is
difficult.

There’s just no point, you know, no country can go it alone, so you
have to get accommodation. And there, we’re going through various
processes to debate that. Maybe people will come to an accommodation.
Maybe the USA and China will agree to tackle climate change. Maybe
they won’t.

What I am fairly confident is that you won’t see huge, you know,
really big cuts in CO2 emissions without that global agreement. But
I’m also confident that you won’t see big cuts in CO2 emissions
without CCS deployment.

And my guess is there’s about a 50:50 chance that we do CCS before we
need to, and about a 50:50 chance we do it after we have to. But I’m
pretty damn certain we’re going to do it.

[ Tom Heap ]

But we can’t wait for a global agreement that’s already been decades
in the making, with still no end in sight.

We need decisions now to provide more power with less pollution.

[ Music lyrics : “What’s the plan ? What’s the plan ?” ]

[ Tom Heap ]

Dieter Helm, Professor of Energy Policy at the University of Oxford
believes we can only deliver our plentiful green energy future if we
abandon our attitude of buy-now pay-later.

[ KLAXON ! Does he mean a kind of hire purchase energy economy ?
I mean, we’re still paying for nuclear electricity from decades ago,
in our bills, and through our taxes to the Department of Energy and
Climate Change. ]

[ Dieter Helm ]

There’s a short-term requirement and a long-term requirement. The
short-term requirement is that we’re now in a real pickle. We face
this energy crunch. We’ve got to try to make the best of what we’ve
got. And I think it’s really like, you know, trying to get the
Spitfires back up again during the Battle of Britain. You know, you
patch and mend. You need somebody in command. You need someone
in control. And you do the best with what you’ve got.

In that context, we then have to really stand back and say, “And this
is what we have to do to get a serious, long-term, continuous, stable
investment environment, going forward.” In which, you know, we pay the
costs, but of course, not any monopoly profits, not any excess
profits, but we have a world in which the price of electricity is
related to the cost.”

[ KLAXON ! Is Dieter Helm proposing state ownership of energy plant ? ]

29:04

[ Programme anchor ]

“Costing the Earth” was presented by Tom Heap, and made in Bristol by
Helen Lennard.

[ Next broadcast : 16th October 2013, 21:00, BBC Radio 4 ]

Wind Powers Electricity Security




Have the anti-wind power lobby struck again ? A seemingly turbulent researcher from Private Eye magazine rang me on Thursday evening to ask me to revise my interpretation of his “Keeping The Lights On” piece of a few weeks previously. His article seemed at first glance to be quite derogatory regarding the contribution of wind power to the UK’s electricity supply. If I were to look again, I would find out, he was sure, that I was wrong, and he was right.

So I have been re-reviewing the annual 2013 “Electricity Capacity Assessment Report” prepared by Ofgem, the UK Government’s Office of Gas and Electricity Markets, an independent National Regulatory Authority. I have tried to be as fair-minded and generous as possible to “Old Sparky” at Private Eye magazine, but a close re-reading of the Ofgem report suggests he is apparently mistaken – wind power is a boon, not a burden (as he seems to claim).

In the overview to the Ofgem report, they state, “our assessment suggests that the risks to electricity security of supply over the next six winters have increased since our last report in October 2012. This is due in particular to deterioration in the supply-side outlook. There is also uncertainty over projected reductions in demand.” Neither of these issues can be associated with wind power, which is being deployed at an accelerating rate and so is providing increasing amounts of electricity.

The report considers risks to security of the electricity supply, not an evaluation of the actual amounts of power that will be supplied. How are these risks to the security of supply quantified ? There are several metrics provided from Ofgem’s modelling, including :-

a. LOLE – Loss of Load Expectation – the average number of hours per year in which electricity supply does not meet electricity demand (if the grid System Operator does not take steps to balance it out).

(Note that Ofgem’s definition of LOLE is difference from other people’s “LOLE is often interpreted in the academic literature as representing the probability of disconnections after all mitigation actions available to the System Operator have been exhausted. We consider that a well functioning market should avoid using mitigation actions in [sic] regular basis and as such we interpret LOLE as the probability of having to implement mitigation actions.”)

b. EEU – Expected Energy Unserved (or “Un-served”) – the average amount of electricity demand that is not met in a year – a metric that combines both the likelihood and the size of any shortfall.

c. Frequency and Duration of Expected Outages – a measure of the risk that an electricity consumer faces of controlled disconnection because supply does not meet demand.

The first important thing to note is that the lights are very unlikely to go out. The highest value of LOLE, measured in hours per year is under 20. That’s 20 hours each year. Not 20 days. And this is not anticipated to be 20 days in a row, either. Section 1.11 says “LOLE, as interpreted in this report, is not a measure of the expected number of hours per year in which customers may be disconnected. For a given level of LOLE and EEU, results may come from a large number of small events where demand exceeds supply in principle but that can be managed by National Grid through a set of mitigation actions available to them as System Operator. […] Given the characteristics of the GB system, any shortfall is more likely to take the form of a large number of small events that would not have a direct impact on customers.”

Section 2.19 states, “The probabilistic measures of security of supply presented in this report are often misinterpreted. LOLE is the expected number of hours per year in which supply does not meet demand. This does not however mean that customers will be disconnected or that there will be blackouts for that number of hours a year. Most of the time, when available supply is not high enough to meet demand, National Grid may implement mitigation actions to solve the problem without disconnecting any customers. However, the system should be planned to avoid the use of mitigation actions and that is why we measure LOLE ahead of any mitigation actions being used”. And Section 2.20, “LOLE does not necessarily mean disconnections but they do remain a possibility. If the difference between available supply and demand is so large that the mitigation actions are not enough to meet demand then some customers have to be disconnected – this is the controlled disconnections step in Figure 14 above. In this case the [System Operator] SO will disconnect industrial demand before household demand.”

And in Section 2.21. “The model output numbers presented here refer to a loss of load of any kind. This could be the sum of several small events (controlled through mitigation actions) or a single large event. As a consequence of the mitigation actions available, the total period of disconnections for a customer will be lower than the value of LOLE.”

The report does anticipate that there are risks of large events where the lights could go out, even if only very briefly, for non-emergency customers : “The results may also come from a small number of large events (eg the supply deficit is more than 2 – 3 gigawatts (GW)) where controlled disconnections cannot be avoided.” But in this kind of scenario two very important things would happen. Those with electricity contracts with a clause permitting forced disconnection would lose power. And immediate backup power generation would be called upon to bridge the gap. There are many kinds of electricity generation that can be called on to start up in a supply crisis – some of them becoming operational in minutes, and others in hours.

As the report says in Section 2.24 “Each [Distribution Network Operator] DNO ensures it can provide a 20% reduction of its total system demand in four incremental stages (between 4% and 6%), which can be achieved at all times, with or without prior warning, and within 5 minutes of receipt of an instruction from the System Operator. The reduction of a further 20% (40% in total) can be achieved following issue of the appropriate GB System Warning by National Grid within agreed timescales”.

It’s all about the need for National Grid to balance the system. Section 2.9 says, “LOLE is not a measure of the expected number of hours per year in which customers may be disconnected. We define LOLE to indicate the number of hours in which the system may need to respond to tight conditions.”

The report also rules some potential sources of disruption of supply outside the remit of this particular analysis – see Section 3.17 “There are other reasons why electricity consumers might experience disruptions to supply, which are out of the scope of this assessment and thus not captured by this model, such as: Flexibility : The ability of generators to ramp up in response to rapid increases in demand or decreases in the output of other generators; Insufficient reserve : Unexpected increases in demand or decreases in available capacity in real time which must be managed by the System Operator through procurement and use of reserve capacity; Network outages : Failures on the electricity transmission or distribution networks; Fuel availability : The availability of the fuel used by generators. In particular the security of supplies of natural gas at times of peak electricity demand.”

Crucially, the report says there is much uncertainty in their modelling of LOLE and EEU. In Section 2.26, “The LOLE and EEU estimates are just an indication of risk. There is considerable uncertainty around the main variables in the calculation (eg demand, the behaviour of interconnectors etc.)”

(Note : interconnectors are electricity supply cables that join the UK to other countries such as Ireland and Holland).

Part of the reason for Ofgem’s caveat of uncertainty is the lack of appropriate data. Although they believe they have better modelling of wind power since their 2012 report (see Sections 3.39 to 3.50), there are data sets they believe should be improved. For example, data on Demand Side Response (DSR) – the ability of the National Grid and its larger or aggregated consumers to alter levels of demand on cue (see Sections 4.7 to 4.10 of the document detailing decisions about the methodology). A lack of data has led to certain assumptions being retained, for example, the assumption that there is no relationship between available wind power and periods of high demand – in the winter season (see Section 2.5 and Sections 4.11 to 4.17 of the methodology decisions document).

In addition to these uncertainties, the sensitivity cases used in the modelling are known to not accurately reflect the capability of management of the power grid. In the Executive Summary on page 4, the report says, “These sensitivities only illustrate changes in one variable at a time and so do not capture potential mitigating effects, for example of the supply side reacting to higher demand projections.” And in Section 2.16 it says, “Each sensitivity assumes a change in one variable from the Reference Scenario, with all other assumptions being held constant. The purpose of this is to assess the impact of the uncertainty related to each variable in isolation, on the risk measures. Our report is not using scenarios (ie a combination of changes in several variables to reflect alternative worlds or different futures), as this would not allow us to isolate the impact of each variable on the risk measures.”

Thus, the numbers that are output by the modelling are perforce illustrative, not definitive.

What “Old Sparky” at Private Eye was rattled by in his recent piece was the calculation of Equivalent Firm Capacity (EFC) in the Ofgem report.

On page 87, Section 3.55, the Ofgem report defines the “standard measure” EFC as “the amount of capacity that is required to replace the wind capacity to achieve the same level of LOLE”, meaning the amount of always-on generation capacity required to replace the wind capacity to achieve the same level of LOLE. Putting it another way on page 33, in the footnotes for Section 3.29, the report states, “The EFC is the quantity of firm capacity (ie always available) that can be replaced by a certain volume of wind generation to give the same level of security of supply, as measured by LOLE.”

Wind power is different from fossil fuel-powered generation as there is a lot of variability in output. Section 1.48 of the report says, “Wind generation capacity is analysed separately given that its outcome in terms of generation availability is much more variable and difficult to predict.” Several of the indicators calculated for the report are connected with the impact of wind on security of the power supply. However, variation in wind power is not the underlying reason for the necessity of this report. Other electricity generation plant has variation in output leading to questions of security of supply. In addition, besides planned plant closures and openings, there are as-yet-unknown factors that could impact overall generation capacity. Section 2.2 reads, “We use a probabilistic approach to assess the uncertainty related to short-term variations in demand and available conventional generation due to outages and wind generation. This is combined with sensitivity analysis to assess the uncertainty related to the evolution of electricity demand and supply due to investment and retirement decisions (ie mothballing, closures) and interconnector flows, among others.”

The report examines the possibility that wind power availability could be correlated to winter season peak demand, based on limited available data, and models a “Wind Generation Availability” sensitivity (see Section 3.94 to Section 3.98, especially Figure 64). In Section 3.42 the report says, “For the wind generation availability sensitivity we assume that wind availability decreases at time of high demand. In particular this sensitivity assumes a reduction in the available wind resource for demand levels higher than 92% of the ACS peak demand. The maximum reduction is assumed to be 50% for demand levels higher than 102% of ACS peak demand.” Bear in mind that this is only an assumption.

In Appendix 5 “Detailed results tables”, Table 34, Table 35 and Table 37 show how this modelling impacts the calculation of the indicative Equivalent Firm Capacity (EFC) of wind power.

In the 2018/2019 timeframe, when there is expected to be a combined wind power capacity of 8405 megawatts (MW) onshore plus 11705 MW offshore = 20110 MW, the EFC for wind power is calculated to be 2546 MW in the “Wind Generation Availability” sensitivity line, which works out at 12.66% of the nameplate capacity of the wind power. Note : 100 divided by 12.66 is 7.88, or a factor of roughly 8.

At the earlier 2013/2014 timeframe, when combined wind power capacity is expected to be 3970 + 6235 MW = 10205 MW, and the EFC is at 1624 MW or 15.91% for the “Wind Generation Sensitivity” line. Note : 100 divided by 15.91 = 6.285, or a factor of roughly 6.

“Old Sparky” is referring to these factor figures when he says in his piece (see below) :-

“[…] For every one megawatt of reliable capacity (eg a coal-fired power
station) that gets closed, Ofgem calculates Britain would need six to
eight
megawatts of windfarm capacity to achieve the original level of
reliability – and the multiple is rising all the time. Windfarms are
not of course being built at eight times the rate coal plants are
closing – hence the ever-increasing likelihood of blackouts. […]”

Yet he has ignored several caveats given in the report that place these factors in doubt. For example, the sensitivity analysis only varies one factor at a time and does not attempt to model correlated changes in other variables. He has also omitted to consider the relative impacts of change.

If he were to contrast his statement with the “Conventional Low Generation Availability” sensitivity line, where wind power EFC in the 2013/2014 timeframe is calculated as a healthy 26.59% or a factor of roughly 4; or 2018/2019 when wind EFC is 19.80% or a factor of roughly 5.

Note : The “Conventional Low Generation Availability” sensitivity is drawn from historical conventional generation operating data, as outlined in Sections 3.31 to 3.38. Section 3.36 states, “The Reference Scenario availability is defined as the mean availability of the seven winter estimates. The availability values used for the low (high) availability sensitivities are defined as the mean minus (plus) one standard deviation of the seven winter estimates.”

Table 30 and Table 31 show that low conventional generation availability will probably be the largest contribution to energy security uncertainty in the critical 2015/2016 timeframe.

The upshot of all of this modelling is that wind power is actually off the hook. Unforeseen alterations in conventional generation capacity are likely to have the largest impact. As the report says in Section 4.21 “The figures indicate that reasonably small changes in conventional generation availability have a material impact on the risk of supply shortfalls. This is most notable in 2015/16, where the estimated LOLE ranges from 0.2 hours per year in the high availability sensitivity to 16 hours per year in the low availability sensitivity, for the Reference Scenario is 2.9 hours per year.”

However, Section 1.19 is careful to remind us, “Wind generation, onshore and offshore, is expected to grow rapidly in the period of analysis and especially after 2015/16, rising from around 9GW of installed capacity now to more than 20GW by 2018/19. Given the variability of wind speeds, we estimate that only 17% of this capacity can be counted as firm (ie always available) for security of supply purposes by 2018/19.” This is in the Reference Scenario.

The sensitivities modelled in the report are a measure of risk, and do not provide absolute values for any of the output metrics, especially since the calculations are dependent on so many factors, including economic stimulus for the building of new generation plant.

Importantly, recent decisions by gas-fired power plant operators to “mothball”, or close down their generation capacity, are inevitably going to matter more than how much exactly we can rely on wind power.

Many commentators neglect to make the obvious point that wind power is not being used to replace conventional generation entirely, but to save fossil fuel by reducing the number of hours conventional generators have to run. This is contributing to energy security, by reducing the cost of fossil fuel that needs to be imported. However, the knock-on effect is this is having an impact on the economic viability of these plant because they are not always in use, and so the UK Government is putting in place the “Capacity Mechanism” to make sure that mothballed plant can be put back into use when required, during those becalmed, winter afternoons when power demand is at its peak.




Private Eye
Issue Number 1345
26th July 2013 – 8th August 2013

“Keeping the Lights On”
page 14
by “Old Sparky”

The report from energy regulator Ofgem that sparked headlines on
potential power cuts contains much new analysis highlighting the
uselessness of wind generation in contributing to security of
electricity supply, aka the problem of windfarm “intermittency”. But
the problem is being studiously ignored by the Department of Energy
and Climate Change (DECC).

As coal power stations shut down, windfarms are notionally replacing
them. If, say, only one windfarm were serving the grid, its inherent
unreliability could easily be compensated for. But if there were
[italics] only windfarms, and no reliable sources of electricity
available at all, security of supply would be hugely at risk. Thus the
more windfarms there are, the less they contribute to security.

For every one megawatt of reliable capacity (eg a coal-fired power
station) that gets closed, Ofgem calculates Britain would need six to
eight megawatts of windfarm capacity to achieve the original level of
reliability – and the multiple is rising all the time. Windfarms are
not of course being built at eight times the rate coal plants are
closing – hence the ever-increasing likelihood of blackouts.

[…]

In consequence windfarms are being featherbedded – not only with
lavish subsidies, but also by not being billed for the ever-increasing
trouble they cause. When the DECC was still operating Plan B, aka the
dash for gas ([Private] Eye [Issue] 1266), the cost of intermittency
was defined in terms of balancing the grid by using relatively clean
and cheap natural gas. Now that the department has been forced to
adopt emergency Plan C ([Private] Eye [Issue] 1344), backup for
intermittent windfarm output will increasingly be provided by dirty,
expensive diesel generators.




Private Eye
Issue 1344
12 – 25 July 2013

page 15
“Keeping the Lights On”

As pandemonium breaks out in newspapers at the prospect of electricity
blackouts, emergency measures are being cobbled together to ensure the
lights stay on. They will probably succeed – but at a cost.

Three years ago incoming coalition ministers were briefed that when
energy policy Plan A (windfarms, new nukes and pixie-dust) failed, Plan B
would be in place – a new dash for gas ([Private] Eye [Issue] 1266).

Civil servants then devised complex “energy market reforms” (EMR) to make
this happen. It is now clear that these, too, have failed. Coal-fired power
stations are closing quicker than new gas plants are being built. As energy
regulator Ofgem put it bluntly last week: “The EMR aims to incentivise
industry to address security of supply in the medium term, but is not able
to bring forward investment in new capacity in time.”

Practical people in the National Grid are now hatching emergency Plan C.
They will pay large electricity users to switch off when requested;
encourage industrial companies and even hospitals to generate their own
diesel-fired electricity (not a hard sell when the grid can’t be relied
on); hire diesel generators to make up for the intermittency of windfarms
([Private] Eye [Issue] 1322); and bribe electricity companies to bring
mothballed gas-fired plants back into service.

Some of these steps are based on techniques previously used in extreme
circumstances, and will probably keep most of the lights on. But this
should not obscure the fact that planning routine use of emergency
measures is an indictment of energy policy. And since diesel is much
more expensive and polluting than gas, electricity prices and CO2
emissions will be higher than if Plan B had worked.

[…]

‘Old Sparky’




Keith MacLean : Big Choices

At last week’s 2013 Annual Conference for PRASEG, the UK parliamentary sustainable energy group, Keith MacLean from Scottish and Southern Energy outlined (see below) the major pathways for domestic (residential) energy, currently dependent on both a gas grid and a power grid.

He said that decarbonising heat requires significant, strategic infrastructure decisions on the various proposals and technology choices put forward, as “these options are incompatible”. He said that the UK “need to facilitate more towards ONE of those scenarios/configurations [for provision for heating at home] as they are mutually exclusive”.

There has been a commitment from Central Government in the UK to the concept of electrification of the energy requirements of both the transport and heat sectors, and Keith MacLean painted a scenario that could see the nation’s households ditching their gas central heating boilers for heat pumps in accord with that vision. Next, “the District Heating (DH) movement could take off, [where you stop using your heat pump and take local piped heat from a Combined Heat and Power (CHP) plant] until there is no spare market capacity. Then [big utilities] could start pumping biogas and hydrogen into the gas grid, and you get your boiler back !”

