Energy Change for Climate Control
RSS icon Home icon
  • Failing Narratives : Carbon Culprits

    Posted on March 14th, 2014 Jo No comments

    In the last few weeks I have attended a number of well-intentioned meetings on advances in the field of carbon dioxide emissions mitigation. My overall impression is that there are several failing narratives to be encountered if you make even the shallowest foray into the murky mix of politics and energy engineering.

    As somebody rightly pointed out, no capitalist worth their share price is going to spend real money in the current economic environment on new kit, even if they have asset class status – so all advances will necessarily be driven by public subsidies – in fact, significant technological advance has only ever been accomplished by state support.

    Disturbingly, free money is also being demanded to roll out decades-old low carbon energy technology – nuclear power, wind power, green gas, solar photovoltaics – so it seems to me the only way we will ever get appropriate levels of renewable energy deployment is by directed, positive public investment.

    More to the point, we are now in an era where nobody at all is prepared to spend any serious money without a lucrative slap on the back, and reasons beyond reasons are being deployed to justify this position. For example, the gas-fired power plant operators make claims that the increase in wind power is threatening their profitability, so they are refusing to built new electricity generation capacity without generous handouts. This will be the Capacity Mechanism, and will keep gas power plants from being mothballed. Yes, there is data to support their complaint, but it does still seem like whinging and special pleading.

    And the UK Government’s drooling and desperate fixation with new nuclear power has thrown the European Commission into a tizzy about the fizzy promises of “strike price” guaranteed sales returns for the future atomic electricity generation.

    But here, I want to contrast two other energy-polity dialogues – one for developing an invaluable energy resource, and the other about throwing money down a hole.

    First, let’s take the white elephant. Royal Dutch Shell has for many years been lobbying for state financial support to pump carbon dioxide down holes in the ground. Various oil and gas industry engineers have been selling this idea to governments, federal and sub-federal for decades, and even acted as consultants to the Civil Society process on emissions control – you just need to read the United Nations’ IPCC Climate Change Assessment Report and Special Report output to detect the filigree of a trace of geoengineering fingers scratching their meaning into global intention. Let us take your nasty, noxious carbon dioxide, they whisper suggestively, and push it down a hole, out of sight and out of accounting mind, but don’t forget to slip us a huge cheque for doing so. You know, they add, we could even do it cost-effectively, by producing more oil and gas from emptying wells, resulting from pumping the carbon dioxide into them. Enhanced Oil Recovery – or EOR – would of course mean that some of the carbon dioxide pumped underground would in effect come out again in the form of the flue gas from the combustion of new fossil fuels, but anyway…

    And governments love being seen to be doing something, anything, really, about climate change, as long as it’s not too complicated, and involves big players who should be trustworthy. So, you get the Peterhead project picking up a fat cheque for a trial of Carbon Capture and Storage (CCS) in Scotland, and the sidestep hint that if Scotland decides to become independent, this project money could be lost…But this project doesn’t involve much of anything that is really new. The power station that will be used is a liability that ought to be closing now, really, according to some. And the trial will only last for ten years. There will be no EOR – at least – not in the public statements, but this plan could lead the way.

    All of this is like pushing a fat kid up a shiny slide. Once Government take their greasy Treasury hands off the project, the whole narrative will fail, falling to an ignominious muddy end. This perhaps explains the underlying desperation of many – CCS is the only major engineering response to emissions that many people can think of – because they cannot imagine burning less fossil fuels. So this wobbling effigy has to be kept on the top of the pedestal. And so I have enjoyed two identical Shell presentations on the theme of the Peterhead project in as many weeks. CCS must be obeyed.

    But, all the same, it’s big money. And glaring yellow and red photo opps. You can’t miss it. And then, at the other end of the scale of subsidies, is biogas. With currently low production volumes, and complexities attached to its utilisation, anaerobically digesting wastes of all kinds and capturing the gas for use as a fuel, is a kind of token technology to many, only justified because methane is a much stronger greenhouse gas than carbon dioxide, so it needs to be burned.

    The subsidy arrangements for many renewable energy technologies are in flux. Subsidies for green gas will be reconsidered and reformulated in April, and will probably experience a degression – a hand taken off the tiller of driving energy change.

    At an evening biogas briefing given by Rushlight this week, I could almost smell a whiff of despair and disappointment in the levels of official support for green gas. It was freely admitted that not all the planned projects around the country will see completion, not only because of the prevailing economic climate, but because of the vagaries of feedstock availability, and the complexity of gas cleaning regulations.

    There was light in the tunnel, though, even if the end had not been reached – a new Quality Protocol for upgrading biogas to biomethane, for injection into the gas grid, has been established. You won’t find it on the official UK Goverment website, apparently, as it has fallen through the cracks of the rebranding to gov.uk, but here it is, and it’s from the Environment Agency, so it’s official :-

    http://www.greengas.org.uk/pdf/biomethane-qp.pdf

    http://www.r-e-a.net/news/rea-welcomes-environment-agencys-updated-anaerobic-digestion-quality-protocol

    http://adbiogas.co.uk/2014/01/30/biomethane-qp-could-boost-renewable-gas-to-grid-market/
    http://adbiogas.co.uk/2014/01/30/biomethane-quality-protocol-published/

    Here’s some background :-

    http://www.environment-agency.gov.uk/aboutus/wfo/epow/124111.aspx

    To get some picture of the mess that British green energy policy is in, all you need do is take a glance at Germany and Denmark, where green gas is considered the “third leg of the stool”, stabilising renewable energy supply with easily-stored low carbon gas, to balance out the peaks and troughs in wind power and solar power provision.

    Green gas should not be considered a nice-to-have minor addition to the solutions portfolio in my view. The potential to de-carbonise the energy gas supply is huge, and the UK are missing a trick here – the big money is being ladled onto the “incumbents” – the big energy companies who want to carry on burning fossil fuels but sweep their emissions under the North Sea salt cavern carpet with CCS, whilst the beer change is being reluctantly handed out as a guilt offering to people seeking genuinely low carbon energy production.

    Seriously – where the exoplanet are we at ?

  • But Uh-Oh – Those Summer Nights

    Posted on January 20th, 2014 Jo No comments

    A normal, everyday Monday morning at Energy Geek Central. Yes, this is a normal conversation for me to take part in on a Monday morning. Energy geekery at breakfast. Perfect.

    Nuclear Flower Power

    This whole UK Government nuclear power programme plan is ridiculous ! 75 gigawatts (GW) of Generation III nuclear fission reactors ? What are they thinking ? Britain would need to rapidly ramp up its construction capabilities, and that’s not going to happen, even with the help of the Chinese. (And the Americans are not going to take too kindly to the idea of China getting strongly involved with British energy). And then, we’d need to secure almost a quarter of the world’s remaining reserves of uranium, which hasn’t actually been dug up yet. And to cap it all, we’d need to have 10 more geological disposal repositories for the resulting radioactive spent fuel, and we haven’t even managed to negotiate one yet. That is, unless we can burn a good part of that spent fuel in Generation IV nuclear fission reactors – which haven’t even been properly demonstrated yet ! Talk about unconscionable risk !

    Baseload Should Be History By Now, But…

    Whatever the technological capability for nuclear power plants to “load follow” and reduce their output in response to a chance in electricity demand, Generation III reactors would not be run as anything except “baseload” – constantly on, and constantly producing a constant amount of power – although they might turn them off in summer for maintenance. You see, the cost of a Generation III reactor and generation kit is in the initial build – so their investors are not going to permit them to run them at low load factors – even if they could.

    There are risks to running a nuclear power plant at partial load – mostly to do with potential damage to the actual electricity generation equipment. But what are the technology risks that Hinkley Point C gets built, and all that capital is committed, and then it only runs for a couple of years until all that high burn up fuel crumbles and the reactors start leaking plutonium and they have to shut it down permanently ? Who can guarantee it’s a sound bet ?

    If they actually work, running Generation III reactors at constant output as “baseload” will also completely mess with the power market. In all of the scenarios, high nuclear, high non-nuclear, or high fossil fuels with Carbon Capture and Storage (CCS), there will always need to be some renewables in the mix. In all probability this will be rapidly deployed, highly technologically advanced solar power photovoltaics (PV). The amount of solar power that will be generated will be high in summer, but since you have a significant change in energy demand between summer and winter, you’re going to have a massive excess of electricity generation in summer if you add nuclear baseload to solar. Relative to the demand for energy, you’re going to get more Renewable Energy excess in summer and under-supply in winter (even though you get more offshore wind in winter), so it’s critical how you mix those two into your scenario.

    The UK Government’s maximum 75 GW nuclear scenario comprises 55 GW Generation III and 20 GW Generation IV. They could have said 40 GW Gen III to feed Gen IV – the spent fuel from Gen III is needed to kick off Gen IV. Although, if LFTR took off, if they had enough fluoride materials there could be a Thorium way into Gen IV… but this is all so technical, no MP [ Member of Parliament ] is going to get their head round this before 2050.

    The UK Government are saying that 16 GW of nuclear by 2030 should be seen as a first tranche, and that it could double or triple by 2040 – that’s one heck of a deployment rate ! If they think they can get 16 GW by 2030 – then triple that by 10 years later ? It’s not going to happen. And even 30 GW would be horrific. But it’s probably more plausible – if they can get 16 GW by 2030, they can arguably get double that by 2040.

    As a rule of thumb, you would need around 10 tonnes of fissionable fuel to kickstart a Gen IV reactor. They’ve got 106 tonnes of Plutonium, plus 3 or 4 tonnes they recently acquired – from France or Germany (I forget which). So they could start 11 GW of Gen IV – possibly the PRISM – the Hitachi thing – sodium-cooled. They’ve been trying them since the Year Dot – these Fast Reactors – the Breeders – Dounreay. People are expressing more confidence in them now – “Pandora’s Promise” hangs around the narrative that the Clinton administration stopped research into Fast Reactors – Oak Ridge couldn’t be commercial. Throwing sodium around a core 80 times hotter than current core heats – you can’t throw water at it easily. You need something that can carry more heat out. It’s a high technological risk. But then get some French notable nuclear person saying Gen IV technologies – “they’re on the way and they can be done”.

    Radioactive Waste Disposal Woes

    The point being is – if you’re commissioning 30 GW of Gen III in the belief that Gen IV will be developed – then you are setting yourself up to be a hostage to technological fortune. That is a real ethical consideration. Because if you can’t burn the waste fuel from Gen III, you’re left with up to 10 radioactive waste repositories required when you can’t even get one at the moment. The default position is that radioactive spent nuclear fuel will be left at the power stations where they’re created. Typically, nuclear power plants are built on the coast as they need a lot of cooling water. If you are going for 30 GW you will need a load of new sites – possibly somewhere round the South East of England. This is where climate change comes in – rising sea levels, increased storm surge, dissolving, sinking, washed-away beaches, more extreme storms [...] The default spent fuel scenario with numerous coastal decommissioned sites with radioactive interim stores which contain nearly half the current legacy radioactive waste [...]

    Based on the figures from the new Greenpeace report, I calculate that the added radioactive waste and radioactive spent fuel arisings from a programme of 16 GW of nuclear new build would be 244 million Terabequerel (TBq), compared to the legacy level of 87 million TBq.

    The Nuclear Decommissioning Authority (NDA) are due to publish their Radioactive Waste Inventory and their Report on Radioactive Materials not in the Waste Inventory at the end of January 2014. We need to keep a watch out for that, because they may have adapted their anticipated Minimum and Maxmium Derived Inventory.

    Politics Is Living In The Past

    What you hear from politicians is they’re still talking about “baseload”, as if they’ve just found the Holy Grail of Energy Policy. And failed nuclear power. Then tidal. And barrages. This is all in the past. Stuff they’ve either read – in an article in a magazine at the dentist’s surgery waiting room, and they think, alright I’ll use that in a TV programme I’ve been invited to speak on, like Question Time. I think that perhaps, to change the direction of the argument, we might need to rubbish their contribution. A technological society needs to be talking about gasification, catalysis. If you regard yourselves as educated, and have a technological society – your way of living in the future is not only in manufacturing but also ideas – you need to be talking about this not that : low carbon gas fuels, not nuclear power. Ministers and senior civil servants probably suffer from poor briefing – or no briefing. They are relying on what is literally hearsay – informal discussions, or journalists effectively representing industrial interests. Newspapers are full of rubbish and it circulates, like gyres in the oceans. Just circulates around and around – full of rubbish.

    I think part of the problem is that the politicians and chief civil servants and ministers are briefed by the “Old Guard” – very often the ex-nuclear power industry guard. They still believe in big construction projects, with long lead times and massive capital investment, whereas Renewable Electricity is racing ahead, piecemeal, and private investors are desperate to get their money into wind power and solar power because the returns are almost immediate and risk-free.

    Together in Electric Dreams

    Question : Why are the UK Government ploughing on with plans for so much nuclear power ?

    1. They believe that a lot of transport and heat can be made to go electric.
    2. They think they can use spent nuclear fuel in new reactors.
    3. They think it will be cheaper than everything else.
    4. They say it’s vital for UK Energy Security – for emissions reductions, for cost, and for baseload. The big three – always the stated aim of energy policy, and they think nuclear ticks all those three boxes. But it doesn’t.

    What they’ll say is, yes, you have to import uranium, but you’ve got a 4 year stock. Any war you’re going to get yourselves involved in you can probably resolve in 4 days, or 4 weeks. If you go for a very high nuclear scenario, you would be taking quite a big share of the global resource of uranium. There’s 2,600 TWh of nuclear being produced globally. And global final energy demand is around 100,000 TWh – so nuclear power currently produces around 2.6% of global energy supply. At current rates of nuclear generation, according to the World Nuclear Association, you’ve got around 80 years of proven reserves and probably a bit more. Let’s say you double nuclear output by 2050 or 2040 – but in the same time you might just have enough uranium – and then find a bit more. But global energy demand rises significantly as well – so nuclear will still only provide around 3% of global energy demand. That’s not a climate solution – it’s just an energy distraction. All this guff about fusion. Well.

    Cornering The Market In Undug Uranium

    A 75 GW programme would produce at baseload 590 TWh a year – divide by 2,600 – is about 23% of proven global uranium reserves. You’re having to import, regardless of what other countries are doing, you’re trying to corner the market – roughly a quarter. Not even a quarter of the market – a quarter of all known reserves – it’s not all been produced yet. It’s still in the ground. So could you be sure that you could actually run these power stations if you build them ? Without global domination of the New British Empire [...]. The security issues alone – defending coastal targets from a tweeb with a desire to blow them up. 50 years down the line they’re full of radioactive spent fuel that won’t have a repository to go to – we don’t want one here – and how much is it going to cost ?

    My view is that offshore wind will be a major contributor in a high or 100% Renewable Electricity scenario by 2050 or 2060. Maybe 180 GW, that will also be around 600 TWh a year – comparable to that maximum nuclear programme. DECC’s final energy demand 2050 – several scenarios – final energy demand from 6 scenarios came out as between roughly 1,500 TWh a year and the maximum 2,500 TWh. Broadly speaking, if you’re trying to do that just with Renewable Electricity, you begin to struggle quite honestly, unless you’re doing over 600 TWh of offshore wind, and even then you need a fair amount of heat pump stuff which I’m not sure will come through. The good news is that solar might – because of the cost and technology breakthroughs. That brings with it a problem – because you’re delivering a lot of that energy in summer. The other point – David MacKay would say – in his book his estimate was 150 TWh from solar by 2050, on the grounds that that’s where you south-facing roofs are – you need to use higher efficiency triple junction cells with more than 40% efficiency and this would be too expensive for a rollout which would double or triple that 150 TWh – that would be too costly – because those cells are too costly. But with this new stuff, you might get that. Not only the cost goes down, but the coverage goes down. Not doing solar across swathes of countryside. There have always been two issues with solar power – cost and where it’s being deployed.

    Uh-Oh, Summer Days. Uh-Oh, Summer Nights

    With the solar-wind headline, summer days and summer nights are an issue.

    With the nuclear headline, 2040 – they would have up to 50 GW, and that would need to run at somewhere between 75% and 95% capacity – to protect the investment and electric generation turbines.

    It will be interesting to provide some figures – this is how much over-capacity you’re likely to get with this amount of offshore wind. But if you have this amount of nuclear power, you’ll get this amount [...]

    Energy demand is strongly variable with season. We have to consider not just power, but heat – you need to get that energy out in winter – up to 4 times as much during peak in winter evenings. How are you going to do that ? You need gas – or you need extensive Combined Heat and Power (CHP) (which needs gas). Or you need an unimaginable deployment of domestic heat pumps. Air source heat pumps won’t work at the time you need them most. Ground source heat pumps would require the digging up of Britain – and you can’t do that in most urban settings.

    District Heat Fields

    The other way to get heat out to everyone in a low carbon world – apart from low carbon gas – is having a field-based ground source heat pump scheme – just dig up a field next to a city – and just put in pipes and boreholes in a field. You’re not disturbing anybody. You could even grow crops on it next season. Low cost and large scale – but would need a District Heating (DH) network. There are one or two heat pump schemes around the world. Not sure if they are used for cooling in summer or heat extraction in the winter. The other thing is hot water underground. Put in an extra pipe in the normal channels to domestic dwellings. Any excess heat from power generation or electrolysis or whatever is put down this loop and heats the sub-ground. Because heat travels about 1 metre a month in soil, that heat should be retained for winter. A ground source heat sink. Geothermal energy could come through – they’re doing a scheme in Manchester. If there’s a nearby heat district network – it makes it easier. Just want to tee it into the nearest DH system. The urban heat demand is 150 TWh a year. You might be able to put DH out to suburban areas as well. There are 9 million gas-connected suburban homes – another about 150 TWh there as well – or a bit more maybe. Might get to dispose of 300 TWh in heat through DH. The Green Deal insulation gains might not be what is claimed – and condensing gas boiler efficiencies are not that great – which feeds into the argument that in terms of energy efficiency, you not only want to do insulation, but also DH – or low carbon gas. Which is the most cost-effective ? Could argue reasonable energy efficiency measures are cheapest – but DH might be a better bet. That involves a lot of digging.

    Gas Is The Logical Answer

    But everything’s already laid for gas. (…but from the greatest efficiency first perspective, if you’re not doing DH, you’re not using a lot of Renewable Heat you could otherwise use [...] )

    The best package would be the use of low carbon gases and sufficient DH to use Renewable Heat where it is available – such as desalination, electrolysis or other energy plant. It depends where the electrolysis is being done.

    The Age of Your Carbon

    It also depends on which carbon atoms you’re using. If you are recycling carbon from the combustion of fossil fuels into Renewable Gas, that’s OK. But you can’t easily recapture carbon emissions from the built environment (although you could effectively do that with heat storage). You can’t do carbon capture from transport either. So your low carbon gas has to come from biogenic molecules. Your Renewable Gas has to be synthesised using biogenic carbon molecules rather than fossil ones.

    [...] I’m using the phrase “Young Carbon”. Young Carbon doesn’t have to be from plants – biological things that grow.

    Well, there’s Direct Air Capture (DAC). It’s simple. David Sevier, London-based, is working on this. He’s using heat to capture carbon dioxide. You could do it from exhaust in a chimney or a gasification process – or force a load of air through a space. He would use heat and cooling to create an updraft. It would enable the “beyond capture” problem to be circumvented. Cost is non-competitive. Can be done technically. Using reject heat from power stations for the energy to do it. People don’t realise you can use a lot of heat to capture carbon, not electricity.

    Young Carbon from Seawater

    If you’re playing around with large amounts of seawater anyway – that is, for desalination for irrigation, why not also do Renewable Hydrogen, and pluck the Carbon Dioxide out of there too to react with the Renewable Hydrogen to make Renewable Methane ? I’m talking about very large amounts of seawater. Not “Seawater Greenhouses” – condensation designs mainly for growing exotic food. If you want large amounts of desalinated water – and you’re using Concentrated Solar Power – for irrigating deserts – you would want to grow things like cacti for biological carbon.

    Say you had 40 GW of wind power on Dogger Bank, spinning at 40% load factor a year. You’ve also got electrolysers there. Any time you’re not powering the grid, you’re making gas – so capturing carbon dioxide from seawater, splitting water for hydrogen, making methane gas. Wouldn’t you want to use flash desalination first to get cleaner water for electrolysis ? Straight seawater electrolysis is also being done.

    It depends on the relative quantities of gas concentrated in the seawater. If you’ve got oxygen, hydrogen and carbon dioxide, that would be nice. You might get loads of oxygen and hydrogen, and only poor quantities of carbon dioxide ?

    But if you could get hydrogen production going from spare wind power. And even if you had to pipe the carbon dioxide from conventional thermal power plants, you’re starting to look at a sea-based solution for gas production. Using seawater, though, chlorine is the problem [...]

    Look at the relative density of molecules – that sort of calculation that will show if this is going to fly. Carbon dioxide is a very fixed, stable molecule – it’s at about the bottom of the energy potential well – you have to get that reaction energy from somewhere.

    How Much Spare Power Will There Be ?

