Energy Change for Climate Control
RSS icon Home icon
  • A One Hundred Cubit High Russell Crowe

    Posted on March 31st, 2014 Jo No comments

    The strangest thing about actors is that they’re generally shorter than you might think they are. So when Darren Aronovsky makes all his “Noah” cast, apart from Anthony Hopkins and the hoards of filthy Canaanites, take to the stage in a curtain call, I get the distinct impression they are all pocket-sized waifs. Well, apart from Ray Winstone. And Russell Crowe, who appears to be under orders to say a few brief sentences before peeling off into the wings again. I ask myself – is he drunk or something ? Is he like the pickled, unsavoury uncle you have to keep in the back room at parties, just in case he says something intransigent ?

    The one thing I have to say about the film Noah is E. P. I. C. This film is truly epic. It’s Ben Hur in its ambition, and from the second row of the audience, it’s quite literally huge. The Ark rocks. And when the lead goes home to the green ancestral mountain and clambers into the dark cave, can it be ? Is that the Pope taking a cameo role ? You half expect it, but it’s only Anthony Hopkins, in the end. Although he manages to look quite quite cardinal and pope-ish, actually. And gargantuan from where I’m sitting.

    The Odeon puts on a fine show, and Paramount had provided an ocean flooring instead of a red carpet outside the cinema, interestingly all nicely packed away by the time we let the #NoahPremiere of the #NoahMovie after suffering tinnitus and glare from all that very big, very loud media.

    This is supposed to be a film with big environmental themes, which it is, and which is probably why Damaris got offered some free tickets to the premiere, and handed them out to environmental organisations, in an attempt to engage this demographic segment. Well I’d say, if you’re at all green, definitely watch this film. It will resonate with you, even if you find the Biblical references a bit heavy.

    When I was younger I was easily in thrall to public relations, stardom and pzzazz, but these days, it sort of all washes over me. So the stars and starlets giving out thousands of autographs and posing for a bank of hungry cameras really didn’t impress me. Should it have ?

    I attended this event partly out of an interest in the anthropological elements – the division between red carpet and non-red carpet; how the barrier set up a desperate attitude of desire in those outside the red carpet zone. “Emma ! Emma !” the young things were calling for the white-robed Ms Watson with the architectural bangles, holding up signs, begging for selfies with their idols.

    I noticed also that the many people working for the event had a kind of steely security guard attitude, even if they were only playing the role of general assistance. Without the stars in the theatre, the place was dull. With the actors and actresses in the room, the place was buzzing. It had an altogether higher energy.

    I posed for a couple of photographs with my compatriots on the blue ocean-red carpet, but I felt I was at a school reunion rather than a media glitz event. I felt quite aloof from the process, right up until a surprise move in the film, when I literally jumped out of my seat. You see, the narrative did take me, wash me away with the portrayed doomed humanity. The power of the story; the power of the story-telling; even though the film should have been twice as long to cover all the themes and relationships it spun.

    I identified with the narrative – as I expect most people will – the beseeching of the Heavens for an answer from God to our most urgent and important questions. We’ve all done it – asked the Universe for help, for a solution, for resolution, closure, certainty.

    If you’re at all concerned about environmental dilemmas, you will know that today the United Nations has published another section of its Fifth Assessment Report on Climate Change. This story couldn’t be greater, and for many people of faith it will trigger prayers and supplications to the Almighty. Our private prayer will parallel the frantic “Emma ! Emma !” that the troubled teenage fans call out, with anguish written on their faces.

    Those in the faith communities who try to take Creation responsibilities seriously will hopefully come to praise this film and not ban it or pan it. Maybe Aronofsky could have made more of an impact if, instead of having Patti Smith recite his turgid 13-year-old teenage poem, if Russell Crowe had been put on stage to talk about the United Nations report and how serious he thinks the situation is. It seems almost one step too removed to leave the warnings about the risk of rising sea levels to the mouth of a dead, ancient prophet, but if this is the way that the story migrates, then maybe this film, too, is necessary.