Since I view gas grid injection of Renewable Gas feedstocks as a potential way to easily decarbonise the gas supply, and as Keith MacLean said in his panel presentation, “The real opportunity to make a difference in our domestic [residential] energy consumption is in heat rather than power”, I sought him out during the drinks reception after the event, to compare notes.

I explained that I appreciate the awkward problem he posed, and that my continuing research interest is in Renewable Gas, which includes Renewable Hydrogen, BioHydrogen and BioMethane. I said I had been reading up on and speaking with some of those doing Hydrogen injection into the gas grid, and it looks like a useful way to decarbonise gas.

I said that if we could get 5% of the gas grid supply replaced with hydrogen…”Yes”, said Keith, “we wouldn’t even need to change appliances at those levels”… and then top up with biogas and other industrial gas streams, we could decarbonise the grid by around 20% without breaking into a sweat. At this point, Keith MacLean started nodding healhily, and a woman from a communications company standing near us started to zone out, so I figured this was getting really interesting. “And that would be significant”, I accented, but by this time she was almost asleep on her feet.

With such important decisions ahead of us, it seems that people could be paying a bit more attention to these questions. These are, after all, big choices.

What did Keith mean by “The District Heating movement” ? Well, Dave Andrews of Clean Power (Finning Power Systems), had offered to give a very short presentation at the event. Here was his proposed title :-

http://uk.groups.yahoo.com/group/Claverton/message/12361
“Indicative costs of decarbonizing European city heating with electrical distribution compared to district heating pipe distribution of large scale wind energy and with particular attention to transition to the above methods and energy storage costs to address intermittency and variability of wind power.”

This would have been an assessment of the relative costs of decarbonising European city heating with either :-

Strategy 1)

“Gas-fired Combined Cycle Gas Turbine (CCGT) generation plant plus domestic (residential sector) electric heat pumps as the transition solution; and in the long term, large scale wind energy replacing the CCGT – which is retained as back up for low wind situations; and with pumped hydro electrical storage to deal with intermittency /variability of wind energy and to reduce back up fuel usage.”

or

Strategy 2)

“CCGT Combined Heat and Power (CHP) plus district heat (DH) as the transition solution; and in the long term, large scale wind energy replacing the CCGT CHP heat but with the CCGT retained as back up for low wind situations and with hot water energy storage to deal with intermittency / variability and to reduce back up fuel usage.”

With “the impact of [a programme of building retrofits for] insulation on each strategy is also assessed.”

Dave’s European research background is of relevance here, as co-author of a 215-pager SETIS programme paper complete with pretty diagrams :-

http://setis.ec.europa.eu/system/files/1.DHCpotentials.pdf

Although Dave Andrews was also at the PRASEG drinks reception, he didn’t get the opportunity to address the conference. Which was a shame as his shirt was electric.




PRASEG 2013
10 July 2013
“Keeping the Lights on: At What Cost?”
Parliamentary Renewable and Sustainable Energy Group
Annual Conference

Second Panel Discussion
Chaired by Baroness Maddock
“Negawatts: Decentralising and reducing demand – essential or ephemeral ?”

[Note : The term “negawatt” denotes a negative watt hour – produced by a reduction in power or gas demand. ]

[…]

Keith MacLean, Scottish and Southern Energy

Decentralisation and Demand Reduction [should only be done where] it makes sense. Answers [to the question of negawatts] are very different if looking at Heat and Power. Heat is something far more readily stored that electricity is. Can be used to help balance [the electricity demand profile]. And heat is already very localised [therefore adding to optimising local response]. Some are going in the other direction – looking at district [scale] heating (DH) [using the more efficient system of Combined Heat and Power (CHP)]. Never forget the option to convert from electricity to heat and back to electricity to balance [the grid]. Average household uses 3 MWh (megawatt hours) of electricity [per year] and 15 MWh of heat. The real opportunity is heat. New homes reduce this to about 1 [MWh]. Those built to the new 2016 housing regulations on Zero Carbon Homes, should use around zero. The real opportunity to make a difference in our domestic [residential] energy consumption is in heat rather than power. Reducing consumption not always the right solution. With intermittents [renewable energy] want to switch ON at some times [to soak up cheap wind power in windy conditions]. [A lot of talk about National Grid having to do load] balancing [on the scale of] seconds, minutes and hours. Far more fundamental is the overall system adequacy – a bigger challenge – the long-term needs of the consumer. Keeping the lights from going out by telling people to turn off the lights is not a good way of doing it. There is justifiable demand [for a range of energy services]. […] I don’t think we’re politically brave enough to vary the [electricity] prices enough to make changes. We need to look at ways of aggregating and automating Demand Side Response. Need to be prepared to legislate and regulate if that is the right solution.

[…]

Questions from the Floor

Question from John Gibbons of the University of Edinburgh

The decarbonisation of heat. Will we be successful any time soon ?

Answer from Keith MacLean

[…] Decarbonising heat – [strategic] infrastructure decisions. For example, [we could go down the route of ditching Natural Gas central heating] boilers for heat pumps [as the UK Government and National Grid have modelled and projected]. Then the District Heating (DH) movement could take off [and you ditch your heat pump at home], until there is no spare market capacity. Then [big utilities] could start pumping biogas and hydrogen into the gas grid, and you get your boiler back ! Need to facilitate more towards ONE of those scenarios/configurations [for provision for heating at home] as mutually exclusive. Need to address in terms of infrastructure since these options are incompatible.

Answer from Dave Openshaw, Future Networks, UK Power Network

Lifestyle decision – scope for [action on] heat more than for electricity. Demand Management – managing that Demand Side Reduction and Demand Reduction when need it. Bringing forward use of electricity [in variety of new applications] when know over-supply [from renewable energy, supplied at negative cost].

[…]

Birdcage Walk : Cheesestick Rationing


Yesterday…no, it’s later than I think…two days ago, I attended the 2013 Conference of PRASEG, the Parliamentary Renewable and Sustainable Energy Group, at the invitation of Rhys Williams, the long-suffering Coordinator. “…Sorry…Are you upset ?” “No, look at my face. Is there any emotion displayed there ?” “No, you look rather dead fish, actually”, etc.

At the prestigious seat of the Institute of Mechanical Engineers (IMechE), One Birdcage Walk, we were invited down into the basement for a “drinks reception”, after hearing some stirring speeches and intriguing panel discussions. Despite being promised “refreshments” on the invitation, there had only been beverages and a couple of bikkies up until now, and I think several of the people in the room were starting to get quite hypoglycemic, so were grateful to see actual food being offered.

A market economy immediately sprang up, as there was a definite scarcity in the resources of cheesesticks, and people jostled amiably, but intentionally, so they could cluster closest to the long, crispy cow-based snacks. The trading medium of exchange was conversation. “Jo, meet Mat Hope from Carbon Brief, no Maf Smith from Renewable UK. You’ve both been eviscerated by Delingpole online”, and so on.

“Welcome to our own private pedestal”, I said to somebody, who it turned out had built, probably in the capacity of developer, a sugarcane bagasse Combined Heat and Power plant. The little table in the corner had only got room around it for three or at most four people, and yet had a full complement of snack bowls. Bonus. I didn’t insist on memorising what this fellow told me his name was. OK, I didn’t actually hear it above the hubbub. And he was wearing no discernible badge, apart from what appeared to be the tinge of wealth. He had what looked like a trailing truculent teenager with him, but that could have been a figment of my imagination, because the dark ghost child spoke not one word. But that sullenness, and general anonymity, and the talkative gentleman’s lack of a necktie, and his slightly artificial, orange skin tone, didn’t prevent us from engaging wholeheartedly in a discussion about energy futures – in particular the default options for the UK, since there is a capacity crunch coming very soon in electricity generation, and new nuclear power reactors won’t be ready in time, and neither will Carbon Capture and Storage-fitted coal-fired power plants.

Of course, the default options are basically Natural Gas and wind power, because large amounts can be made functional within a five year timeframe. My correspondent moaned that gas plants are closing down in the UK. We agreed that we thought that new Combined Cycle Gas Turbine plant urgently needs to be built as soon as possible – but he despaired of seeing it happen. He seemed to think it was essential that the Energy Bill should be completed as soon as possible, with built-in incentives to make Gas Futures a reality.

I said, “Don’t wait for the Energy Bill”. I said, “Intelligent people have forecast what could happen to Natural Gas prices within a few years from high European demand and UK dependence, and are going to build gas plant for themselves. We simply cannot have extensions on coal-fired power plants…” He agreed that the Large Combustion Plant Directive would be closing the coal. I said that there was still something like 20 gigawatts of permissioned gas plant ready to build – and with conditions shaping up like they are, they could easily get financed.

Earlier, Nigel Cornwall, of Cornwall Energy had put it like this :-

“Deliverability and the trilemma [meeting all three of climate change, energy security and end-consumer affordability concerns] [are key]. Needs to be some joined-up thinking. […] There is clearly a deteriorating capacity in output – 2% to 5% reduction. As long as I’ve worked in the sector it’s been five minutes to midnight, [only assuaged by] creative thinking from National Grid.”

However, the current situation is far from bog standard. As Paul Dickson of Glennmont Partners said :-

“£110 billion [is needed] to meet the [electricity generation] gap. We are looking for new sources of capital. Some of the strategic institutional capital – pension funds [for example] – that’s who policy needs to be directed towards. We need to look at sources of capital.”

Alistair Buchanan, formerly of Ofgem, the power sector regulator, and now going to KPMG, spent the last year or so of his Ofgem tenure presenting the “Crunch Winter” problem to as many people as he could find. His projections were based on a number of factors, including Natural Gas supply questions, and his conclusion was that in the winter of 2015/2016 (or 2016/2017) power supply could get thin in terms of expansion capacity – for moments of peak demand. Could spell crisis.

The Government might be cutting it all a bit fine. As Jenny Holland of the Association for the Conservation of Energy said :-

“[Having Demand Reduction in the Capacity Mechanism] Not our tip-top favourite policy outcome […] No point to wait for “capacity crunch” to start [Energy Demand Reduction] market.”

It does seem that people are bypassing the policy waiting queue and getting on with drawing capital into the frame. And it is becoming more and more clear the scale of what is required. Earlier in the afternoon, Caroline Flint MP had said :-

“In around ten years time, a quarter of our power supply will be shut down. Decisions made in the next few years. Consequences will last for decades. Keeping the lights on, and [ensuring reasonably priced] energy bills, and preventing dangerous climate change.”

It could come to pass that scarcity, not only in cheesesticks, but in electricity generation capacity, becomes a reality. What would policy achieve then ? And how should Government react ? Even though Lord Deben (John Gummer) decried in the early afternoon a suggestion implying carbon rationing, proposed to him by Professor Mayer Hillman of the Policy Studies Institute, it could yet turn out that electricity demand reduction becomes a measure that is imposed in a crisis of scarcity.

As I put it to my sugarcane fellow discussionee, people could get their gas for heating cut off at home in order to guarantee the lights and banks and industry stay on, because UK generation is so dependent on Natural Gas-fired power.

Think about it – the uptake of hyper-efficient home appliances has turned down owing to the contracting economy, and people are continuing to buy and use electronics, computers, TVs and other power-sucking gadgets. Despite all sizes of business having made inroads into energy management, electricity consumption is not shifting downwards significantly overall.

We could beef up the interconnectors between the UK and mainland Europe, but who can say that in a Crunch Winter, the French and Germans will have any spare juice for us ?

If new, efficient gas-fired power plants are not built starting now, and wind farms roll out is not accelerated, the Generation Gap could mean top-down Energy Demand Reduction measures.

It would certainly be a great social equaliser – Fuel Poverty for all !

Good Gas, Bad Gas

http://thinkprogress.org/climate/2013/07/07/1058051/must-see-gasland-part-ii-on-hbo-monday-natural-gas-once-a-bridge-now-a-gangplank/

That’s the bad gas. Now for the good gas – Renewable Gas :-

http://tribune.com.pk/story/573418/renewable-energy-kesc-aman-foundation-to-set-up-bio-gas-plant/

http://www.woodheadpublishing.com/en/book.aspx?bookID=2862

http://pubs.acs.org/doi/abs/10.1021/nl4016655

Joanna Kargul’s team :-
http://solar.biol.uw.edu.pl/index.php/lab-team
http://www.eera-set.eu/lw_resource/datapool/_items/item_795/ampea_2013_kargul.pdf

Slightly questionable gas (from a biosecurity point of view) :-

http://sb6.biobricks.org/poster/biohydrogen-production-in-e-coli-a-synthetic-biology-approach/

London : Array, Invest, Divest

Showcasing the London Array offshore wind farm in the last week at its official launch, the UK’s Prime Minister David Cameron said “[…] We are making this country incredibly attractive to invest in […] When it comes to green energy, I think we have one of the clearest, most predictable investment climates. And we’re going to add to that by completing the Energy Bill this year. So, we will have a fantastic market for investors to come and build in. […]” (see below).

I think developers of solar energy in Britain would disagree quite extensively with his claim that there is a stable regime for green energy. The most effective stimulus tool, the Feed-in Tariff, was applauded and then mauled in short succession by the Conservative-Liberal-Democrat Coalition Government. Installation rates have simply not recovered from chewings from the Treasury attack dog. It’s been boom and then bust, bust, bust, with flurries of activity in summer, but not much more :-

https://www.gov.uk/government/statistical-data-sets/weekly-solar-pv-installation-and-capacity-based-on-registration-date

And this despite the yappy enthusiasm (perhaps “big, hairy”, or “big, sexy” ambition) that Greg Barker MP and his Dachshund, Otto, have for sun-fired electricity generation :-

http://www.solarpowerportal.co.uk/news/barker_once_more_quotes_22gw_by_2020_solar_ambition_2356

http://www.utilityweek.co.uk/news/news_story.asp?id=198770&title=National+Grid+analysis+clouds+Barker%27s+20GW+solar+ambition

The Energy Bill should have been finished a long time ago, and I’m pretty sure it would have been, apart from the insane obsession with new nuclear power, which all along was predicted to consist of several kinds of big, chunky subsidy, and shows no signs of being anything other than a bankrolling exercise, even now (and too late to bridge Alistair Buchanan‘s “Crunch Winter” of 2015/2016).

http://www.bloomberg.com/news/2013-07-02/edf-nuclear-deal-in-u-k-may-take-a-few-months-.html
“EDF Nuclear Deal in U.K. May Take ‘A Few Months’ : By Alex Morales – Jul 2, 2013 : The U.K. may take “a few months” to agree the price that Electricite de France SA (EDF) will get for power from Britain’s first new nuclear power station in two decades, Energy Secretary Ed Davey suggested. The government has been in talks for months with EDF to agree a so-called strike price the French utility will get for power from a planned plant at Hinkley Point in southwest England. Davey told Parliament’s multi-party Energy and Climate Change Committee he won’t sign a contract with EDF unless it represents “value for money” for consumers. “Even if we agree in the next few months, a nuclear reactor at Hinkley point won’t be producing until the end of this decade at best,” Davey said today. “They have been very constructive negotiations. They are taking some time, and that’s because they are very complicated.”

http://www.telegraph.co.uk/finance/newsbysector/energy/10164435/Rival-nuclear-companies-cheaper-than-EDF-Ed-Davey-suggests.html
“[…] Mr Davey told The Guardian that EDF was aware of the strike price that he would agree to and that he was “not going to budge an inch”. He said: “Sometimes people said it is EDF or bust. I would like to do a deal with EDF but we don’t have to. I was in Korea and Japan recently talking to other investors and vendors. Their interest in the UK market was massive. I got the very strong impression that the sort of price I was happy to agree with EDF, they could match.” In the same interview he said: “We have other nuclear options. Hitachi are very live options. They bought Horizon only last year and their pace of progress is truly impressive.” He noted that Hitachi had delivered four reactors “on time and on budget”. […]”

But the most serious contention that I have with David Cameron’s remarks is his painting a picture that the UK needs international capital to reach down from geostationary orbit, or where it is a bit lower, in transcontinential flight at 35,000 feet, to touch and bless the UK with its gilded finger of providence.

Don’t we have any investors in Britain ? We may have only a few, small British companies that can build green energy for us, but we do have a lot of wealth lurking within these very shores, or representatives of a lot of wealth. Could we not demand that those who shore their cash in Britain, and take advantage of cheap corporate tax deals, invest in British green energy ? Could we not make green energy investment a sine qua non of the residence or passsage of wealth in and through the City of London ?

Many people in Great Britain have pensions, and those pensions have funds, and those funds have fund managers. There’s a lot of money, right there. What are the criteria that govern pension pot investment ?

And then there’s the banks. Almost everyone in the UK has a bank account. Are the banks held to policies to direct finance and investment towards green energy and clean tech ? Do their customers demand it ?

Why does the UK Government not stipulate that “best value for money” as a criteria on all contracts of procurement – and investment – has to be matched by “best carbon emissions reduction potential” ?

Or are we in such an austere position that we need to offer huge, fattened sweeteners from the Treasury tax honeypot, and permission to raise already high power prices for customers, to any international engineering firm prepared to pour concrete here, so that they can arrange for the finance this guarantees ? Why are we in a position where we are being forced to throw public money and billpayer burdens at private companies to guarantee new energy build ?

This looks like a worse deal than PFI. In fact, it is much, much worse that the Private Finance Inititative, or the revamped new acronyms that replaced it. This is the wholesale gifting of large amounts of annual tax revenue and fingerlicking kilowatt hour prices to large, transnational corporations. If the economy gets worse, which it probably will, these big new construction projects may never get completed. And the new national energy infrastructure that does manage to get built won’t even be ours. Unless they go wrong, in which case the country will have to pay to mop them up. Or at the end of life, when the taxpayers and billpayers will need to pay to decommission nuclear reactors and dispose of radioactive waste.

And while we’re on the subject of investment, I need to point out that not all big infrastructure projects are alike. Some development is good, some bad. I don’t really see how the Olympic building spree can be compared in any way to what’s necessary for creating a decarbonised energy system. And building larger ports, and roads, and airports, anticipates higher levels of traded goods – the kind of economic growth that caused climate change in the first place.

If David Cameron wants to crow about big projects and be praised for it, he needs to de-select examples that are unsustainable.

There really needs to be more focus on what we really need for the future, and that requires discernment in investment. It requires moving away from high consumption models of economy, of divesting from stocks and shares in waste, pollution, carbon emissions and unnecessary trade.

Invest, yes, but divest, also.

http://thinkprogress.org/climate/2013/06/25/2213341/invest-divest-obama-goes-full-climate-hawk-in-speech-unveiling-plan-to-cut-carbon-pollution/

http://www.operationnoah.org/PR_southwark_resolution
“4 July 2013: The Diocese of Southwark passed a resolution yesterday (3 July 2013) calling on the General Synod of the Church of England to consider disinvestment from fossil fuels.”




https://www.gov.uk/government/news/prime-minister-champions-inward-investment-at-london-array-and-battersea-power-station

http://www.guardian.co.uk/environment/video/2013/jul/04/david-cameron-windfarm-thames-estuary-video

The UK’s Prime Minister David Cameron speaking outside at the London Array site :-

“Well let’s be clear this is the biggest offshore wind farm anywhere in the world.
And what it shows is Britain is a great country to come and invest in. And it’s meant
jobs for local people. And it means clean, green energy for half a million homes in
our country. It’s part of what we need to have secure, reliable supplies of electricity
and to get investment and jobs for our people, so it’s a good day for Britain.”