    If you’ve got an offshore wind and solar system. At night, obviously, the solar’s not working (unless new cells are built that can run on infrared night-time Earthshine). But you could still have 100 GWh of wind power at night not used for the power grid. The anticipated new nuclear 40 GW nuclear by 2030 will produce about 140 GWh – this would just complicate problems – adding baseload nuclear to a renewables-inclusive scenario. 40 GW is arguably a reasonable deployment of wind power by 2030 – low if anything.

    You get less wind in a nuclear-inclusive scenario, but the upshot is you’ve definitely got a lot of power to deal with on a summer night with nuclear power. You do have with Renewable Electricity as well, but it varies more. Whichever route we take we’re likely to end up with excess electricity generation on summer nights.

    In a 70 GW wind power deployment (50 GW offshore, 20 GW onshore – 160 TWh a year), you might have something like 50 to 100 GWh per night of excess (might get up to 150 GWh to store on a windy night). But if you have a 16 GW nuclear deployment by 2030 (125 TWh a year), you are definitely going to have 140 GWh of excess per night (that’s 16 GW for 10 hours less a bit). Night time by the way is roughly between 9pm and 7am between peak demands.

    We could be making a lot of Renewable Gas !

    Can you build enough Renewable Gas or whatever to soak up this excess nuclear or wind power ?

    The energy mix is likely to be in reality somewhere in between these two extremes of high nuclear or high wind.

    But if you develop a lot of solar – so that it knocks out nuclear power – it will be the summer day excess that’s most significant. And that’s what Germany is experiencing now.

    Choices, choices, choices

    There is a big choice in fossil fuels which isn’t really talked about very often – whether the oil and gas industry should go for unconventional fossil fuels, or attempt to make use of the remaining conventional resources that have a lower quality. The unconventionals narrative – shale gas, coalbed methane, methane hydrates, deepwater gas, Arctic oil and gas, heavy oil, is running out of steam as it becomes clear that some of these choices are expensive, and environmentally damaging (besides their climate change impact). So the option will be making use of gas with high acid gas composition. And the technological solutions for this will be the same as needed to start major production of Renewable Gas.

    Capacity Payments

    But you still need to answer the balancing question. If you have a high nuclear power scenario, you need maybe 50 TWh a year of gas-fired power generation. If high Renewable Electricity, you will need something like 100 TWh of gas, so you need Carbon Capture and Storage – or low carbon gas.

    Even then, the gas power plants could be running only 30% of the year, and so you will need capacity payments to make sure new flexible plants get built and stay available for use.

    If you have a high nuclear scenario, coupled with gas, you can meet the carbon budget – but it will squeeze out Renewable Electricity. If high in renewables, you need Carbon Capture and Storage (CCS) or Carbon Capture and Recycling into Renewable Gas, but this would rule out nuclear power. It depends which sector joins up with which.

    Carbon Capture, Carbon Budget

    Can the Drax power plant – with maybe one pipeline 24 inches in diameter, carrying away 20 megatonnes of carbon dioxide per year – can it meet the UK’s Carbon Budget target ?

  • Economic Ecology

    Posted on October 25th, 2013 Jo No comments

    Managing the balance between, on the one hand, extraction of natural resources from the environment, and on the other hand, economic production, shouldn’t have to be either, or. We shouldn’t value higher throughput and consumption at the expense of exhausting what the Earth can supply. We shouldn’t be “economic” in our ecology, we shouldn’t be penny-pinching and miserly and short-change the Earth. The Earth, after all, is the biosystem that nourishes us. What we should be aiming for is an ecology of economy – a balance in the systems of manufacture, agriculture, industry, mining and trade that doesn’t empty the Earth’s store cupboard. This, at its root, is a conservation strategy, maintaining humanity through a conservative economy. Political conservatives have lost their way. These days they espouse the profligate use of the Earth’s resources by preaching the pursuit of “economic growth”, by sponsoring and promoting free trade, and reversing environmental protection. Some in a neoliberal or capitalist economy may get rich, but they do so at the expense of everybody and everything else. It is time for an ecology in economics.

    Over the course of the next couple of years, in between doing other things, I shall be taking part in a new project called “Joy in Enough”, which seeks to promote economic ecology. One of the key texts of this multi-workstream group is “Enough is Enough”, a book written by Rob Dietz and Dan O’Neill. In their Preface they write :-

    “But how do we share this one planet and provide a high quality of life for all ? The economic orthodoxy in use around the world is not up to the challenge. [...] That strategy, the pursuit of never-ending economic growth has become dysfunctional. With each passing day, we are witnessing more and more uneconomic growth – growth that costs more than it is worth. An economy that chases perpetually increasing production and consumption, always in search of more, stands no chance of achieving a lasting prosperity. [...] Now is the time to change the goal from the madness of more to the ethic of enough, to accept the limits to growth and build an economy that meets our needs without undermining the life-support systems of the planet.”

    One of the outcomes of global capitalism is huge disparities, inequalities between rich and poor, between haves and have-nots. Concern about this is not just esoteric morality – it has consequences on the whole system. Take, for example, a field of grass. No pastoral herder with a flock of goats is going to permit the animals to graze in just one corner of this field, for if they do, part of the grassland will over-grow, and part will become dust or mud, and this will destroy the value of the field for the purposes of grazing. And take another example – wealth distribution in the United Kingdom. Since most people do not have enough capital to live on the proceeds of investment, most people need to earn money for their wealth through working. The recent economic contraction has persuaded companies and the public sector to squeeze more productivity out of a smaller number of employees, or abandon services along with their employees. A simple map of unemployment shows how parts of the British population have been over-grazed to prop up the economic order. This is already having impacts – increasing levels of poverty, and the consequent social breakdown that accompanies it. Poverty and the consequent worsening social environment make people less able to look after themselves, their families, and their communities, and this has a direct impact on the national economy. We are all poorer because some of our fellow citizens need to use food banks, or have to make the choice in winter to Heat or Eat.

    And let’s look more closely at energy. Whilst the large energy producers and energy suppliers continue to make significant profits – or put their prices up to make sure they do so – families in the lower income brackets are experiencing unffordability issues with energy. Yes, of course, the energy companies would fail if they cannot keep their shareholders and investors happy. Private concerns need to make a profit to survive. But in the grand scheme of things, the economic temperature is low, so they should not expect major returns. The energy companies are complaining that they fear for their abilities to invest in new resources and infrastructure, but many of their customers cannot afford their products. What have we come to, when a “trophy project” such as the Hinkley Point C nuclear power station gets signed off, with billions in concomitant subsidy support, and yet people in Scotland and the North East and North West of England are failing to keep their homes at a comfortable temperature ?

    There is a basic conflict at the centre of all of this – energy companies make money by selling energy. Their strategy for survival is to make profit. This means they either have to sell more energy, or they have to charge more for the same amount of energy. Purchasing energy for most people is not a choice – it is a mandatory part of their spending. You could say that charging people for energy is akin to charging people for air to breathe. Energy is a essential utility, not an option. Some of the energy services we all need could be provided without purchasing the products of the energy companies. From the point of view of government budgets, it would be better to insulate the homes of lower income families than to offer them social benefit payments to pay their energy bills, but this would reduce the profits to the energy companies. Insulation is not a priority activity, because it lowers economic production – unless insulation itself is counted somehow as productivity. The ECO, the Energy Company Obligation – an obligation on energy companies to provide insulation for lower income family homes, could well become part of UK Prime Minister David Cameron’s “Bonfire of the Green Tax Vanities”. The ECO was set up as a subsidy payment, since energy companies will not provide energy services without charging somebody for them. The model of an ESCO – an Energy Services Company – an energy company that sells both energy and energy efficiency services is what is needed – but this means that energy companies need to diversify. They need to sell energy, and also sell people the means to avoid having to buy energy.

    Selling energy demand reduction services alongside energy is the only way that privatised energy companies can evolve – or the energy sector could have to be taken back into public ownership because the energy companies are not being socially responsible. A combination of economic adjustment measures, essential climate change policy and wholesale price rises for fossil fuel energy mean that energy demand reduction is essential to keep the economy stable. This cannot be achieved by merely increasing end consumer bills, in an effort to change behaviour. There is only so much reduction in energy use that a family can make, and it is a one-time change, it cannot be repeated. You can nudge people to turn their lights off and their thermostats down by one degree, but they won’t do it again. The people need to be provided with energy control. Smart meters may or may not provide an extra tranche of energy demand reduction. Smart fridges and freezers will almost certainly offer the potential for further domestic energy reduction. Mandatory energy efficiency in all electrical appliances sold is essential. But so is insulation. If we don’t get higher rates of insulation in buildings, we cannot win the energy challenge. In the UK, one style of Government policies for insulation were dropped – and their replacements are simply not working. The mistake was to assume that the energy companies would play the energy conservation game without proper incentives – and by incentive, I don’t mean subsidy.

    An obligation on energy companies to deploy insulation as well as other energy control measures shouldn’t need to be subsidised. What ? An obligation without a subsidy ? How refreshing ! If it is made the responsibility of the energy companies to provide energy services, and they are rated, and major energy procurement contracts are based on how well the energy companies perform on providing energy reduction services, then this could have an influence. If shareholders begin to understand the value of energy conservation and energy efficiency and begin to value their energy company holdings by their energy services portfolio, this could have an influence. If an energy utility’s licence to operate is based on their ESCO performance, this could have an influence : an energy utility could face being disbarred through the National Grid’s management of the electricity and gas networks – if an energy company does not provide policy-compliant levels of insulation and other demand control measures, it will not get preferential access for its products to supply the grids. If this sounds like the socialising of free trade, that’s not the case. Responsible companies are already beginning to respond to the unfolding crisis in energy. Companies that use large amounts of energy are seeking ways to cut their consumption – for reasons related to economic contraction, carbon emissions control and energy price rises – their bottom line – their profits – rely on energy management.

    It’s flawed reasoning to claim that taxing bad behaviour promotes good behaviour. It’s unlikely that the UK’s Carbon Floor Price will do much apart from making energy more unaffordable for consumers – it’s not going to make energy companies change the resources that they use. To really beat carbon emissions, low carbon energy needs to be mandated. Mandated, but not subsidised. The only reason subsidies are required for renewable electricity is because the initial investment is entirely new development – the subsidies don’t need to remain in place forever. Insulation is another one-off cost, so short-term subsidies should be in place to promote it. As Nick Clegg MP proposes, subsidies for energy conservation should come from the Treasury, through a progressive tax, not via energy companies, who will pass costs on to energy consumers, where it stands a chance of penalising lower-income households. Wind power and solar power, after their initial investment costs, provide almost free electricity – wind turbines and solar panels are in effect providing energy services. Energy companies should be mandated to provide more renewable electricity as part of their commitment to energy services.

    In a carbon-constrained world, we must use less carbon dioxide emitting fossil fuel energy. Since the industrialised economies use fossil fuels for more than abut 80% of their energy, lowering carbon emissions means using less energy, and having less building comfort, unless renewables and insulation can be rapidly increased. This is one part of the economy that should be growing, even as the rest is shrinking.

    Energy companies can claim that they don’t want to provide insulation as an energy service, because insulation is a one-off cost, it’s not a continuing source of profit. Well, when the Big Six have finished insulating all the roofs, walls and windows, they can move on to building all the wind turbines and solar farms we need. They’ll make a margin on that.

  • Mind the Gap : BBC Costing the Earth

    Posted on October 16th, 2013 Jo No comments

    I listened to an interesting mix of myth, mystery and magic on BBC Radio 4.

    Myths included the notion that long-term, nuclear power would be cheap; that “alternative” energy technologies are expensive (well, nuclear power is, but true renewables are most certainly not); and the idea that burning biomass to create heat to create steam to turn turbines to generate electricity is an acceptably efficient use of biomass (it is not).

    Biofuelwatch are hosting a public meeting on this very subject :-
    http://www.biofuelwatch.org.uk/2013/burning_issue_public_event/
    “A Burning Issue – biomass and its impacts on forests and communities”
    Tuesday, 29th October 2013, 7-9pm
    Lumen Centre, London (close to St Pancras train station)
    http://www.lumenurc.org.uk/lumencontact.htm
    Lumen Centre, 88 Tavistock Place, London WC1H 9RS

    Interesting hints in the interviews I thought pointed to the idea that maybe, just maybe, some electricity generation capacity should be wholly owned by the Government – since the country is paying for it one way or another. A socialist model for gas-fired generation capacity that’s used as backup to wind and solar power ? Now there’s an interesting idea…




    http://www.bbc.co.uk/programmes/b03cn0rb

    “Mind the Gap”
    Channel: BBC Radio 4
    Series: Costing the Earth
    Presenter: Tom Heap
    First broadcast: Tuesday 15th October 2013

    Programme Notes :

    “Our energy needs are growing as our energy supply dwindles.
    Renewables have not come online quickly enough and we are increasingly
    reliant on expensive imported gas or cheap but dirty coal. Last year
    the UK burnt 50% more coal than in previous years but this helped
    reverse years of steadily declining carbon dioxide emissions. By 2015
    6 coal fired power stations will close and the cost of burning coal
    will increase hugely due to the introduction of the carbon price
    floor. Shale gas and biomass have been suggested as quick and easy
    solutions but are they really sustainable, or cheap?”

    “Carbon Capture and Storage could make coal or gas cleaner and a new
    study suggests that with CCS bio energy could even decrease global
    warming. Yet CCS has stalled in the UK and the rest of Europe and the
    debate about the green credentials of biomass is intensifying. So what
    is really the best answer to Britain’s energy needs? Tom Heap
    investigates.”

    00:44 – 00:48
    [ Channel anchor ]
    Britain’s energy needs are top of the agenda in “Costing the Earth”…

    01:17
    [ Channel anchor ]
    …this week on “Costing the Earth”, Tom Heap is asking if our
    ambitions to go green are being lost to the more immediate fear of
    blackouts and brownouts.

    01:27
    [ Music : Arcade Fire - "Neighbourhood 3 (Power Out)" ]

    [ Tom Heap ]

    Energy is suddenly big news – central to politics and the economy. The
    countdown has started towards the imminent shutdown of many coal-fired
    power stations, but the timetable to build their replacements has
    barely begun.

    It’ll cost a lot, we’ll have to pay, and the politicians are reluctant
    to lay out the bill. But both the official regulator and industry are
    warning that a crunch is coming.

    So in this week’s “Costing the Earth”, we ask if the goal of clean,
    green and affordable energy is being lost to a much darker reality.

    02:14
    [ Historical recordings ]

    “The lights have started going out in the West Country : Bristol,
    Exeter and Plymouth have all had their first power cuts this
    afternoon.”

    “One of the biggest effects of the cuts was on traffic, because with
    the traffic lights out of commission, major jams have built up,
    particularly in the town centres. One of the oddest sights I saw is a
    couple of ladies coming out of a hairdressers with towels around their
    heads because the dryers weren’t working.”

    “Television closes down at 10.30 [ pm ], and although the cinemas are
    carrying on more or less normally, some London theatres have had to
    close.”

    “The various [ gas ] boards on both sides of the Pennines admit to
    being taken by surprise with today’s cold spell which brought about
    the cuts.”

    “And now the major scandal sweeping the front pages of the papers this
    morning, the advertisement by the South Eastern Gas Board recommending
    that to save fuel, couples should share their bath.”

    [ Caller ]
    “I shall write to my local gas board and say don’t do it in
    Birmingham. It might be alright for the trendy South, but we don’t
    want it in Birmingham.”

    03:13
    [ Tom Heap ]

    That was 1974.

    Some things have changed today – maybe a more liberal attitude to
    sharing the tub. But some things remain the same – an absence of
    coal-fired electricity – threatening a blackout.

    Back then it was strikes by miners. Now it’s old age of the power
    plants, combined with an EU Directive obliging them to cut their
    sulphur dioxide and nitrous oxide emissions by 2016, or close.

    Some coal burners are avoiding the switch off by substituting wood;
    and mothballed gas stations are also on standby.

    But Dieter Helm, Professor of Energy Policy at the University of
    Oxford, now believes power cuts are likely.

    03:57
    [ Dieter Helm ]

    Well, if we take the numbers produced by the key responsible bodies,
    they predict that there’s a chance that by the winter of 2-15 [sic,
    meaning 2015] 2-16 [sic, meaning 2016], the gap between the demand for
    electricity and the supply could be as low as 2%.

    And it turns out that those forecasts are based on extremely
    optimistic assumptions about how far demand will fall in that period
    (that the “Green Deal” will work, and so on) and that we won’t have
    much economic growth.

    So basically we are on course for a very serious energy crunch by the
    winter of 2-15 [sic, meaning 2015] 2-16 [sic, meaning 2016], almost
    regardless of what happens now, because nobody can build any power
    stations between now and then.

    It’s sort of one of those slow motion car crashes – you see the whole
    symptoms of it, and people have been messing around reforming markets
    and so on, without addressing what’s immediately in front of them.

    [ Tom Heap ]

    And that’s where you think we are now ?

    [ Dieter Helm ]

    I think there’s every risk of doing so.

    Fortunately, the [ General ] Election is a year and a half away, and
    there’s many opportunities for all the political parties to get real
    about two things : get real about the energy crunch in 2-15 [sic,
    meaning 2015] 2-16 [sic, meaning 2016] and how they’re going to handle
    it; and get real about creating the incentives to decarbonise our
    electricity system, and deal with the serious environmental and
    security and competitive issues which our electricity system faces.

    And this is a massive investment requirement [ in ] electricity : all
    those old stations retiring [ originally built ] back from the 1970s -
    they’re all going to be gone.

    Most of the nuclear power stations are coming to the end of their lives.

    We need a really big investment programme. And if you really want an
    investment programme, you have to sit down and work out how you’re
    going to incentivise people to do that building.

    [ Tom Heap ]

    If we want a new energy infrastructure based on renewables and
    carbon-free alternatives, then now is the time to put those incentives
    on the table.

    The problem is that no-one seems to want to make the necessary
    investment, least of all the “Big Six” energy companies, who are
    already under pressure about high bills.

    [ "Big Six" are : British Gas / Centrica, EdF Energy (Electricite
    de France), E.On UK, RWE npower, Scottish Power and SSE ]

    Sam Peacock of the energy company SSE [ Scottish and Southern Energy ]
    gives the commercial proof of Dieter’s prediction.

    If energy generators can’t make money out of generating energy,
    they’ll be reluctant to do it.

    [ Sam Peacock ]

    Ofgem, the energy regulator, has looked at this in a lot of detail,
    and said that around 2015, 2016, things start to get tighter. The
    reason for this is European Directives, [ is [ a ] ] closing down some
    of the old coal plants. And also the current poor economics around [
    or surround [ -ing ] ] both existing plant and potential new plant.

    So, at the moment it’s very, very difficult to make money out of a gas
    plant, or invest in a new one. So this leads to there being, you know,
    something of a crunch point around 2015, 2016, and Ofgem’s analysis
    looks pretty sensible to us.

    [ Tom Heap ]

    And Sam Peacock lays the blame for this crisis firmly at the Government’s door.

    [ Sam Peacock ]

    The trilemma, as they call it – of decarbonisation, security of supply
    and affordability – is being stretched, because the Government’s
    moving us more towards cleaner technologies, which…which are more
    expensive.

    However, if you were to take the costs of, you know, the extra costs
    of developing these technologies off government [ sic, meaning
    customer ] bills and into general taxation, you could knock about over
    £100 off customer bills today, it’ll be bigger in the future, and you
    can still get that much-needed investment going.

    So, we think you can square the circle, but it’s going to take a
    little bit of policy movement [ and ] it’s going to take shifting some
    of those costs off customers and actually back where the policymakers
    should be controlling them.

    [ KLAXON ! Does he mean controlled energy prices ? That sounds a bit
    centrally managed economy to me... ]

    [ Tom Heap ]

    No surprise that a power company would want to shift the pain of
    rising energy costs from their bills to the tax bill.

    But neither the Government nor the Opposition are actually proposing this.

    Who pays the premium for expensve new energy sources is becoming like
    a game of pass the toxic parcel.

    [ Reference : http://en.wikipedia.org/wiki/Hot_potato_%28game%29 ]

    I asked the [ UK Government Department of ] Energy and Climate Change
    Secretary, Ed Davey, how much new money is required between now and
    2020.

    08:06

    [ Ed Davey ]

    About £110 billion – er, that’s critical to replace a lot of the coal
    power stations that are closing, the nuclear power stations that are [
    at the ] end of their lives, and replace a lot of the network which
    has come to the end of its life, too.

    So it’s a huge, massive investment task.

    [ Tom Heap ]

    So in the end we’re going to have to foot the bill for the £110 billion ?

    [ Ed Davey ]

    Yeah. Of course. That’s what happens now. People, in their bills that
    they pay now, are paying for the network costs of investments made
    several years, even several decades ago.

    [ Yes - we're still paying through our national nose to dispose of
    radioactive waste and decommission old nuclear reactors. The liability
    of it all weighs heavily on the country's neck... ]

    And there’s no escaping that – we’ve got to keep the lights on – we’ve
    got to keep the country powered.

    You have to look at both sides of the equation. If we’re helping
    people make their homes more inefficient [ sic, meaning energy
    efficient ], their product appliances more efficient, we’re doing
    everything we possibly can to try to help the bills be kept down,

    while we’re having to make these big investments to keep the lights
    on, and to make sure that we don’t cook the planet, as you say.