    This film is essentially about how humans have laid waste to the goodness and bounty of the Earth. After the house lights came up, I showed my companion the reams of empty packets of popcorn and water bottles strewn on the floor. Despite the earnestness and sincerity of the film’s director and his script, we clearly haven’t learned anything yet.


    Further thoughts on “Noah”

    They had soil under their fingernails, but the cast was universally white with perfect teeth and hair, and the audience privileged. We will learn soon enough that climate change doesn’t discriminate.

    The budget for the movie would have been in the millions, but there are 800 million people who still don’t have enough to eat. Add a nought to that if we don’t address the water scarcity issues of climate change.

    The violence of Genesis 6 is depicted in the movie as affecting the Earth as well as human society. Climate change is deeply affecting the Earth already, even though mining the Earth of resources has brought prosperity to many. We could be reaching a cusp, however, where we need to avoid the potential for human conflict and the social instability that climate change could now cause.

    Genesis 9 writes that God promises not to destroy the Earth again by flooding, and climate change deniers claim that this means that sea level rise cannot possibly inundate cities. The evidence of the science is to be found in the data, and we shouldn’t just cling to fragments of an ancient narrative in vain hope.

    Look – God changes his mind about things. At the beginning of Genesis 6 God considers killing every living being, but by the end of Genesis 6 he plans to save the right-living Noah and the animals he takes in the Ark.

    The Bible says God regretted making the Earth. Did he also regret saving Noah ? Noah stops being righteous, right-on, perfect after the watery calamity. By the end of Genesis 9, we learn that drunkenness and deep disgrace came to Noah and his son directly after the Flood – despite the fact that God had shown favour on the father by directing him to build the Ark and save the creatures and his family.

    When the waters receded, clearly there were no edible plants still viable, and God had to issue a dispensation that man could now eat meat – even from “unclean” animals – in order to survive. Is God in the process of compromise ? Dialogue ? Relenting ? Is he negotiating with us, even now ? By rights, he could just leave us to our self-imposed watery grave of a fate, but I feel he’s still as intimately connected and concerned with the human race as he was in the time of Noah. For those of faith who have never considered environmental destruction and the blowback effect on humanity, I think it’s time for us to ask him what we should be doing about climate change, start that conversation with the God of the Colourful Rainbows in the Sky.

  • On Having to Start Somewhere

    Posted on March 15th, 2014 Jo No comments

    In the last few weeks I have heard a lot of noble but futile hopes on the subject of carbon dioxide emissions control.

    People always seem to want to project too far into the future and lay out their wonder solution – something that is just too advanced enough to be attainable through any of the means we currently have at our disposal. It is impossible to imagine how the gulf can be bridged between the configuration of things today and their chosen future solutions.

    Naive civil servants strongly believe in a massive programme of new nuclear power. Head-in-the-clouds climate change consultants and engineers who should know otherwise believe in widespread Carbon Capture and Storage or CCS. MBA students believe in carbon pricing, with carbon trading, or a flat carbon tax. Social engineers believe in significant reductions in energy intensity and energy consumer behaviour change, and economists believe in huge cost reductions for all forms of renewable electricity generation.

    To make any progress at all, we need to start where we are. Our economic system has strong emissions-dependent components that can easily be projected to fight off contenders. The thing is, you can’t take a whole layer of bricks out of a Jenga stack without severe degradation of its stability. You need to work with the stack as it is, with all the balances and stresses that already exist. It is too hard to attempt to change everything at once, and the glowing ethereal light of the future is just too ghostly to snatch a hold of without a firm grasp on an appropriate practical rather than spiritual guide.

    Here’s part of an email exchange in which I strive for pragmatism in the face of what I perceive as a lack of realism.


    To: Jo

    I read your article with interest. You have focused on energy, whereas I
    tend to focus on total resource. CCS does make sense and should be pushed
    forward with real drive as existing power stations can be cleaned up with it
    and enjoy a much longer life. Establishing CCS is cheaper than building new
    nuclear and uses far less resources. Furthermore, CCS should be used on new
    gas and biomass plants in the future.