David Cameron speaking at the Press Launch indoors :-

“Well of course, when I chaired the G8, I had to arrange everything, starting with
the dress code. There was some criticism. Why wasn’t I wearing a tie ? What people
didn’t realise of course was that President Putin wanted to do the whole thing
barechested on horseback, and I of course had to negotiate him down to smart casual.
We haven’t had that problem today.

Sometimes people wonder, can we in the West, can we do big projects any more ? Can we
do the big investments ? Isn’t that all happening somewhere else in the East and the
South of our world ?

And I think if you look at the United Kingdom right now you can see WE CAN do big
projects. Not only did we do a superb Olympics last year, but underneath London,
CrossRail is the biggest construction project anywhere in Europe.

Not far away from here is Dubai Ports World London Gateway, which is the biggest port
contruction taking place anywhere in Europe.

And here you have the biggest offshore wind farm anywhere in the world.

I think it demonstrates Britain is a great place to invest.

I don’t want to have too much Schadenfreude, but it’s actually a fact that last year,
foreign direct investment into Europe as a whole went down by something like 40%, but in
the UK it went up by 24%.

We are making this country incredibly attractive to invest in, and and that’s part of what
this project is about.

When it comes to green energy, I think we have one of the clearest, most predictable
investment climates. And we’re going to add to that by completing the Energy Bill this year.

So, we will have a fantastic market for investors to come and build in.

So, a great win for Kent, a great win for renewable energy and a great win for Britain.”

Carbon Bubble : Unburnable Assets



[ Image Credit : anonymous ]


Yet again, the fossil fuel companies think they can get away with uncommented public relations in my London neighbourhood. Previously, it was BP, touting its green credentials in selling biofuels, at the train station, ahead of the Olympic Games. For some reason, after I made some scathing remarks about it, the advertisement disappeared, and there was a white blank board there for weeks.

This time, it’s Esso, and they probably think they have more spine, as they’ve taken multiple billboard spots. In fact, the place is saturated with this advertisement. And my answer is – yes, fuel economy is important to me – that’s why I don’t have a car.

And if this district is anything to go by, Esso must be pouring money into this advertising campaign, and so my question is : why ? Why aren’t they pouring this money into biofuels research ? Answer : because that’s not working. So, why aren’t they putting this public relations money into renewable gas fuels instead, sustainable above-surface gas fuels that can be used in compressed gas cars or fuel cell vehicles ?

Are Esso retreating into their “core business” like BP, and Shell, concentrating on petroleum oil and Natural Gas, and thereby exposing all their shareholders to the risk of an implosion of the Carbon Bubble ? Or another Deepwater Horizon, Macondo-style blowout ?

Meanwhile, the movement for portfolio investors to divest from fossil fuel assets continues apace…

Renewable Gas : Research Parameters

“So what do you do ?” is a question I quite frequently have to answer, as I meet a lot of new people, in a lot of new audiences and settings, on a regular basis, as an integral part of my personal process of discovery.

My internal autocue answer has modified, evolved, over the years, but currently sounds a lot like this, “I have a couple of part-time jobs, office administration, really. I do a spot of weblogging in my spare time. But I’m also doing some research into the potential for Renewable Gas.” I then pause for roughly two seconds. “Renewable Gas ?” comes back the question.

“Yes,” I affirm in the positive, “Industrial-scale chemistry to produce gas fuels not dug up out of the ground. It is useful to plug the gaps in Renewable Electricity when the sun isn’t shining and the wind isn’t blowing.”

It’s not exactly an elevator pitch – I’m not really selling anything except a slight shift in the paradigm here. Renewable Energy. Renewable Electricity. Renewable Gas. Power and gas. Gas and power. It’s logical to want both to be as renewable and sustainable and as low carbon as possible.

Wait another two seconds. “…What, you mean, like Biogas ?” comes the question. “Well, yes, and also high volumes of non-biological gas that’s produced above the ground instead of from fossil fuels.”

The introductory chat normally fades after this exchange, as my respondent usually doesn’t have the necessary knowledge architecture to be able to make any sense of what my words represent. I think it’s fair to say I don’t win many chummy friends paradigm-bumping in this way, and some probably think I’m off the deep end psychologically, but hey, evolutionaries don’t ever have it easy.

And I also find that it’s not easy to find a place in the hierarchy of established learning for my particular “research problem”. Which school could I possibly join ? Which research council would adopt me ?

The first barrier to academic inclusion is that my research interest is clearly motivated by my concern about the risks of Climate Change – the degradation in the Earth’s life support systems from pumping unnaturally high volumes of carbon dioxide into the air – and Peak Fossil Fuels – the risks to humanity from a failure to grow subsurface energy production.

My research is therefore “applied” research, according to the OECD definition (OECD, 2002). It’s not motivated simply by the desire to know new things – it is not “pure” research – it has an end game in mind. My research is being done in order to answer a practical problem – how to decarbonise gaseous, gas phase, energy fuel production.

The second barrier to the ivory tower world that I have is that I do not have a technological contribution to make with this research. I am not inventing a chemical process that can “revolutionise” low carbon energy production. (I don’t believe in “revolutions” anyway. Nothing good ever happens by violent overthrow.) My research is not at the workbench end of engineering, so I am not going to work amongst a team of industrial technicians, so I am not going to produce a patent for clean energy that could save the world (or the economy).

My research is more about observing and reporting the advances of others, and how these pieces add up to a journey of significant change in the energy sector. I want to join the dots from studies at the leading edge of research, showing how this demonstrates widespread aspiration for clean energy, and document instances of new energy technology, systems and infrastructure. I want to witness to the internal motivation of thousands of people working with the goal of clean energy across a very wide range of disciplines.

This is positively positive; positivity, but it’s not positivism – it’s not pure, basic research. This piece of research could well influence people and events – it’s certainly already influencing me. It’s not hands-off neutral science. It interacts with its subjects. It intentionally intervenes.

Since I don’t have an actual physical contribution or product to offer, and since I fully expect it to “interfere” with current dogma and political realities, what I am doing will be hard to acknowledge.

This is not a PhD. But it is still a piece of philosophy, the love of wisdom that comes from the acquisition of knowledge.

I have been clear for some time about what I should be studying. Call it “internal drive” if you like. The aim is to support the development of universal renewable energy as a response to the risks of climate change and peak fossil fuel energy production. That makes me automatically biased. I view my research subject through the prism of hope. But I would contend that this is a perfectly valid belief, as I already know some of what is possible. I’m not starting from a foundational blank slate – many Renewable Gas processes are already in use throughout industry and the energy sector. The fascinating part is watching these functions coalesce into a coherent alternative to the mining of fossil fuels. For the internal industry energy production conversation is changing its track, its tune.

For a while now, “alternative” energy has been a minor vibration, a harmonic, accentuating the fossil fuel melody. As soon as the mid-noughties economic difficulties began to bite, greenwash activities were ditched, as oil and gas companies resorted to their core business. But the “green shoots” of green energy are still there, and every now and then, it is possible to see them poking up above the oilspill-desecrated soil. My role is to count blades and project bushes. Therefore my research is interpretivist or constructivist, although it is documenting positivist engineering progress. That’s quite hard for me to agree with, even though I reasoned it myself. I can still resist being labelled “post-positivist”, though, because I’m still interpreting reality not relativisms.

So now, on from research paradigm to research methodologies. I was trained to be an experimentalist scientist, so this is a departure for me. In this case, I am not going to seek to make a physical contribution to the field by being actively involved as an engineer in a research programme, partly because from what I’ve read so far, most of the potential is already documented and scoped.

I am going to use sociological methods, combining observation and rapportage, to and from various organisations through various media. Since I am involved in the narrative through my interactions with others, and I influence the outcomes of my research, this is partly auto-narrative, autoethnographic, ethnographic. An apt form for the research documentation is a weblog, as it is a longitudinal study, so discrete reports at time intervals are appropriate. Social media will be useful for joining the research to a potential audience, and Twitter has the kind of immediacy I prefer.

My observation will therefore be akin to journalism – engineering journalism, where the term “engineering” covers both technological and sociological aspects of change. A kind of energy futures “travelogue”, an observer of an emerging reality.

My research methods will include reading the science and interacting with engineers. I hope to do a study trip (or two) as a way of embedding myself into the new energy sector, with the explicit intention of ensuring I am not purely a commentator-observer. My research documentation will include a slow collation of my sources and references – a literature review that evolves over time.

My personal contribution will be slight, but hopefully set archaic and inefficient proposals for energy development based on “traditional” answers (such as nuclear power, “unconventional” fossil fuel production and Carbon Capture and Storage for coal) in high relief.

My research choices as they currently stand :-

1. I do not think I want to join an academic group.

2. I do not think I want to work for an energy engineering company.

3. I do not want to claim a discovery in an experimental sense. Indeed, I do not need to, as I am documenting discoveries and experiments.

4. I want to be clear about my bias towards promoting 100% renewable energy, as a desirable ambition, in response to the risks posed by climate change and peak fossil fuel production.

5. I need to admit that my research may influence outcomes, and so is applied rather than basic (Roll-Hansen, 2009).

References

OECD, 2002. “Proposed Standard Practice for Surveys on Research and Experimental Development”, Frascati Manual :-
http://browse.oecdbookshop.org/oecd/pdfs/free/9202081e.pdf

Roll-Hansen, 2009. “Why the distinction between basic (theoretical) and applied (practical) research is important in the politics of science”, Nils Roll-Hansen, Centre for the Philosophy of Natural and Social Science Contingency and Dissent in Science, Technical Report 04/09 :-
http://www2.lse.ac.uk/CPNSS/projects/CoreResearchProjects/ContingencyDissentInScience/DP/DPRoll-HansenOnline0409.pdf

Natural Gas in the UK

The contribution of coal-fired power generation to the UK’s domestic electrical energy supply appears to have increased recently, according to the December 2012 “Energy Trends” released by the Department of Energy and Climate Change. This is most likely due to coal plants using up their remaining allotted operational hours until they need to retire.
It could also be due to a quirk of the international markets – coal availability has increased because of gas glut conditions in the USA leading to higher coal exports. Combatting the use of coal in power generation is a global struggle that still needs to be won, but in the UK, it is planned that low carbon generation will begin to gain ascendance.

The transition to lower carbon energy in Britain relies on getting the Natural Gas strategy right. With the imminent closure of coal-fired power plant, the probable decommissioning of several nuclear reactors, and the small tranche of overall supply coming from renewable resources, Natural Gas needs to be providing a greater overall percentage of electricity in the grid. But an increasing amount of this will be imported, since indigenous production is dropping, and this is putting the UK’s economy at risk of high prices and gas scarcity.

Demand for electricity for the most part changes by a few percentage points a year, but the overall trend is to creep upwards (see Chart 4, here). People have made changes to their lighting power consumption, but this has been compensated for by an increase in power used by “gadgets” (see Chart 4, here). There is not much that can be done to suppress power consumption. Since power generation must increasingly coming from renewable resources and Natural Gas combustion, this implies strong competition between the demand for gas for heating and the demand gas for electricity. Electricity generation is key to the economy, so the power sector will win any competition for gas supplies. If competition for Natural Gas is strong, and since we don’t have much national gas storage, we can expect higher seasonal imports and therefore, higher prices.

It is clear that improving building insulation across the board is critical in avoiding energy insecurity. I shall be checking the winter heat demand figures assiduously from now on, to determine if the Green Deal and related measures are working. If they don’t, the UK is in for heightened energy security risks, higher carbon emissions, and possibly much higher energy prices. The Green Deal simply has to work.

Gas Strategy “Dangerous Gamble”

I had a most refreshing evening at Portcullis House in Westminster this evening – apart from the fact that the Macmillan Room was overheated, so you couldn’t possibly deduce that energy conservation is intended to be part of the UK Government’s strategy, making an example with the public sector.

Tonight was the launch of the Greenpeace and WWF-UK report “A Study into the Economics of Gas and Offshore Wind“, which was commissioned from Cambridge Econometrics.

Professor Paul Ekins got up to speak and actually had the gall to declare the Government’s “Gas Strategy” to be a “dangerous gamble”. It was at this point that I took heart again – there are still some sane, rational people in the “national energy conversation”, even though Ekins did admit that he wasn’t sure that the “Gas Strategy” was an actual thing. Oh, but it is. All eighty pages of it.

Today was not the first time Professor Paul Ekins called out the Government on this, apparently, although I didn’t have a recollection of seeing the the mention in New Scientist before today.

Other highlights of the evening were provided by Laura Sandys MP naming her political opposition Alan Whitehead MP as the leader of a “parliamentary roadshow” on Energy and Climate Change, and questioning the use of the term “energy efficiency”. “It’s energy waste, guys”, she corrected and said we should be using that term instead of the “effete word efficiency”, and encouraged the energy waste prevention industry to get the rest of us engaged with their products.

A chap from Scottish and Southern Energy (SSE) – I think it might have been Kevin MacLean – got up during questions from the floor, and almost begged for a long-term framework – a plan for renewable energy – a “binding framework” to encourage investment and “get costs down”.

It was pointed out during the evening, that, logically enough, that policy is important to energy futures, “if you have more certainty, you get more investment”. And there was encouragement to get Government Departments to think about this more. Yes, some subsidies and other forms of support are going to be needed to get the renewable energy revolution kickstarted, but “if [we] get benefits – isn’t that a price worth paying ?” The benefits outlined included potential for some small growth in the economy, around about 0.8% GDP, but good prospects for high value employment in depressed coastal towns where much of the offshore wind industry will host engineers, both for construction and ongoing operations and maintenance.

Laura Sandys MP was ashamed to say that she may no longer be able to claim she has the two largest offshore wind farms in her constituency – as progress is being made elsewhere.

Sarah Merrick from Vestas, the wind power engineering firm, emphasised that the economics of wind power stacks up and that it’s important to communicate this – despite the current dismissive media agenda – where she said it is important to defend the industry against certain media claims.

Lord Alan Haworth brought up the inevitable question of renewable energy intermittency – “days of dead calm and dark nights”. He raised the statistic that weather systems in Europe can cover 1,500 kilometres, so if wind power is down in the UK, it’s going to be down elsewhere in the EU electricity networks – the countries we have interconnectors with. What he didn’t elaborate on was this – just as the UK is beefing (and I don’t mean “up to 100% horsing about”) up its connections with the European electricity networks, so too, Europe as a whole is beginning to reach out with its networks to satellite countries. What that could mean is that even if wind-powered electrons in the UK take a dive, electrons could still appear in the power network from very far afield, and shunt power to the UK.

The speaker from the Crown Estate said that it was “sensible” to push for a good quantity of wind power – and that the report was a compelling argument. He regretted that it could not be guaranteed that the wind power-ed economy would necessarily have more of its supply chain in the UK – as various bodies have to comply with EU trade rules – but that there was a commitment in one part of the industry to 50% indigenous resourcing and employment (if I noted that down correctly).

Long-term policy clarity was espoused. Disappointment was expressed in the Coalition Government’s flip-flop about gas – emphasising the development of gas-powered electricity generation at the expense of projecting high levels of renewables (65%, says the report, is perfectly feasible) – and that it gave mixed messages – which weren’t helping investment decisions. Sarah Merrick repeated the E.On line that UK electricity should be “balanced by gas, not based on gas”, although she didn’t explain that they weren’t necessarily talking about wind power being the mainstay of new generation capacity.

It was generally agreed that David Cameron should lead and adopt the EU 2030 renewable energy targets – to enable billions of new confidence in the UK energy sector.

Not having a strong lead on renewable energy and energy waste reduction would be an “abdication of responsibility on the part of the policy-creating machine”. And, “even if shale gas does materialise”, it would not provide much stimulus.

A Referendum for Energy

As I dodged the perfunctory little spots of snow yesterday, on my way down to Highbury and Islington underground train station, I passed a man who appeared to have jerky muscle control attempting to punch numbers on the keypad of a cash machine in the wall. He was missing, but he was grinning. A personal joke, perhaps. The only way he could get his money out of the bank to buy a pint of milk and a sliced loaf for his tea was to accurately tap his PIN number. But he wasn’t certain his body would let him. I threw him an enquiring glance, but he seemed too involved in trying to get control of his arms and legs to think of accepting help.

This, I felt, was a metaphor for the state of energy policy and planning in the United Kingdom – everybody in the industry and public sector has focus, but nobody appears to have much in the way of overall control – or even, sometimes, direction. I attended two meetings today setting out to address very different parts of the energy agenda : the social provision of energy services to the fuel-poor, and the impact that administrative devolution may have on reaching Britain’s Renewable Energy targets.

At St Luke’s Centre in Central Street in Islington, I heard from the SHINE team on the progress they are making in providing integrated social interventions to improve the quality of life for those who suffer fuel poverty in winter, where they need to spend more than 10% of their income on energy, and are vulnerable to extreme temperatures in both summer heatwaves and winter cold snaps. The Seasonal Health Interventions Network was winning a Community Footprint award from the National Energy Action charity for success in their ability to reach at-risk people through referrals for a basket of social needs, including fuel poverty. It was pointed out that people who struggle to pay energy bills are more likely to suffer a range of poverty problems, and that by linking up the social services and other agencies, one referral could lead to multiple problem-solving.

In an economy that is suffering signs of contraction, and with austerity measures being imposed, and increasing unemployment, it is clear that social services are being stretched, and yet need is still great, and statutory responsibility for handling poverty is still mostly a publicly-funded matter. By offering a “one-stop shop”, SHINE is able to offer people a range of energy conservation and efficiency services alongside fire safety and benefits checks and other help to make sure those in need are protected at home and get what they are entitled to. With 1 in 5 households meeting the fuel poverty criteria, there is clearly a lot of work to do. Hackney and Islington feel that the SHINE model could be useful to other London Boroughs, particularly as the Local Authority borders are porous.

We had a presentation on the Cold Weather Plan from Carl Petrokovsky working for the Department of Health, explaining how national action on cold weather planning is being organised, using Met Office weather forecasts to generate appropriate alert levels, in a similar way to heatwave alerts in summer – warnings that I understand could become much more important in future owing to the possible range of outcomes from climate change.

By way of some explanation – more global warming could mean significant warming for the UK. More UK warming could mean longer and, or, more frequent heated periods in summer weather, perhaps with higher temperatures. More UK warming could also mean more disturbances in an effect known as “blocking” where weather systems lock into place, in any season, potentially pinning the UK under a very hot or very cold mass of air for weeks on end. In addition, more UK warming could mean more precipitation – which would mean more rain in summer and more snow in winter.

Essentially, extremes in weather are public health issues, and particularly in winter, more people are likely to suffer hospitalisation from the extreme cold, or falls, or poor air quality from boiler fumes – and maybe end up in residential care. Much of this expensive change of life is preventable, as are many of the excess winter deaths due to cold. The risks of increasing severity in adverse conditions due to climate change are appropriately dealt with by addressing the waste of energy at home – targeting social goals can in effect contribute to meeting wider adaptational goals in overall energy consumption.