    [ Tom Heap ]

    You mention the lights going out. There are predictions that we’re
    headed towards just 2% of spare capacity in the system in a few years’
    time.

    Are you worried about the dangers of, I don’t know, maybe not lights
    going out for some people, but perhaps big energy users being told
    when and when [ sic, meaning where ] they can’t use power in the
    winter ?

    [ Ed Davey ]

    Well, there’s no doubt that as the coal power stations come offline,
    and the nuclear power plants, er, close, we’re going to have make sure
    that new power plants are coming on to replace them.

    And if we don’t, there will be a problem with energy security.

    Now we’ve been working very hard over a long time now to make sure we
    attract that investment. We’ve been working with Ofgem, the regulator;
    with National Grid, and we’re…

    [ Tom Heap ]

    …Being [ or it's being ] tough. I don’t see companies racing to come
    and fill in the gap here and those coal power plants are going off
    soon.

    [ Ed Davey ]

    …we’re actually having record levels of energy investment in the country.

    The problem was for 13 years under the last Government
    [ same old, same old Coalition argument ] we saw low levels of investment
    in energy, and we’re having to race to catch up, but fortunately we’re
    winning that race. And we’re seeing, you know, billions of pounds
    invested but we’ve still got to do more. We’re not there. I’m not
    pretending we’re there yet. [ Are we there, yet ? ] But we do have the
    policies in place.

    So, Ofgem is currently consulting on a set of proposals which will
    enable it to have reserve power to switch on at the peak if it’s
    needed.

    We’re, we’ve, bringing forward proposals in the Energy Bill for what’s
    called a Capacity Market, so we can auction to get that extra capacity
    we need.

    So we’ve got the policies in place.

    [ Tom Heap ]

    Some of Ed Davey’s policies, not least the LibDem [ Liberal Democrat
    Party ] U-turn on nuclear, have been guided by DECC [ Department of
    Energy and Climate Change ] Chief Scientist David MacKay, author of
    the influential book “Renewable Energy without the Hot Air” [ sic,
    actually "Sustainable Energy without the Hot Air" ].

    Does he think the lights will dim in the second half of this decade ?

    [ David MacKay ]

    I don’t think there’s going to be any problem maintaining the capacity
    that we need. We just need to make clear where Electricity Market
    Reform [ EMR, part of the Energy Bill ] is going, and the way in which
    we will be maintaining capacity.

    [ Tom Heap ]

    But I don’t quite understand that, because it seems to me, you know,
    some of those big coal-fired power stations are going to be going off.
    What’s going to be coming in their place ?

    [ David MacKay ]

    Well, the biggest number of power stations that’s been built in the
    last few years are gas power stations, and we just need a few more gas
    power stations like that, to replace the coal
    , and hopefully some
    nuclear power stations will be coming on the bars, as well as the wind
    farms that are being built at the moment.

    [ Tom Heap ]

    And you’re happy with that increase in gas-fired power stations, are
    you ? I mean, you do care deeply, personally, about reducing our
    greenhouse gases, and yet you’re saying we’re going to have to build
    more gas-fired power stations.

    [ David MacKay ]

    I do. Even in many of the pathways that reach the 2050 target, there’s
    still a role for gas in the long-term, because some power sources like
    wind and solar power are intermittent, so if you want to be keeping
    the lights on in 2050 when there’s no wind and there’s no sun, you’re
    going to need some gas power stations there
    . Maybe not operating so
    much of the time as they do today, but there’ll still be a role in
    keeping the lights on.

    [ KLAXON ! If gas plants are used only for peak periods or for backup to
    renewables, then the carbon emissions will be much less than if they are
    running all the time. ]

    [ Tom Heap ]

    Many energy experts though doubt that enough new wind power or nuclear
    capacity could be built fast enough to affect the sums in a big way by
    2020.

    But that isn’t the only critical date looming over our energy system.
    Even more challenging, though more distant, is the legally binding
    objective of cutting greenhouse gas emissions in 2050.

    David MacKay wants that certainty to provide the foundation for energy
    decisions, and he showed me the effect of different choices with the
    “Ultimate Future Energy App”. I was in his office, but anyone can try it online.

    [ David MacKay ]

    It’s a 2050 calculator. It computes energy demand and supply in
    response to your choices, and it computes multiple consequences of
    your choices. It computes carbon consequences. It also computes for
    you estimates of air quality, consequences of different choices;
    security of supply, consequences; and the costs of your choices.

    So with this 2050 calculator, it’s an open source tool, and anyone can
    go on the web and use the levers to imagine different futures in 2050
    of how much action we’ve taken in different demand sectors and in
    different supply sectors.

    The calculator has many visualisations of the pathway that you’re choosing
    and helps people understand all the trade-offs… There’s no silver
    bullet for any of this. If I dial up a pathway someone made earlier,
    we can visualise the implications in terms of the area occupied for
    the onshore wind farms, and the area in the sea for the offshore wind
    farms, and the length of the wave farms that you’ve built, and the
    land area required for energy crops.

    And many organisations have used this tool and some of them have given
    us their preferred pathway. So you can see here the Friends of the
    Earth have got their chosen pathway, the Campaign to Protect Rural
    England, and various engineers like National Grid and Atkins have got
    their pathways.

    So you can see alternative ways of achieving our targets, of keeping
    the lights on and taking climate change action. All of those pathways
    all meet the 2050 target, but they do so with different mixes.

    [ Tom Heap ]

    And your view of this is you sort of can’t escape from the scientific
    logic and rigour of it. You might wish things were different or you
    could do it differently, but you’re sort of saying “Look, it’s either
    one thing or the other”. That’s the point of this.

    [ David MacKay ]

    That’s true. You can’t be anti-everything. You can’t be anti-wind and
    anti-nuclear and anti-home insulation. You won’t end up with a plan
    that adds up.

    [ KLAXON ! But you can be rationally against one or two things, like
    expensive new nuclear power, and carbon and particulate emissions-heavy
    biomass for the generation of electricity. ]

    [ Tom Heap ]

    But isn’t that exactly kind of the problem that we’ve had, without
    pointing political fingers, that people rather have been
    anti-everything, and that’s why we’re sort of not producing enough new
    energy sources ?

    [ David MacKay ]

    Yeah. The majority of the British public I think are in favour of many
    of these sources, but there are strong minorities who are vocally
    opposed to every one of the major levers in this calculator. So one
    aspiration I have for this tool is it may help those people come to a
    position where they have a view that’s actually consistent with the
    goal of keeping the lights on.

    [ Tom Heap ]

    Professor MacKay’s calculator also computes pounds and pence,
    suggesting that both high and low carbon electricity work out pricey
    in the end.

    [ David MacKay ]

    The total costs of all the pathways are pretty much the same.
    “Business as Usual” is cheaper in the early years, and then pays more,
    because on the “Business as Usual”, you carry on using fossil fuels,
    and the prices of those fossil fuels are probably going to go up.

    All of the pathways that take climate change action have a similar
    total cost, but they pay more in the early years, ’cause you have to
    pay for things like building insulation and power stations, like
    nuclear power stations, or wind power, which cost up-front, but then
    they’re very cheap to run in the future.

    [ KLAXON ! Will the cost of decommissioning nuclear reactors and the
    costs of the waste disposal be cheap ? I think not... ]

    So the totals over the 40 or 50 year period here, are much the same for these.

    [ Tom Heap ]

    The cheapest immediate option of all is to keep shovelling the coal.
    And last year coal overtook gas to be our biggest electricity
    generation source, pushing up overall carbon emissions along the way
    by 4.5%

    [ KLAXON ! This is not very good for energy security - look where the
    coal comes from... ]

    As we heard earlier, most coal-fired power stations are scheduled for
    termination, but some have won a reprieve, and trees are their
    unlikely saviour.

    Burning plenty of wood chip [ actually, Tom, it's not wood "chip", it's
    wood "pellets" - which often have other things mixed in with the wood,
    like coal... ] allows coal furnaces to cut the sulphur dioxide and nitrous
    oxide belching from their chimneys to below the level that requires their
    closure under European law.

    But some enthusiasts see wood being good for even more.

    16:19

    [ Outside ]

    It’s one of those Autumn days that promises to be warm, but currently
    is rather moist. I’m in a field surrounded by those dew-laden cobwebs
    you get at this time of year.

    But in the middle of this field is a plantation of willow. And I’m at
    Rothamsted Research with Angela Karp who’s one of the directors here.

    Angela, tell me about this willow I’m standing in front of here. I
    mean, it’s about ten foot high or so, but what are you seeing ?

    [ Angela Karp ]

    Well, I’m seeing one of our better varieties that’s on display here.
    We have a demonstration trial of about ten different varieties. This
    is a good one, because it produces a lot of biomass, quite easily,
    without a lot of additional fertilisers or anything. And as you can
    see it’s got lovely straight stems. It’s got many stems, and at the
    end of three years, we would harvest all those stems to get the
    biomass from it. It’s nice and straight – it’s a lovely-looking, it’s
    got no disease, no insects on it, very nice, clean willow.

    [ Tom Heap ]

    So, what you’ve been working on here as I understand it is trying to
    create is the perfect willow – the most fuel for the least input – and
    the easiest to harvest.

    [ Angela Karp ]

    That’s absolutely correct, because the whole reason for growing these
    crops is to get the carbon from the atmosphere into the wood, and to
    use that wood as a replacement for fossil fuels. Without putting a lot
    of inputs in, because as soon as you add fertilisers you’re using
    energy and carbon to make them, and that kind of defeats the whole
    purpose of doing this.

    [ KLAXON ! You don't need to use fossil fuel energy or petrochemicals or
    anything with carbon emissions to make fertiliser ! ... Hang on, these
    are GM trees, right ? So they will need inputs... ]

    [ Tom Heap ]

    And how much better do you think your new super-variety is, than say,
    what was around, you know, 10 or 15 years ago. ‘Cause willow as an
    idea for burning has been around for a bit. How much of an improvement
    is this one here ?

    [ Angela Karp ]

    Quite a bit. So, these are actually are some of the, if you like,
    middle-term varieties. So we started off yielding about 8 oven-dry
    tonnes per hectare, and now we’ve almost doubled that.

    [ Tom Heap ]

    How big a place do you think biomass can have in the UK’s energy
    picture in the future ?

    [ Angela Karp ]

    I think that it could contribute between 10% and 15% of our energy. If
    we were to cultivate willows on 1 million hectares, we would probably
    provide about 3% to 4% of energy in terms of electricity, and I think
    that’s kind of a baseline figure. We could cultivate them on up to 3
    million hectares, so you can multiply things up, and we could use them
    in a much more energy-efficient way.

    [ KLAXON ! Is that 4% of total energy or 4% of total electricity ?
    Confused. ]

    [ Tom Heap ]

    Do we really have 3 million hectares going a-begging for planting willow in ?

    [ Angela Karp ]

    Actually, surprisingly we do. So, people have this kind of myth
    there’s not enough land, but just look around you and you will find
    there’s lots of land that’s not used for cultivating food crops.

    We don’t see them taking over the whole country. We see them being
    grown synergistically with food crops.

    [ KLAXON ! This is a bit different than the statement made in 2009. ]

    [ Tom Heap ]

    But I’d just like to dig down a little bit more into the carbon cycle
    of the combustion of these things, because that’s been the recent
    criticism of burning a lot of biomass, is that you put an early spike
    in the amount of carbon in the atmosphere, if you start burning a lot
    of biomass, because this [ sounds of rustling ], this plant is going
    to be turned into, well, partly, CO2 in the atmosphere.

    [ Angela Karp ]

    Yes, I think that’s probably a simple and not totally correct way of
    looking at it. ‘Cause a lot depends on the actual conversion process
    you are using.

    So some conversion processes are much more efficient at taking
    everything and converting it into what you want.

    Heat for example is in excess of 80%, 90% conversion efficiency.

    Electricity is a little bit more of the problem. And there, what
    they’re looking at is capturing some of the carbon that you lose, and
    converting that back in, in carbon storage processes, and that’s why
    there’s a lot of talk now about carbon storage from these power
    stations.

    That I think is the future. It’s a question of connecting up all parts
    of the process, and making sure that’s nothing wasted.

    20:02

    [ Tom Heap ]

    So, is wood a desirable greener fuel ?

    Not according to Almuth Ernsting of Biofuelwatch, who objects to the
    current plans for large-scale wood burning, its use to prop up coal,
    and even its low carbon claims.

    [ Almuth Ernsting ]

    The currently-announced industry plans, and by that I mean existing
    power stations, but far more so, power stations which are in the
    planning process [ and ] many of which have already been consented -
    those [ biomass ] power stations, would, if they all go ahead,
    require to burn around 82 million tonnes of biomass, primarily wood,
    every year. Now by comparison, the UK in total only produces around
    10 million tonnes, so one eighth of that amount, in wood, for all
    industries and purposes, every year.

    We are looking on the one hand at a significant number of proposed,
    and in some cases, under-construction or operating new-build biomass
    power stations, but the largest single investment so far going into
    the conversion of coal power station units to biomass, the largest and
    most advanced one of which at the moment is Drax, who are, have
    started to move towards converting half their capacity to burning wood
    pellets.

    [ Tom Heap ]

    Drax is that huge former, or still currently, coal-fired power station
    in Yorkshire, isn’t it ?

    [ Almuth Ernsting ]

    Right, and they still want to keep burning coal as well. I mean, their
    long-term vision, as they’ve announced, would be for 50:50 coal and
    biomass.

    [ Tom Heap ]

    What do you think about that potential growth ?

    [ Almuth Ernsting ]

    Well, we’re seriously concerned. We believe it’s seriously bad news
    for climate change, it’s seriously bad news for forests, and it’s
    really bad news for communities, especially in the Global South, who
    are at risk of losing their land for further expansion of monoculture
    tree plantations, to in future supply new power stations in the UK.

    A really large amount, increasingly so, of the wood being burned,
    comes from slow-growing, whole trees that are cut down for that
    purpose, especially at the moment in temperate forests in North
    America. Now those trees will take many, many decades to grow back
    and potentially re-absorb that carbon dioxide, that’s if they’re
    allowed and able to ever grow back.

    [ Tom Heap ]

    There’s another technology desperate for investment, which is critical
    to avoiding power failure, whilst still hitting our mid-century carbon
    reduction goals – CCS – Carbon Capture and Storage, the ability to
    take the greenhouse gases from the chimney and bury them underground.

    It’s especially useful for biomass and coal, with their relatively
    high carbon emissions, but would also help gas be greener.

    The Chancellor has approved 30 new gas-fired power stations, so long
    as they are CCS-ready [ sic, should be "capture ready", or
    "carbon capture ready" ].

    Jon Gibbons is the boss of the UK CCS Research Centre, based in an
    industrial estate in Sheffield.

    [ Noise of processing plant ]

    Jon’s just brought me up a sort of 3D maze of galvanized steel and
    shiny metal pipes to the top of a tower that must be 20 or so metres
    high.

    Jon, what is this ?

    [ Jon Gibbons ]

    OK, so this is our capture unit, to take the CO2 out of the combustion
    products from gas or coal. In the building behind us, in the test rigs
    we’ve got, the gas turbine or the combustor rig, we’re burning coal or
    gas, or oil, but mainly coal or gas.

    We’re taking the combustion products through the green pipe over
    there, bringing it into the bottom of the unit, and then you can see
    these big tall columns we’ve got, about 18 inches diameter, half a
    metre diameter, coming all the way up from the ground up to the level
    we’re at.

    It goes into one of those, it gets washed clean with water, and it
    goes into this unit over here, and there it meets an amine solvent, a
    chemical that will react reversibly with CO2, coming in the opposite
    direction, over packing. So, it’s like sort of pebbles, if you can
    imagine it, there’s a lot of surface area. The gas flows up, the
    liquid flows down, and it picks up the CO2, just mainly the CO2.

    [ Tom Heap ]

    And that amine, that chemical as you call it, is stripping the CO2 out
    of that exhaust gas. This will link to a storage facility.

    What would then happen to the CO2 ?

    [ Jon Gibbons ]

    What would then happen is that the CO2 would be compressed up to
    somewhere in excess of about 100 atmospheres. And it would turn from
    being a gas into something that looks like a liquid, like water, about
    the same density as water. And then it would be taken offshore in the
    UK, probably tens or hundreds of kilometres offshore, and it would go
    deep, deep down, over a kilometre down into the ground, and basically
    get squeezed into stuff that looks like solid rock. If you go and look
    at a sandstone building – looks solid, but actually, maybe a third of
    it is little holes. And underground, where you’ve got cubic kilometres
    of space, those little holes add up to an awful lot of free space. And
    the CO2 gets squeezed into those, over time, and it spreads out, and
    it just basically sits there forever, dissolves in the water, reacts
    with the rocks, and will stay there for millions of years.

    [ Tom Heap ]

    Back in his office, I asked Jon why CCS seemed to be stuck in the lab.

    [ Jon Gibbons ]

    We’re doing enough I think on the research side, but what we really
    need to do, is to do work on a full-scale deployment. Because you
    can’t work on research in a vacuum. You need to get feedback -
    learning by doing – from actual real projects.

    And a lot of the problems we’ve got on delivering CCS, are to do with
    how you handle the regulation for injecting CO2, and again, you can
    only do that in real life.

    So what we need to do is to see the commercialisation projects that
    are being run by the Department of Energy and Climate Change actually
    going through to real projects that can be delivered.

    [ Tom Heap ]

    Hmm. When I talk to engineers, they’re always very passionate and
    actually quite optimistic about Carbon Capture and Storage. And when
    I talk to people in industry, or indeed read the headlines, not least
    a recent cancellation in Norway, it always seems like a very bleak picture.

    [ Jon Gibbons ]

    I think people are recognising that it’s getting quite hard to get
    money for low carbon technologies.

    So – recent presentation we had at one of our centre meetings, was
    actually a professor from the United States, Howard Herzog. And he
    said “You think you’re seeing a crisis in Carbon Capture and Storage.
    But what you’re actually seeing is a crisis in climate change
    mitigation.”

    [ KLAXON ! Priming us for a scaling back of commitment to the
    Climate Change Act ? I do hope not. ]

    Now, Carbon Capture and Storage, you do for no other purpose than
    cutting CO2 emissions to the atmosphere, and it does that extremely
    effectively. It’s an essential technology for cutting emissions. But
    until you’ve got a global process that says – actually we’re going to
    get on top of this problem; we’re going to cut emissions – get them to
    safe level before we actually see people dying in large numbers from
    climate change effects – ’cause, certainly, if people start dying,
    then we will see a response – but ideally, you’d like to do it before
    then. But until you get that going, then actually persuading people to
    spend money for no other benefit than sorting out the climate is
    difficult.

    There’s just no point, you know, no country can go it alone, so you
    have to get accommodation. And there, we’re going through various
    processes to debate that. Maybe people will come to an accommodation.
    Maybe the USA and China will agree to tackle climate change. Maybe
    they won’t.

    What I am fairly confident is that you won’t see huge, you know,
    really big cuts in CO2 emissions without that global agreement. But
    I’m also confident that you won’t see big cuts in CO2 emissions
    without CCS deployment.

    And my guess is there’s about a 50:50 chance that we do CCS before we
    need to, and about a 50:50 chance we do it after we have to. But I’m
    pretty damn certain we’re going to do it.

    [ Tom Heap ]

    But we can’t wait for a global agreement that’s already been decades
    in the making, with still no end in sight.

    We need decisions now to provide more power with less pollution.

    [ Music lyrics : "What's the plan ? What's the plan ?" ]

    [ Tom Heap ]

    Dieter Helm, Professor of Energy Policy at the University of Oxford
    believes we can only deliver our plentiful green energy future if we
    abandon our attitude of buy-now pay-later.

    [ KLAXON ! Does he mean a kind of hire purchase energy economy ?
    I mean, we're still paying for nuclear electricity from decades ago,
    in our bills, and through our taxes to the Department of Energy and
    Climate Change. ]

    [ Dieter Helm ]

    There’s a short-term requirement and a long-term requirement. The
    short-term requirement is that we’re now in a real pickle. We face
    this energy crunch. We’ve got to try to make the best of what we’ve
    got. And I think it’s really like, you know, trying to get the
    Spitfires back up again during the Battle of Britain. You know, you
    patch and mend. You need somebody in command. You need someone
    in control. And you do the best with what you’ve got.

    In that context, we then have to really stand back and say, “And this
    is what we have to do to get a serious, long-term, continuous, stable
    investment environment, going forward.” In which, you know, we pay the
    costs, but of course, not any monopoly profits, not any excess
    profits, but we have a world in which the price of electricity is
    related to the cost.”

    [ KLAXON ! Is Dieter Helm proposing state ownership of energy plant ? ]

    29:04

    [ Programme anchor ]

    “Costing the Earth” was presented by Tom Heap, and made in Bristol by
    Helen Lennard.

    [ Next broadcast : 16th October 2013, 21:00, BBC Radio 4 ]

  • Wind Powers Electricity Security

    Posted on August 17th, 2013 Jo No comments




    Have the anti-wind power lobby struck again ? A seemingly turbulent researcher from Private Eye magazine rang me on Thursday evening to ask me to revise my interpretation of his “Keeping The Lights On” piece of a few weeks previously. His article seemed at first glance to be quite derogatory regarding the contribution of wind power to the UK’s electricity supply. If I were to look again, I would find out, he was sure, that I was wrong, and he was right.