    What we are lacking at the moment is any politician with vision in this
    space. Through a combination of boiler upgrades, insulation, appliance
    upgrades and behaviour change, it is straight forward to halve domestic
    energy use. Businesses are starting to make real headway with energy
    savings. We can therefore maintain a current total energy demand for the
    foreseeable future.

    To service this demand, we should continue to eke out every last effective
    joule from the current generating stock by adding cleansing kit to the dirty
    performers. While this is being done, we can continue to develop renewable
    energy and localised systems which can help to reduce the base load
    requirement even further.

    From an operational perspective, CCS has stagnated over the last 8 years, so
    a test plant needs to be put in place as soon as possible.

    The biggest issue for me is that, through political meddling and the
    unintended consequences of ill-thought out subsidies, the market has been
    skewed in such a way that the probability of a black-out next year is very
    high indeed.

    Green gas is invisible in many people’s thinking, but the latest House of
    Lords Report highlighted its potential.

    Vested interests are winning hands down in the stand-off with the big
    picture!


    From: Jo

    What is the title of the House of Lords report to which you refer ?

    Sadly, I am old enough to remember Carbon Capture and Storage (CCS)
    the first time the notion went around the block, so I’d say that
    progress has been thin for 30 years rather than 8.

    Original proposals for CCS included sequestration at the bottom of the
    ocean, which have only recently been ruled out as the study of global
    ocean circulation has discovered more complex looping of deep and
    shallower waters that originally modelled – the carbon dioxide would
    come back up to the surface waters eventually…

    The only way, I believe, that CCS can be made to work is by creating a
    value stream from the actual carbon dioxide, and I don’t mean Enhanced
    Oil Recovery (EOR).

    And I also definitely do not mean carbon dioxide emissions pricing,
    taxation or credit trading. The forces against an
    investment-influencing carbon price are strong, if you analyse the
    games going on in the various economic system components. I do not
    believe that a strong carbon price can be asserted when major economic
    components are locked into carbon – such as the major energy producers
    and suppliers, and some parts of industry, and transport.

    Also, carbon pricing is designed to be cost-efficient, as markets will
    always find the lowest marginal pricing for any externality in fines
    or charges – which is essentially what carbon dioxide emissions are.
    The EU Emissions Trading Scheme was bound to deliver a low carbon
    price – that’s exactly what the economists predicted in modelling
    carbon pricing.

    I cannot see that a carbon price could be imposed that was more than
    5% of the base commodity trade price. At those levels, the carbon
    price is just an irritation to pass on to end consumers.

    The main problem is that charging for emissions does not alter
    investment decisions. Just like fines for pollution do not change the
    risks for future pollution. I think that we should stop believing in
    negative charging and start backing positive investment in the energy
    transition.

    You write “You have focused on energy, whereas I tend to focus on
    total resource.” I assume you mean the infrastructure and trading
    systems. My understanding leads me to expect that in the current
    continuing economic stress, solutions to the energy crisis will indeed
    need to re-use existing plant and infrastructure, which is why I
    think that Renewable Gas is a viable option for decarbonising total
    energy supply – it slots right in to substitute for Natural Gas.

    My way to “eke out every last effective joule from the current
    generating stock” is to clean up the fuel, rather than battle
    thermodynamics and capture the carbon dioxide that comes out the back
    end. Although I also recommend carbon recycling to reduce the need for
    input feedstock.

    I completely agree that energy efficiency – cutting energy demand
    through insulation and so on – is essential. But there needs to be a
    fundamental change in the way that profits are made in the energy
    sector before this will happen in a significant way. Currently it
    remains in the best interests of energy production and supply
    companies to produce and supply as much energy as they can, as they
    have a duty to their shareholders to return a profit through high
    sales of their primary products.

    “Vested interests” have every right under legally-binding trade
    agreements to maximise their profits through the highest possible
    sales in a market that is virtually a monopoly. I don’t think this can
    be challenged, not even by climate change science. I think the way
    forward is to change the commodities upon which the energy sector
    thrives. If products from the energy sector include insulation and
    other kinds of efficiency, and if the energy sector companies can
    continue to make sales of these products, then they can reasonably be
    expected to sell less energy. I’m suggesting that energy reduction
    services need to have a lease component.