If the UK were to be treated as a single system, and the exports and imports of the most significant value analysed, the increasing net import of energy – the yawning gap in the balance of trade – would be seen in its true light – the country is becoming impoverished. Domestic, indigenously produced sources of energy urgently need to be developed. Policy instruments and measured designed to reinvigorate oil and gas exploration in the North Sea and over the whole UKCS – UK Continental Shelf – are not showing signs of improving production significantly. European-level policy on biofuels did not revolutionise European agriculture as regards energy cropping – although it did contribute to decimating Indonesian and Malaysian rainforest. The obvious logical end point of this kind of thought process is that we need vast amounts of new Renewable Energy to retain a functioning economy, given global financial, and therefore, trade capacity, weakness.

Many groups, both with the remit for public service and private enterprise oppose the deployment of wind and solar power, and even energy conservation measures such as building wall cladding. Commentators with access to major media platforms spread disinformation about the ability of Renewable Energy technologies to add value. In England, in particular, debates rage, and many hurdles are encountered. Yet within the United Kingdom as a whole, there are real indicators of progressive change, particularly in Scotland and Wales.

I picked up the threads of some of these advances by attending a PRASEG meeting on “Delivering Renewable Energy Under Devolution”, held at the Institution of Mechanical Engineers in Westminster, London; a tour to back up the launch of a new academic report that analyses performance of the devolved administrations and their counterpart in the English Government in Westminster. The conclusions pointed to something that I think could be very useful – if Scotland takes the referendum decision for independence, and continues to show strong leadership and business and community engagement in Renewable Energy deployment, the original UK Renewable Energy targets could be surpassed.

I ended the afternoon exchanging some perceptions with an academic from Northern Ireland. We shared that Eire and Northern Ireland could become virtually energy-independent – what with the Renewable Electricity it is possible to generate on the West Coast, and the Renewable Gas it is possible to produce from the island’s grass (amongst other things). We also discussed the tendency of England to suck energy out of its neighbour territories. I suggested that England had appropriated Scottish hydrocarbon resources, literally draining the Scottish North Sea dry of fossil fuels in exchange for token payments to the Western Isles, and suchlike. If Scotland leads on Renewable Energy and becomes independent, I suggested, the country could finally make back the wealth it lost to England. We also shared our views about the Republic of Ireland and Northern Ireland being asked to wire all their new Renewable Electricity to England, an announcement that has been waiting to happen for some time. England could also bleed Wales of green power with the same lines being installed to import green juice from across the Irish Sea.

I doubt that politics will completely nix progress on Renewable Energy deployment – the economics are rapidly becoming clear that clean, green power and gas are essential for the future. However, I would suggest we could expect some turbulence in the political sphere, as the English have to learn the hard way that they have a responsibility to rapidly increase their production of low carbon energy.

Asking the English if they want to break ties with the European Union, as David Cameron has suggested with this week’s news on a Referendum, is the most unworkable idea, I think. England, and in fact, all the individual countries of the United Kingdom, need close participation in Europe, to join in with the development of new European energy networks, in order to overcome the risks of economic collapse. It may happen that Scotland, and perhaps Wales, even, separate themselves from any increasing English isolation and join the great pan-Europe energy projects in their own right. Their economies may stabilise and improve, while the fortunes of England may tumble, as those with decision-making powers, crony influence and web logs in the Daily Telegraph and Daily Mail, resist the net benefits of the low carbon energy revolution.

[ Many thanks to Simon and all at the Unity Kitchen at St Luke’s Centre, and the handsomely reviving Unity Latte, and a big hi to all the lunching ladies and gents with whom I shared opinions on the chunkiness of the soup of the day and the correct identification of the vegetables in it. ]

Other Snapshots of Yesterday #1 : Approached by short woman with a notebook in Parliament Square, pointing out to me a handwritten list that included the line “Big Ben”. I pointed at the clock tower and started to explain. The titchy tourist apologised for non-comprehension by saying, “French”, so then I explained the feature attraction to her in French, which I think quite surprised her. We are all European.

Other Snapshots of Yesterday #2 : Spoke with an Austrian academic by the fire for coffee at IMechE, One Birdcage Walk, about the odd attitudes as regards gun ownership in the United States, and the American tendency to collective, cohort behaviour. I suggested that this tendency could be useful, as the levels of progressive political thinking, for instance about drone warfare, could put an end to the practice. When aerial bombardment was first conducted, it should have been challenged in law at that point. We are all Europeans.

Other Snapshots of Yesterday #3 : Met a very creative Belgian from Gent, living in London. We are all European.

Other Snapshots of Yesterday #4 : We Europeans, we are all so civilised. We think that we need to heat venues for meetings, so that people feel comfortable. Levels of comfort are different for different people, but the lack of informed agreement means that the default setting for temperature always ends up being too high. The St Luke’s Centre meeting room was at roughly 23.5 degrees C when I arrived, and roughly 25 degrees C with all the visitors in the room. I shared with a co-attendee that my personal maximum operating temperature is around 19 degrees C. She thought that was fine for night-time. The IMechE venue on the 2nd floor was roughly 19 – 20 degrees C, but the basement was roughly 24 degrees C. Since one degree Celsius of temperature reduction can knock about 10% of the winter heating bill, why are public meetings about energy not more conscious of adjusting their surroundings ?

The Art of Non-Persuasion

I could never be in sales and marketing. I have a strong negative reaction to public relations, propaganda and the sticky, inauthentic charm of personal persuasion.

Lead a horse to water, show them how lovely and sparkling it is, talk them through their appreciation of water, how it could benefit their lives, make them thirsty, stand by and observe as they start to lap it up.

One of the mnemonics of marketing is AIDA, which stands for Attention, Interest, Desire, Action, leading a “client” through the process, guiding a sale. Seize Attention. Create Interest. Inspire Desire. Precipitate Action. Some mindbenders insert the letter C for Commitment – hoping to be sure that Desire has turned into certain decision before permitting, allowing, enabling, contracting or encouraging the Action stage.

You won’t get that kind of psychological plasticity nonsense from me. Right is right, and wrong is wrong, and ethics should be applied to every conversion of intent. In fact, the architect of a change of mind should be the mind who is changing – the marketeer or sales person should not proselytise, evangelise, lie, cheat, sneak, creep and massage until they have control.

I refuse to do “Suggestive Sell”. I only do “Show and Tell”.

I am quite observant, and so in interpersonal interactions I am very sensitive to rejection, the “no” forming in the mind of the other. I can sense when somebody is turned off by an idea or a proposal, sometimes even before they know it clearly themselves. I am habituated to detecting disinclination, and I am resigned to it. There is no bridge over the chasm of “no”. I know that marketing people are trained to not accept negative reactions they perceive – to keep pursuing the sale. But I don’t want to. I want to admit, permit, allow my correspondent to say “no” and mean “no”, and not be harrassed, deceived or cajoled to change it to a “yes”.

I have been accused of being on the dark side – in my attempts to show and tell on climate change and renewable energy. Some assume that because I am part of the “communications team”, I am conducting a sales job. I’m not. My discovery becomes your discovery, but it’s not a constructed irreality. For many, it’s true that they believe they need to follow the path of public relations – deploying the “information deficit model” of communication – hierarchically patronising. Me, expert. You, poor unknowing punter. Me, inform you. You, believe, repent, be cleaned and change your ways. In this sense, communications experts have made climate change a religious cult.

In energy futures, I meet so many who are wild-eyed, desperate to make a sale – those who have genuine knowledge of their subject – and who realise that their pitch is not strong enough in the eyes of others. It’s not just a question of money or funding. The engineers, often in large corporations, trying to make an impression on politicians. The consultants who are trying to influence companies and civil servants. The independent professionals trying to exert the wisdom of pragmatism and negotiated co-operation. The establishment trying to sell technical services. Those organisations and institutions playing with people – playing with belonging, with reputation, marketing outdated narratives. People who are in. People who are hands-off. People who are tipped and ditched. Those with connections who give the disconnected a small rocky platform. The awkwardness of invested power contending with radical outsiders. Denial of changing realities. The dearth of ready alternatives. Are you ready to be captured, used and discarded ? Chase government research and development grants. Steal your way into consultations. Play the game. Sell yourself. Dissociate and sell your soul.

I have to face the fact that I do need to sell myself. I have to do it in a way which remains open and honest. To sell myself and my conceptual framework, my proposals for ways forward on energy and climate change, I need a product. My person is often not enough of a product to sell – I am neuro-atypical. My Curriculum Vitae CV in resume is not enough of a product to sell me. My performance in interviews and meetings is often not enough of a product. My weblog has never been a vehicle for sales. I didn’t want it to be – or to be seen as that – as I try to avoid deceit in communications.

Change requires facilitation. You can’t just walk away when the non-persuasional communications dialogue challenge gets speared with distrust and dismissal. Somehow there has to be a way to present direction and decisions in a way that doesn’t have a shadow of evil hovering in the wings.

“A moment to change it all, is all it takes to start anew.
To the other side.”


Why do I need to “sell” myself ? Why do I need to develop a product – a vehicle with which to sell myself ?

1. In order to be recognised, in order to be welcomed, invited to make a contribution to the development of low carbon energy, the optimisation of the use of energy, and effective climate change policy.

2. In order to put my internal motivations and drive to some practical use. To employ my human energy in the service of the future of energy engineering and energy systems.



Cross-Motivation

A fully renewable energy future is not only possible, it is inevitable.

We need to maximise the roll out of wind and solar renewable electricity systems, and at the same time fully develop marine, geothermal and hydropower energy, and of course, energy storage.

We need strong energy conservation and energy efficiency directives to be enacted in every state, sector and region.

But we need to get from here to there. It requires the application of personal energy from all – from governments, from industry, from society.

In arguing for focus on the development of Renewable Gas, which I believe can and will be a bridge from here to a fully renewable energy future, I am making an appeal to those who view themselves as environmentalists, and also an appeal to those who view themselves as part of the energy industry.

Those who cast themselves as the “good guys”, those who want to protect the environment from the ravages of the energy industry, have for decades set themselves in opposition, politically and socially, to those in the energy production and supply sectors, and this has created a wall of negativity, a block to progress in many areas.

I would ask you to accept the situation we find ourselves in – even those who live off-grid and who have very low personal energy and material consumption – we are all dependent on the energy industry – we have a massive fossil fuel infrastructure, and companies that wield immense political power, and this cannot be changed overnight by some revolutionary activity, or by pulling public theatrical stunts.

It definitely cannot be changed by accusation, finger-pointing and blame. We are not going to wake up tomorrow in a zero carbon world. There needs to be a transition – there needs to be a vision and a will. Instead of a depressive, negative, cynical assessment of today that erects and maintains barriers to co-operation, we need optimistic, positive understanding.

In the past there has been naievety – and some environmentalists have been taken in by public relations greenwash. This is not that. The kind of propaganda used to maintain market share for the energy industry continues to prevent and poison good communications and trust. I no more believe in the magic snuff of the shale gas “game changer” than I believe in the existence of goblins and fairies. The shine on the nuclear “renaissance” wore off ever before it was buffed up. And the hopeless dream of Carbon Capture and Storage (CCS) becoming a global-scale solution for carbon emissions is about as realistic to me as the geoengineering described in Tolkein’s “The Lord of the Rings”.

Nuclear power and CCS are actually about mining and concrete construction – they’re not energy or climate solutions. I’m not taken in by token gestures of a small slice of wind or solar power or the promise of a segment of biofuels from large oil and gas companies. Public relations and lobbying are the lowest form of faked, usurping power – but simply attacking brands will fail to make real change. I think honesty, realism and pragmatism are the way forward – and there is nothing more practical than pushing for Renewable Gas to back up the accelerated deployment of renewable electricity to its fullest scale.

My appeal to those in control of energy provision is – to see through the fog to the unstoppable. State support, both political and financial, of new energy technologies and infrastructure has to be a short- to medium-term goal – because of the volatility of the economy, and the demands of your shareholders. The need to build public support for new energy means that we the citizens must all be offered the opportunity to own energy – and so that means building a common purpose between the energy sector and society – and that purpose must be Zero Carbon.

There is and will continue to be a porous border between the energy industry and governments – energy is a social utility of high political value. However, the privilege and access that this provides should not automatically mean that the energy industry can plunder public coffers for their own profit. What contribution can the energy industry make to society – apart from the provision of energy at cost – in addition to the subsidies ? Energy, being so vital to the economy, will mean that the energy sector will continue to survive, but it has to change its shape.

You can dance around the facts, but climate change is hitting home, and there is no point in continuing to be in denial about Peak Oil, Peak Coal and Peak Natural Gas. These are genuine risks, not only to the planet, or its people, but also your business plans. We need to be using less energy overall, and less carbon energy within the eventual envelope of energy consumption. So the energy sector needs to move away from maximising sales of energy to optimising sales of energy services and selling low carbon energy systems, power and fuels.

You would be wrong to dismiss me as an “eco warrior” – I’m an engineer – and I’ve always believed in co-operation, expertise, professionalism, technology and industrial prowess. What impresses me is low carbon energy deployment and zero carbon energy research. Progress is in evidence, and it is showing the way to the future. Realistically speaking, in 20 years’ time, nobody will be able to dismiss the risks and threats of climate change and energy insecurity – the evidence accumulates. We, the zero carbon visionaries, are not going to stop talking about this and acting on it – as time goes by, the reasons for all to engage with these issues will increase, regardless of efforts to distract.

Nothing is perfect. I no more believe in a green utopia than I do in unicorns. But without reacting to climate change and energy insecurity, the stock market will not carry you, even though the governments must for the mean time, until clean and green energy engineering and service organisations rise up to replace you. Lobbying for pretences will ultimately fail – fail not only governments or peoples, but you. You, the energy industry, must start acting for the long-term or you will be ousted. As your CEOs retire, younger heads will fill leadership shoes – and younger minds know and accept the perils of climate change and energy insecurity.

This is the evolution, not revolution. It is time to publicly admit that you do know that economically recoverable fossil fuels are limited, and that climate change is as dangerous to your business models as it is to human settlements and the biosphere. Admit it in a way that points to a sustainable future – for you and the climate. The pollution of economically borderline unconventional fuels is wrong and avoidable – what we need are renewable energies, energy conservation and energy efficiency. One without the others is not enough.

How can your business succeed ? In selling renewable energy, energy conservation and energy efficiency. You have to sell the management of energy. You have to be genuinely “world class” and show us how. No more spills, blowouts and emissions. No more tokenistic sponsorship of arts, culture and sports. The veneer of respectability is wearing thin.

As an engineer, I understand the problems of system management – all things within the boundary wall need to be considered and dealt with. One thing is certain, however. Everything is within the walls. And that means that all must change.


http://houstonfeldenkrais.com/tag/cross-motivation/ “…Of course, the money would be great. But adding in the reward/punishment dimension is a sure way to sabotage brilliant performance. Moshe Feldenkrais observed that when one is striving to meet an externally imposed goal, the spine shortens, muscles tense, and the body (and mind) actually works against itself. He called this “cross motivation,” and it occurs when one forsakes one’s internal truth to maintain external equilibrium. There are lots of examples of this: the child stops doing what she’s doing because of the fear of losing parental approval, love, protection. The employee cooks the books to keep his job. The candidate delivers the sound bite, and dies a little inside. Feldenkrais attributed most of our human mental and physical difficulties to the problem of cross motivation. If you watch Michael Phelps swim, you can’t help but notice that he makes it look easy. He is clearly strong and powerful, but all of his strength and power are focused on moving him through the water with the greatest speed and efficiency. There’s no wasted effort, no struggle, no straining. He is free of cross-motivation! Would straining make him faster? Of course not. Unnecessary muscular effort would make him less buoyant, less mobile, less flexible. Will dangling a million dollars at the finish line make him swim faster? Probably just the opposite, unless Michael Phelps has some great inner resources to draw upon. The young Mr. Phelps has already learned how to tune out a lot of the hype. He’ll need to rely on “the cultivation of detachment,” the ability to care without caring…”

Greenpeace Windgas : Renewable Hydrogen

http://www.lngworldnews.com/gasunie-greenpeace-energy-choose-suderburg-as-windgas-location-germany/
http://www.greenpeace-energy.de/presse/pressedetails/article/neuer-schwung-fuer-die-energiewende-windgas-made-in-suderburg.html
http://www.greenpeace-energy.de/windgas.html
http://vimeo.com/44094925

Un égard, un regard, un certain regard

Whatever it is, it starts with attention, paying attention.

Attention to numbers, faces, needs, consideration of the rights and wrongs and probables.

Thinking things through, looking vulnerable children and aggressive control freaks directly in the eye, being truly brave enough to face both radiant beauty and unbelievable evil with equanimity.

To study. To look, and then look again.

To adopt a manner of seeing, and if you cannot see, to learn to truly absorb the soundscape of your world – to pick up the detail, to fully engage.

It is a way of filling up your soul with the new, the good, the amazing; and also the way to empty worthless vanity from your life.

Simone Weil expressed this truth in these words : “Toutes les fois qu’on fait vraiment attention, on détruit du mal en soi.” If you pay close attention, you learn what is truly of value, and you jettison incongruities and waywardness. She also pronounced that “L’attention est la forme la plus rare et la plus pure de la générosité.” And she is right. People feel truly valued if you gaze at them, and properly listen to them.

Those of us who have researched climate change and the limits to natural resources, those of us who have looked beyond the public relations of energy companies whose shares are traded on the stock markets – we are paying attention. We have been working hard to raise the issues for the attention of others, and sometimes this has depleted our personal energies, caused us sleepless nights, given us depression, fatalism, made us listless, aimless, frustrated.

Some of us turn to prayer or other forms of meditation. We are enabled to listen, to learn, to try again to communicate, to bridge divides, to empathise.

A transformation can take place. The person who pays close attention to others becomes trusted, attractive in a pure, transparent way. People know our hearts, they have confidence in us, when we give them our time and an open door.

Continue reading Un égard, un regard, un certain regard

Obey the Future

Disobedience only gets you so far. Resistance can be fertile, but intellectual ghettos can be futile. The human tendency to generalise creates too much negativity and prevents us from being constructive. We complain about the “evil” oil and gas companies; the “greedy” coal merchants and their “lying” bankster financiers; but refuse to see the diamonds in the mud.

We should obey the future. In the future, all people will respect each other. There will no longer be war propaganda carried by the media, demonising leaders of foreign countries, or scorn for opposing political parties. In the future, human beings will respect and have regard for other human beings. So we should live that future, live that value, have care for one another. I don’t mean we are obliged to give money to charity to help needy people in poor countries. I don’t mean we should campaign for our government to commit funds to the Climate Finance initiatives, whose aim is to support adaptation to climate chaos in developing countries. No, charity is not enough, and never matches the need. Philanthropy will not answer climate change, and so solutions need to be built into the infrastructure of the global economy, sewn into the design, woven into the fabric. There should be no manufacture, no trade, no form of consumption that does not take account of the climate change impacts on the poor, and on the rich, on ecosystems, on ourselves.