    So I have been re-reviewing the annual 2013 “Electricity Capacity Assessment Report” prepared by Ofgem, the UK Government’s Office of Gas and Electricity Markets, an independent National Regulatory Authority. I have tried to be as fair-minded and generous as possible to “Old Sparky” at Private Eye magazine, but a close re-reading of the Ofgem report suggests he is apparently mistaken – wind power is a boon, not a burden (as he seems to claim).

    In the overview to the Ofgem report, they state, “our assessment suggests that the risks to electricity security of supply over the next six winters have increased since our last report in October 2012. This is due in particular to deterioration in the supply-side outlook. There is also uncertainty over projected reductions in demand.” Neither of these issues can be associated with wind power, which is being deployed at an accelerating rate and so is providing increasing amounts of electricity.

    The report considers risks to security of the electricity supply, not an evaluation of the actual amounts of power that will be supplied. How are these risks to the security of supply quantified ? There are several metrics provided from Ofgem’s modelling, including :-

    a. LOLE – Loss of Load Expectation – the average number of hours per year in which electricity supply does not meet electricity demand (if the grid System Operator does not take steps to balance it out).

    (Note that Ofgem’s definition of LOLE is difference from other people’s “LOLE is often interpreted in the academic literature as representing the probability of disconnections after all mitigation actions available to the System Operator have been exhausted. We consider that a well functioning market should avoid using mitigation actions in [sic] regular basis and as such we interpret LOLE as the probability of having to implement mitigation actions.”)

    b. EEU – Expected Energy Unserved (or “Un-served”) – the average amount of electricity demand that is not met in a year – a metric that combines both the likelihood and the size of any shortfall.

    c. Frequency and Duration of Expected Outages – a measure of the risk that an electricity consumer faces of controlled disconnection because supply does not meet demand.

    The first important thing to note is that the lights are very unlikely to go out. The highest value of LOLE, measured in hours per year is under 20. That’s 20 hours each year. Not 20 days. And this is not anticipated to be 20 days in a row, either. Section 1.11 says “LOLE, as interpreted in this report, is not a measure of the expected number of hours per year in which customers may be disconnected. For a given level of LOLE and EEU, results may come from a large number of small events where demand exceeds supply in principle but that can be managed by National Grid through a set of mitigation actions available to them as System Operator. [...] Given the characteristics of the GB system, any shortfall is more likely to take the form of a large number of small events that would not have a direct impact on customers.”

    Section 2.19 states, “The probabilistic measures of security of supply presented in this report are often misinterpreted. LOLE is the expected number of hours per year in which supply does not meet demand. This does not however mean that customers will be disconnected or that there will be blackouts for that number of hours a year. Most of the time, when available supply is not high enough to meet demand, National Grid may implement mitigation actions to solve the problem without disconnecting any customers. However, the system should be planned to avoid the use of mitigation actions and that is why we measure LOLE ahead of any mitigation actions being used”. And Section 2.20, “LOLE does not necessarily mean disconnections but they do remain a possibility. If the difference between available supply and demand is so large that the mitigation actions are not enough to meet demand then some customers have to be disconnected – this is the controlled disconnections step in Figure 14 above. In this case the [System Operator] SO will disconnect industrial demand before household demand.”

    And in Section 2.21. “The model output numbers presented here refer to a loss of load of any kind. This could be the sum of several small events (controlled through mitigation actions) or a single large event. As a consequence of the mitigation actions available, the total period of disconnections for a customer will be lower than the value of LOLE.”

    The report does anticipate that there are risks of large events where the lights could go out, even if only very briefly, for non-emergency customers : “The results may also come from a small number of large events (eg the supply deficit is more than 2 – 3 gigawatts (GW)) where controlled disconnections cannot be avoided.” But in this kind of scenario two very important things would happen. Those with electricity contracts with a clause permitting forced disconnection would lose power. And immediate backup power generation would be called upon to bridge the gap. There are many kinds of electricity generation that can be called on to start up in a supply crisis – some of them becoming operational in minutes, and others in hours.

    As the report says in Section 2.24 “Each [Distribution Network Operator] DNO ensures it can provide a 20% reduction of its total system demand in four incremental stages (between 4% and 6%), which can be achieved at all times, with or without prior warning, and within 5 minutes of receipt of an instruction from the System Operator. The reduction of a further 20% (40% in total) can be achieved following issue of the appropriate GB System Warning by National Grid within agreed timescales”.

    It’s all about the need for National Grid to balance the system. Section 2.9 says, “LOLE is not a measure of the expected number of hours per year in which customers may be disconnected. We define LOLE to indicate the number of hours in which the system may need to respond to tight conditions.”

    The report also rules some potential sources of disruption of supply outside the remit of this particular analysis – see Section 3.17 “There are other reasons why electricity consumers might experience disruptions to supply, which are out of the scope of this assessment and thus not captured by this model, such as: Flexibility : The ability of generators to ramp up in response to rapid increases in demand or decreases in the output of other generators; Insufficient reserve : Unexpected increases in demand or decreases in available capacity in real time which must be managed by the System Operator through procurement and use of reserve capacity; Network outages : Failures on the electricity transmission or distribution networks; Fuel availability : The availability of the fuel used by generators. In particular the security of supplies of natural gas at times of peak electricity demand.”

    Crucially, the report says there is much uncertainty in their modelling of LOLE and EEU. In Section 2.26, “The LOLE and EEU estimates are just an indication of risk. There is considerable uncertainty around the main variables in the calculation (eg demand, the behaviour of interconnectors etc.)”

    (Note : interconnectors are electricity supply cables that join the UK to other countries such as Ireland and Holland).

    Part of the reason for Ofgem’s caveat of uncertainty is the lack of appropriate data. Although they believe they have better modelling of wind power since their 2012 report (see Sections 3.39 to 3.50), there are data sets they believe should be improved. For example, data on Demand Side Response (DSR) – the ability of the National Grid and its larger or aggregated consumers to alter levels of demand on cue (see Sections 4.7 to 4.10 of the document detailing decisions about the methodology). A lack of data has led to certain assumptions being retained, for example, the assumption that there is no relationship between available wind power and periods of high demand – in the winter season (see Section 2.5 and Sections 4.11 to 4.17 of the methodology decisions document).

    In addition to these uncertainties, the sensitivity cases used in the modelling are known to not accurately reflect the capability of management of the power grid. In the Executive Summary on page 4, the report says, “These sensitivities only illustrate changes in one variable at a time and so do not capture potential mitigating effects, for example of the supply side reacting to higher demand projections.” And in Section 2.16 it says, “Each sensitivity assumes a change in one variable from the Reference Scenario, with all other assumptions being held constant. The purpose of this is to assess the impact of the uncertainty related to each variable in isolation, on the risk measures. Our report is not using scenarios (ie a combination of changes in several variables to reflect alternative worlds or different futures), as this would not allow us to isolate the impact of each variable on the risk measures.”

    Thus, the numbers that are output by the modelling are perforce illustrative, not definitive.

    What “Old Sparky” at Private Eye was rattled by in his recent piece was the calculation of Equivalent Firm Capacity (EFC) in the Ofgem report.

    On page 87, Section 3.55, the Ofgem report defines the “standard measure” EFC as “the amount of capacity that is required to replace the wind capacity to achieve the same level of LOLE”, meaning the amount of always-on generation capacity required to replace the wind capacity to achieve the same level of LOLE. Putting it another way on page 33, in the footnotes for Section 3.29, the report states, “The EFC is the quantity of firm capacity (ie always available) that can be replaced by a certain volume of wind generation to give the same level of security of supply, as measured by LOLE.”

    Wind power is different from fossil fuel-powered generation as there is a lot of variability in output. Section 1.48 of the report says, “Wind generation capacity is analysed separately given that its outcome in terms of generation availability is much more variable and difficult to predict.” Several of the indicators calculated for the report are connected with the impact of wind on security of the power supply. However, variation in wind power is not the underlying reason for the necessity of this report. Other electricity generation plant has variation in output leading to questions of security of supply. In addition, besides planned plant closures and openings, there are as-yet-unknown factors that could impact overall generation capacity. Section 2.2 reads, “We use a probabilistic approach to assess the uncertainty related to short-term variations in demand and available conventional generation due to outages and wind generation. This is combined with sensitivity analysis to assess the uncertainty related to the evolution of electricity demand and supply due to investment and retirement decisions (ie mothballing, closures) and interconnector flows, among others.”

    The report examines the possibility that wind power availability could be correlated to winter season peak demand, based on limited available data, and models a “Wind Generation Availability” sensitivity (see Section 3.94 to Section 3.98, especially Figure 64). In Section 3.42 the report says, “For the wind generation availability sensitivity we assume that wind availability decreases at time of high demand. In particular this sensitivity assumes a reduction in the available wind resource for demand levels higher than 92% of the ACS peak demand. The maximum reduction is assumed to be 50% for demand levels higher than 102% of ACS peak demand.” Bear in mind that this is only an assumption.

    In Appendix 5 “Detailed results tables”, Table 34, Table 35 and Table 37 show how this modelling impacts the calculation of the indicative Equivalent Firm Capacity (EFC) of wind power.

    In the 2018/2019 timeframe, when there is expected to be a combined wind power capacity of 8405 megawatts (MW) onshore plus 11705 MW offshore = 20110 MW, the EFC for wind power is calculated to be 2546 MW in the “Wind Generation Availability” sensitivity line, which works out at 12.66% of the nameplate capacity of the wind power. Note : 100 divided by 12.66 is 7.88, or a factor of roughly 8.

    At the earlier 2013/2014 timeframe, when combined wind power capacity is expected to be 3970 + 6235 MW = 10205 MW, and the EFC is at 1624 MW or 15.91% for the “Wind Generation Sensitivity” line. Note : 100 divided by 15.91 = 6.285, or a factor of roughly 6.

    “Old Sparky” is referring to these factor figures when he says in his piece (see below) :-

    “[...] For every one megawatt of reliable capacity (eg a coal-fired power
    station) that gets closed, Ofgem calculates Britain would need six to
    eight
    megawatts of windfarm capacity to achieve the original level of
    reliability – and the multiple is rising all the time. Windfarms are
    not of course being built at eight times the rate coal plants are
    closing – hence the ever-increasing likelihood of blackouts. [...]”

    Yet he has ignored several caveats given in the report that place these factors in doubt. For example, the sensitivity analysis only varies one factor at a time and does not attempt to model correlated changes in other variables. He has also omitted to consider the relative impacts of change.

    If he were to contrast his statement with the “Conventional Low Generation Availability” sensitivity line, where wind power EFC in the 2013/2014 timeframe is calculated as a healthy 26.59% or a factor of roughly 4; or 2018/2019 when wind EFC is 19.80% or a factor of roughly 5.

    Note : The “Conventional Low Generation Availability” sensitivity is drawn from historical conventional generation operating data, as outlined in Sections 3.31 to 3.38. Section 3.36 states, “The Reference Scenario availability is defined as the mean availability of the seven winter estimates. The availability values used for the low (high) availability sensitivities are defined as the mean minus (plus) one standard deviation of the seven winter estimates.”

    Table 30 and Table 31 show that low conventional generation availability will probably be the largest contribution to energy security uncertainty in the critical 2015/2016 timeframe.

    The upshot of all of this modelling is that wind power is actually off the hook. Unforeseen alterations in conventional generation capacity are likely to have the largest impact. As the report says in Section 4.21 “The figures indicate that reasonably small changes in conventional generation availability have a material impact on the risk of supply shortfalls. This is most notable in 2015/16, where the estimated LOLE ranges from 0.2 hours per year in the high availability sensitivity to 16 hours per year in the low availability sensitivity, for the Reference Scenario is 2.9 hours per year.”

    However, Section 1.19 is careful to remind us, “Wind generation, onshore and offshore, is expected to grow rapidly in the period of analysis and especially after 2015/16, rising from around 9GW of installed capacity now to more than 20GW by 2018/19. Given the variability of wind speeds, we estimate that only 17% of this capacity can be counted as firm (ie always available) for security of supply purposes by 2018/19.” This is in the Reference Scenario.

    The sensitivities modelled in the report are a measure of risk, and do not provide absolute values for any of the output metrics, especially since the calculations are dependent on so many factors, including economic stimulus for the building of new generation plant.

    Importantly, recent decisions by gas-fired power plant operators to “mothball”, or close down their generation capacity, are inevitably going to matter more than how much exactly we can rely on wind power.

    Many commentators neglect to make the obvious point that wind power is not being used to replace conventional generation entirely, but to save fossil fuel by reducing the number of hours conventional generators have to run. This is contributing to energy security, by reducing the cost of fossil fuel that needs to be imported. However, the knock-on effect is this is having an impact on the economic viability of these plant because they are not always in use, and so the UK Government is putting in place the “Capacity Mechanism” to make sure that mothballed plant can be put back into use when required, during those becalmed, winter afternoons when power demand is at its peak.




    Private Eye
    Issue Number 1345
    26th July 2013 – 8th August 2013

    “Keeping the Lights On”
    page 14
    by “Old Sparky”

    The report from energy regulator Ofgem that sparked headlines on
    potential power cuts contains much new analysis highlighting the
    uselessness of wind generation in contributing to security of
    electricity supply, aka the problem of windfarm “intermittency”. But
    the problem is being studiously ignored by the Department of Energy
    and Climate Change (DECC).

    As coal power stations shut down, windfarms are notionally replacing
    them. If, say, only one windfarm were serving the grid, its inherent
    unreliability could easily be compensated for. But if there were
    [italics] only windfarms, and no reliable sources of electricity
    available at all, security of supply would be hugely at risk. Thus the
    more windfarms there are, the less they contribute to security.

    For every one megawatt of reliable capacity (eg a coal-fired power
    station) that gets closed, Ofgem calculates Britain would need six to
    eight megawatts of windfarm capacity to achieve the original level of
    reliability – and the multiple is rising all the time. Windfarms are
    not of course being built at eight times the rate coal plants are
    closing – hence the ever-increasing likelihood of blackouts.

    [...]

    In consequence windfarms are being featherbedded – not only with
    lavish subsidies, but also by not being billed for the ever-increasing
    trouble they cause. When the DECC was still operating Plan B, aka the
    dash for gas ([Private] Eye [Issue] 1266), the cost of intermittency
    was defined in terms of balancing the grid by using relatively clean
    and cheap natural gas. Now that the department has been forced to
    adopt emergency Plan C ([Private] Eye [Issue] 1344), backup for
    intermittent windfarm output will increasingly be provided by dirty,
    expensive diesel generators.




    Private Eye
    Issue 1344
    12 – 25 July 2013

    page 15
    “Keeping the Lights On”

    As pandemonium breaks out in newspapers at the prospect of electricity
    blackouts, emergency measures are being cobbled together to ensure the
    lights stay on. They will probably succeed – but at a cost.

    Three years ago incoming coalition ministers were briefed that when
    energy policy Plan A (windfarms, new nukes and pixie-dust) failed, Plan B
    would be in place – a new dash for gas ([Private] Eye [Issue] 1266).

    Civil servants then devised complex “energy market reforms” (EMR) to make
    this happen. It is now clear that these, too, have failed. Coal-fired power
    stations are closing quicker than new gas plants are being built. As energy
    regulator Ofgem put it bluntly last week: “The EMR aims to incentivise
    industry to address security of supply in the medium term, but is not able
    to bring forward investment in new capacity in time.”

    Practical people in the National Grid are now hatching emergency Plan C.
    They will pay large electricity users to switch off when requested;
    encourage industrial companies and even hospitals to generate their own
    diesel-fired electricity (not a hard sell when the grid can’t be relied
    on); hire diesel generators to make up for the intermittency of windfarms
    ([Private] Eye [Issue] 1322); and bribe electricity companies to bring
    mothballed gas-fired plants back into service.

    Some of these steps are based on techniques previously used in extreme
    circumstances, and will probably keep most of the lights on. But this
    should not obscure the fact that planning routine use of emergency
    measures is an indictment of energy policy. And since diesel is much
    more expensive and polluting than gas, electricity prices and CO2
    emissions will be higher than if Plan B had worked.

    [...]

    ‘Old Sparky’




  • James Delingpole : Worsely Wronger

    Posted on July 15th, 2013 Jo 4 comments

    I wonder to myself – how wrong can James Delingpole get ? He, and Christopher Booker and Richard North, have recently attempted to describe something very, very simple in the National Grid’s plans to keep the lights on. And have failed, in my view. Utterly. In my humble opinion, it’s a crying shame that they appear to influence others.

    “Dellingpole” (sic) in the Daily Mail, claims that the STOR – the Short Term Operating Reserve (not “Operational” as “Dellingpole” writes) is “secret”, for “that significant period when the wind turbines are not working”, and that “benefits of the supposedly ‘clean’ energy produced by wind turbines are likely to be more than offset by the dirty and inefficient energy produced by their essential diesel back-up”, all of which are outrageously deliberate misinterpretations of the facts :-

    http://www.dailymail.co.uk/news/article-2362762/The-dirty-secret-Britains-power-madness-Polluting-diesel-generators-built-secret-foreign-companies-kick-theres-wind-turbines–insane-true-eco-scandals.html
    “The dirty secret of Britain’s power madness: Polluting diesel generators built in secret by foreign companies to kick in when there’s no wind for turbines – and other insane but true eco-scandals : By James Dellingpole : PUBLISHED: 00:27, 14 July 2013″

    If “Dellingpole” and his compadre in what appear to be slurs, Richard North, were to ever do any proper research into the workings of the National Grid, they would easily uncover that the STOR is a very much transparent, publicly-declared utility :-

    http://www.nationalgrid.com/uk/Electricity/Balancing/services/balanceserv/reserve_serv/stor/

    STOR is not news. Neither is the need for it to be beefed up. The National Grid will lose a number of electricity generation facilities over the next few years, and because of the general state of the economy (and resistance to wind power and solar power from unhelpful folk like “Dellingpole”) investment in true renewables will not entirely cover this shortfall.

    Renewable energy is intermittent and variable. If an anticyclone high pressure weather system sits over Britain, there could be little wind. And if the sky is cloudy, there could be much less sun than normal. More renewable power feeding the grid means more opportunities when these breaks in service amount to something serious.

    Plus, the age of other electricity generation plants means that the risk of “unplanned outage”, from a nuclear reactor, say, is getting higher. There is a higher probability of sudden step changes in power available from any generator.

    The gap between maximum power demand and guaranteed maximum power generation is narrowing. In addition, the threat of sudden changes in output supply is increasing.

    With more generation being directly dependent on weather conditions and the time of day, and with fears about the reliability of ageing infrastructure, there is a need for more very short term immediate generation backup to take up the slack. This is where STOR comes in.

    Why does STOR need to exist ? The answer’s in the name – for short term balancing issues in the grid. Diesel generation is certainly not intended for use for long periods. Because of air quality issues. Because of climate change issues. Because of cost.

    If the Meteorological Office were to forecast a period of low wind and low incident solar radiation, or a nuclear reactor started to dip in power output, then the National Grid could take an old gas plant (or even an old coal plant) out of mothballs, pull off the dust sheets and crank it into action for a couple of days. That wouldn’t happen very often, and there would be time to notify and react.

    But if a windfarm suddenly went into the doldrums, or a nuclear reactor had to do an emergency shutdown, there would be few power stations on standby that could respond immediately, because it takes a lot of money to keep a power plant “spinning”, ready to use at a moment’s notice.

    So, Delingpole, there’s no conspiracy. There’s engagement with generators to set up a “first responder” network of extra generation capacity for the grid. This is an entirely public process. It’s intended for short bursts of immediately-required power because you can’t seem to turn your air conditioner off. The cost and emissions will be kept to a minimum. You’re wrong. You’re just full of a lot of hot air.

  • Birdcage Walk : Cheesestick Rationing

    Posted on July 12th, 2013 Jo 1 comment


    Yesterday…no, it’s later than I think…two days ago, I attended the 2013 Conference of PRASEG, the Parliamentary Renewable and Sustainable Energy Group, at the invitation of Rhys Williams, the long-suffering Coordinator. “…Sorry…Are you upset ?” “No, look at my face. Is there any emotion displayed there ?” “No, you look rather dead fish, actually”, etc.

    At the prestigious seat of the Institute of Mechanical Engineers (IMechE), One Birdcage Walk, we were invited down into the basement for a “drinks reception”, after hearing some stirring speeches and intriguing panel discussions. Despite being promised “refreshments” on the invitation, there had only been beverages and a couple of bikkies up until now, and I think several of the people in the room were starting to get quite hypoglycemic, so were grateful to see actual food being offered.

    A market economy immediately sprang up, as there was a definite scarcity in the resources of cheesesticks, and people jostled amiably, but intentionally, so they could cluster closest to the long, crispy cow-based snacks. The trading medium of exchange was conversation. “Jo, meet Mat Hope from Carbon Brief, no Maf Smith from Renewable UK. You’ve both been eviscerated by Delingpole online”, and so on.