    Although Alistair Buchanan formerly of Ofgem is right about the
    electricity generation margins slipping really low in the next few
    winters, there are STOR contracts that National Grid have been working
    on, which should keep the lights on, unless Russia turn off the gas
    taps, which is something nobody can do anything much about – not BP,
    nor our diplomatic corps, the GECF (the gas OPEC), nor the WTO.


  • Failing Narratives : Carbon Culprits

    Posted on March 14th, 2014 Jo No comments

    In the last few weeks I have attended a number of well-intentioned meetings on advances in the field of carbon dioxide emissions mitigation. My overall impression is that there are several failing narratives to be encountered if you make even the shallowest foray into the murky mix of politics and energy engineering.

    As somebody rightly pointed out, no capitalist worth their share price is going to spend real money in the current economic environment on new kit, even if they have asset class status – so all advances will necessarily be driven by public subsidies – in fact, significant technological advance has only ever been accomplished by state support.

    Disturbingly, free money is also being demanded to roll out decades-old low carbon energy technology – nuclear power, wind power, green gas, solar photovoltaics – so it seems to me the only way we will ever get appropriate levels of renewable energy deployment is by directed, positive public investment.

    More to the point, we are now in an era where nobody at all is prepared to spend any serious money without a lucrative slap on the back, and reasons beyond reasons are being deployed to justify this position. For example, the gas-fired power plant operators make claims that the increase in wind power is threatening their profitability, so they are refusing to built new electricity generation capacity without generous handouts. This will be the Capacity Mechanism, and will keep gas power plants from being mothballed. Yes, there is data to support their complaint, but it does still seem like whinging and special pleading.

    And the UK Government’s drooling and desperate fixation with new nuclear power has thrown the European Commission into a tizzy about the fizzy promises of “strike price” guaranteed sales returns for the future atomic electricity generation.

    But here, I want to contrast two other energy-polity dialogues – one for developing an invaluable energy resource, and the other about throwing money down a hole.

    First, let’s take the white elephant. Royal Dutch Shell has for many years been lobbying for state financial support to pump carbon dioxide down holes in the ground. Various oil and gas industry engineers have been selling this idea to governments, federal and sub-federal for decades, and even acted as consultants to the Civil Society process on emissions control – you just need to read the United Nations’ IPCC Climate Change Assessment Report and Special Report output to detect the filigree of a trace of geoengineering fingers scratching their meaning into global intention. Let us take your nasty, noxious carbon dioxide, they whisper suggestively, and push it down a hole, out of sight and out of accounting mind, but don’t forget to slip us a huge cheque for doing so. You know, they add, we could even do it cost-effectively, by producing more oil and gas from emptying wells, resulting from pumping the carbon dioxide into them. Enhanced Oil Recovery – or EOR – would of course mean that some of the carbon dioxide pumped underground would in effect come out again in the form of the flue gas from the combustion of new fossil fuels, but anyway…

    And governments love being seen to be doing something, anything, really, about climate change, as long as it’s not too complicated, and involves big players who should be trustworthy. So, you get the Peterhead project picking up a fat cheque for a trial of Carbon Capture and Storage (CCS) in Scotland, and the sidestep hint that if Scotland decides to become independent, this project money could be lost…But this project doesn’t involve much of anything that is really new. The power station that will be used is a liability that ought to be closing now, really, according to some. And the trial will only last for ten years. There will be no EOR – at least – not in the public statements, but this plan could lead the way.

    All of this is like pushing a fat kid up a shiny slide. Once Government take their greasy Treasury hands off the project, the whole narrative will fail, falling to an ignominious muddy end. This perhaps explains the underlying desperation of many – CCS is the only major engineering response to emissions that many people can think of – because they cannot imagine burning less fossil fuels. So this wobbling effigy has to be kept on the top of the pedestal. And so I have enjoyed two identical Shell presentations on the theme of the Peterhead project in as many weeks. CCS must be obeyed.