Yes, it’s true that corporations are destroying the biosphere, but we cannot take a step back, grimace and point fingers of blame, for we are all involved in the eco-destructive economy. We are all hooked on dirty energy and polluting trade, and it’s hard to change this. It’s especially hard for oil, gas and coal companies to change track – they have investors and shareholders, and they are obliged to maintain the value in their business, and keep making profits. Yes, they should stop avoiding their responsibilities to the future. Yes, they should stop telling the rest of us to implement carbon taxation or carbon trading. They know that a comprehensive carbon price can never be established, that’s why they tell us to do it. It’s a technique of avoidance. But gathering climate storms, and accumulating unsolved climate damages, are leading the world’s energy corporations to think carefully of the risks of business as usual. How can the governments and society of the world help the energy companies to evolve ? Is more regulation needed ? And if so, what kind of political energy would be required to bring this about ? The United Nations climate change process is broken, there is no framework or treaty at hand, and the climate change social movement has stopped growing, so there is no longer any democratic pressure on the energy production companies and countries to change.

Many climate change activists talk of fear and frustration – the futility of their efforts. They are trapped into the analysis that teaches that greed and deceit are all around them. Yet change is inevitable, and the future is coming to us today, and all is quite possibly full of light. Where is this river of hope, this conduit of shining progress ? Where, this organised intention of good ?

We have to celebrate the dull. Change is frequently not very exciting. Behind the scenes, policy people, democratic leaders, social engineers, corporate managers, are pushing towards the Zero Carbon future reality. They push and pull in the areas open to them, appropriate to their roles, their paid functions. Whole rafts of national and regional policy is wedded to making better use of energy, using less energy overall, displacing carbon energy from all economic sectors.

And then there’s the progressive politics. Every leader who knows the shape of the future should strive to be a Van Jones, or a Jenny Jones, any green-tinged Jones you can think of. We should enquire of our political leaders and our public activists what flavour of environmental ecology they espouse. We should demand green policies in every party, expect clean energy support from every faction. We should not only vote progressive, we should promote future-thinking authority in all spheres of social management – a future of deeper mutual respect, of leaner economy, of cleaner energy.

The future will be tough. In fact, the future is flowing to us faster than ever, and we need resilience in the face of assured destructive change – in environment and in economy. To develop resilience we need to forgo negativity and embrace positivity. So I ask you – don’t just be anti-coal, be pro-wind, pro-solar and pro-energy conservation. Where leaders emerge from the companies and organisations that do so much harm, celebrate them and their vision of a brighter, better, lower carbon future. Where administrations take the trouble to manage their energy use, and improve their efficiency in the use of resources, applaud them, and load them with accolades. Awards may be trite, but praise can encourage better behaviour, create exemplars, inspire goodly competition. Let us encourage the people with good influence in every organisation, institution and corporation. Change is afoot, and people with genuine power are walking confidently to a more wholesome future.

Protect your soul. Don’t get locked into the rejection of evil, but hold fast to what is good. Do not conform to the patterns of this world, but be transformed by the renewing of your minds. Be strong for goodness, even as you turn your back on a life of grime.

Live the Zero Carbon future, and make it come as soon as it can.

Continue reading Obey the Future

We Need To Talk About Syria

Kofi Annan has thrown up his hands and backed away from his role as UN-Arab League special envoy to Syria tasked with a peace mission. In one sense it is all too predictable. The United Nations Security Council is divided, reflecting deep faultlines in the policy positions of the main body of the UN.

It is probably too early in the evolution of global human governance to expect military violence to be declared illegal, but at least there are voices starting to speak up demanding that there be no armed foreign intervention in Syria. The trouble is that although warfare by foreign parties in Syria has not been publicly declared, there are, by many accounts, military and security operatives of a number of external country administrations already in play inside its borders. Foreign ministers in several major countries have pledged support to either the Syrian “regime” – you know – its “ruling government”, or to the “opposition” “rebels” – otherwise known as gangs of armed thugs. Or quite possibly people from a nebulous ill-defined shadowy organisation known as “Al-Qaeda”.

There are some reports that foreign involvement was behind the bombing of members of President Bashar al-Assad’s government in July, a near “decapitation” – as Assad himself could have been easily killed in the incident, and that a reprisal attack took place several days later – possibly severely injuring or even killing Prince Bandar, newly recruited chief of intelligence in the Kingdom of Saudi Arabia – recently drafted in – apparently with a mission to topple Syria’s “regime” – you know, Syria’s “legitimate administration” – a former ambassador to the United States of America. Although this is not yet confirmed. Or denied.

Despite conciliatory moves, countries of stern influence in the United Nations continue to call for Assad to quit, for reasons that nobody really delves into. Oh yes, as a mild-mannered London-trained ex-ophthalmologist, he’s supposed to be some kind of Hitler character, killing thousands of “his own people”. This story clearly doesn’t stick very well to the man, particularly since this narrative was also recently falsely used against the former leader of Libya. Another story that hasn’t been washing is that the Syrian “regime”, you know, the “proper authorities of administration”, has been responsible for starting all the violence in Syria – but there is now plenty of evidence to the contrary. So why has it been necessary to demonise Assad ? Why has it been that – allegedly – various governments have decided to get dirty hands and stir up violence in Syria in means overt and covert ?

And with the risks to global oil supply, why has it been necessary for the United States of America and the European Union to implement and enforce an oil embargo on Syria ? I mean, you would have thought it would be in everybody’s best interests to keep the oil flowing from every source possible. But no, sanctions it is, and Syria’s had to give up a considerable amount of their production. I know, I know, before the embargo Syria’s output was only 10% of Iran’s current production (see below), but it has meant a lot for Syria’s trade balance. According to the CIA Factbook on Syria (under “Economy”), nearly three quarters of all oil produced has been for export (although it was consuming more Natural Gas than it could produce – presumably for power generation). Plus, it’s national debt put it in the bottom ranks of the world’s countries meaning it can ill-afford to become more impoverished.

So remind me again, what was the oil embargo for ? To depose Assad by making him unpopular because of a nosediving economy ? And why does Assad need to go, actually ? Nobody’s saying that the country has been run perfectly. Gruesome tales have been told of what can happen in Syria – but then, horrible things happen in every country, including in the United States of America, and yet the United Nations is not insisting that Barack Obama stand aside.

Several key cities in Syria have existed in tolerant civilisation for thousands of years. Why does war have to come to Syria ? Why is there civil war being conducted in Damascus ? Even stoics are finding this hard to bear. Wikipedia notes despairingly and ungrammatically “In the second decade of the 21th century Damascus was damaged from the ongoing Syrian Civil War”.

The more I think about it, the more I come circling back to the same theory – that the economic attack on Syria, and the now almost indisputable accounts of outside meddling that is provoking the conflict (and may have even instigated it in the first place), is simply part of a plan to make the oil and gas resources of all Middle Eastern countries available to global markets at reasonable prices. I mean, look at Iraq, whose oil production was severely hit as a result of military destruction by the international warfare community, but which is now making a splendid recovery (see below) and most of the profits are pouring into the coffers of the multinational oil and gas companies, and diesel and petrol stay relatively inexpensive. Or not, as the case may be. The plan for countries across the Middle East is probably the along the same general line – first accuse the country’s government of heinous crimes, then apply economic sanctions or energy sanctions of some kind, then apply diplomatic and media pressure, (and then, these days, send in the spooks to kick up an “Arab Spring”) and then send in the gunships or gunchoppers – attack helicopters. This narrative has been successfully applied to bring Iraq to heel, and then Libya, and now it seems Syria is being talked down the same blood-paved road, and Iran is being pushed along a parallel track.

Iran. Now there’s an interesting case. Iran is not a pushover. It has taken nearly seven years of manoeuvring to make the completely unfounded case that Iran is building (or planning to build) nuclear weapons. Iran has been enriching uranium for its stated aim of developing a civilian nuclear power program, and this has been used as the justification to impose sanctions against Iran, including an oil embargo, which is having an impact on their production (see below). Besides painting the leader of Iran as an evil dictator, the propagandists of this world also seem to be trying to wield a new stick to beat Iran with – in the form of the call to end fossil fuel subsidies. Billed as a climate change policy by the G20, it is more a punitive measure against developing countries who have been using fossil fuel subsidies to make sure their citizens can get cheap energy. If Iran is no longer permitted to subsidise energy for citizens it will be forced to sell the oil and gas abroad – a buyer’s market only too pleased to suck dry the world’s second largest oil and Natural Gas producer. That volume of oil and gas being made available on the world’s markets would definitely keep global prices of oil and gas as low as possible.

Anyway, back to Syria. Clearly, there are problems, although reports of enormous and desperate increases in violence are probably not accurate. Painting the story as increasingly agitated is a common media device to engage the readers with the situation – but if it gets too sensationalised the narrative could start to affect decisionmakers, and may lead to illegitimate and inappropriate influence being exerted from abroad. Instead of William Hague MP, British Foreign Secretary for the United Kingdom, offering tactical support to the Syrian “rebels”, he should announce an immediate diplomatic mission to the Syrian government, and the various rebel groups, offering the undoubted skills of his secret service personnel in mediating a ceasefire between the authorities and the opposition. Otherwise we could end up with NATO committing to tens of thousands of weaponised air sorties over Syria and destroying a large part of this ancient culture, just as they did with Libya. All economic and energy sanctions and embargoes against Syria should be dropped, as they are aggravating the conflict. If the international community uses the language and action of peace, then perhaps Syria can be encouraged back to the ways of peace.

In the words of Russian Foreign Minister Sergey Lavrov, “Regime change is not our profession.”





Christopher Booker : Way Out

Wind power is magic. Wind power is almost infinitely scalable. Wind power is for everyone. Wind power is incredibly successful and growing almost exponentially. Yet some recalcitrant intransigents, such as Christopher Booker, persist, like sea hawks, in clinging onto the fossil fuel guano in their ossified little niche perches, high above the wind-power blown cliffs of reality. Wind power is here, and it’s working, and it’s displacing carbon emissions, but to read Christopher Booker you’d think it were the height of folly to deploy it.

He cannot purvey his argument on the basis of the facts, and so he resorts to repeating outdated and confused information, thinking that mere repetition of erroneous statistics counts for the truth.

His position has been trounced, locked in the floodlight beam and stamped on by several intelligent parties, but meanwhile, people are arguing about his weekend article. They’re not arguing about whether he’s right (he clearly isn’t) or wrong, but about excactly how wrong he is. All I know without doing in-depth calculations is that he’s at least 30% way out – although others argue he’s up to around 70% out. And what are the numbers he’s so misguided about ? The number of wind turbines UK policy dictates should be installed.

Here’s Booker :-
“…in 2010, the last year for which we have figures, we used 378 TWh of electricity, of which only 10 TWh, or 2.6 per cent, came from wind….If 3,000-odd turbines produced 2.6 per cent in 2010, then to meet the EU target would require something like the “32,000 turbines” mentioned by Davey’s predecessor Chris Huhne just before he resigned. This would require us to build about 10 giant turbines every day for the next eight years. Regardless of how many billions of pounds of subsidy might be thrown at this, in practical terms it is quite out of the question…”

Here’s Christian Hunt of Carbon Brief explaining how Booker is using out of date figures :-

“…Booker is taking figures from DECC’s 2011 Digest of UK Energy Statistics (DUKES) report, which provides UK energy statistics for 2010. But although he says these are the most recent figures available, the new edition of DUKES was published last week, providing information on what happened in 2011. These new figures show the year saw fairly significant growth in the amount of electricity coming from renewable sources. The amount of electricity generated by wind power rose from 10.2 terawatt hours in 2010 to 15.75 TWh in 2011 – a rise of 5.53 TWh. This made up much of a wider growth in renewable power – renewables generated 34.4 TWh of electricity in 2011, a rise of about 8.6 TWh compared to 2010…”

And here is what he summarises about how to count wind turbines :-

“…According to Renewable UK, the generating capacity of wind turbines currently being installed is about 2 MW for onshore and 3.6 MW for offshore. Plugging those numbers in, an extra 73.6 TWh would take either another 15,600 onshore turbines, or 6,300 offshore. In practice, the numbers are likely to be smaller. Offshore turbines will continue to increase in size, meaning it will take less to produce more power. Turbines will probably become more effective – increasing their load factor. And other sources of renewables will produce more power, reducing the amount of wind turbines needed to hit a particular amount of renewably-generated power. So the 32,000 figure looks pretty overinflated…”

And here’s the online Claverton Energy Research Group forum picking their way through various alternative answers :-

=x=x=x=x=x=x=x=x=x=x=x=x=

From: Eric Payne
Subject: Article in The Daily Telegraph about Britain’s energy policy

Hi

As experts in this area, I would be very interested to hear people’s views on this piece in The Daily Telegraph.

http://www.telegraph.co.uk/comment/columnists/christopherbooker/9434114/The-Government-plans-to-break-its-own-climate-change-law.html#disqus_thread

How accurate is the information quoted and what is its significance for Britain’s energy policy?

Best regards

Eric Payne
Deputy Editor – Euroasia Industry Magazine

=x=x=x=x=x=x=x=x=x=

From: David Hirst

A fraudulent article. It does not mention that the change was forced by Osborne and the Treasury, who insisted that gas should continue to receive the subsidies it already gets. But likely true in the sense that UK energy policy is now undeniably incompatible with climate change objectives, and the legal carbon budget.

The nuclear industry is undoubtedly looking on with glee, and doing some of the stirring and distortion. But they cannot deny climate change, as it is the only shred of opaque clothing on that emperor.

What I find even more shocking through, is the huge barrage of comments, most of which seem to deny any role for wind, and deny the science of climate change. Although always deeply biased towards the middle class and the rich, the Telegraph has become a mouthpiece of denial, and this is very dangerous.

I suppose we ought to form all sorts of aliases, and spend our days balancing the lunatic comments with occasional sensible ones. Who knows, Osborne might take notice.

Horrible.

David Hirst
Hirst Solutions Limited

=x=x=x=x=x=x=x=x=x=x=

From: Herbert Eppel

Hi

Mr Booker who, according to Wikipedia, “has taken a stance which runs counter to the scientific consensus on a number of issues, including global warming”, would be well advised to have a look at this: .

I’m sure Britain’s energy policy would be in a better shape if it didn’t keep getting side-tracked by such maverick interventions.

Herbert Eppel
www.HETranslation.co.uk

=x=x=x=x=x=x=x=x=x=x=

From: Eric Payne

So, is the need to ‘keep the lights on’ compatible with present renewable electricity and carbon emissions targets?

Is a large build out of new wind turbines the best way to address those needs? Is it preferable to preserve the wind turbine subsidy at its present level in order to achieve the same?

What other options/policies (if any) might be more effective?

Best,

Eric

=x=x=x=x=x=x=x=x=x=x=

From: Herbert Eppel

As I keep saying, we need to fire on all renewables cylinders.

Wind should, without a doubt, play a key part.

Check out the numerous pertinent links I sent over the last few months (not sure whether you read the Claverton messages regularly) – see .

Best

Herbert Eppel

=x=x=x=x=x=x=x=x=x=

From: Jo Abbess

Dear Eric,

Christopher Booker uses emotive language. Before reading his article
properly to investigate anything he is claiming as fact, I would
suggest that you remove all traces of language that tugs on your
emotions, or guides your opinion – for example :-

http://www.telegraph.co.uk/comment/columnists/christopherbooker/9434114/The-Government-plans-to-break-its-own-climate-change-law.html#disqus_thread

“The Government plans to break its own climate change law” – the use
of the word “break” is a direction for you to consider that the
Government are acting in an illegal (“plans”) or incompetent manner
(“its own”).

“Politicians are finally admitting that our ‘carbon’ targets and our
energy needs are incompatible” – the use of the phrase “finally
admiting” is intended to make you consider that politicians have been
hiding some unrevealed facts. The use of the word “incompatible” is an
assertion that runs counter to the facts.

Other examples “serious breach of the law”, “opaque”, “catastrophic
shambles”, “spin doctors”, “victory”, “dutifully echoed”, “risible
claim”, “betrayed”, “two wholly irreconcilable hooks”, “Hidden”,
“obscurely phrased”, “in practical terms it is quite out of the
question”, “revealing”, “economic suicide”…

Strip these things out of the opinion piece and then you have some
claims and numbers that can be investigated.

Note : this is an opinion piece, and is not expected to be taken as a
factual report. Newspapers are fond of opinion pieces as they are
often scandalous and generate a lot of discussion. The Daily Telegraph
has another famous opinionated writer – James Delingpole, who with
Christopher Booker were largely responsible for blowing “Climategate”
into the puffery of nonsense that people thought was serious but was
all a cloud of nothing. The Climategate accusations were that climate
change scientists have been manipulating data, lying and hiding – but
all the enquiries into this have vindicated the scientists. Strangely,
James Delingpole and Christopher Booker are still employed to write
for the Daily Telegraph, despite this “shenanigans”.

See “Views on science” here :
http://en.wikipedia.org/wiki/Christopher_Booker for more about
Christopher Booker’s relationship with scientific truth.

Note how Christopher Booker puts a halo round the head of shale gas
development, “And not the least telling feature of last week’s
statement was that it made no reference to the shale gas revolution
which has already halved US gas prices in five years, and which could
solve our own energy problems by providing cheap gas for centuries.”
Err, no, not according to the experts who are saying that even though
there may be significant shale gas resources under the UK, that
production volumes might not get very high. And the total resource is
currently estimated at around 50 years, not several centuries, of
current gas demand. You have to remember that the United States is a
unique case as regards shale gas – they have done everything to permit
and encourage its development – including ripping up their
environmental standards. And although shale gas in the USA could reach
something like 25% of total gas production by 2030 (others use higher
numbers), you have to bear in mind that non-shale gas could start to
decline significantly, so the total of US gas could peak in 2035 –
check the diagrams from the EIA.

And don’t forget – American academics that have vindicated shale gas
have now been exposed as being paid…by the fossil fuel industry :-
http://www.wired.com/wiredscience/2012/07/gas-fracking-science-conflict/

Two useful links :-
http://royalsociety.org/policy/projects/shale-gas-extraction/report/

http://www.guardian.co.uk/environment/2012/apr/17/shale-gas-fracking-uk

Christopher Booker shows himself to be a “wind-up merchant” with this :-
http://www.telegraph.co.uk/comment/columnists/christopherbooker/9434114/The-Government-plans-to-break-its-own-climate-change-law.html#disqus_thread
“…Greenland’s ice cap was on the brink of melting… for a few hours :
Nothing could have better demonstrated the desperate straits to which
global warmists have been driven as they try to keep their scare going
than two satellite pictures in last Tuesday’s Guardian, showing a
change that had come over the Greenland ice cap. One showed, in white,
the second-largest mass of land ice on the planet, seemingly intact.
The other, taken a few days later, showed in pink a seemingly
ubiquitous melting. These Nasa pictures, we were told, showed
alarmingly that, for the first time in history, the surface ice was
melting right across Greenland. It took only hours for this scare
story to be blown apart. A tiny rise in air temperatures had
momentarily taken them just above freezing, enough to melt a few
inches of surface ice. But the ice below it, up to two miles deep, had
been unaffected. This had happened before, in 1889. Ice cores show
that it happens every 150 years or so. Within hours, as even the BBC
admitted, the ice had frozen again. The shortest scare in history was
over.”