    “Welcome to our own private pedestal”, I said to somebody, who it turned out had built, probably in the capacity of developer, a sugarcane bagasse Combined Heat and Power plant. The little table in the corner had only got room around it for three or at most four people, and yet had a full complement of snack bowls. Bonus. I didn’t insist on memorising what this fellow told me his name was. OK, I didn’t actually hear it above the hubbub. And he was wearing no discernible badge, apart from what appeared to be the tinge of wealth. He had what looked like a trailing truculent teenager with him, but that could have been a figment of my imagination, because the dark ghost child spoke not one word. But that sullenness, and general anonymity, and the talkative gentleman’s lack of a necktie, and his slightly artificial, orange skin tone, didn’t prevent us from engaging wholeheartedly in a discussion about energy futures – in particular the default options for the UK, since there is a capacity crunch coming very soon in electricity generation, and new nuclear power reactors won’t be ready in time, and neither will Carbon Capture and Storage-fitted coal-fired power plants.

    Of course, the default options are basically Natural Gas and wind power, because large amounts can be made functional within a five year timeframe. My correspondent moaned that gas plants are closing down in the UK. We agreed that we thought that new Combined Cycle Gas Turbine plant urgently needs to be built as soon as possible – but he despaired of seeing it happen. He seemed to think it was essential that the Energy Bill should be completed as soon as possible, with built-in incentives to make Gas Futures a reality.

    I said, “Don’t wait for the Energy Bill”. I said, “Intelligent people have forecast what could happen to Natural Gas prices within a few years from high European demand and UK dependence, and are going to build gas plant for themselves. We simply cannot have extensions on coal-fired power plants…” He agreed that the Large Combustion Plant Directive would be closing the coal. I said that there was still something like 20 gigawatts of permissioned gas plant ready to build – and with conditions shaping up like they are, they could easily get financed.

    Earlier, Nigel Cornwall, of Cornwall Energy had put it like this :-

    “Deliverability and the trilemma [meeting all three of climate change, energy security and end-consumer affordability concerns] [are key]. Needs to be some joined-up thinking. [...] There is clearly a deteriorating capacity in output – 2% to 5% reduction. As long as I’ve worked in the sector it’s been five minutes to midnight, [only assuaged by] creative thinking from National Grid.”

    However, the current situation is far from bog standard. As Paul Dickson of Glennmont Partners said :-

    “£110 billion [is needed] to meet the [electricity generation] gap. We are looking for new sources of capital. Some of the strategic institutional capital – pension funds [for example] – that’s who policy needs to be directed towards. We need to look at sources of capital.”

    Alistair Buchanan, formerly of Ofgem, the power sector regulator, and now going to KPMG, spent the last year or so of his Ofgem tenure presenting the “Crunch Winter” problem to as many people as he could find. His projections were based on a number of factors, including Natural Gas supply questions, and his conclusion was that in the winter of 2015/2016 (or 2016/2017) power supply could get thin in terms of expansion capacity – for moments of peak demand. Could spell crisis.

    The Government might be cutting it all a bit fine. As Jenny Holland of the Association for the Conservation of Energy said :-

    “[Having Demand Reduction in the Capacity Mechanism] Not our tip-top favourite policy outcome [...] No point to wait for “capacity crunch” to start [Energy Demand Reduction] market.”

    It does seem that people are bypassing the policy waiting queue and getting on with drawing capital into the frame. And it is becoming more and more clear the scale of what is required. Earlier in the afternoon, Caroline Flint MP had said :-

    “In around ten years time, a quarter of our power supply will be shut down. Decisions made in the next few years. Consequences will last for decades. Keeping the lights on, and [ensuring reasonably priced] energy bills, and preventing dangerous climate change.”

    It could come to pass that scarcity, not only in cheesesticks, but in electricity generation capacity, becomes a reality. What would policy achieve then ? And how should Government react ? Even though Lord Deben (John Gummer) decried in the early afternoon a suggestion implying carbon rationing, proposed to him by Professor Mayer Hillman of the Policy Studies Institute, it could yet turn out that electricity demand reduction becomes a measure that is imposed in a crisis of scarcity.

    As I put it to my sugarcane fellow discussionee, people could get their gas for heating cut off at home in order to guarantee the lights and banks and industry stay on, because UK generation is so dependent on Natural Gas-fired power.

    Think about it – the uptake of hyper-efficient home appliances has turned down owing to the contracting economy, and people are continuing to buy and use electronics, computers, TVs and other power-sucking gadgets. Despite all sizes of business having made inroads into energy management, electricity consumption is not shifting downwards significantly overall.

    We could beef up the interconnectors between the UK and mainland Europe, but who can say that in a Crunch Winter, the French and Germans will have any spare juice for us ?

    If new, efficient gas-fired power plants are not built starting now, and wind farms roll out is not accelerated, the Generation Gap could mean top-down Energy Demand Reduction measures.

    It would certainly be a great social equaliser – Fuel Poverty for all !

  • London : Array, Invest, Divest

    Posted on July 8th, 2013 Jo No comments

    Showcasing the London Array offshore wind farm in the last week at its official launch, the UK’s Prime Minister David Cameron said “[...] We are making this country incredibly attractive to invest in [...] When it comes to green energy, I think we have one of the clearest, most predictable investment climates. And we’re going to add to that by completing the Energy Bill this year. So, we will have a fantastic market for investors to come and build in. [...]” (see below).

    I think developers of solar energy in Britain would disagree quite extensively with his claim that there is a stable regime for green energy. The most effective stimulus tool, the Feed-in Tariff, was applauded and then mauled in short succession by the Conservative-Liberal-Democrat Coalition Government. Installation rates have simply not recovered from chewings from the Treasury attack dog. It’s been boom and then bust, bust, bust, with flurries of activity in summer, but not much more :-

    https://www.gov.uk/government/statistical-data-sets/weekly-solar-pv-installation-and-capacity-based-on-registration-date

    And this despite the yappy enthusiasm (perhaps “big, hairy”, or “big, sexy” ambition) that Greg Barker MP and his Dachshund, Otto, have for sun-fired electricity generation :-

    http://www.solarpowerportal.co.uk/news/barker_once_more_quotes_22gw_by_2020_solar_ambition_2356

    http://www.utilityweek.co.uk/news/news_story.asp?id=198770&title=National+Grid+analysis+clouds+Barker%27s+20GW+solar+ambition

    The Energy Bill should have been finished a long time ago, and I’m pretty sure it would have been, apart from the insane obsession with new nuclear power, which all along was predicted to consist of several kinds of big, chunky subsidy, and shows no signs of being anything other than a bankrolling exercise, even now (and too late to bridge Alistair Buchanan‘s “Crunch Winter” of 2015/2016).

    http://www.bloomberg.com/news/2013-07-02/edf-nuclear-deal-in-u-k-may-take-a-few-months-.html
    “EDF Nuclear Deal in U.K. May Take ‘A Few Months’ : By Alex Morales – Jul 2, 2013 : The U.K. may take “a few months” to agree the price that Electricite de France SA (EDF) will get for power from Britain’s first new nuclear power station in two decades, Energy Secretary Ed Davey suggested. The government has been in talks for months with EDF to agree a so-called strike price the French utility will get for power from a planned plant at Hinkley Point in southwest England. Davey told Parliament’s multi-party Energy and Climate Change Committee he won’t sign a contract with EDF unless it represents “value for money” for consumers. “Even if we agree in the next few months, a nuclear reactor at Hinkley point won’t be producing until the end of this decade at best,” Davey said today. “They have been very constructive negotiations. They are taking some time, and that’s because they are very complicated.”

    http://www.telegraph.co.uk/finance/newsbysector/energy/10164435/Rival-nuclear-companies-cheaper-than-EDF-Ed-Davey-suggests.html
    “[...] Mr Davey told The Guardian that EDF was aware of the strike price that he would agree to and that he was “not going to budge an inch”. He said: “Sometimes people said it is EDF or bust. I would like to do a deal with EDF but we don’t have to. I was in Korea and Japan recently talking to other investors and vendors. Their interest in the UK market was massive. I got the very strong impression that the sort of price I was happy to agree with EDF, they could match.” In the same interview he said: “We have other nuclear options. Hitachi are very live options. They bought Horizon only last year and their pace of progress is truly impressive.” He noted that Hitachi had delivered four reactors “on time and on budget”. [...]”

    But the most serious contention that I have with David Cameron’s remarks is his painting a picture that the UK needs international capital to reach down from geostationary orbit, or where it is a bit lower, in transcontinential flight at 35,000 feet, to touch and bless the UK with its gilded finger of providence.

    Don’t we have any investors in Britain ? We may have only a few, small British companies that can build green energy for us, but we do have a lot of wealth lurking within these very shores, or representatives of a lot of wealth. Could we not demand that those who shore their cash in Britain, and take advantage of cheap corporate tax deals, invest in British green energy ? Could we not make green energy investment a sine qua non of the residence or passsage of wealth in and through the City of London ?

    Many people in Great Britain have pensions, and those pensions have funds, and those funds have fund managers. There’s a lot of money, right there. What are the criteria that govern pension pot investment ?

    And then there’s the banks. Almost everyone in the UK has a bank account. Are the banks held to policies to direct finance and investment towards green energy and clean tech ? Do their customers demand it ?

    Why does the UK Government not stipulate that “best value for money” as a criteria on all contracts of procurement – and investment – has to be matched by “best carbon emissions reduction potential” ?

    Or are we in such an austere position that we need to offer huge, fattened sweeteners from the Treasury tax honeypot, and permission to raise already high power prices for customers, to any international engineering firm prepared to pour concrete here, so that they can arrange for the finance this guarantees ? Why are we in a position where we are being forced to throw public money and billpayer burdens at private companies to guarantee new energy build ?

    This looks like a worse deal than PFI. In fact, it is much, much worse that the Private Finance Inititative, or the revamped new acronyms that replaced it. This is the wholesale gifting of large amounts of annual tax revenue and fingerlicking kilowatt hour prices to large, transnational corporations. If the economy gets worse, which it probably will, these big new construction projects may never get completed. And the new national energy infrastructure that does manage to get built won’t even be ours. Unless they go wrong, in which case the country will have to pay to mop them up. Or at the end of life, when the taxpayers and billpayers will need to pay to decommission nuclear reactors and dispose of radioactive waste.

    And while we’re on the subject of investment, I need to point out that not all big infrastructure projects are alike. Some development is good, some bad. I don’t really see how the Olympic building spree can be compared in any way to what’s necessary for creating a decarbonised energy system. And building larger ports, and roads, and airports, anticipates higher levels of traded goods – the kind of economic growth that caused climate change in the first place.

    If David Cameron wants to crow about big projects and be praised for it, he needs to de-select examples that are unsustainable.

    There really needs to be more focus on what we really need for the future, and that requires discernment in investment. It requires moving away from high consumption models of economy, of divesting from stocks and shares in waste, pollution, carbon emissions and unnecessary trade.

    Invest, yes, but divest, also.

    http://thinkprogress.org/climate/2013/06/25/2213341/invest-divest-obama-goes-full-climate-hawk-in-speech-unveiling-plan-to-cut-carbon-pollution/

    http://www.operationnoah.org/PR_southwark_resolution
    “4 July 2013: The Diocese of Southwark passed a resolution yesterday (3 July 2013) calling on the General Synod of the Church of England to consider disinvestment from fossil fuels.”




    https://www.gov.uk/government/news/prime-minister-champions-inward-investment-at-london-array-and-battersea-power-station

    http://www.guardian.co.uk/environment/video/2013/jul/04/david-cameron-windfarm-thames-estuary-video

    The UK’s Prime Minister David Cameron speaking outside at the London Array site :-

    “Well let’s be clear this is the biggest offshore wind farm anywhere in the world.
    And what it shows is Britain is a great country to come and invest in. And it’s meant
    jobs for local people. And it means clean, green energy for half a million homes in
    our country. It’s part of what we need to have secure, reliable supplies of electricity
    and to get investment and jobs for our people, so it’s a good day for Britain.”

    David Cameron speaking at the Press Launch indoors :-

    “Well of course, when I chaired the G8, I had to arrange everything, starting with
    the dress code. There was some criticism. Why wasn’t I wearing a tie ? What people
    didn’t realise of course was that President Putin wanted to do the whole thing
    barechested on horseback, and I of course had to negotiate him down to smart casual.
    We haven’t had that problem today.

    Sometimes people wonder, can we in the West, can we do big projects any more ? Can we
    do the big investments ? Isn’t that all happening somewhere else in the East and the
    South of our world ?

    And I think if you look at the United Kingdom right now you can see WE CAN do big
    projects. Not only did we do a superb Olympics last year, but underneath London,
    CrossRail is the biggest construction project anywhere in Europe.

    Not far away from here is Dubai Ports World London Gateway, which is the biggest port
    contruction taking place anywhere in Europe.

    And here you have the biggest offshore wind farm anywhere in the world.

    I think it demonstrates Britain is a great place to invest.

    I don’t want to have too much Schadenfreude, but it’s actually a fact that last year,
    foreign direct investment into Europe as a whole went down by something like 40%, but in
    the UK it went up by 24%.

    We are making this country incredibly attractive to invest in, and and that’s part of what
    this project is about.

    When it comes to green energy, I think we have one of the clearest, most predictable
    investment climates. And we’re going to add to that by completing the Energy Bill this year.

    So, we will have a fantastic market for investors to come and build in.

    So, a great win for Kent, a great win for renewable energy and a great win for Britain.”

  • They Think It’s Not All Over

    Posted on June 11th, 2013 Jo No comments



    [ Image Credit : Lakeview Gusher : TotallyTopTen.com ]

    So, the EIA say that the world has 10 years of shale oil resources which are technically recoverable. Woo hoo. We’ll pass over the question of why the American Department of Energy are guiding global energy policy, and why this glowing pronouncement looks just like the mass propaganda exercise for shale gas assessments that kicked off a few years ago, and move swiftly on to the numbers.

    No, actually, not straight on to the numbers. It shouldn’t take a genius to work out the public relations strategy for promoting increasingly dirtier fossil fuels. First, they got us accustomed to the idea of shale gas, and claimed without much evidence, that it was as “clean” as Natural Gas, and far, far cleaner than coal. Data that challenges this myth continues to be collected. Meanwhile, now we are habituated to accepting without reason the risks of subsurface and ground water reservoir destruction by hydraulic fracturing, we should be pliable enough to accept the next step up – oil shale oil fracking. And then the sales team can move on to warm us up to cruddier unconventionals, like bitumen exhumed from tar sands, and mining unstable sub-sea clathrates.

    Why do the oil and gas companies of the world and their trusted allies in the government energy departments so desperately want us to believe in the saving power of shale oil and gas ? Why is it necessary for them to pursue such an environmentally threatening course of product development ? Can it be that the leaders of the developed world and their industry experts recognise, but don’t want to admit to, Peak Oil, and its twin wraith, Peak Natural Gas, that will shadow it by about 10 to 15 years ?

    A little local context – UK oil production is falling like a stoneover the whole North Sea area. Various efforts have been made to stimulate new investment in exploration and discovery. The overall plan for the UK Continental Shelf has included opening up prospects via licence to smaller players in the hope of getting them to bet the farm, and if they come up trumps, permitted the larger oil and gas companies to snaffle up the small fry.

    But really, the flow of Brent crude oil is getting more expensive to guarantee. And it’s not just the North Sea – the inverse pyramid of the global oil futures market is teeteringly wobbly, even though Natural Gas Liquids (NGL) are now included in petroleum oil production figures. Cue panic stations at the Coalition (Oilition) Government offices – frantic rustling of review papers ahoy.

    To help them believe it’s not all over, riding into view from the stables of Propaganda Central, come the Six Horsemen of Unconventional Fossil Fuels : Tar Sands, Shale Gas, Shale Oil (Oil Shale Oil), Underground Coal Gasification, Coalbed Methane and Methane Hydrates.

    Shiny, happy projections of technically recoverable unconventional (night)mares are always lumped together, like we are able to suddenly open up the ground and it starts pouring out hydrocarbon goodies at industrial scale volumes. But no. All fossil fuel development is gradual – especially at the start of going after a particular resource. In the past, sometimes things started gushing or venting, but those days are gone. And any kind of natural pump out of the lithosphere is entirely absent for unconventional fossil fuels – it all takes energy and equipment to extract.

    And so we can expect trickles, not floods. So, will this prevent field depletion in any region ? No. It’s not going to put off Peak Oil and Peak Natural Gas – it literally cannot be mined fast enough. Even if there are 10 years of current oil production volumes that can be exploited via mining oil shale, it will come in dribs and drabs, maybe over the course of 50 to 100 years. It might prolong the Peak Oil plateau by a year or so – that’s barely a ripple. Unconventional gas might be more useful, but even this cannot delay the inevitable. For example, despite the USA shale gas “miracle”, as the country continues to pour resources and effort into industrialising public lands, American Peak Natural Gas is still likely to be only 5 years, or possibly scraping 10 years, behind Global Peak Natural Gas which will bite at approximately 2030 or 2035-ish. I suspect this is why EIA charts of future gas production never go out beyond 2045 or so :-

    Ask a mathematician to model growth in unconventional fossil fuels compared to the anticipated and actual decline in “traditional” fossil fuels, and ask if unconventionals will compensate. They will not.

    The practice for oil and gas companies is to try to maintain shareholder confidence by making sure they have a minimum of 10 years of what is known as Reserves-to-Production ratio or R/P. By showing they have at least a decade of discovered resources, they can sell their business as a viable investment. Announcing that the world has 10 years of shale oil it can exploit sounds like a healthy R/P, but in actual fact, there is no way this can be recovered in that time window. The very way that this story has been packaged suggests that we are being encouraged to believe that the fossil fuel industry are a healthy economic sector. Yet it is so facile to debunk that perspective.

    People, it’s time to divest your portfolios of oil and gas concerns. If they have to start selling us the wonders of bitumen and kerogen, the closing curtain cannot be far away from dropping.

    They think it’s not all over, but it so clearly must be.

  • Natural Gas in the UK

    Posted on February 27th, 2013 Jo No comments

    The contribution of coal-fired power generation to the UK’s domestic electrical energy supply appears to have increased recently, according to the December 2012 “Energy Trends” released by the Department of Energy and Climate Change. This is most likely due to coal plants using up their remaining allotted operational hours until they need to retire.
    It could also be due to a quirk of the international markets – coal availability has increased because of gas glut conditions in the USA leading to higher coal exports. Combatting the use of coal in power generation is a global struggle that still needs to be won, but in the UK, it is planned that low carbon generation will begin to gain ascendance.

    The transition to lower carbon energy in Britain relies on getting the Natural Gas strategy right. With the imminent closure of coal-fired power plant, the probable decommissioning of several nuclear reactors, and the small tranche of overall supply coming from renewable resources, Natural Gas needs to be providing a greater overall percentage of electricity in the grid. But an increasing amount of this will be imported, since indigenous production is dropping, and this is putting the UK’s economy at risk of high prices and gas scarcity.

    Demand for electricity for the most part changes by a few percentage points a year, but the overall trend is to creep upwards (see Chart 4, here). People have made changes to their lighting power consumption, but this has been compensated for by an increase in power used by “gadgets” (see Chart 4, here). There is not much that can be done to suppress power consumption. Since power generation must increasingly coming from renewable resources and Natural Gas combustion, this implies strong competition between the demand for gas for heating and the demand gas for electricity. Electricity generation is key to the economy, so the power sector will win any competition for gas supplies. If competition for Natural Gas is strong, and since we don’t have much national gas storage, we can expect higher seasonal imports and therefore, higher prices.

    It is clear that improving building insulation across the board is critical in avoiding energy insecurity. I shall be checking the winter heat demand figures assiduously from now on, to determine if the Green Deal and related measures are working. If they don’t, the UK is in for heightened energy security risks, higher carbon emissions, and possibly much higher energy prices. The Green Deal simply has to work.

  • A Report from Tasmania

    Posted on February 4th, 2013 Jo 1 comment

    During the worst of the austral summer in Tasmania at the start of 2013, an Austrian friend of mine was travelling through the region, and sent back the following report.


    “We arrived in Tassie [Tasmania] on the 6th of January 2013. When I looked outside the window of the plane I saw many burning fields and a lot of black smoke was in the air.”

    “We picked up our luggage and went to the car rental counter. Actually we were lucky to catch the last rental car, as most of the cars were stuck in the Peninsula at Port Arthur and people couldn’t drive them back as all roads were blocked already.

    There were over 40 bush-fires in the area and most of the people have been evacuated either by sailboats and ships, as the whole island (Peninsula) Dunally was on fire.

    We drove directly up to the northern part of Tasmania away from the bush-fires.

    On the radio we heard many additional fire-warnings and had to take another highway in order to reach the Cradle Mountain National Park.

    The air was filled with smoke and the smell was terrible. As we arrived in the National Park all of a sudden it started to rain and didn’t stop for the rest of the day. The next day also…rain, rain, rain.

    250km south of Tassie bush-fires and here we are and felt like we were swept away by the strong winds and rainfalls in the middle of Tassie. :) It has been also really cold. Strange feeling to experience such a different weather-condition within only one day.”