    But, all the same, it’s big money. And glaring yellow and red photo opps. You can’t miss it. And then, at the other end of the scale of subsidies, is biogas. With currently low production volumes, and complexities attached to its utilisation, anaerobically digesting wastes of all kinds and capturing the gas for use as a fuel, is a kind of token technology to many, only justified because methane is a much stronger greenhouse gas than carbon dioxide, so it needs to be burned.

    The subsidy arrangements for many renewable energy technologies are in flux. Subsidies for green gas will be reconsidered and reformulated in April, and will probably experience a degression – a hand taken off the tiller of driving energy change.

    At an evening biogas briefing given by Rushlight this week, I could almost smell a whiff of despair and disappointment in the levels of official support for green gas. It was freely admitted that not all the planned projects around the country will see completion, not only because of the prevailing economic climate, but because of the vagaries of feedstock availability, and the complexity of gas cleaning regulations.

    There was light in the tunnel, though, even if the end had not been reached – a new Quality Protocol for upgrading biogas to biomethane, for injection into the gas grid, has been established. You won’t find it on the official UK Goverment website, apparently, as it has fallen through the cracks of the rebranding to gov.uk, but here it is, and it’s from the Environment Agency, so it’s official :-

    http://www.greengas.org.uk/pdf/biomethane-qp.pdf

    http://www.r-e-a.net/news/rea-welcomes-environment-agencys-updated-anaerobic-digestion-quality-protocol

    http://adbiogas.co.uk/2014/01/30/biomethane-qp-could-boost-renewable-gas-to-grid-market/
    http://adbiogas.co.uk/2014/01/30/biomethane-quality-protocol-published/

    Here’s some background :-

    http://www.environment-agency.gov.uk/aboutus/wfo/epow/124111.aspx

    To get some picture of the mess that British green energy policy is in, all you need do is take a glance at Germany and Denmark, where green gas is considered the “third leg of the stool”, stabilising renewable energy supply with easily-stored low carbon gas, to balance out the peaks and troughs in wind power and solar power provision.

    Green gas should not be considered a nice-to-have minor addition to the solutions portfolio in my view. The potential to de-carbonise the energy gas supply is huge, and the UK are missing a trick here – the big money is being ladled onto the “incumbents” – the big energy companies who want to carry on burning fossil fuels but sweep their emissions under the North Sea salt cavern carpet with CCS, whilst the beer change is being reluctantly handed out as a guilt offering to people seeking genuinely low carbon energy production.

    Seriously – where the exoplanet are we at ?

  • Gain in Transmission #2

    Posted on February 24th, 2014 Jo No comments

    Here is further email exchange with Professor Richard Sears, following on from a previous web log post.


    From: Richard A. Sears
    Date: 24 February 2014
    To: Jo Abbess
    Subject: Question from your TED talk

    Jo,

    I was looking back over older emails and saw that I had never responded to your note. It arrived as I was headed to MIT to teach for a week and then it got lost. Sorry about that.

    Some interesting questions. I don’t know anybody working specifically on wind power to gas options. At one time Shell had a project in Iceland using geothermal to make hydrogen. Don’t know what its status is but if you search on hydrogen and Iceland on the Shell website I’m sure there’s something. If the Germans have power to gas as a real policy option I’d poke around the web for information on who their research partners are for this.

    Here are a couple of high level thoughts. Not to discourage you because real progress comes from asking new questions, but there are some physical fundamentals that are important.

    Direct air capture of anything using current technology is prohibitively expensive to do at scale for energy. More energy will be expended in capture and synthesis than the fuels would yield.

    Gaseous fuels are problematic on their own. Gas doesn’t travel well and is difficult to contain at high energy densities as that means compressing or liquefying it. That doesn’t make anything impossible, but it raises many questions about infrastructure and energy balance. If we take the energy content of a barrel of oil as 1.0, then a barrel of liquefied natural gas is about 0.6, compressed natural gas which is typically at about 3600psi is around 0.3, and a barrel (as a measure of volume equal to 42 US gallons) of natural gas at room temperature and pressure is about 0.0015 (+/-). Also there’s a real challenge in storing and transporting gasses as fuel at scale, particularly motor fuel to replace gasoline and diesel.