Again he uses emotive language and he should not be relied upon in my
view. See instead here – the first from an actual working climate
scientist :-

http://storify.com/icey_mark/the-greenland-surface-melt-story
http://www.carbonbrief.org/blog/2012/07/greenland-97-per-cent-surface-melting
http://www.guardian.co.uk/commentisfree/2012/jul/26/greenland-ice-sheet-borrowed-time

I’m sorry I don’t have time to debunk this piece more thoroughly. It
is typical Christopher Booker – I find his style is very 1980s – he
seems to want to create sensational scandal by pushing your emotional
buttons and making unjustifiable claims.

I don’t trust his output. End of.

jo.

=x=x=x=x=x=x=x=x=x=

From: Frank Holland

Jo,

Follow the money, who, apart from the Torygraph, is paying Booker?

Frank

=x=x=x=x=x=x=x=x=

From: Dave Andrews

My take on one of his points:

….he says

“Hidden in the small print of Davey’s statement are two passages of particular significance. One, so obscurely phrased that it seems to have passed everyone by, is that by 2017 we hope to be generating “79 terawatt hours” (TWh) of electricity a year from renewables, rising by 2020 to the “108 TWh needed to meet the UK’s 2020 renewable energy target”. To make sense of this, one must look at the section of DECC’s website showing that, in 2010, the last year for which we have figures, we used 378 TWh of electricity, of which only 10 TWh, or 2.6 per cent, came from wind. Slightly more than this came from other renewables, such as hydro. But to meet that 32 per cent target within eight years, almost all the increase would have to come from new wind turbines.

If 3,000-odd turbines produced 2.6 per cent in 2010, then to meet the EU target would require something like the “32,000 turbines” mentioned by Davey’s predecessor Chris Huhne just before he resigned. This would require us to build about 10 giant turbines every day for the next eight years. Regardless of how many billions of pounds of subsidy might be thrown at this, in practical terms it is quite out of the question.”……..

My calculation based on the latest turbines being installed off shore are 6.15, and onshore 7.5 MW. Going with the lower figures and using a 40% load factor, then this needs for 108 TWh only 5011 such turbines. Over 8 years, this is a rate of installation of 1.7 per day, so he out by a factor of 5.8 or 580% a figure relatively as large as his ego and the fee paid by the lobbyists who wrote this crap for him.

1.7 per day would be easily achievable with the appropriate incentives. The Allies built 600,000 aircraft in ww2 with an average engine power of around 1 MW and 225,000 armoured vehicles – add those together 2:1 to get roughly one turbine and that is say 500,000 equivalent turbines units over 5 years or 273 per day, plus a lot of airfields, ships etc.

The advantage this time round is that this hardware has an NPV which is positive.

The subsidies he talks about are far less than paid to the fossil industry…didn’t Osborne just give a £100m tax break to the offshore gas industry to cite one?

Dave

=x=x=x=x=x=x=x=x=x=

From: John Baldwin

Dave,

Your figures don’t seem right!! You may be right and Booker wrong but I’m not sure, needs a comment from an offshore wind bod.

Regards

John

=x=x=x=x=x=x=x=x=x=

From: Dave Andrews

John, which figures, the size, or the load factor?

Or the sum?

Dave

=x=x=x=x=x=x=x=x=x=

From: Jo Abbess

Dear Clavs,

I think part of the problem with Christopher Booker’s figures are that
he’s using out of date statistics.

For example, in the Renewable Energy Roadmap :-

http://www.decc.gov.uk/assets/decc/11/meeting-energy-demand/renewable-energy/2167-uk-renewable-energy-roadmap.pdf

Energy demand is forecast to be 1557 TWh in 2020 in the Government’s
central projection on the RED definition.

15% of this is 233.55 TWh – expected to be from renewable resources.
But you have to remember this includes heat as well as electricity.

The Renewable Energy Roadmap expects that wind power will generate :-
Figure 2
Onshore 24 – 32 TWh
Offshore 33 – 58 TWh

Christopher Booker is saying that generation from wind power is 10 TWh
from 3,000 wind turbines. He is probably looking at 2012 data for the
generation, and today’s data for the count of wind turbines.

Renewable UK have an up-to-date counter :-

http://www.bwea.com/ukwed/index.asp

Currently there are 3,868 turbines generating 16 TWh

Onshore = ~ 5,000 MW installed capacity
Offshore = ~ 2,000 MW installed capacity.

These figures are roughly 20% higher than 2010 counts for onshore and
nearly 100% higher for offshore.

So we have a classic Christopher Booker fudge.

1. He’s not comparing apples with apples, but 2010 data with 2012 data.

2. He’s mistaken “energy” for “electricity”.

I rest my case.

jo.

=x=x=x=x=x=x=x=x=

From: Jo Abbess

And Clavs,

I forgot to add :-

3. Wind turbines are increasing in their capacity ratings as time
goes by – so even the high end of wind power projection in the DECC
roadmap 90 TWh will mean less numbers of turbines than the simple
calculation of ( 90 / 16 * 3868 ) = 21,758 turbines.

Even if the average capacity moved up by 10% (and admitting that not
all turbines will be larger), that would mean closer to 20,000 than
30,000 turbines overall.

So Christopher Booker is out by a whopping great 30% or so.

jo.

=x=x=x=x=x=x=x=x=

From: Steve Browning

Hi All, I must admit you get too much emotive language and bad numbers, with politics in the current energy debate…

From a PRASEG meeting with Charles Hendry last month, it does look as if we are going for ‘Gas and Air’.

When I first looked at the issues with 32GW of wind in our 60GWMax/24GWmin system two years ago, I think the figure quoted for 2020 was @6400 turbines. That would be an average of 5MW/turbine
At 33% load factor that lot would deliver @92.5TWh which is @ 28% of the 2011 electrical demand (329TWh = sum of Power station sent out).
However, we dont have Big Hydro (Alpine/Norway/Sweden) or Big Interconnectors which is how the EU continental system (Max 380GW) stabilises the existing wind and solar (mainly Germany and Spain).

I believe the the largest wind machine available currently is the Enercon E-126 (DC Generator) at 6MW

I assume it takes a lot of energy and material to build one of these.

We still have to get a handle on ‘value’ for each future scenario, including all the internal and external costs and drivers.

Regards

Steve

=x=x=x=x=x=x=x=x=

From: Frank Holland

Booker is a history graduate, he claims that asbestos is the same as
talcum powder. Asbestos is Mg3(Si2O5)(OH)4 talc is
Mg3Si4O10(OH)2….both could be described as hydrated magnesium
silicate, but asbestos is fibrous, talc is crystalline or plate like.
It’s the fibres that cause the problem….but then how would we expect a
historian to know that?

He is best ignored.

Frank

=x=x=x=x=x=x=x=x=x=

From: Dave Andrews

John, my wind turbine size and the load factor are correct. They are supplied by a wind energy expert, pphd, ex utility, hired to study these things by a governmental scientific organization.

So are you saying my calculation is wrong?

Kind regards

Dave

=x=x=x=x=x=x=x=

From: Eric Payne

What body would be responsible for commissioning a ‘walk-through’ study calculating the practicability of different future energy scenarios and their affect on the grid?

Have any full or partial studies been carried out? If not, why not?

Best

Eric

=x=x=x=x=x=x=x=x=x=

From: Fred Starr

Dear Jo

When I saw the figure for wind energy I ceased to read any more because the figures are well out of date. There was a big expansion after 2009, but more recently this has slowed. The capacity on the Grid is still 4686 MW

You would do be writing to him.

Fred

=x=x=x=x=x=x=x=x=

From: Neil Crumpton

Regarding the number of UK turbines by 2020 if producing 90 TWh – I make it around 11,000 not 20,000 to 30,000 !

calcs below

Neil

PS my view of journalists (and politicians) confusing energy with electricity have been well aired over the years on Claverton

PPS 15 % of 2020 final energy demand will be around 230 TWh/y – so more than 100 TWh/y of wind by 2020 would give UK a better chance of reaching the target (and biomass CHP – with CCS)

————–

i) offshore turbine capacity (assuming 58 TWh/y at 38 %) = 17.4 GW ( offC x 8.76 x 0.38 = 58 )

So assuming average offshore turbine capacity is 5 MW (ie mostly 5-6 GW from now) = 3,480 turbines – say 3,500 turbines

ii) onshore turbine capacity (assuming 32 TWh/y at 28 %) = 13 GW ( onC x 8.76 x 0.28 = 32 )

So assuming average onshore turbine capacity is 2 MW (ie mostly 2+ GW from now) = 6,500 turbines

Hence total number of turbines to generate 90 TWh/y in 2020 would be around 10,000, say 11,000 or 12,000 if average capacity and capacity factors are a bit less than I estimated above

=x=x=x=x=x=x=x=x=

From: Dave Andrews

The correct figure to generate the electricity he is talking about, irrespective of if it is the right amount is 1.7 turbines per day, whereas he gets 10 per day. (John you still havent told me what is wrong with this figure – the capacity is right and the load factor is right)

This would be easy to produce given the right industrial and supportive environment. The peak capacity of vehicle engines in the UK is about 2,500 GW and this is replaced every 10 years, so we make 684 MW per day of mobile chp plant (cars).

This is the equivalent in power terms of ~114 6 MW wind turbine per day.

Dave

=x=x=x=x=x=x=x=x=x=

From: Jo Abbess

Dear Eric,

Are you aware of the Offshore Valuation that looked at scenarios for
Britain’s offshore wind power ?

http://www.offshorevaluation.org/

This was a joint UK Government and industry first pass assessment on
capacity building.

Note the strong emphasis on NPV – building a net present value or
genuine asset for the country.

Regards,

jo.

Bosworth: “We are not going soft on coal”

At the annual Stop Climate Chaos coalition chin-wag on Friday 20th July 2012, I joined a table discussion led by Tony Bosworth of the environmental group Friends of the Earth.

He was laying out plans for a campaign focus on the risks and limitations of developing shale gas production in the United Kingdom.

During open questions, I put it to him that a focus on shale gas was liable to lay Friends of the Earth open to accusations of taking the pressure off high carbon fuels such as coal. He said that he had already encountered that accusation, but emphasised that the shale gas licencing rounds are frontier – policy is actively being decided and is still open to resolution on issues of contention. Placing emphasis on critiquing this fossil fuel resource and its exploitation is therefore timely and highly appropriate. But he wanted to be clear that “we are not going soft on coal”.

I suggested that some experts are downplaying the risks of shale gas development because of the limitations of the resource – because shale gas could only contribute a few percent of national fuel provision, some think is is unwise to concentrate so much campaign effort on resisting its development. Bosworth countered this by saying that in the near future, the British Geological Survey are expected to revise their estimates of shale gas resource upwards by a very significant amount.

He quoted one source as claiming that the UK could have around 55 years of shale gas resource within its borders. I showed some scepticism about this, posing the question “But can it be mined at any significant rate ?” It is a very common public relations trick to mention the total estimated size of a fossil fuel resource without also giving an estimate of how fast it can be extracted – leading to entirely mistaken conclusions about how useful a field, well or strata can be.

Tony Bosworth said that shale gas reserve estimates keep changing all the time. The estimate for shale gas reserves in Poland have just been revised downwards, and the Marcellus Shale in the United States of America has also been re-assessed negatively.

Bosworth said that although campaigners who are fighting shale gas development had found it useful to communicate the local environmental damage caused by shale gas extraction – such as ozone pollution, traffic noise, water pollution and extraction, landscape clearance – the best argument against shale gas production was the climate change emissions one. He said academics are still being recruited to fight on both sides of the question of whether the lifecycle emissions of shale gas are higher than for coal, but that it was becoming clear that so-called “fugitive emissions” – where gas unintentionally escapes from well works and pipeline networks – is the key global warming risk from shale gas.

Opinion around the table was that the local environmental factors associated with shale gas extraction may be the way to draw the most attention from people – as these would be experienced personally. The problem with centring on this argument is that the main route of communication about these problems, the film Gasland, has been counter-spun by an industry-backed film “Truthland”.

The Royal Society recently pronounced shale gas extraction acceptable as long as appropriate consideration was paid to following regulatory control, but even cautious development of unconventional fossil fuels does not answer the climate change implications.

There is also the extreme irony that those who oppose wind farm development on the basis of “industrialisation of the landscape” can also be the same group of people who are in favour of the development of shale gas extraction – arguably doing more, and more permanently, to destroy the scenery by deforestation, water resource sequestration and toxification of soils, air and water.

Tony Bosworth told the group about the Friends of the Earth campaign to encourage Local Authorities to declare themselves “Frack-Free Zones” (in a similar way to the “Fair Trade Towns” campaign that was previously so successful). He said that FoE would be asking supporters to demand that their local governments had a “No Fracking” policy in their Local Plans. It was suggested in the discussion group that with the current economic slowdown and austerity measures, that Local Authorities may not have the capacity to do this. Tony Bosworth suggested that in this case, it might be worth addressing the issue to church parish councils, who can be very powerful in local matters. It was pointed out that frequently, parish councils have been busy declaring themselves “Wind Free Zones”.

It was considered that it would be ineffective to attempt to fight shale gas production on a site-by-site direct action basis as the amount of land in the UK that has already and will soon be licenced for shale gas exploration made this impossible. Besides which, people often had very low awareness of the potential problems of shale gas extraction and the disruption and pollution it could bring to their areas – so local support for direct action could be poor.

One interesting suggestion was to create a map of the United Kingdom showing the watersheds where people get their tap supplies from superimposed on where the proposed shale gas exploration areas are likely to be – to allow people to understand that even if they live far away from shale gas production, their drinking water supplies could be impacted.

In summary, there are several key public relations fronts on which the nascent shale gas “industry” are fighting. They have been trying to seed doubt on low estimates of actual shale gas production potential – they have been hyping the potentially massive “gamechanging” resource assessments, without clear evidence of how accessible these resources are. They have also been pouring scorn on the evidence of how much damage shale gas could do to local environments. And they have also been promoting academic research that could be seen to make their case that shale gas is less climate-damaging than other energy resources.

Shale gas, and the issue of the risks of hydraulic fracturing for unconventional fossil fuels, is likely to remain a hot ecological topic. Putting effort into resisting its expansion is highly appropriate in the British context, where the industry is fledgeling, and those who are accusing Friends of the Earth and others of acting as “useful idiots” for the ambitions of the coal industry just haven’t taken a look at the wider implications. If shale gas is permitted dirty development rights, then that would open the gateway for even more polluting unconventional fossil fuel extraction, such as oil shale and underground coal gasification, and that really would be a major win for the coal industry.

Friends of the Earth Briefing : Shale gas : energy solution or fracking hell ?

Will the Green Deal Deliver ? (2)

Here is the second part of the transcription from the notes I took this morning in a seminar in the UK House of Commons. The meeting was convened by PRASEG, the Parliamentary Renewable and Sustainable Energy Group.

This transcription is based on an unverified long-hand paper-based recording of the words spoken. Items in quotation marks are fairly accurate verbatim quotations. Items in square brackets are interpolation, or explanation, and not the exact language the person used to present their thoughts.

Here are the papers supplied at the start of the meeting :  A B C D E F

CONTINUED…

[AW] How it [the Green Deal] hits the ground matters…

[Joanne Wade, Independent Consultant, UKERC]
The Green Deal is a very useful framework – a move to encourage people to pay for their own energy efficiency. The finance offering may be interesting to some. The quality [of the workmanship ? Guarantees under the Green Deal ?] is “utterly vital”. I don’t think it’s quite there. Outlining four areas (1) How the Green Deal engages (2) The low cost finance (3) Generally mainstreaming energy efficiency in peoples’ minds and (4) Fuel Poverty.

(1) Most people don’t care if they have energy efficiency [in their homes]. If we were really serious about this [our appeal would be along the lines of] you can’t sell a car with brakes that don’t work, but you can sell a house that kills you. [I just wanted to get that in up-front]. Nobody’s really cracked this yet [the messaging] is [still only] “reaching the usual suspects”. Trust is vital. Salience is key. We want people to understand this is not an add-on to all the other things they do. Community-based organisations fit the bill [we tend to trust these groups as members]. [We need to be asking] how does the Green Deal work with that ? The Green Deal providers – small to medium sized enterprises (SMEs) want to use their own brand – they are very good at marketing [and will be good at marketing the Green Deal as well]. But will that be enough to convince people ? The Assessments [that people will get at the start of the Green Deal process] will be detailed on what they can do. Some people are concerned about how much energy they use. Is that enough to go from a standing start to […] ? Are enough people going to be committed enough by the time [Green Deal is available] ? What I think we need – to prime people to be ready to accept [the Green Deal]. [The message would be] appropriate to come from local community groups. The Government is hoping for it – but no real drivers. There are examples – but how are they going to be copied ? The CERT / CES(P) results show that Local Authorities are key. Now that National Indicators 186 and 187 [From the Performance Framework – annual reporting requirements of direct and indirect emissions as a result of Local Authority operations] have been cut – there is no driver. The amount of attention has dropped. [Local Authorities are facing other problems] reducing staff and budgets.

(2) Access to low-cost finance. [The work to make this available from the Green Investment Bank is going ahead but] what about other soruces – for example mortgage providers ? In Switzerland for example, they are lending 114 billion euro every year to homeowners at low interest rates. We need to look at how to convince people. In Switzerland, people will pay more for energy efficient homes. The Green Deal needs to accept alternative forms of finance. Need to be able to access ECO [Energy Company Obligation – part of the Energy Bill – obligation energy suppliers to supply not only energy, but energy services such as energy efficiency and energy conservation] providers. We don’t know if the market will deliver [there are already grants/finance in this sector that people are not using].

(3) Can’t see the Green Deal mainstreaming. My builder – I did an [extension] and asked for 50% extra insulation and LED [Light Emitting Diodes – a very energy efficient form of lighting] – he thought I was slightly mad but now recommends LED lighting on all builds. Here’s the Green Deal. He would say – “Why should I tell people about that ?” Typical small builder. It should be that whenever anyone is doing a refurbishment they should just do it [extra insulation etc] – and so we’re back to [the big R] – regulation. [But look at the public outcry when the media considered] consequential improvements [the “Conservatory Tax”]. [Energy efficiency] “We need to make it the thing that people do.”

(4) Fuel Poverty. The money that can be coming through the ECO is £ 350 million per year (before VAT). Let’s not kid ourselves – the householders in fuel poverty are not going to take Green Deal finance. [The Climate Change Committee says] £4 billion a year is what we need to tackle fuel poverty. The Government needs to make sure that Green Deal finance is available the fuel poor (in an appropriate form) (overcoming the small potential).

[Alan Whitehead MP] How to address the LED enthusiast who isn’t a Green Deal enthusiast ? Helping “Jeff” [representative small builder in a sketch by the Secretary of State ?] getting sorted out – taking him from a sceptic to an advocate.

[Nigel Banks, Head of Energy and Sustainable Solutions, Keepmoat]

There are glass half empty people and glass half full. How can we be filling the glass ? Retrofitting communities via the Green Deal ? We do a lot of community regeneration – we’ve build [some of the] Zero Carbon homes. We renovate rather than demolish and rebuild. We get through to RP [registered providers of social housing] and Local Authorities. There has been the “boom and bust” of FiT [solar photovoltaic feed-in tariff] – Local Authorities are reticent to get involved [with the Green Deal].