    Video which describes it best:
    http://www.youtube.com/watch?v=Qxz9x7HYIHo

    Arnie speaking German in front of students in Vienna on the 31st of January:
    http://www.youtube.com/watch?v=3AyEjgs-Bc0
    http://europa.eu/rapid/press-release_SPEECH-13-89_de.htm?locale=en
    http://www.r20vienna.org/


    “Let’s keep in touch. We have to step out of the comfort zone into the smoking zone in order to reach people for the “truth” about climate change. :)

  • How is your Australia ?

    Posted on January 24th, 2013 Jo No comments

    [ PLEASE NOTE : This post is not written by JOABBESS.COM, but by a contact in Australia, who was recently asked if they could send an update of the situation there, and contributed this piece. ]

    John and Jono: Resistance to coal in heat-afflicted Australia
    By Miriam Pepper, 24/1/13

    It was predicted to be a hot summer in eastern Australia, with a return to dry El Nino conditions after two back-to-back wet La Nina years. And hot it has been indeed. Temperature records have tumbled across the country – including the hottest day, the longest heatwave, and the hottest four month period.

    With heavy fuel loads heightening fire risks, bushfires have blazed across Tasmania, Victoria, NSW, South Australia and Queensland. The fires have wreaked devastation on communities, with homes, farmland and forest destroyed. Thankfully few human lives have been lost (unlike the Black Saturday bushfires of 2009), though many non-human neighbours were not so fortunate. Some 110,000 hectares burned and 130 houses were lost in the Tasmanian bushfires earlier this month, and fires still rage in Gippsland Victoria where over 60,000 hectares have burned so far. And we are only just over halfway through summer.

    On January 12, the Australian Government-established Climate Commission released a short report entitled “Off the charts: Extreme Australian Summer heat”. The document concluded that:

    “The length, extent and severity of this heatwave are unprecedented in the measurement record. Although Australia has always had heatwaves, hot days and bushfires, climate change has increased the risk of more intense heatwaves and extreme hot days, as well as exacerbated bushfire conditions. Scientists have concluded that climate change is making extreme hot days, heatwaves and bushfire weather worse.”

    The Australian continent is one of climate change’s frontlines, and also a major source of its primary cause – fossil fuels.

    While the mercury soared and the fires roared, a young translator from Newcastle called Jonathan Moylan issued a fake press release claiming that the ANZ bank, which is bankrolling a massive new coal project at Maules Creek in north western NSW, had withdrawn its loan. Whitehaven Coal’s share price plummeted temporarily before the hoax was uncovered, making national news.

    This action did not come out of the blue, neither for Moylan personally nor for the various communities and groups that have for years been confronting (and been confronted by) the rapid expansion of coal and coal seam gas mining at sites across Australia.

    The scale of fossil fuel expansion in Australia is astonishing. Already the world’s biggest coal exporter, planned mine expansion could see Australia double its output. The world’s largest coal port of Newcastle NSW has already doubled its capacity in the last 15 years and may now double it again. Mega-mines that are on the cards in the Galilee Basin in central Queensland would quintuple ship movements across the Great Barrier Reef, to 10,000 coal ships per year. If the proposed Galilee Basin mines were fully developed today, the annual carbon dioxide emissions caused by burning their coal alone would exceed those of the United Kingdom or of Canada. The implications of such unfettered expansion locally for farmland, forests, human health and aquatic life as well as globally for the climate are severe.

    I have twice had the privilege of participating in a Christian affinity group with Moylan at coal protests. And at around the time of his ANZ stunt, John the Baptist’s ministry and the baptism of Jesus in the gospel of Luke were on the lectionary. For me, there have been some striking parallels between John and Jonathan (Jono).

    John the Baptist lived in the wilderness. Jono the Activist has been camping for some time in Leard State Forest near Maules Creek, at a Front Line Action on Coal mine blockade.

    John got himself locked up by criticising the behavior of Herod, the then ruler of Galilee (in what is now northern Israel). For making the announcement that ANZ should have made, Jono could now face a potential 10-year jail sentence or a fine of up to $500,000.

    When followers suggested that John the Baptist might be the Messiah, he pointed away from himself and towards the Christ that was yet to come. When the spotlight has been shone onto Moylan, by the media and activists alike, he has repeatedly deflected the attention away from himself and towards the resistance of the Maules Creek community to the project and towards the impacts if the project goes ahead – the loss of farmland and critically endangered forest, the drawdown and potential contamination of the aquifer, the coal dust, the impacts on the global climate. And indeed, the way that Moylan has conducted himself in media interviews has I believe resulted in exposure about the Maules Creek project itself (which is currently under review by the federal Environment Minister) as well as some mainstream discussion about broader issues such as responding to the urgency of climate change, government planning laws and the rights of communities, and ethical investment.

    In an opinion piece published today, Jono Moylan finishes by urging us to act:

    “We are living in a dream world if we think that politicians and the business world are going to sort out the problem of coal expansion on their own. History shows us that when power relations are unevenly matched, change always comes from below. Every right we have has come from ordinary people doing extraordinary things and the time to act is rapidly running out.”

    Whatever our age, ability or infirmity we can all play a part in such change from below.

    Links

    Climate Commission: http://climatecommission.gov.au
    Frontline Action on Coal: http://frontlineaction.wordpress.com
    Maules Creek Community Council: http://maulescreek.org
    “Potential jailing not as scary as threat of Maules Creek mine”, opinion piece by Jonathan Moylan, 24/1/13: http://www.smh.com.au/opinion/politics/potential-jailing-not-as-scary-as-threat-of-maules-creek-mine-20130123-2d78s.html
    Greenpeace climate change campaigns: http://www.greenpeace.org/australia/en/what-we-do/climate/
    Australian Religious Response to Climate Change: http://www.arrcc.org.au
    Uniting Earthweb: http://www.unitingearthweb.org.au

  • Statistical Elephants Roam Chamber

    Posted on January 20th, 2013 Jo No comments


    Image Credit : appinsys.com

    Somewhere on the Internet, as I write, somebody will be arguing about global warming – or rather, several somebodies, since disputes require multiple parties, and global warming is, as claimed by some, to be sufficiently contentious to have spawned ongoing vituperativeness. Many of the lines of reasoning will include references to the cyclic nature of Nature. Most of the data considered will be from measurements of “surface” temperatures – the temperature of the atmosphere near the land surface of the Earth, and the temperature of the oceans near the surface with the atmosphere.

    These are of course, the easiest things to measure, as this is the part of the Earth system that people inhabit, and all kinds of surface temperature records, of varying validity and accuracy, have been recorded for millenia.

    The lower reaches of the air and the upper waters of the oceans, are, however, prone to quite wide swings in temperatures, owing to the turbulent nature of heat, air and water transport in and around the surface of the Earth. And so, easily distracted creatures that we are, if we have any honour in our research into global warming, we consider this see-sawing surface temperature data, and we apply our best analysis techniques to try to comprehend its “walk” – the direction it is taking overall. And herein lies a faultline, that despite decades of obsession, is not easily vaulted. The use of statistical techniques to analyse surface temperature data suffers from two key problems :-

    (a) An assumption that we can determine accurately the period of time over which we can confidently apply statistical analysis techniques in order to be able to determine trends in surface temperatures; and

    (b) An assumption that surface temperatures can be treated with the usual statistical toolbox of techniques – that surface temperatures would, unless forced, fall into a distribution curve of random readings, spread like a bell curve around a central mean.

    And so an army of inspectors applies probabilistic statistical methods to the Earth’s surface temperature data sets, and some say it comes up with more questions than answers. For example, there may, or may not be, evidence that trends can only be claimed over decadal, or multi-decadal, periods; that all the apparent warming can be put down to natural cycles of the oceans, so a cooling phase will be next; that no trend can be claimed in 50 years because of the wild swings in the data ; that all the data is confused with volcanic episodes; that lots of mini-cycles in the Earth system are confusing us. And so on.

    When I find people arguing about the surface temperature records, and whether a global warming trend can be picked out from them, I ask them if they’ve looked at the bigger picture : the global heat transport system. Water can retain heat better than air – a very large proportion of the heating caused by sunlight ends up in the oceans – at different places in the depths of the oceans. Over time, this heat is exchanged with the atmosphere, rather like global Gas Central Heating, but a lot of it stays down there – so if there is a trend for global warming, it’s probably best to look in the oceans for it.

    And when we do, all the arguments about statistical analysis of surface atmospheric temperatures vapourise into meaninglessness, almost. The trend of ocean warming is so clear, you don’t need to apply any kind of statistical methods (apart from a couple of years of averaging) :-


    Image Credit : Climate4You

    Actually, the trend of atmospheric warming is also clear, if you take the long view :-


    Image Credit : NASA GISS

    Anybody who is still arguing about the periodicity of surface temperatures, as if natural cycles could explain global warming, should think again.

    Surface temperature cycles are perhaps able to explain whether the next 10 years or so will see more or less global warming – but they cannot explain away the 100 year trend in global warming.

    And when people have come to terms that statistics cannot wipe away the reality of global warming, then comes the sting in the tail. Because the ocean is exchanging heat with the atmosphere over time, this creates a time lag – between the heat being generated in the oceans, and surface temperatures rising as a result.

    We ain’t seen nothing, yet.


    18th January 2013
    Twitterverse

    —————————————-

    @joabbess

    @richardabetts Think focus on air temps waste of time: most heat ends up in oceans http://www.climate4you.com/images/NODC%20GlobalOceanicHeatContent0-700mSince1955%20With37monthRunningAverage.gif … @lucialiljegren @nmrqip @ed_hawkins

    @richardabetts Number of reasons why air temps bounce around making short-term interpretation difficult @lucialiljegren @nmrqip @ed_hawkins

    @richardabetts …but oceans temps could well continue a solid upwards gradient over next decades @lucialiljegren @nmrqip @ed_hawkins

    @richardabetts If oceans continue recent warming gradient, will drag air temps on average up with them @lucialiljegren @nmrqip @ed_hawkins

    @richardabetts If ENSO taking new shape/profile/cycle, this could obscure some of atmospheric temp rise @lucialiljegren @nmrqip @ed_hawkins

    @richardabetts Even ENSO obfuscation can’t put off ~1.2degC warming next 30 years http://www.joabbess.com/2010/07/19/simple-integration/ … @lucialiljegren @nmrqip @ed_hawkins

    —-

    @ClimateOfGavin Sometimes distrust obsession re atmospheric temps: look at ocean warming @lucialiljegren @ed_hawkins @richardabetts @nmrqip

    @ClimateOfGavin However much @lucialiljegren obsesses on air temperatures I only care about ocean warming @ed_hawkins @richardabetts @nmrqip

    @ClimateOfGavin Lower atmosphere temperatures flip-flop all kinds of reasons: not oceans @lucialiljegren @ed_hawkins @richardabetts @nmrqip

    @ClimateOfGavin Thermal capacity of oceans means they should show more reliable trend ? @lucialiljegren @ed_hawkins @richardabetts @nmrqip

    ————————————————————

    @ed_hawkins

    @joabbess @ClimateOfGavin Probably, but we only have good enough sub-surface observations of past ~50 years or so.

    ————————————————————

    @joabbess

    @ed_hawkins Yet since oceans good heat retainer even mediocre records of past relevant 4 comparison eg http://www.livescience.com/19414-oceans-warming-135-years.html … @ClimateOfGavin

    @ed_hawkins We should definitely use what we know about thermal capacity of oceans to accept ships etc historical records @ClimateOfGavin

    @ed_hawkins Ocean records of last 50 years allow for calibration between surface and depths, & with historical records too @ClimateOfGavin

    —————————————————–

    @ed_hawkins

    @joabbess @ClimateOfGavin Of course – deep ocean observations are very relevant, but not the only type of measurement that are useful!

    —————————————————–

    @joabbess

    @ed_hawkins I’m sure there must be mines data going back several hundreds of years, doing same trick for mass earth temps @ClimateOfGavin

    ——————————————————

    @JohnRussell40 :-

    @joabbess Surely mines data will be swamped by core heat? V. hot down there. @ed_hawkins @ClimateOfGavin

    ——————————————————

    @ClimateOfGavin (Gavin Schmidt)

    @JohnRussell40 @joabbess @ed_hawkins borehole temperatures can in fact be deconvolved to show widespread recent warming Henry Pollack et al

    ——————————————————

    @joabbess

    @ClimateOfGavin I assume you mean this http://www.ncdc.noaa.gov/paleo/borehole/core.htmlhttp://www.ncdc.noaa.gov/paleo/globalwarming/pollack.html … Think that’s pretty clear ! @JohnRussell40 @ed_hawkins

    @ClimateOfGavin Interestingly reflects surface up-blip in 1940s, which Phil Jones et al keep trying to smooth @JohnRussell40 @ed_hawkins
    @ClimateOfGavin That up-blip in 1940s was what got us all started looking for historical marine records: v useful @JohnRussell40 @ed_hawkins

    @ed_hawkins I’m trying to hint that endless debates about cyclicity/statistics of air temps = time-wasting & not productive @ClimateOfGavin

    @ed_hawkins If read 1 more mangled media article about statistical trends of air temperatures, going to scream & jump about @ClimateOfGavin

    @ed_hawkins The overall graph speaks for itself – or it should – louder than anything http://www.columbia.edu/~jeh1/mailings/2013/20130115_Temperature2012.pdf … Fig. 1 @ClimateOfGavin

    ———————————————

  • Herşeyi Yak : Burn Everything

    Posted on October 26th, 2012 Jo No comments

    There’s good renewable energy and poorly-choiced renewable energy. Converting coal-burning power stations to burn wood is Double Plus Bad – it’s genuiunely unsustainable in the long-term to plan to combust the Earth’s boreal forests just to generate electricity. This idea definitely needs incinerating.

    Gaynor Hartnell, chief executive of the Renewable Energy Association recently said, “Right now the government seems to have an institutional bias against new biomass power projects.” And do you know, from my point of view, that’s a very fine thing.

    Exactly how locally-sourced would the fuel be ? The now seemingly abandoned plan to put in place a number of new biomass burning plants would rely on wood chip from across the Atlantic Ocean. That’s a plan that has a number of holes in it from the point of view of the ability to sustain this operation into the future. Plus, it’s not very efficient to transport biomass halfway across the world.

    And there’s more to the efficiency question. We shouldn’t be burning premium wood biomass. Trees should be left standing if at all possible – or used in permanent construction – or buried so that they don’t decompose – if new trees need to be grown. Rather than burning good wood that could have been used for carbon sequestration, it would be much better, if we have to resort to using wood as fuel, to gasify wood waste and other wood by-products in combination with other fuels, such as excavated landfill, food waste and old rubber tyres.

    Co-gasifying of mixed fuels and waste would allow cheap Carbon Capture and Storage (CCS) or Carbon Capture and (Re)Utilisation (CCU) options – and so if we have to top up the gasifiers with coal sometimes, at least it wouldn’t be leaking greenhouse gas to the atmosphere.

    No, we shouldn’t swap out burning coal for incinerating wood, either completely or co-firing with coal. We should build up different ways to produce Renewable Gas, including the gasification of mixed fuels and waste, if we need fuels to store for later combustion. Which we will, to back up Renewable Electricity from wind, solar, geothermal, hydropower and marine resources – and Renewable Gas will be exceptionally useful for making renewable vehicle fuels.

    Bioenergy with Carbon Capture and Storage : the wrong way :-
    http://www.biofuelwatch.org.uk/wp-content/uploads/BECCS-report.pdf

    Bioenergy with Carbon Capture and Storage : the right way :-
    http://www.ecolateral.org/Technology/gaseifcation/gasificationnnfc090609.pdf
    “The potential ability of gasifiers to accept a wider range of biomass feedstocks than biological routes. Thermochemical routes can use lignocellulosic (woody) feedstocks, and wastes, which cannot be converted by current biofuel production technologies. The resource availability of these feedstocks is very large compared with potential resource for current biofuels feedstocks. Many of these feedstocks are also lower cost than current biofuel feedstocks, with some even having negative costs (gate fees) for their use…”
    http://www.uhde.eu/fileadmin/documents/brochures/gasification_technologies.pdf
    http://www.gl-group.com/pdf/BGL_Gasifier_DS.pdf
    http://www.energy.siemens.com/fi/en/power-generation/power-plants/carbon-capture-solutions/pre-combustion-carbon-capture/pre-combustion-carbon-capture.htm

  • The Art of Non-Persuasion

    Posted on October 17th, 2012 Jo No comments

    I could never be in sales and marketing. I have a strong negative reaction to public relations, propaganda and the sticky, inauthentic charm of personal persuasion.

    Lead a horse to water, show them how lovely and sparkling it is, talk them through their appreciation of water, how it could benefit their lives, make them thirsty, stand by and observe as they start to lap it up.

    One of the mnemonics of marketing is AIDA, which stands for Attention, Interest, Desire, Action, leading a “client” through the process, guiding a sale. Seize Attention. Create Interest. Inspire Desire. Precipitate Action. Some mindbenders insert the letter C for Commitment – hoping to be sure that Desire has turned into certain decision before permitting, allowing, enabling, contracting or encouraging the Action stage.

    You won’t get that kind of psychological plasticity nonsense from me. Right is right, and wrong is wrong, and ethics should be applied to every conversion of intent. In fact, the architect of a change of mind should be the mind who is changing – the marketeer or sales person should not proselytise, evangelise, lie, cheat, sneak, creep and massage until they have control.

    I refuse to do “Suggestive Sell”. I only do “Show and Tell”.

    I am quite observant, and so in interpersonal interactions I am very sensitive to rejection, the “no” forming in the mind of the other. I can sense when somebody is turned off by an idea or a proposal, sometimes even before they know it clearly themselves. I am habituated to detecting disinclination, and I am resigned to it. There is no bridge over the chasm of “no”. I know that marketing people are trained to not accept negative reactions they perceive – to keep pursuing the sale. But I don’t want to. I want to admit, permit, allow my correspondent to say “no” and mean “no”, and not be harrassed, deceived or cajoled to change it to a “yes”.

    I have been accused of being on the dark side – in my attempts to show and tell on climate change and renewable energy. Some assume that because I am part of the “communications team”, I am conducting a sales job. I’m not. My discovery becomes your discovery, but it’s not a constructed irreality. For many, it’s true that they believe they need to follow the path of public relations – deploying the “information deficit model” of communication – hierarchically patronising. Me, expert. You, poor unknowing punter. Me, inform you. You, believe, repent, be cleaned and change your ways. In this sense, communications experts have made climate change a religious cult.

    In energy futures, I meet so many who are wild-eyed, desperate to make a sale – those who have genuine knowledge of their subject – and who realise that their pitch is not strong enough in the eyes of others. It’s not just a question of money or funding. The engineers, often in large corporations, trying to make an impression on politicians. The consultants who are trying to influence companies and civil servants. The independent professionals trying to exert the wisdom of pragmatism and negotiated co-operation. The establishment trying to sell technical services. Those organisations and institutions playing with people – playing with belonging, with reputation, marketing outdated narratives. People who are in. People who are hands-off. People who are tipped and ditched. Those with connections who give the disconnected a small rocky platform. The awkwardness of invested power contending with radical outsiders. Denial of changing realities. The dearth of ready alternatives. Are you ready to be captured, used and discarded ? Chase government research and development grants. Steal your way into consultations. Play the game. Sell yourself. Dissociate and sell your soul.

    I have to face the fact that I do need to sell myself. I have to do it in a way which remains open and honest. To sell myself and my conceptual framework, my proposals for ways forward on energy and climate change, I need a product. My person is often not enough of a product to sell – I am neuro-atypical. My Curriculum Vitae CV in resume is not enough of a product to sell me. My performance in interviews and meetings is often not enough of a product. My weblog has never been a vehicle for sales. I didn’t want it to be – or to be seen as that – as I try to avoid deceit in communications.

    Change requires facilitation. You can’t just walk away when the non-persuasional communications dialogue challenge gets speared with distrust and dismissal. Somehow there has to be a way to present direction and decisions in a way that doesn’t have a shadow of evil hovering in the wings.

    “A moment to change it all, is all it takes to start anew.
    To the other side.”


    Why do I need to “sell” myself ? Why do I need to develop a product – a vehicle with which to sell myself ?

    1. In order to be recognised, in order to be welcomed, invited to make a contribution to the development of low carbon energy, the optimisation of the use of energy, and effective climate change policy.

    2. In order to put my internal motivations and drive to some practical use. To employ my human energy in the service of the future of energy engineering and energy systems.



  • No Cause for Alarm

    Posted on September 25th, 2012 Jo No comments

  • Forgive Us Our Stupidity

    Posted on September 14th, 2012 Jo No comments

    There are some things we can do nothing about. Forgive us our stupidity.

    Supertyphoon Sanba is heading Japan and South Korea’s way. Read the rest of this entry »

  • London Skies

    Posted on September 9th, 2012 Jo 1 comment

    Image Credit : epeigne37

    Yesterday evening, I was caught by the intensity of the London Sky – there was little air movement in most of the lower summer-heat space above the city, and virtually no cloud except very high strands and sprurls and bones and smears.

    Most of the cloud was clearly the result of aeroplane contrails – numerable to small children and their educational grandparents on various buses.