    While there is some spare wind power potential that doesn’t get utilized because of how the grid must be managed, I expect it is a modest amount of energy compared to what we use today in liquid fuels. I think what that means is that while possible, it’s more likely to happen in niche local markets and applications rather than at national or global scales.

    If you haven’t seen it, a nice reference on the potential of various forms of sustainable energy is available free and online here. http://www.withouthotair.com/

    Hope some of this helps.

    Rich

    Richard A. Sears
    Consulting Professor
    Department of Energy Resources Engineering
    Stanford University


    From: Jo Abbess
    Date: 24 February 2014
    To: Richard A. Sears

    Dear Richard,

    Many thanks for getting back to me. Responses are nice – even if they
    are months late. As they say – better late than never, although with
    climate change, late action will definitely be unwise, according to an
    increasing number of people.

    I have indeed seen the website, and bought and spilled coffee on the
    book of Professor David MacKay’s “Sustainable Energy Without The Hot
    Air” project. It is legendary. However, I have checked and he has only
    covered alternative gas in a couple of paragraphs – in notes. By
    contrast, he spent a long chapter discussing how to filter uranium out
    of seawater and other nuclear pursuits.

    Yet as a colleague of mine, who knows David better than I do, said to
    me this morning, his fascination with nuclear power is rather naive,
    and his belief in the success of Generation III and Generation IV
    lacks evidence. Plus, if we get several large carbon dioxide
    sequestration projects working in the UK – Carbon Capture and Storage
    (CCS) – such as the Drax pipeline (which other companies will also
    join) and the Shell Peterhead demonstration, announced today, then we
    won’t need new nuclear power to meet our 4th Carbon Budget – and maybe
    not even the 5th, either (to be negotiated in 2016, I hear) :-

    http://www.heraldscotland.com/politics/referendum-news/peterhead-confirmed-for-carbon-capture-sitebut-its-not-a-bribe-says-ed-dave.1393232825

    We don’t need to bury this carbon, however; we just need to recycle
    it. And the number of ways to make Renewable Hydrogen, and
    energy-efficiently methanate carbon monoxide and carbon dioxide with
    hydrogen, is increasing. People are already making calculations on how
    much “curtailed” or spare wind power is likely to be available for
    making gas in 10 years’ time, and if solar power in the UK is
    cranked/ramped up, then there will be lots of juicy cost-free power
    ours for the taking – especially during summer nights.

    Direct Air Capture of carbon dioxide is a nonsensical proposition.
    Besides being wrong in terms of the arrow of entropy, it also has the
    knock-on effect of causing carbon dioxide to come back out of the
    ocean to re-equilibrate. I recently read a paper by climate scientists
    that estimated that whatever carbon dioxide you take out of the air,
    you will need to do almost all of it again.

    Instead of uranium, we should be harvesting carbon dioxide from the
    oceans, and using it to make gaseous and liquid fuels.

    Gaseous fuels and electricity complement each other very well -
    particularly in storage and grid balancing terms – there are many
    provisions for the twins of gas and power in standards, laws, policies
    and elsewhere. Regardless of the limitations of gas, there is a huge
    infrastructure already in place that can store, pipe and use it, plus
    it is multi-functional – you can make power, heat, other fuels and
    chemicals from gas. In addition, you can make gas from a range of
    resources and feedstocks and processing streams – the key quartet of
    chemical gas species keep turning up : hydrogen, methane, carbon
    monoxide and carbon dioxide – whether you are looking at the exhaust
    from combustion, Natural Gas, industrial furnace producer gas,
    biological decomposition, just about everywhere – the same four gases.

    Energy transition must include large amounts of renewable electricity
    - because wind and solar power are quick to build yet long nuclear
    power lead times might get extended in poor economic conditions. The
    sun does not always shine and the wind does not always blow (and the
    tide is not always in high flux). Since demand profiles will never be
    able to match supply profiles exactly, there will always be spare
    power capacity that grids cannot use. So Power to Gas becomes the
    optimal solution. At least until there are ways to produce Renewable
    Hydrogen at plants that use process heat from other parts of the
    Renewable Gas toolkit. So the aims are to recycle carbon dioxide from
    gas combustion to make more gas, and recycle gas production process
    heat to make hydrogen to use in the gas production process, and make
    the whole lot as thermally balanced as possible. Yes. We can do that.
    Lower the inputs of fresh carbon of any form, and lower the energy
    requirements to make manufactured gas.