With solid wall insulation [SW] we need to take up a gap. Currently, 80,000 per year are being driven by CES(P) – 94% of these are external wall. Under the Green Deal only 10,000 are projected next year – major concern.

How many measures meet the Green Deal ? The Golden Rule [the rule o Green Deal finance that the loans should come at no extra cost to the householder because the repayments are balanced by energy savings] ? [With some solid wall insulation, meeting the Golden Rule is easy, but…]

Problems with the Green Deal include : [no Green Deal finance generally available ?]. The cooling off period of 20 – 28 days. People now expect their insulation for free. How many [of the institutions of surveyors including] RICS [will value] properties with Green Deal ?

ECO is a big target – at least £540 million per year for affordable warmth. [However, this does not compare with what we have been able to offer up to now] – entire streets – entire communities [upgraded] for free at the moment – easier than under the Green Deal.

The £200 million cashback [is welcome]. Some of the Green Deal pilot schemes have been positive. It should be able to unlock private landlords [to making energy efficiency retrofits].

The Green Deal [is currently appropriate only to] a small proportion of society – it is vital to apply through communities – churches and so on – and it can tackle long-term unemployment problems.

The Green Deal [is not going to achieve major change] on its own.

[David Robson, Managing Director, InstaGroup] We do insulation, represent over 100 SMEs. How can we make the Green Deal work ? Provide employment in local communities ? 15 years of history of energy efficiency : in the early 1990s – no funding – we were doing 300,000 installs a year. Now we are doing 500,000 this year. “If anyone says subsidies haven’t worked, it’s not true.” It has got money out onto the ground quickly. The Green Deal has huge potential – removes capital barriers pre- energy efficiency [measures] – ome of the more expensive things are covered – anyone can access low cost finance – as long as it [the Green Deal] is given an opportunity to work. It also creates a framework to cover the non-domestic sector – and [landlord-owned] private domestic sector also. The Government…. [the Green Deal is] not ready. “Whatever any politician says, the legal framework is not in place until January next year.” The insulation installers and other companies are feeling they are being told “if you want to lead on the Green Deal, take it on your [own] balance sheet.” Everyone wants the Green Deal to work. We’ve invested. Our system is in place. The work we put into Green Deal finance – low cost – we think it’s important – the lower we can keep the costs of it. “If we can’t keep it [the Green Deal finance loan interest rate] below 6% we as an industry have failed.” The Green Deal is going to take time to build. Solid wall insulation – takes time to develop this industry. Hugely innovative concept. The man on the street will take some convincing “Will I be able to sell my house ?” [But] we can’t even give away insulation at the moment – then convincing people to borrow… 2013 is a real issue – how you bridge that cliff edge. Could [limit] the Green Deal getting off the ground. “For the Green Deal to be effective it needs to take the [energy efficiency] industry with it.” Small businesses are looking to us to guide them through the Green Deal. They can’t survive 6 months of losing money. Need to have some more continuity. The Green Deal does need something to help it through the transition process. How is the Green Deal good ? A robust framework. Belief in the Golden Rule – sacrosanct. Trying to sell the Green Deal will be a challenge for all of us. The Green Deal is very much underpinned by the ECO – but if the ECO is the only thing pushing, the Green Deal won’t work – constrained by the amount of money available. Regulation is key. If consumers are given sufficient time to do things it’s OK. Low cost finance is key. Access to low rates has to be competitive or the biggest players will take all the low cost finance. I’m concerned about a continuing level of political will. Generally the media are coming on-side over the Green Deal – but you only need to look at the media coverage of “consequential improvements”… It’s important that the Government recognise concerns about the Green Deal – [coming] from people who do want it to work.

[Alan Whitehead MP] Nice chance – ought to look at carbon taxes for the future – declaring part of that “tax foregone” and use that for the Carbon Reduction Commitment [CRC] : taking from the EU ETS [European Union Emissions Trading Scheme revenue] and the carbon floor price and using that to underpin the Green Deal – get that finance interest level down – a proper green tax – taxing bads and rewarding goods. “There can be no more good than making sure that everyone’s house is energy efficient” That’s all solved.

QUESTIONS FROM THE FLOOR

[Terry ? David Hunt, Eco Environments] Concerned that microgeneration is not to benefit. Concerned about companies self-marketing – as there have been misleading advertising (such as solar photovoltaic [PV] installers advertising old FiT rates). They should not mislead the public. Regulation – compared to the MCS scheme [all solar PV installers have to be registered for MCS] but still seen some awful installs. As soon as things get sold and are bad – this leads to media stories and a loss of confidence.

[Tim ? Tony Smith, Pilkington Glass] The statutory instrument that relates to double glazing and other measures – I’m looking for sunshine on a very gloomy day – double glazing in [some cases] will get no help from the Golden Rule [some discussion about the ratings of windows and replacement windows] – reduces the attraction to our industry in terms of reducing carbon emissions.

[ X from “London Doctoral Training Centre”] Homeowners… [The success of the Green Deal is] down to how people use their homes. No-one’s talked about education and how installers talk to householders…

[ X from Association for the Conservation of Energy] I’d like to hear the panel’s views on DG TAX [the European Commission Directorate Generale on Tax matters for the European Union] that the 5% VAT rate under the Green Deal is not compliant.

[Tracy Vegro] For the 5% VAT rate, “we are ready to defend that” – as it impacts on our ability to offer other options. It’s weird since we’ve just signed a very strong [European Community] Energy Efficiency Directive. Behaviour change – that’s vital. The [Green Deal loan] Assessment will require heating controls turned down and relevant behaviour. Effectively, you’re not going to pay the interest on the loan if you change your behaviour and you will see the savings increase over time. The “conversion rate” [from Green Deal pilot schemes] was 98% “saved more than I thought” – community projects. The Ombudsman will be able to strike off poor installers. “The Consumer Protection on the Green Deal is the highest in the market.” Stringent. “If it’s proved we’re too draconian, it will come down.” [Re the question from Pilkington] You are slightly misinterpreting – this is not a barrier to that [kind of upgrade to windows] – it depends on the state of the property [for example the carbon saved is less if going from an F to and E than…] It may just be your interpretation – happy to go over that with you.

[David Robson] The MCS based accreditation is only checked once a year – a real issue. The hardest thing about MCS is – is your paperwork in order ? Not if you can do the job…

[Joanne Wade] The conversation about energy use – how to get people involved. We need more messaging – this is what this really is. If all levels of government [do the messaging] more effective.

[John Sinfield] The Minister mentioned turning up the heating and hoovering [vacuuming] in your underpants. The industry is responsible to [address that in the] owner’s manual. This is how you need to treat your house differently. The tax issue – madness. If the HMRC can’t do it [convince the EC/EU] then ignore them.

[Nigel Banks] Behaviour change is vital. The Green Deal providers who don’t put that in their package will come unstuck. Not as confident about carding [system of accreditation based on individual trades persons by trade] [not relevant to your particular skill] [skill specific ?]

[Alan Whitehead] I assume the Minister meant thermal underwear.

[Colin Hines, Green New Deal Group] Trust [is important] when the finance people are having fits over FiTs. What [are you] trying to do to the market ? Is the Green Investment Bank going to kick up some money for the Green Deal ? What about the drop in the Impact Assessment from £10 billion to £ 5 billion for the Green Deal [some confusion about what this refers to]

[Roger Webb, The Heating and Hotwater Industry Council] How do we bring “Jeff” to the party ? We are keen to see heating as part of the Green Deal. There are 90,000 small tradesmen working for 60,000 small companies. Will they think the Green Deal is rubbish ? They are the leads for the Green Deal – they need training. We need to incentivise them. A voucher scheme ? Use a little of the £200 million… I really welcome the work and [interest in] bringing microgeneration [?] business into the scheme.

[Neil Marshall, National Insulation Association] Regarding solid wall insulation – the IWI / CWI confusion [Internal Wall Insulation, Cavity Wall Insulation] – what solution is proposed for hard-to-treat cavities ? The hard-to-treats we are not able to do for another year. Need to drive more cavities and lofts. The Committee on Climate Change [CCC] have reported on a need for additional incentives outside the Green Deal – driving the uptake of the Green Deal – talk of incentives and fiscals. Gap-filling. The Green Deal [should be able to cover] able-to-pay loft insulation installations, able-to-pay cavity wall insulation, hard-to-treat cavities and solid wall insulation. If we are doing 1 million in 2012 under CERT / CES(P)…if there is no Green Deal finance we can’t sell anything [after 2012]. “There is a critical need for a transitional arrangement.” We have had high level discussions with DECC that have been very useful…

[ X from Honeywell ? ] The in-situ factors. [For example, father [in law] isn’t going to replace his boiler because the payback will be after he’s dead]. Multiple length of payback [period] for any measure that’s put in – old antiquated evaluation tool. The householder asks what’s in it for them [what they can put some energy into doing] – is the longer payback [period] less attractive ?

[ X from “Shah” ? ] Not much on solar / microgeneration. [Will the Green Deal become certified ?]

[Nigel Banks] How do we do Green Deal for a boiler ? On 3rd January [2013] will the big energy companies do it themselves ? Some measures won’t perform as predicted.

[John Sinfield] “If the Green Investment Bank doesn’t provide finance for the Green Deal we are in a world of hurt”. We need to engage with “Jeff” the trusted installed. The Government needs to drive consequential improvements through – if you have a new boiler, you will have wall insulation [crazy otherwise, as all that heat will be lost through the walls]. Not seeing where my £ 1 million invested in solid wall solutions is going now. The job is not done [cavities and lofts].

[Tracy Vegro] A lot of Local Authorities don’t distinguish between good debt and bad – money is there for them – but they aren’t borrowing to invest. We are retaining HECA [Home Energy Conservation Act]. [Mentions poor opinion about the Green Investment Bank] – talking the “jib” [GIB] down. The biggest risk is the lack of confidence in the Green Deal. [Working on the terms of the] Green Deal Finance Companies [GDFC] – still see if…. [Important to take the attitude of] not talking it down. If another equity slice [is added…] We are a broad church – open to new entrants. Most work will be done [under the Green Deal] – most retrofits. [With the ActonCO2 and other Government paid communications campaigns on climate change and energy efficiency] We didn’t really get the message across – our millions spent [on advertising and public relations]. [We will] do better – more and more things will meet the Golden Rule. Come and meet our scientists.

[David Robson] Heating – a huge opportunity – not a loan with British Gas – the boiler you want – add on solar [with a Green Deal loan] linking creatively.

[ X from ? ] [Brings up the thorny problem of which technologies and measures are possible under the Green Deal’s Golden Rule] 45 points [of requirements] to meet criteria. In the future, what technologies will be viable ?

[Tracy Vegro] The RHI [Renewable Heat Incentive] is not eligible – does not meet the [Golden] Rule.

[Further exchanges – becoming somewhat stressed]

[Alan Whitehead MP] Just as things were getting exciting…[we have to close] an interesting period over the next 18 months.

Gas in the UK (2)

…Continued from http://www.joabbess.com/2012/06/12/gas-in-the-uk/

Questions from the floor

[Tony Glover]

…increasing electricification of heat and transport. I was interested in what Doug said about heat. [If energy conservation measures are significant and there is] a significant reduction in gas use for heat…interested in the Minister’s response.

[Terry ? (Member of PRASEG)]

I’m interested in gas that would need CCS [Carbon Capture and Storage] [in future] …[since there would be no restriction there would be an] incentive to build new gas in next few years away from CCS-usable infrastructure. Maybe encouraging gas stations over next few years to be built in view of CCS.

[ ? ]

[There have been mentions of the] Gas [generation] Strategy and gas storage. Is it your intention to have both in the Energy Bill ? [Need to improve investor confidence.]

[Charles Hendry MP] I’m more confident than Doug on CHP…[in respect of energy conservation we will begin to increase our use of] CHP [Combined Heat and Power], geothermal energy, don’t need District Heating. I think we’ll see more people switch to electric heating. The likely pricing on gas will mean people have to look at other sources – such as localised heat storage, intelligent ways to produce hot water and heat in their homes […for example, a technology to store heat for several days…] The first [new gas power] plants will be where they are already consented – where originally coal plants – need to have identified in advance – no new plant is consented unless…We’ve asked Ofgem to ask re securing gas supplies. If we can stretch out the tail of North Sea gas – can stretch it out 30 – 40 years […] technology […] Centrica / Norway […] develop contracts […] Is there a role for strategic storage [Centrica asking] […] Buying and selling at the wrong price (like the gold) [widespread chuckling in the room]. Some of it may not need legislation. Gas Strategy will be published before the Energy Bill.

[David Cox] Get very nervous about gas storage. Don’t think there’s a need to put financial incentives in place to increase gas storage. We think the hybrid gas market is successful – a market and regulatory framework – [gas storage incentives] could damage.

[Doug Parr] I’m not downbeat because I want to be downbeat on heat. [Of all the solutions proposed none of them show] scaleability, deliverability. I’d love that to come true – but will it ? […] Heat pumps ? Biogas is great but is it really going to replace all that gas ? If we’re going to be using gas we need to make the best use of it […] Issues around new plant / replacement – all about reducing risks no exposing ourselves to [it] – security of supply, climate risks, issues about placement [siting of new plant]. If CCS can really be made to work – it’s a no-brainer – do we want all that carbon dioxide in the atmosphere or … ? Our entire policy becomes dependent on a technology that hasn’t even been demonstrated. Other technologies that people thought were great – years later they still haven’t arrived [for example, rooftop wind turbines]. If we say CCS is the only way it’s going to work – what’s Plan B ? We are going to use [fossil fuels] – should not become wholly dependent on technology not yet demonstrated.

[Alan Whitehead] Perhaps people should be asked – which would you prefer – a CHP / DH [Combined Heat and Power / District Heating] plant in the valley here, or a couple of wind turbines on that hill ? That would [shake things up].

Questions from the floor

[ X ? ] See […] as the ultimate destination. Most important – gas can be made zero carbon – not pie in the sky. 1. Start contributions of carbon-neutral gas and 2. will need far less if [we act] like Japan – force installation of microCHP. Their aim is to do same as for washing machines [bring prices down – make widely available for the home]. MicroCHP [with] heat pumps – reduction as good as decarbonising gas or electricity. But can also decarbonise gas.

[ X ? ] The Minister mentioned the importance of CHP but recently dropped […] mandate. If CHP so important what measures is the Government taking to ensure its installation ?

[ X ? ] Electricity is a rubbish fuel for heating buildings – very peaky load – need something cheap to store, cheap to […]. Fits very well with forcing down demand. Where we’re getting our gas from. At the moment our waste is being incinerated. For a cheap additional cost, where currently incinerating we can do anaerobic digestion [AD], producing a fungible asset – the gas – can gradually decarbonise our grid.

[ Thomas Grier ? ] …a decision [?] of London – CHP in London over the next few years. If we want to use electricity for heat, we need to reinforce the electricity grid [by 60% to 90% ?] In rural situations – use electrical heating. In urban, use decarbonised energy. [This model projection] shows the gas grid disappearing – it will collapse at some point if all we have on the gas grid is cooking.

[ X ? ] …[encouraged CHP then a few days later] stood up then said all support [removed ?] for CHP next year. A Heat Strategy that said there is enormous [scope / potential] for CHP. We want to see gas, we want to see efficiency. Are we moving towards […] without it they won’t build it.

[David Cox] Microgeneration – couldn’t get it down economically. Reliability [issues]. Full supporter of biogas – AD got a contribution to make – but never more than 5% – no matter how much [we crack it]. Electricity is not very good for heating – but how to we decarbonise the heat sector ? Always been an advocate of CHP. Government need to do more incentivising of that.

[Charles Hendry MP] Innovation and invention […] Government can’t support all emerging technologies. Best brains around the world [are working on] how we move fundamentally in a low carbon direction. On the waste hierarchy – burning of waste should be the final stage – finding a better use for it. [I visited] the biggest AD plant in Europe in Manchester – biogas and electricity generation. We are seeing Local Authorities taking a more constructive long-term view on how to manage waste. CHP – we all want to see more of it – to what extent does it need support ? That depends on whether new build – building a community around it. [By comparison, urban retrofitting is probably too expensive] Iceland [took the decision and] retrofitted almost every home – I’m now more convinced than before. What is the right level of subsidy and what makes good economic case ?

[Doug] We do keep missing opportunities. [For example in Wales, Milford Haven, the new Combined Cycle Gas Turbine at the Liquified Natural Gas (LNG) refinery to process the gas] should have been CHP. I am enthusiastic about lots of heat technologies [but the same questions/issues apply] scaleability and deliverability. District heating [DH] – an infrastructure asset ! [Can change priorities about what gets built – for example in Denmark (?)] they’re building large-scale solar farms to top up the DH. In the Treasury’s infrastructure plan [see DH could be…] Heat is the poor relation in energy debate. Other networks have been identified in the National Policy Statements (NPS) – but not heat.

[ Leonie Green, Renewable Energy Association ] [I must] defend heat pumps. In Sweden 90% of new builds [hav e heat pumps ?] – heat pump efficiency is a function of the energy-efficiency of the building […] Just on AD – National Grid report said it could provide 50% [of the nation’s supply. Our members think] that’s a bit too high – we think 25%. My question is really about the benefits. We are hearing anxiety about costs, but it’s piecemeal on benefits. We’ve been strong on jobs, balance of trade, exports [all benefits of renewable energy investment and deployment]. Pleased to see DECC put out [report from] Oxford Economics [on the] wider economic benefits. How can we get more and more balance in reports. [An example] Deutsche Bank renewable generation opportunities.

[ ? ] We would also support more than 5% from renewable gas – also about hydrogen – we used to do it when it was town gas – why not again ? As regards injecting biomethane/biogas from AD into the National Grid [last year ? to this year ?] 130 enquiries to connect AD to our network – none have progressed. Please sort these [registrations] out.

[ ? ] Minister, we’re not expecting you to fund all technologies – we need some logic – especially with transport. The Government doesn’t recognise the difference between Renewable Natural Gas if used in transport and fossil fuels. Would be simple – a tax on gas if used in a vehicle. What’s the problem over […] ?

[Colin Snape, University of Nottingham] We are looking at reducing the costs of carbon capture – we have a section of PhDs… One other gas source not mentioned – gas from underground gasification of coal [UCG]. In UK […] 2 billion tonners of coal – slightly offshore – on the energy coast of the UK – where all the action is on CCS – obviously UCG needs to be coupled with CCS to be carbon neutral. Would [be operational] in a very short time period […incentives…]. Significant proportion of UK needs.

[ ? ] What is the purpose of the Gas Strategy ? Shale gas isn’t a miracle. The “Golden Age of Gas” [report by the International Energy Agency (IEA)] doesn’t mean cheap gas, because [it will be put to] lots of uses. Renewable electricity and nuclear are not going to come until the 2020s. How do we avoid building loads of gas generation that is not necessary after that time ? What’s the role of mothballing (relatively cheap to bring CCGT out of mothballs comparing to build new). No sign of reduction in electricity demand reduction – therefore there will be high gas use.