    As the sun began to set, or rather, as the Earth rolled to curve away from facing the sun, the sky took on the colour of bright duck egg blue with a hint of pale green, and the sprays of high contrail-cloud took on a glorious orange-fuchsia colour with flashes of gold, bronze and vanadium reds, fading slowly to chromium reds as twilight approached.

    At a certain moment, I understood something – as I watched an aeroplane high up, make its way west to Heathrow, the angle of the sunset showed its contrail as a murky ink, messing up the rest of the clouds as it brushstroked its way along, with its slate and muddy hues. As I watched, other parts of the clouds began to appear brown and grey, and since I knew that most of the cloud was jet engine exhaust that hadn’t moved because of the lack of high winds, I finally realised I was watching dirt, high up in the troposphere – careless, unthinking toxic waste. Read the rest of this entry »

  • Un égard, un regard, un certain regard

    Posted on August 27th, 2012 Jo No comments

    Whatever it is, it starts with attention, paying attention.

    Attention to numbers, faces, needs, consideration of the rights and wrongs and probables.

    Thinking things through, looking vulnerable children and aggressive control freaks directly in the eye, being truly brave enough to face both radiant beauty and unbelievable evil with equanimity.

    To study. To look, and then look again.

    To adopt a manner of seeing, and if you cannot see, to learn to truly absorb the soundscape of your world – to pick up the detail, to fully engage.

    It is a way of filling up your soul with the new, the good, the amazing; and also the way to empty worthless vanity from your life.

    Simone Weil expressed this truth in these words : “Toutes les fois qu’on fait vraiment attention, on détruit du mal en soi.” If you pay close attention, you learn what is truly of value, and you jettison incongruities and waywardness. She also pronounced that “L’attention est la forme la plus rare et la plus pure de la générosité.” And she is right. People feel truly valued if you gaze at them, and properly listen to them.

    Those of us who have researched climate change and the limits to natural resources, those of us who have looked beyond the public relations of energy companies whose shares are traded on the stock markets – we are paying attention. We have been working hard to raise the issues for the attention of others, and sometimes this has depleted our personal energies, caused us sleepless nights, given us depression, fatalism, made us listless, aimless, frustrated.

    Some of us turn to prayer or other forms of meditation. We are enabled to listen, to learn, to try again to communicate, to bridge divides, to empathise.

    A transformation can take place. The person who pays close attention to others becomes trusted, attractive in a pure, transparent way. People know our hearts, they have confidence in us, when we give them our time and an open door.

    Read the rest of this entry »

  • What is my agenda ?

    Posted on August 13th, 2012 Jo 1 comment


    Tamino’s Arctic Sea Ice Poll


    For some time I have not felt a keen sense of “mission” – a direction for my climate change and energy activities. However, I am beginning to formulate a plan – or rather – I have one important item on my agenda. I am aware that perception can be fatal – and that people in many “camps” are going to dismiss me because of this.

    Suddenly I don’t fit into anybody’s pigeonhole – so the needle on the dial will probably swing over to “dismiss”. However, I think it’s necessary to pursue this. I think I have to try.

    I am prepared to hold several conflicting ideas in the balance at one time, and let the data add mass to one version of the truth or another.

    I’m prepared to accept the possibility of low climate change sensitivity (the reaction of the Earth biosystem to global warming) – apart from the fact that the evidence is accumulating – pointing heavily towards rapid instabilities emerging on short timescales. I don’t think I ever really left behind the hope – and I’m crossing my fingers here – that some massive negative carbon feedback will arise, heroically, and stem the full vigour of climate chaos. But as time slips by, and the Arctic cryosphere continues to de-materialise before our very eyes, that hope is worn down to the barest of threads.

    And on energy security, I am prepared to accept the reasoning behind the IEA, BP, Shell and other projections of increasing overall energy demand between now and 2035, and the percentage of fossil fuel use that will inevitably require – apart from the fact that some evidence points towards increasing uncertainties in energy provision – if we are relying on more complex and inaccessible resources, within the framework of an increasingly patchy global economy.

    If access to energy becomes threatened for more people globally, and also if climate change becomes highly aggressive in terms of freshwater stress, then I doubt that human population growth can carry on the way it has been – and in addition the global economy may never recover – which means that overall energy demand will not grow in the way that oil and gas companies would like their shareholders to accept.

    My impression is that energy producing companies and countries are not openly admitting the risks. If energy supply chaos sets in, then the political and governance ramifications will be enormous, especially since the energy industry is so embedded in administrations. It is time, in my view, that projections of world energy use to 2035 included error bars based on economic failure due to energy chaos.

    What do I need to do – given these pragmatic positions ? I need to include realists in the crisis talks – pragmatic, flexible thinkers from the energy industry. Just as we are not going to solve climate change without addressing energy provision, we are not going to solve energy insecurity without addressing climate change impacts on energy infrastructure. And so I need to find the energy industry people, meet them and invite them to the discussions on the risks of chaos. I need people to take in the data. I need people to understand the problems with slipping back into “thinking as usual”.

    As to the setting – whether I should be an employee or an independent advisor/adviser, consultant or a researcher, I don’t have any idea what would be best. Collaborators would be useful – as I am but one person with a track record of being rather awkward – despite trying to engage my best behaviour. But then, nobody’s perfect. In a sense it doesn’t matter who does the job, but we have to break the public relations-guided psychology of denial. People are not generally stupid, and many are snapping out of their drip-fed propaganda delusions. I wonder exactly how many other imperfect people are out there who are coming to the same conclusions ? And what will be the game changer ?

  • We Need To Talk About Syria

    Posted on August 4th, 2012 Jo 1 comment

    Kofi Annan has thrown up his hands and backed away from his role as UN-Arab League special envoy to Syria tasked with a peace mission. In one sense it is all too predictable. The United Nations Security Council is divided, reflecting deep faultlines in the policy positions of the main body of the UN.

    It is probably too early in the evolution of global human governance to expect military violence to be declared illegal, but at least there are voices starting to speak up demanding that there be no armed foreign intervention in Syria. The trouble is that although warfare by foreign parties in Syria has not been publicly declared, there are, by many accounts, military and security operatives of a number of external country administrations already in play inside its borders. Foreign ministers in several major countries have pledged support to either the Syrian “regime” – you know – its “ruling government”, or to the “opposition” “rebels” – otherwise known as gangs of armed thugs. Or quite possibly people from a nebulous ill-defined shadowy organisation known as “Al-Qaeda”.

    There are some reports that foreign involvement was behind the bombing of members of President Bashar al-Assad’s government in July, a near “decapitation” – as Assad himself could have been easily killed in the incident, and that a reprisal attack took place several days later – possibly severely injuring or even killing Prince Bandar, newly recruited chief of intelligence in the Kingdom of Saudi Arabia – recently drafted in – apparently with a mission to topple Syria’s “regime” – you know, Syria’s “legitimate administration” – a former ambassador to the United States of America. Although this is not yet confirmed. Or denied.

    Despite conciliatory moves, countries of stern influence in the United Nations continue to call for Assad to quit, for reasons that nobody really delves into. Oh yes, as a mild-mannered London-trained ex-ophthalmologist, he’s supposed to be some kind of Hitler character, killing thousands of “his own people”. This story clearly doesn’t stick very well to the man, particularly since this narrative was also recently falsely used against the former leader of Libya. Another story that hasn’t been washing is that the Syrian “regime”, you know, the “proper authorities of administration”, has been responsible for starting all the violence in Syria – but there is now plenty of evidence to the contrary. So why has it been necessary to demonise Assad ? Why has it been that – allegedly – various governments have decided to get dirty hands and stir up violence in Syria in means overt and covert ?

    And with the risks to global oil supply, why has it been necessary for the United States of America and the European Union to implement and enforce an oil embargo on Syria ? I mean, you would have thought it would be in everybody’s best interests to keep the oil flowing from every source possible. But no, sanctions it is, and Syria’s had to give up a considerable amount of their production. I know, I know, before the embargo Syria’s output was only 10% of Iran’s current production (see below), but it has meant a lot for Syria’s trade balance. According to the CIA Factbook on Syria (under “Economy”), nearly three quarters of all oil produced has been for export (although it was consuming more Natural Gas than it could produce – presumably for power generation). Plus, it’s national debt put it in the bottom ranks of the world’s countries meaning it can ill-afford to become more impoverished.

    So remind me again, what was the oil embargo for ? To depose Assad by making him unpopular because of a nosediving economy ? And why does Assad need to go, actually ? Nobody’s saying that the country has been run perfectly. Gruesome tales have been told of what can happen in Syria – but then, horrible things happen in every country, including in the United States of America, and yet the United Nations is not insisting that Barack Obama stand aside.

    Several key cities in Syria have existed in tolerant civilisation for thousands of years. Why does war have to come to Syria ? Why is there civil war being conducted in Damascus ? Even stoics are finding this hard to bear. Wikipedia notes despairingly and ungrammatically “In the second decade of the 21th century Damascus was damaged from the ongoing Syrian Civil War”.

    The more I think about it, the more I come circling back to the same theory – that the economic attack on Syria, and the now almost indisputable accounts of outside meddling that is provoking the conflict (and may have even instigated it in the first place), is simply part of a plan to make the oil and gas resources of all Middle Eastern countries available to global markets at reasonable prices. I mean, look at Iraq, whose oil production was severely hit as a result of military destruction by the international warfare community, but which is now making a splendid recovery (see below) and most of the profits are pouring into the coffers of the multinational oil and gas companies, and diesel and petrol stay relatively inexpensive. Or not, as the case may be. The plan for countries across the Middle East is probably the along the same general line – first accuse the country’s government of heinous crimes, then apply economic sanctions or energy sanctions of some kind, then apply diplomatic and media pressure, (and then, these days, send in the spooks to kick up an “Arab Spring”) and then send in the gunships or gunchoppers – attack helicopters. This narrative has been successfully applied to bring Iraq to heel, and then Libya, and now it seems Syria is being talked down the same blood-paved road, and Iran is being pushed along a parallel track.

    Iran. Now there’s an interesting case. Iran is not a pushover. It has taken nearly seven years of manoeuvring to make the completely unfounded case that Iran is building (or planning to build) nuclear weapons. Iran has been enriching uranium for its stated aim of developing a civilian nuclear power program, and this has been used as the justification to impose sanctions against Iran, including an oil embargo, which is having an impact on their production (see below). Besides painting the leader of Iran as an evil dictator, the propagandists of this world also seem to be trying to wield a new stick to beat Iran with – in the form of the call to end fossil fuel subsidies. Billed as a climate change policy by the G20, it is more a punitive measure against developing countries who have been using fossil fuel subsidies to make sure their citizens can get cheap energy. If Iran is no longer permitted to subsidise energy for citizens it will be forced to sell the oil and gas abroad – a buyer’s market only too pleased to suck dry the world’s second largest oil and Natural Gas producer. That volume of oil and gas being made available on the world’s markets would definitely keep global prices of oil and gas as low as possible.

    Anyway, back to Syria. Clearly, there are problems, although reports of enormous and desperate increases in violence are probably not accurate. Painting the story as increasingly agitated is a common media device to engage the readers with the situation – but if it gets too sensationalised the narrative could start to affect decisionmakers, and may lead to illegitimate and inappropriate influence being exerted from abroad. Instead of William Hague MP, British Foreign Secretary for the United Kingdom, offering tactical support to the Syrian “rebels”, he should announce an immediate diplomatic mission to the Syrian government, and the various rebel groups, offering the undoubted skills of his secret service personnel in mediating a ceasefire between the authorities and the opposition. Otherwise we could end up with NATO committing to tens of thousands of weaponised air sorties over Syria and destroying a large part of this ancient culture, just as they did with Libya. All economic and energy sanctions and embargoes against Syria should be dropped, as they are aggravating the conflict. If the international community uses the language and action of peace, then perhaps Syria can be encouraged back to the ways of peace.

    In the words of Russian Foreign Minister Sergey Lavrov, “Regime change is not our profession.”





  • The Engagement of Reason

    Posted on August 2nd, 2012 Jo 2 comments

    This is just a snippet from a long email trail about climate change…

    =x=x=x=x=x=x=x=x=x=x=

    From: Jo Abbess

    Dear KC,

    You are a human being. What you think is important. What you know is useful.

    What I want to ask you is : who do you read ? Whose opinions do you value ? Whose information do you choose to accept ? And are you as sceptical about these authors as you are about the IPCC [Intergovernmental Panel on Climate Change] community of scientists ? If not, why not ? Do you discredit climate change science because of the views of others, or because you have read the IPCC science for yourself and you have a dispute with their conclusions ?

    The question of authority is important here – not the authority of power or influence, but the authority of expertise. Who do you think has more expertise and authority to make claims about the state of the world’s climate and the causes of the obvious perturbations in it ? If you think that discernment should be a matter for yourself, then I would ask you to actually review the IPCC science reports and give me (us) a summary from your point of view. If you think that people other than the IPCC have the right and authority and expertise to pronounce on climate change, who are they ? And what science have they done to support their views ?

    With my full respect, as one human being to another,

    =x=x=x=x=x=x=x=x=x=x=

    From: KC

    Thanks, thanks, and thanks. ;-)

    There is an enormous body of information on all aspects of the issue, and obviously, I have not read all of it. I am not a Climate Scientist, so I have to go with the views of others. On the one hand, we have the IPCC, and its supporters, and on the other hand, we have those who disagree with the IPCC. There are many, but for the sake of simplicity, I think WUWT [Watts Up With That] is a fair, reasonable and credible “disbeliever/skeptic site” that presents teh alternative views in a reasonable and competent manner. I started off supporting the IPCC view, and on the surface, it seemed to make sense.. I was a “Believer”. As I read more, I found a lot of loose ends starting to show up, and I became a skeptic. At the moment, I am neither a “Believer” or a “Dis-believer.” There are points pro and con for each side. My position is in the “muddy water in the middle” There are always “two sides to every story.” I find the best way to read IPCC and “believer” sites, to get their views on the points of the Disbelievers/Skeptics”, and vice-versa. I presently remain in the “muddy water in the middle”, simply because neither side has presented what I feel is a “slam/dunk case” to support their position.

    The Authority/Expertise issue is an important one. I started off as an IPCC Believer, and went with the flow of their “Experts”. Then the “Disbelievers/Skeptics” started to present disturbing points. I think the first was the BBC Program that suggested that “Temperature Change came first, and CO2 rise followed.. [ Channel 4's "The Great Global Warming Swindle" perhaps ? ] Then there was the revelation about the quality of US Weather Station Data. Then there was the issue of “non-transparency of data and computer models”. Then there was the issue of ‘Carbon Credits”, which are useless as a mechanism for reducing Atmospheric CO2. Then there was the issue of Terra Preta/Biochar being promoted by ardent “Believers” whose major thrust of effort was promoting Biochar based on future carbon credit payments, rather than on its merits as an agricultural tool. Then there was the issue of the change in direction from “Global Warming” to “Global Climate Change”. Then there was the Stern Report which over-emphasises threats, and under-estimates benefits of climate change, and the cost to implement remediation measures. Then there was the extreme intolerance of the views of “Dis-believers or Skeptics.” Then there was the issue of the IPCC claiming that “Consensus Science” was science, when it is not. Etc, etc. All these “loose ends” and many more detract from the credibility of the IPCC Camp, to the point that I cannot personally accept their views blindly, and go with their flow.

    I do like your concept of “… discernment should be a matter for yourself.” That is EXACTLY where I stand. I am confused about the IPCC Position, and as a “confused mind”, I say “No!” to blind and complete acceptance of their views. I neither accept nor reject the “authority” of either side. What I am looking for is “clear water”, and few enough “loose ends” that I can comfortably “go with the flow” of one side or the other. Hence, I remain a skeptic. Given that the IPCC has “staked out a position”, I feel the “burden of proof” rests with them to show that their position is correct. I feel it is only necessary for the dis-believers and skeptics to raise “reasonable doubts” for the IPCC case to collapse. I feel the IPCC position is basically “We have staked out our position, and we are right unless you prove us wrong.” Thats not the way it works in the Courts… the Prosecution must prove its case “beyond all reasonable doubts” in order to win. The Defence only has to present “reasonable doubt” to win.

    I personally “have no dog in the fight”, and it is not necessary for me, at this stage, to move firmly into the “Believer or Disbeliever” camp. Many are like me…. simply wanting to know enough to feel comfortable supporting one side or another. Others are in the difficult position of having to “take a stand” even though they may not be confident in taking a position. Or, in the case of Policy Makers, if unsure, “The Confused Mind says “No”", and they base their policy decisions on considerations other than Climatge Change. For example, while the Politicians mouth support for Climate Change amelioriation, the outcome of the Durban Meeting was basically “Yes, we support climate change controls, and we will implement them after 2020, but we can’t say what we will do, or how long after 2020 we wil do it.”

    Thanks also, for your open-ness and understanding.

    =x=x=x=x=x=x=x=x=x=x=x=x=

    From: Jo Abbess

    I understand where you are.

    The problem with the discourse on climate change is that a lot of it is very shallow, and people are prone to emotional reactions such as hand-waving dismissiveness, angry retorts and sadly, even personal insults. It’s easy to get submerged in this and not find solid ground.

    When I first encountered the Internet wranglings of Steve McIntyre and the ramblings of Anthony Watts, it took me some time to realise that they were guilty of the behaviour they accuse others of. As I researched what they were claiming, I realised it was all vapourware.

    We find we are wading into an academic dispute, with people trying to protect the shreds of their careers and reputations as it becomes clear that they are in error. But who exactly is in error, here ? And who is producing the smoke and mirrors fluff to try to hide the fact that they are losing ground ?

    As in law, it is almost impossible to come to a clear understanding of what the actual situation is by just relying on confusing “circumstantial evidence” or hearsay from second- or third-hand witnesses.

    A number of “sceptical” scientists and deeply involved people such as Anthony Watts have contributed to the body of knowledge on climate change. The IPCC and leading research agencies and universities have taken note of their contributions – and have even included them in literature reviews, research analysis and invited the “sceptics” to take part in report review and writing teams.

    However, if you look carefully, behind the web log waffle, you will find that the conclusions of Richard S. Lindzen, John R. Christy, Anthony Watts, Roger Pielke Sr and so on have been successfully challenged by other climate change experts.

    Although they may claim they have been ignored, they have been included. And although they may claim they have uncovered flaws or deliberate science misconduct, they have not, and the mainstream climate change scientists have been repeatedly vindicated.

    I invite you, as I do everyone, to read the IPCC science reports as a first step to learning about the foundation of the issue of climate change. In the Fourth Assessment Report, you will find the work of the climate change “sceptics” discussed, and some of the climate change “sceptics” listed in the co-author lists. You will also find that the overwhelming conclusion from the body of evidence is as outlined in the IPCC synthesis on the state of the science.

    The recent pre-paper by Anthony Watts, which was released in a flurry of Internet wreckage in response to the “conversion” of Richard Muller of the BEST project, is merely an update of work Watts released before, which was duly noted by the American science agencies, and taken note of in later data analysis. The current Watts paper is possibly not going to be published because of flaws already discovered :-

    http://www.skepticalscience.com/news.php?n=1561

    whose “conclusion is not supported by the analysis in the paper itself”.

    Because Americans appear to believe in free speech above truth telling, we can expect more hate speech and false claims to come from the climate change “sceptic” echo chamber, unfortunately, before it becomes clear that Anthony Watts latest contribution is interesting, but not a “gamechanger”.

    Regards,

    =x=x=x=x=x=x=x=x=x=

    From: FH

    Jo,

    You have hit the nail on the head. Very few read the IPCC science reports, maybe the exec summary, but not the detail. And therein lies the problem, a few hot head deniers pick one little point and build a huge conspiracy theory out of it.

    Sad, because whether we like it or not we ARE all in this mess together, climate does not recognise national boundaries, wealth, status or anything else, we will all suffer.

  • James Delingpole Kludges Forth

    Posted on August 2nd, 2012 Jo No comments

    I sometimes wonder whether James Delingpole writes just to wind people up, or whether he really believes what he is saying. For sure his “opinion pieces” if one may call validly them that, are full of shock ! And awe ! And blame ! And scandalous notions ! But if one strips away the outrage, is there anything really of substance there ? I suppose, on balance, that he puts way too much effort into his anti-science outpourings, so I guess he is serious about his stance, even if he’s way too crazed in his emotive language. Here he is falling once again for the Anthony Watts’ school of thought. Sensation gets the punters in, (at the last count over 2,800 comments), so I assume that his affronted manner is deliberate.

    I’m sorry, it’s really tiring to read, but I think it’s instructive – about the state of climate change “scepticism” – or rather in this case “outright denial” – today. As a climate change denier, James Delingpole imitates his leaders in archetypal fashion. He focuses on a small proportion of all the reams and reams of global warming data, and ignores the bigger picture. Typical. He name calls and blames without any solid foundational evidence. And he gets to entirely the wrong conclusion without realising he’s gone badly wrong.

    So, here’s a lesson for James Delingpole about global warming :-

    1. The continential/contiguous states of the USA are not the whole world.

    The temperature record of the continental/contiguous states of the United States of America (CONUS) in no way equates to overall global warming. There are other places in the world. You cannot extrapolate from the USA to the globe.