    I met somebody working with Jacobs who was involved in the Carbon
    Recycling project in Iceland. Intriguing, but an order of magnitude
    smaller than I think is possible.

    ITM Power in the UK are doing a Hydrogen-to-gas-grid and methanation
    project in Germany with one of the regions. They have done several
    projects with Kiwa and Shell on gas options in Europe. I know of the
    existence of feasibility reports on the production of synthetic
    methane, but I have not had the opportunity to read them yet…

    I feel quite encouraged that Renewable Gas is already happening. It’s
    a bit patchy, but it’s inevitable, because the narrative of
    unconventional fossil fuels has many flaws. I have been looking at
    issues with reserves growth and unconventionals are not really
    commensurate with conventional resources. There may be a lot of shale
    gas in the ground, but getting it out could be a long process, so
    production volumes might never be very good. In the USA you’ve had
    lots of shale gas – but that’s only been supported by massive drilling
    programmes – is this sustainable ?

    BP have just finished building lots of dollars of kit at Whiting to
    process sour Natural Gas. If they had installed Renewable Gas kit
    instead of the usual acid gas and sulfur processing, they could have
    been preparing for the future. As I understand it, it is possible to
    methanate carbon dioxide without first removing it from the rest of
    the gas it comes in – so methanating sour gas to uprate it is a viable
    option as far as I can see. The hydrogen sulfide would still need to
    be washed out, but the carbon dioxide needn’t be wasted – it can be
    made part of the fuel. And when the sour gas eventually thins out,
    those now methanating sour gas can instead start manufacturing gas
    from low carbon emissions feedstocks and recycled carbon.

    I’m thinking very big.

    Regards,

    jo.

  • In Confab : Paul Elsner

    Posted on January 23rd, 2014 Jo No comments

    Dr Paul Elsner of Birkbeck College at the University of London gave up some of his valuable time for me today at his little bijou garret-style office in Bloomsbury in Central London, with an excellent, redeeming view of the British Telecom Tower. Leader of the Energy and Climate Change module on Birkbeck’s Climate Change Management programme, he offered me tea and topical information on Renewable Energy, and some advice on discipline in authorship.

    He unpacked the recent whirlwind of optimism surrounding the exploitation of Shale Gas and Shale Oil, and how Climate Change policy is perhaps taking a step back. He said that we have to accept that this is the way the world is at the moment.

    I indicated that I don’t have much confidence in the “Shale Bubble”. I consider it mostly as a public relations exercise – and that there are special conditions in the United States of America where all this propaganda comes from. I said that there are several factors that mean the progress with low carbon fuels continues to be essential, and that Renewable Gas is likely to be key.

    1. First of all, the major energy companies, the oil and gas companies, are not in a healthy financial state to make huge investment. For example, BP has just had the legal ruling that there will be no limit to the amount of compensation claims they will have to face over the Deepwater Horizon disaster. Royal Dutch Shell meanwhile has just had a serious quarterly profit warning – and if that is mostly due to constrained sales (“Peak Oil Demand”) because of economic collapse, that doesn’t help them with the kind of aggressive “discovery” they need to continue with to keep up their Reserves to Production ratio (the amount of proven resources they have on their books). These are not the only problems being faced in the industry. This problem with future anticipated capitalisation means that Big Oil and Gas cannot possibly look at major transitions into Renewable Electricity, so it would be pointless to ask, or try to construct a Carbon Market to force it to happen.

    2. Secondly, despite claims of large reserves of Shale Gas and Shale Oil, ripe for the exploitation of, even major bodies are not anticipating that Peak Oil and Peak Natural Gas will be delayed by many years by the “Shale Gale”. The reservoir characteristics of unconventional fossil fuel fields do not mature in the same way as conventional ones. This means that depletion scenarios for fossil fuels are still as relevant to consider as the decades prior to horizontal drilling and hydraulic fracturing (“fracking”).