[ Doug Parr ] On UCG, the IEA had two scenarios in the “Golden Age of Gas” – both took us over 3.5 degrees Celsius [in additional global warming]. Even if there is unconventional gas sources, still a huge danger of going down the road of unrestrained gas use. What is the alternative ? We should not end up becoming dependent on gas. Should not build gas to fill a short-term hole – they will lobby for their own interests – to keep open.

[ David Cox ] CCGTs won’t be built without guarantees greater than 20 years. Also renewable energy might not provide in the way that we hope. The CCC report – what caused the rise in energy prices ? The wholesale gas price – not renewable energy, green policies. However, that was slightly dishonest – the counter-factual was […] renewable energy significantly still more expensive than fossil fuel there. Until we can get costs of renewable energy down to the prices of fossil fuels… [The industry] don’t give the impression [they will build] on the basis of short-term need. Gas isn’t clean, I admit that […] CCS – that will work.

[Charles Hendry MP] A lot comes back to a need for a balanced approach – carbon targets and security of supply. If you haven’t sorted out security of supply, the electorate will not give permission to go low carbon. Gas is a hedging fuel currently but don’t know where costs going over time. As a politician, I like pipelines – know where it’s going (not like LNG, where there was limited use of new LNG import plant). If we want Scandinavian gas, we need security of demand to build the new pipeline. How we deal with issues of biomethane – in 2 years – need to make more progress. Some of these [techologies] will be gamechangers – some, look back in a couple of years… [Need a] permissive framework to allow a lot of ideas and technologies. There is no source of energy that hasn’t required subsidy in early days. Fanciful to suggest new forms of energy can come through without support. The letters we get [from the public, from constituents] are on vehicle fuel costs, not how much their gas bill went up last winter…

Official end of meeting

A gaggle of people gathered in the hallway to discuss some items further.

The Electricity Market Reform (EMR) was generally criticised – as it contains measures likely to specifically benefit nuclear power. Electricite de France was identified as very involved. The Government had said “no nuclear subsidy”, but the EMR measures are equivalent to hidden subsidies.

The Levy Cap was criticised as it would disturb investor confidence – if several nuclear reactors came on-stream in 10 years time, in the same year, they would eat up the whole subsidy budget for that year – and other technologies would lose out. If was felt that a number of the EMR proposals were “blunt instruments”, not overcoming shortcomings of former levies and subsidies.

Although the EMR was designed to addressed economic fears, it wasn’t assisting with financing risks – if anything it was adding to them. Rates of return have to be guaranteed for loans to be made – chopping and changing subsidies doesn’t allow for that.

Leonie Green said that the REA members don’t like the Premium Feed-in-Tariff (FiT). She also said later that they were not pleased about the cuts in support for AD.

Since my personal interest is in using Renewable Gas of various sources (including Biomethane / Biogas) to displace Natural Gas from the gas grid, I spoke with various people about this informally (including a woman I met on the train on my way home – who really got the argument about decarbonising gas by developing Renewable Gas, and using that to store excess renewable electricity, and use it as backup for renewable electricity. Although she did say “it won’t be done if it won’t confer benefits”.). One of the key elements for developing Renewable Gas is to create a stream of Renewable Hydrogen, produced in a range of ways. Somebody asked me what the driver would be for progress in Renewable Hydrogen production ? I said the “pull” was supposed to be the fabled “Hydrogen Economy” for transport, but that this isn’t really happening. I said the need for increased sources of renewably-sourced gas will become progressively clear – perhaps within a decade.

One of the persons present talked about how they think the Government is now coming out of the nuclear dream world – how only a few of the proposed new reactors will get built in the next decade – and how the Government now need to come up with a more realistic scenario.

It was mentioned that is appears that the Biogas technologies are going to have the same treatment as solar photovoltaics – some sort of subsidies at the start – which get cut away far too early – before it can stand on its own two feet. This was said to be the result of an underlying theory that only a fixed amount of money should be used on launching each new technology – with no thought to continuity problems – especially as regards investment and loan structures.

Gas in the UK

“The role of gas in the UK’s energy mix” 12 June 2012 17:30 – 18:30, Committee Room 5, House of Commons with speakers Minister of State for Energy and Climate Change, Charles Hendry; David Cox, Managing Director of The Gas Forum and Dr Doug Parr, Chief Scientist of Greenpeace UK. Chaired by Dr Alan Whitehead MP, Chairman of PRASEG, the Parliamentary Renewable and Sustainable Energy Group, who called the seminar : http://www.praseg.org.uk/the-role-of-gas-in-the-uk-energy-mix/

UNVERIFIED COMMENTS : Please check with the speakers to confirm their statements and do not take this account as verbatim.

[Alan Whitehead MP] Questions about gas. Will it be business as usual ? If not – too “much” gas ? What does that mean for Climate Change targets ? New gas generation – about 11 gigawatts coming on-stream in the next 5 years – “grandfathered” (no obligations to control emissions with Carbon Capture and Storage (CCS)) throughout the life of the power plant – does produce questions about Climate Change targets – CCS may change that landscape in the medium-term future. Question about emergence of biogas into system [which would bring] a down-trend in emissions.

[David Cox] The wonderful future that gas offers us. Have to look at whole low carbon [framework] – gas has a place. Not a war [between gas and renewable energy technologies]. Both needed [in the advance towards carbon-free] energy. Without gas, not going to make it. Make sure we can afford it. Gas has a role. The recent [International Energy Agency] IEA report on the “Golden Age of Gas” – tight gas, shale gas – has doubled reserves. Nobody knows for sure – there’s so much there. Perhaps 250 years of gas – no shortage of gas [although some of it is in] sensitive areas. Getting it from those areas with political problems. [There are uncertainties about] unconventional gas. There is plenty around the world – “pretty good”. Gas is not at war with renewables. Gas isn’t just a transition fuel – it’s a destination fuel. Got to prove CCS technically. If we can do that gas becomes a destination fuel. Can decarbonise not only electricity. Heat. Heat pumps won’t do it on their own. Sorry. [Gas can help decarbonise] transport – electrify the transport system – that’s what we believe is possible. Hope the Government will support CCS.

[Doug Parr] First and foremost – we are not going to eliminate gas from energy systems any time soon – don’t think of gas as a destination – I would warn against policy that gas is allowed to become the default and become too dependent on gas. A lot of policy on gas – but only over part of the energy system [electricity]. Heat is going to rely on gas fo a long time. If follow the Committee on Climate Change (CCC) logic – [heat is a] strategic sector – to getting away from carbon emissions. If gas is going to be what gets us out of energy problems – the so-called “trilemma” of decarbonisation, security [of supply] and cost. [New gas power plants amount to] 11 gigawatts [GW] over the next 5 years – 120 TWh – a quarter of current gas [still in service] out to 2030. If one take CCC target of 50 gC / KWh (grammes of carbon per kilowatt hour). Look at CCGT [Combined Cycle Gas Turbine gas generation power plant in operation] – that target is a fraction of [current] unabated [CCGT] – not that great. Any substantial role of gas has to make some pretty strong assumptions about CCS. Remember, this is not yet working – let us not have a decarbonisation policy relying heavily on CCS when not at the first stage. The CCC have warned that grandfathering of the 11 GW new generation – emit without restrictions – and issue until 2045. Can’t say gas is somehow the answer to decarbonisation issues. In media – don’t [swallow] the media froth. [As for] security of supply – already going to be quite reliant on gas for heating for quite some time – hard to see [otherwise]. Heavily reliant on imports – around 80%. Where do we import our gas from ? Qatar and Norway mostly. The former head of the Navy argued [recently] changing gas prices is the single most significant factor. DECC [UK Government Department of Energy and Climate Change] recent report on price shock. REA [Renewable Energy Association] said that just by hitting renewables targets would displace £60 billion of imports. [As for] shale gas : both Ofgem research and Deutsche Bank reports that shale gas is very unlikely to help on security [of supply] issue. Citing American example [of shale gas exploitation] is just irrelevant. [So the UK Government must be] supporting gas because of costs ? The biggest rise in consumer bills is from fossil fuel [price increases]. Not renewable energy, not green energy [measures] – it’s the rise in the wholesale gas price. Is that going to stabilise and go down ? Not according to Merrill Lynch and DECC – [strong] prices for Liquid Natural Gas (LNG) and therefore for gas [as a whole, will stay]. Clearly we will be using gas – as [electricity grid load] balancing. What I’m railing about is that gas doesn’t get us out of our energy trilemma. Gas will not [save us]. We know we can deliver through renewable energy, wind – acceleration of new technologies [such as tidal] – perhaps CCS will work, who knows ? and efficient use for example Combined Heat and Power (CHP) on industrial scale. If we are using gas we are using at it’s most efficient.

[Alan Whitehead MP] [recounts tale of how he got into trouble with Twitter commentators when he insisted the recent rise in consumer energy bills was due to the rise in the cost of wholesale gas, not green energy measures] [To Charles Hendry] I’m sure you don’t Tweet.

[Charles Hendry MP] No. absolutely not. I have enough people telling me I’m wrong without… We have to look at the role of gas. It would a dereliction of Government not to look at the role of gas going forward. […mentions developments in gas production…] seismic profiling [enabling better understanding of gas fields] horizontal drilling [improving access to complex fields]. [As for] unconventional gas – the IEA “Golden Age of Gas” – but don’t assume [it’s that simple – supply may go up but] demand for gas is going to go up dramatically. Japan – major user of LNG and diesel. Consequence of Germany’s decision to close nuclear power plants – will use much more gas. China…India…growth rate – massive growth of demand. Anticipate new resources to be found – Iraq for example – but cannot assume [what has happened in the United States of America with the development of shale gas where gas prices are now] a quarter [of what they were] – a massive boost to America – will they allow this to be exported to Asia – or use cheap gas to [relocating] industry back to the USA ? Have to look at implications for us. Reasons why shale gas is different in Europe – legal [situation] – the mineral rights [in the US, these can be acquired from underneath a landowner]. Don’t have the same commercial drives as farmers in the US. The reason why gas prices collapsed in the US and not here – if we saw a price benefit here, it would go out through the [gas] interconnectors [to neighbouring countries]. For real practical reasons won’t see shal gas develop [significantly] here. [It is a] global gamechanger – but… The US is fundamentally shifting from coal to gas – with the implications for emissions. The change from coal to gas was a major driver in European control of emissions [in the 1990s] […] Investment…technology…practical constraints. EdF [Electricite de France] will go ahead with new nuclear [by the end of the year ?] but the plant will not come online until the end of the decade. Major renewable energy resources also in 2020s [not immediate] – the cost of offshore wind power is two times that of onshore. We’re saying to industry to reduce by 40% by the end of the decade – otherwise simply not affordable. Contributions from tidal, CCS ahead. It’s going to be very end of this decade to see if CCS can work. Worrying gap [in power generation between now and next decade]. Megawatts (MW) of coal being turned off in 2015. [Coal plants are] getting through their [legally permitted] generating hours too quickly. By 2023, the only nuclear plant still operational will be Sizewell B. We have to have more gas in the mix. As we look towards more intermittent resources (renewables), gas is an important source of backup. [Will have/need] a capacity mechanism to ensure [optimisation when] mismatch between supply and demand – auction to include gas – could be [North Sea] gas, gas from the interconnectors [from abroad] or demand side response [demand reduction] – a more sophisticated capacity mechanism than historical. I’m more optimistic about CCS [than Doug Parr]. CCS is a requirement. It is something we have to deliver – no scenario I’ve seen where we’re going [to be] using less coal, oil and gas than today. [Out to 2035] our basic needs [will still rely for a good percentage on] fossil fuels. Broadening CCS [demonstration competition] out to pre- and post-combustion on coal – [expand] to gas. Can be applied to gas as well as coal. I think CCS is a fundamentally critical part of this equation. If so, can see gas as a destination fuel. The GW of gas being built in the next few years [some questions] – currently gas is being mothballed [some plants being shut down effectively putting them into disuse] because of [fuel] prices. I consented more in gas and also wind on- and offshore last year. But that gas is not being built. If we want that gas built we need a more coherent strategy. Look at what is necessary to encourage that gas – and carbon emissions [reduction] alongside. EPS [Emissions Performance Standard] […] to stop unabated coal – limit 450 gC / kWh – significant proportion of plant would need CCS. But ddin’t want to disincentivise gas. Have also said a point where CCS on gas will be necessary. But if we had people building gas now and then 15, 20 years later they would have to fit very expensive [CCS] equipment… Volume of gas coming forward meets our supply issues. Over the next few years, grandfathering. If see enough gas coming through can change the mechanism in due course. [We will be] responding officially to the CCC in Autumn. Need to [fully] decarbonise electricity in the course of the 2030s if we want to meet out climate change objectives. I think that [the] reality [is that] gas and important element. Nuclear is important. Want to see significant amount of renewable energy and what Doug is calling for – significant commitment to [energy use] efficiency in the country. [We should concentrate particularly on] energy efficiency.

The meeting then opened up to questions from the floor… To Be Continued

Renewable Gas : An Introduction


Image shows capped Victorian gas light wall fitting next to a modern electric standard lamp.

Gas fuels are, and will continue to be, important in global energy, despite the projected exponential rise in renewable electricity generation from solar and wind power. Natural Gas has a far lower carbon dioxide emissions profile than coal or oil, and is providing increasing amounts of heat, light and power to industrialised countries. Gas may be regarded as competition to renewable energy, but in fact, gas of different kinds will be an enabler of the renewable energy future, filling in the sawtooth gaps in variable renewable electricity generation, and providing essential transport fuels.
Traditional methods of producing energy gas include mining and pumping the Earth’s fossil fuel resources. The good quality, easily accessible gas is coming to an end, and so-called “unconventional” sources are beginning to be exploited – gas locked in dense sediment and strata, in shales, coal seams and deepwater seabeds. To make energy takes energy, and unconventional gas fuels are becoming more costly to produce. Since the expense of going after poorer density, more inaccessible resources could become prohibitive, exploitation of gas from under the ground will most likely gradually be usurped by methods of making gas fuels above ground. These will need to be from sustainable resources, and so lighter-than-air fuels of the future will be Renewable Gas.

To dig deeper into how important gas is, here’s a little data disclosure on my personal home energy consumption, leaving out food, goods and transport – much of which is virtually Zero Carbon :-

May 2012 Household Domestic Utility Energy Consumption
Natural Gas 137.3 kWh
Electricity 54.0 kWh
Water 5.2 kWh (estimate for 2.4 m3 water from Thames Water)

May 2012 Household Domestic Utility Energy Production
Electricity 293.2 kWh (home photovoltaic generation)
Biomethane 1.8 kWh (estimate for 2.4 m3 sewage digested by Thames Water)

For the first time since having the solar electricity panels fitted, my house has become a net energy producer. The house was already producing more electricity than it used in March 2012, but the thing that kept it a net energy consumer was Natural Gas consumption – mostly used for space heating.

The house used less than half the Natural Gas in March than it did in February or January, but the solar power generated was much less then than it is now – owing to the season – and so did not overtake gas demand. Hopefully now, the house will remain a net energy producer until November.

Two things can be drawn from looking at all the data – first that energy consumption swings can be significant from season to season – and secondly that Natural Gas use is by far the largest part of energy consumption for most of the year. In fact, Natural Gas use is an order of magnitude larger than electricity in winter, even when some of the localised space heating is electrical.

I have taken measures to reduce my space heating needs, such as only using the gas central heating when critical, and keeping the thermostat at 17 degrees C when it’s on, and installing various kinds of insulation and draught exclusion. Thermal adjustment of the home is an ongoing process of improvement, but despite all my efforts, gas use is still ten times higher in the cold months than all the power consumption. On the other hand, in the warm months, I sometimes use less gas energy than electricity.

I aim to change some of the home gas appliances to electrical power, in order to further reduce my dependence on gas. However, even though I have a green electricity account, some of my power will still be coming from gas-fired power stations. Plus, it could be argued that my burning gas to heat water is more efficient than using electricity, because of the losses of conversion in the power supply grid system. Heating by electricity is almost certainly less efficient – which is why I must continue to insulate my home further. Of note, my domestic production of energy will not ever match winter consumption without utilising a new resource, as solar insolation is at its ebb then, and so moving away from gas to power will perhaps take me farther away from an overall balance between energy supply and demand.

Until the United Kingdom is powered entirely by green electricity and given comfort by insulation and green heating and cooling, we will continue to be dependent on gas fuels, not just because of the variable nature of renewable energy, which gas backs up, but because it will take time to convert everything that can be converted from gas to power. This is especially important in the field of transport, where the first conversion will need to be from oil-refined fuels to gas-refined fuels as a first stage – as replacing all the vehicles with electric drive models will take a gargantuan effort, and much economic turnover.

The importance of gas fuels in the next few decades during the green energy transition means that it is worthwhile to develop sustainable Renewable Gas supplies, particularly considering that once developed they can continue to be of use long into the future.

Solar FITs and Starts

The British Government’s solar power policy is not really going very well.

Ah well, at least the “nuclear power renaissance” is progressing…err, maybe not :-

“New nuclear electricity costs hit utility ratings – Moody’s : 27 Mar 2012

“Building a nuclear power plant is perceived as risky by credit rating agencies – and in some cases could lead to a ratings downgrade of the utility concerned, a senior analyst at US-based Moody’s told ICIS on Tuesday.”

“The analyst, who wished to remain anonymous, said an unfavourable attitude towards nuclear power stemmed largely from the scale of investment required, together with future uncertainties surrounding power prices.”

Continue reading Solar FITs and Starts

Apocalyptic Apoptosis

Image Credit : Carl-A. Fechner, fechnerMedia

The Evangelist : “Climate change is so serious, we need to tell everybody about it. Everybody needs to wake up about it.” The Audience “We have heard this all before. Do pipe down.”

The Social Engineer : “Everybody should be playing their part in acting on climate change.” The Audience : “This story is too heavy – you’re trying to make us feel guilty. You’re damaging your message by accusing people of being responsible for causing climate change.”

The Social Psychologist : “By making such a big deal out of climate change, by using Apocalyptic language, audiences feel there is no hope.” The Audience : “Climate change is clearly not a big deal, otherwise the newspapers and TV would be full of it all the time.”

The Post-Economist : “Climate change is caused by consumption. We need to reduce our consumption.” The Audience : “We don’t want to be told to live in cold caves, eating raw vegetables by candlelight, thanks.”

The Defeatist : “It’s already too late. There’s nothing we can do about it. All I can do is sit back and watch it happen.” The Audience : “Isn’t that being a little too negative ? If you think there’s nothing that can be done, what hope have we got ?”

The late, great Hermann Scheer said that “Today’s primary energy business will vanish – but it won’t give up without a fight…the greatest and the worst environmental pollution of all is when countless so-called energy experts keep on trying to talk society out of even contemplating this scenario [of 100% renewable energy] as a possibility for the near future – because that is what makes society apathetic and unmotivated…”

So who or what is making us passive and unmoved ?

Is climate change really our fault ? Or is it something we’ve inherited because of the irresponsible energy companies ?

Are we responsible for responding to climate change or is it somebody else’s responsibility ?

Continue reading Apocalyptic Apoptosis