    2. The surface station global warming data is not the only temperature data in the world.

    There are records of ocean warming, for example, and measurements of temperature derived from satellite observations. Everything needs to have context to be seen in true relief.

    3. Surface temperatures are not the most consistent measurement of global warming.

    You have to go up a couple of kilometres to avoid surface wind effects, and localised heating from buildings and other infrastructure, before you can safely say you have overall consistency in your temperature readings. Surface station data needs treatment, or adjustment, or homogenisation.

    [ Or as David Appell in his Quark Soup puts it, "Then there are the inconvenient facts that : (1) USA48 is 1.6% of the Earth's surface area, and : (2) the trend of the USA48 lower troposphere, as measured by satellites as calculated by UAH, is 0.23 ± 0.08 °C from 1979 to present (95% confidence limit, no correction for autocorrelation). Satellite measurements almost completely avoid the urban heat island problem." ]

    James Delingpole claims, without any foundation whatsoever, “the National Oceanic and Atmospheric Administration (NOAA) – the US government body in charge of America’s temperature record, has systematically exaggerated the extent of late 20th century global warming. In fact, it has doubled it.”

    No, James, that’s simply just not true. NOAA have not “systematically exaggerated” global warming temperatures. If you care to take a look at the actual research for once, you will find that the methods used to draw up analysis figures are rigorous, tested and verified. And peer reviewed. And actually published in a journal. Unlike Anthony Watts’ paper that you are bleating about :-

    ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2/monthly/

    ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2/monthly/williams-menne-thorne-2012.pdf
    ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2/monthly/vose-etal2003.pdf
    ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2/monthly/menne-williams2009.pdf
    http://journals.ametsoc.org/doi/abs/10.1175/2008BAMS2613.1
    ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2/monthly/menne-etal2010.pdf
    http://www.ncdc.noaa.gov/oa/climate/research/ushcn/
    ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/v3/techreports/Technical%20Report%20NCDC%20No12-01-Distribution.pdf

    By contrast to NOAA’s integrity, let’s look a moment at what Anthony Watts has done, according to Tamino :-

    http://tamino.wordpress.com/2012/08/01/much-ado-about-nothing/
    “What Watts has shown is that he can get a lower warming trend for the continental USA than others get. All you have to do is systematically eliminate the data you don’t like, while ignoring things like station moves, instrument changes, and recording data at different times of day. Don’t you dare correct for known biases (unless of course doing so would make the estimate of global warming smaller)! And if the satellite data should be in better agreement with others than with yourself, don’t breathe a word about that.”

    Ah. Cherrypicking. Where have we seen climate change deniers do that before ?

    Yet more from James Delingpole, “But I think more likely it is a case of confirmation bias. The Warmists who comprise the climate scientist establishment spend so much time communicating with other warmists and so little time paying attention to the views of dissenting scientists such as Henrik Svensmark – or Fred Singer or Richard Lindzen or indeed Anthony Watts – that it simply hasn’t occurred to them that their temperature records need adjusting downwards not upwards.”

    Actually, James, you’re wrong again. In fact the output of Henrik Svensmark, Richard Lindzen, Anthony Watts, Roger Pielke Sr, John Christy and a number of other climate change “sceptics” have indeed been paid attention to by the IPCC, the Intergovernmental Panel on Climate Change. For example, Svensmark in Chapter 2 of Working Group 1 of the Fourth Assessment Report, and Lindzen in Chapters 8 and 9 :-

    http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch2s2-references.html (Search “Svensmark”)
    http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch3s3-references.html (Search “Christy”, “Pielke”)
    http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch8s8-references.html
    (Search “Lindzen”)
    http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch9s9-references.html (Search “Lindzen”)

    In fact, some of these scientists have been contributing authors or even editors of the IPCC reports. Surprised ? You shouldn’t be, James. This is an academic spat you’ve waded into, with no intellectual equipment to help you comprehend what is going on.

    So, Anthony Watts’ new paper is not yet peer-reviewed, and not published (and does not even have a fixed, agreed list of authors), and some have already started to pick it apart. Apparently, he has ignored certain crucial information about surface station temperature measurements :-

    http://rabett.blogspot.co.uk/2012/07/bunny-bait.html

    “Thus we now have three reasons, why the technical problems may cause a difference in the trends of the raw data: 1. Time of observation bias stronger in rural stations. 2. More problems due to the UHI [Urban Heat Island effect] in the bad stations. 3. Selection bias (bad/good stations at the end of the period may have been better/worse before). Sounds like the first two problems can be solved by homogenization. And the third problem is only a problem for this study, but not for the global temperature trend. Time for the Team Watts to start analyzing their data a bit more.”

    Does the Anthony Watts data actually back up the claim made in the press release ?

    “The new improved assessment, for the years 1979 to 2008, yields a trend of +0.155C per decade from the high quality sites, a +0.248 C per decade trend for poorly sited locations, and a trend of +0.309 C per decade after NOAA adjusts the data. ”

    Well, it seems not.

    http://variable-variability.blogspot.co.uk/2012/07/blog-review-of-watts-et-al-2012.html

    “In his press release, Anthony Watts does not explicitly state that these trends are for raw data. The manuscript does state this important “detail”…” He lifts a table from Figure 17 of the Anthony Watts paper – and, correct me if I’m wrong, but the more “trustworthy” results are almost exactly that same as those from NOAA !

    dana1981 and Kevin C on Skeptical Science, go so far as to say “Ultimately the paper concludes “that reported 1979-2008 U.S. temperature trends are spuriously doubled.” However, this conclusion is not supported by the analysis in the paper itself.” ! :-

    http://www.skepticalscience.com/watts_new_paper_critique.html

    To those who watch the development of climate change science closely, Anthony Watts’ revelations about surface station data problems are not exactly new :-

    http://www.livescience.com/22019-weather-records-climate-change-skeptics.html
    “In a previous survey, Watts found numerous problems with the placement of the monitoring stations, and a U.S. Government Accountability Report, published a year ago, found 42 percent of stations did not meet at least one standard regarding their location, such as being too close to extensive paved surfaces or obstructions such as buildings or trees. However, a study published in 2010 by NCDC researchers in response to these concerns, found no evidence that the temperature trend was inflated as a result, and other work has come to similar to conclusions, Gavin Schmidt, a climate scientists at NASA’s Goddard Institute for Space Studies, told LiveScience in an email. This is of course not the answer that Watts et al want to hear, and so they keep talking about it as if this work doesn’t exist,” Schmidt wrote. The controversy extends to a statistical process, called homogenization, which climate scientists use to correct for bias in the data, which Watts’ analysis says further inflates the warming trend. However, the homogenization methods used by NCDC have been heavily reviewed and ranked among the best internationally, according to Peterson. “There is no network in the world that does not have this problem, so scientists all over the world are working on this,” [NCDC Dr Thomas C.] Peterson said.”

    And people appear to be used to unpicking and rebutting his claims. As @caerbannog666 tweeted, “How many lines of code does it take to prove Anthony Watts wrong? 65, if it’s python: http://skepticalscience.com/watts_new_paper_critique.html … (scroll down a bit for the code)”

    Other self-styled climate change “sceptics”, such as Steve McIntyre and Roger Pielke Sr appear to be sliding away and distancing themselves from the Anthony Watts “pre-paper” – so why is James Delingpole so excited about it ? :-

    http://scienceblogs.com/stoat/2012/07/30/why-wattss-new-paper-is-doomed-to-fail-review/
    http://www.washingtonpost.com/blogs/capital-weather-gang/post/more-evidence-attention-grabbing-climate-studies-prematurely-rushed-and-potentially-flawed/2012/07/31/gJQAYJkCNX_blog.html
    http://www.webcitation.org/69ZTmCiE9
    http://pielkeclimatesci.wordpress.com/2012/07/29/comments-on-the-game-changer-new-paper-an-area-and-distance-weighted-analysis-of-the-impacts-of-station-exposure-on-the-u-s-historical-climatology-network-temperatures-and-temperature-trends-by-w/
    http://pielkeclimatesci.wordpress.com/2012/07/31/summary-of-two-game-changing-papers-watts-et-al-2012-and-mcnider-et-al-2012/
    http://pielkeclimatesci.wordpress.com/2012/08/01/my-involvement-with-watts-et-al-2012-and-mcnider-et-al-2012-papers/

    Meanwhile, here’s real global warming data :-

    And here’s what the mainstream climate change scientists made of Anthony Watts’ previous contributions :-

    ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/v2/monthly/menne-etal2010.pdf

    “Given the now extensive documentation by surfacestations.org [Watts, 2009] that the exposure characteristics of many USHCN stations are far from ideal, it is reasonable to question the role that poor exposure may have played in biasing CONUS temperature trends. However, our analysis and the earlier study by Peterson [2006] illustrate the need for data analysis in establishing the role of station exposure characteristics on temperature trends no matter how compelling the circumstantial evidence of bias may be. In other words, photos and site surveys do not preclude the need for data analysis, and concerns over exposure must be evaluated in light of other changes in observation practice such as new instrumentation. Indeed, our analysis does provide evidence of bias in poor exposure sites relative to good exposure sites; however, given the evidence provided by surfacestations.org that poor exposure sites are predominantly MMTS sites, this bias is consistent with previously documented changes associated with the widespread conversion to MMTS-type sensors in the USHCN. Moreover, the bias in unadjusted maximum temperature data from poor exposure sites relative to good exposure sites is, on average, negative while the bias in minimum temperatures is positive (though smaller in magnitude than the negative bias in maximum temperatures). The adjustments for instrument changes and station moves provided in version 2 of the USHCN monthly temperature data largely account for the impact of the MMTS transition, although an overall residual negative bias remains in the adjusted maximum temperature series. Still, the USHCN adjusted data averaged over the CONUS are well aligned with the averages derived from the USCRN for the past five years. The reason why station exposure does not play an obvious role in temperature trends probably warrants further investigation. It is possible that, in general, once a changeover to bad exposure has occurred, the magnitude of background trend parallels that at well exposed sites albeit with an offset. Such a phenomenon has been observed at urban stations whereby once a site has become fully urbanized, its trend is similar to those at surrounding rural sites [e.g., Boehm, 1998; Easterling et al., 2005]. This is not to say that exposure is irrelevant in all contexts or that adherence to siting standards is unimportant. Apart from potentially altering the degree to which a station’s mean value is representative of a region, poor siting in the USHCN may have altered the nature of the impact of the MMTS transition from what it would have been had good siting been maintained at all stations. Moreover, there may be more subtle artifacts associated with siting characteristics such as alterations to the seasonal cycle. Classification of USHCN exposure characteristics as well as observations from the very well sited USCRN stations should prove valuable in such studies. Nevertheless, we find no evidence that the CONUS average temperature trends are inflated due to poor station siting. Acknowledgments. The authors wish to thank Anthony Watts and the many volunteers at surfacestations.org for their considerable efforts in documenting the current site characteristics of USHCN stations.”

  • Bosworth: “We are not going soft on coal”

    Posted on July 21st, 2012 Jo No comments

    At the annual Stop Climate Chaos coalition chin-wag on Friday 20th July 2012, I joined a table discussion led by Tony Bosworth of the environmental group Friends of the Earth.

    He was laying out plans for a campaign focus on the risks and limitations of developing shale gas production in the United Kingdom.

    During open questions, I put it to him that a focus on shale gas was liable to lay Friends of the Earth open to accusations of taking the pressure off high carbon fuels such as coal. He said that he had already encountered that accusation, but emphasised that the shale gas licencing rounds are frontier – policy is actively being decided and is still open to resolution on issues of contention. Placing emphasis on critiquing this fossil fuel resource and its exploitation is therefore timely and highly appropriate. But he wanted to be clear that “we are not going soft on coal”.

    I suggested that some experts are downplaying the risks of shale gas development because of the limitations of the resource – because shale gas could only contribute a few percent of national fuel provision, some think is is unwise to concentrate so much campaign effort on resisting its development. Bosworth countered this by saying that in the near future, the British Geological Survey are expected to revise their estimates of shale gas resource upwards by a very significant amount.

    He quoted one source as claiming that the UK could have around 55 years of shale gas resource within its borders. I showed some scepticism about this, posing the question “But can it be mined at any significant rate ?” It is a very common public relations trick to mention the total estimated size of a fossil fuel resource without also giving an estimate of how fast it can be extracted – leading to entirely mistaken conclusions about how useful a field, well or strata can be.

    Tony Bosworth said that shale gas reserve estimates keep changing all the time. The estimate for shale gas reserves in Poland have just been revised downwards, and the Marcellus Shale in the United States of America has also been re-assessed negatively.

    Bosworth said that although campaigners who are fighting shale gas development had found it useful to communicate the local environmental damage caused by shale gas extraction – such as ozone pollution, traffic noise, water pollution and extraction, landscape clearance – the best argument against shale gas production was the climate change emissions one. He said academics are still being recruited to fight on both sides of the question of whether the lifecycle emissions of shale gas are higher than for coal, but that it was becoming clear that so-called “fugitive emissions” – where gas unintentionally escapes from well works and pipeline networks – is the key global warming risk from shale gas.

    Opinion around the table was that the local environmental factors associated with shale gas extraction may be the way to draw the most attention from people – as these would be experienced personally. The problem with centring on this argument is that the main route of communication about these problems, the film Gasland, has been counter-spun by an industry-backed film “Truthland”.

    The Royal Society recently pronounced shale gas extraction acceptable as long as appropriate consideration was paid to following regulatory control, but even cautious development of unconventional fossil fuels does not answer the climate change implications.

    There is also the extreme irony that those who oppose wind farm development on the basis of “industrialisation of the landscape” can also be the same group of people who are in favour of the development of shale gas extraction – arguably doing more, and more permanently, to destroy the scenery by deforestation, water resource sequestration and toxification of soils, air and water.

    Tony Bosworth told the group about the Friends of the Earth campaign to encourage Local Authorities to declare themselves “Frack-Free Zones” (in a similar way to the “Fair Trade Towns” campaign that was previously so successful). He said that FoE would be asking supporters to demand that their local governments had a “No Fracking” policy in their Local Plans. It was suggested in the discussion group that with the current economic slowdown and austerity measures, that Local Authorities may not have the capacity to do this. Tony Bosworth suggested that in this case, it might be worth addressing the issue to church parish councils, who can be very powerful in local matters. It was pointed out that frequently, parish councils have been busy declaring themselves “Wind Free Zones”.

    It was considered that it would be ineffective to attempt to fight shale gas production on a site-by-site direct action basis as the amount of land in the UK that has already and will soon be licenced for shale gas exploration made this impossible. Besides which, people often had very low awareness of the potential problems of shale gas extraction and the disruption and pollution it could bring to their areas – so local support for direct action could be poor.

    One interesting suggestion was to create a map of the United Kingdom showing the watersheds where people get their tap supplies from superimposed on where the proposed shale gas exploration areas are likely to be – to allow people to understand that even if they live far away from shale gas production, their drinking water supplies could be impacted.

    In summary, there are several key public relations fronts on which the nascent shale gas “industry” are fighting. They have been trying to seed doubt on low estimates of actual shale gas production potential – they have been hyping the potentially massive “gamechanging” resource assessments, without clear evidence of how accessible these resources are. They have also been pouring scorn on the evidence of how much damage shale gas could do to local environments. And they have also been promoting academic research that could be seen to make their case that shale gas is less climate-damaging than other energy resources.

    Shale gas, and the issue of the risks of hydraulic fracturing for unconventional fossil fuels, is likely to remain a hot ecological topic. Putting effort into resisting its expansion is highly appropriate in the British context, where the industry is fledgeling, and those who are accusing Friends of the Earth and others of acting as “useful idiots” for the ambitions of the coal industry just haven’t taken a look at the wider implications. If shale gas is permitted dirty development rights, then that would open the gateway for even more polluting unconventional fossil fuel extraction, such as oil shale and underground coal gasification, and that really would be a major win for the coal industry.

    Friends of the Earth Briefing : Shale gas : energy solution or fracking hell ?

  • Tillerson Talks It Down

    Posted on July 14th, 2012 Jo No comments

    Rex Tillerson, Chief Executive Officer of ExxonMobil, was recently invited to talk to the Council on Foreign Relations in the United States of America, as part of their series on CEOs.

    His “on the record” briefing was uploaded to YouTube almost immediately as he made a number of very interesting comments.

    Reactions were mixed.

    The thing most commented upon was his handwaving away the significance of climate change – a little change here, a little change over there and you could almost see the traditional magician’s fez here – shazam – nothing to worry about.

    In amongst all the online furore about this, was discussion of his continued Membership of the Church of Oil Cornucopia – he must have mentioned the word “technology” about seventy-five times in fifteen minutes. He clearly believes, as do his shareholders and management board, that his oil company can continue to get progressively more of the black stuff out of tar sands, oil shales or oil-bearing shale sediments and ever-tighter locked-in not naturally outgassing “natural” gas out of gas shales. At least in Northern America.

    As numerous commentators with a background in Economics have claimed, well, the price of oil is rising, and that creates a market for dirtier, harder-to-reach oil. Obviously. But missing from their Law of Supply and Demand is an analysis of how oil prices are actually determined in the real world. It’s certainly not a free market – there are numerous factors that control the price of the end-product, gasoline, not least state sponsorship of industries, either through direct subsidies, or through the support of dependent industries such as car manufacture. At least in North America.

    In the background, there is ongoing shuttle diplomacy between the major western economies and the assortment of regimes in the Middle East and North Africa (MENA) who still have the world’s largest pool of cleaner-ish petroleum under their feet. That, naturally, has an impact on supply and pricing : even though the strength of this bonding is not as tight-fast as it historically was, there appears to have been more of it since around 2005. Or at least, that’s when I first started monitoring it consciously.

    In addition to that, there are only a limited number of players in the oil industry. It is almost impossible to break into the sector without an obscene amount of capital, and exceedingly good buddy-type relationships with everybody else in the field – including sheikhs you formerly knew from when you attended specialty schools. So, no, the market in oil is not free in any sense. It is rigged – if you’ll excuse the pun.

    And then there’s foundational reasons why oil prices are artificial – and may not cause a boom in the “unconventional” production that Rex Tillerson is so excited about (in a rancher-down-the-farm kind of way). Oil is still fundamental to the global economy. In fact, the price of oil underpins most business, as oil is still dominant in the transportation of goods and commodities. Despite all the techno-wizardry, it is fundamentally more costly to drill for fossil fuels in shale, than from pressure wells where oil just gloops out of the ground if you stick a pipe in.

    It’s not the drilling that’s the major factor – so the technology is not the main driver of the cost. It’s the put-up, take-down costs – the costs of erecting the infrastructure for a well, or putting underground shale heating or fracturing equipment in place, and the cleaning up afterwards. Some of the technologies used to mine shales for oil use an incredible amount of water, and this all needs to be processed, unless you don’t mind desecrating large swathes of sub-tropical scenery. Or Canada.

    The price of oil production has a knock-on effect, including on the very markets that underpin oil production – so increasing oil prices have a cyclic forcing effect – upwards. It also has an impact on the prices of other essential things, such as food. One can see a parallel rise in the price of oil and the price of staple crops in the last few years – and the spiralling cost of grain wheat, rice and corn maize is not all down to climate change.

    Oil companies are in a quandary – they need to have higher oil prices to justify their unconventional oil operations – and they also need good relationships with governments, who know they cannot get re-elected if too many people blame them for rising costs of living. Plus, there’s the global security factor – several dozen countries already have economies close to bust because of the cost of oil imports. There are many reasons to keep oil prices depressed.

    Let’s ask that subtle, delicate question : why did Rex Tillerson espouse the attitudes he did when asked to go on the record ? Why belittle the effects of climate change ? The answer is partly to soothe the minds of American investors, (and MENA investors in America). If such a powerful player in the energy sector believes “we can adapt to that” about climate change, clearly behind-the-scenes he will be lobbying against excessive carbon pricing or taxation with the American federal administration.

    And why be so confident that technology can keep the oil flowing, and make up for the cracks appearing in conventional supply chains by a frenzy of shale works ? Well, logically, he’s got to encourage shareholder confidence, and also government confidence, that his industry can continue to deliver. But, let’s just surmise that before he was shunted onto the stage in June, he’d had a little pre-briefing with some government officials. They would be advising him to show high levels of satisfaction with unconventional oil production growth (in America) – after all, this would act against the rollercoaster of panic buying and panic selling in futures contracts that has hit the oil markets in recent months.

    So Rex Tillerson is pushed awkwardly to centre stage. Global production of oil ? No problem ! It’s at record highs (if we massage the data), and likely to get even better. At least in America. For a while. But hey, there’s no chance of oil production declining – it’s important to stress that. If everyone can be convinced to believe that there’s a veritable river of oil, for the forseeable future, then oil prices will stay reasonable, and we can all carry on as we are. Nothing will crash or burn. Except the climate.

    Rex Tillerson’s interview on global (American) oil production may have been used to achieve several propaganda aims – but the key one, it seems to me, was to talk down the price of oil. Of course, this will have a knock-on effect on how much unconventional oil is affordable and accessible, and maybe precipitate a real peak in oil production – just the thing he’s denying. But keeping the price of oil within a reasonable operating range is more important than Rex Tillerson’s impact on the American Presidential elections, or even Rex Tillerson’s legacy.