    3. Thirdly, the reservoir characteristics of conventional fossil fuel fields yet to exploit, especially in terms of chemical composition, are drifting towards increasingly “sour” conditions – with sigificant levels of hydrogen sulfide and carbon dioxide in them. The sulphur must be removed for a variety of reasons, but the carbon dioxide remains an issue. The answer until recently from policy people would have been Carbon Capture and Storage or CCS. Carbon dioxide should be washed from acid Natural Gas and sequestered under the ocean in salt caverns that previously held fossil hydrocarbons. It was hoped that Carbon Markets and other forms of carbon pricing would have assisted with the payment for CCS. However, recently there has been reduced confidence that this will be significant.

    Renewable Gas is an answer to all three of these issues. It can easily be pursued by the big players in the current energy provision system, with far less investment than wholesale change would demand. It can address concerns of gas resource depletion at a global scale, the onset of which could occur within 20 to 25 years. And it can be deployed to bring poor conventional fossil fuels into consideration for exploitation in the current time – answering regional gas resource depletion.

    Outside, daffodils were blooming in Tavistock Square. In January, yes. The “freaky” weather continues…

  • But Uh-Oh – Those Summer Nights

    Posted on January 20th, 2014 Jo No comments

    A normal, everyday Monday morning at Energy Geek Central. Yes, this is a normal conversation for me to take part in on a Monday morning. Energy geekery at breakfast. Perfect.

    Nuclear Flower Power

    This whole UK Government nuclear power programme plan is ridiculous ! 75 gigawatts (GW) of Generation III nuclear fission reactors ? What are they thinking ? Britain would need to rapidly ramp up its construction capabilities, and that’s not going to happen, even with the help of the Chinese. (And the Americans are not going to take too kindly to the idea of China getting strongly involved with British energy). And then, we’d need to secure almost a quarter of the world’s remaining reserves of uranium, which hasn’t actually been dug up yet. And to cap it all, we’d need to have 10 more geological disposal repositories for the resulting radioactive spent fuel, and we haven’t even managed to negotiate one yet. That is, unless we can burn a good part of that spent fuel in Generation IV nuclear fission reactors – which haven’t even been properly demonstrated yet ! Talk about unconscionable risk !

    Baseload Should Be History By Now, But…

    Whatever the technological capability for nuclear power plants to “load follow” and reduce their output in response to a chance in electricity demand, Generation III reactors would not be run as anything except “baseload” – constantly on, and constantly producing a constant amount of power – although they might turn them off in summer for maintenance. You see, the cost of a Generation III reactor and generation kit is in the initial build – so their investors are not going to permit them to run them at low load factors – even if they could.

    There are risks to running a nuclear power plant at partial load – mostly to do with potential damage to the actual electricity generation equipment. But what are the technology risks that Hinkley Point C gets built, and all that capital is committed, and then it only runs for a couple of years until all that high burn up fuel crumbles and the reactors start leaking plutonium and they have to shut it down permanently ? Who can guarantee it’s a sound bet ?

    If they actually work, running Generation III reactors at constant output as “baseload” will also completely mess with the power market. In all of the scenarios, high nuclear, high non-nuclear, or high fossil fuels with Carbon Capture and Storage (CCS), there will always need to be some renewables in the mix. In all probability this will be rapidly deployed, highly technologically advanced solar power photovoltaics (PV). The amount of solar power that will be generated will be high in summer, but since you have a significant change in energy demand between summer and winter, you’re going to have a massive excess of electricity generation in summer if you add nuclear baseload to solar. Relative to the demand for energy, you’re going to get more Renewable Energy excess in summer and under-supply in winter (even though you get more offshore wind in winter), so it’s critical how you mix those two into your scenario.

    The UK Government’s maximum 75 GW nuclear scenario comprises 55 GW Generation III and 20 GW Generation IV. They could have said 40 GW Gen III to feed Gen IV – the spent fuel from Gen III is needed to kick off Gen IV. Although, if LFTR took off, if they had enough fluoride materials there could be a Thorium way into Gen IV… but this is all so technical, no MP [ Member of Parliament ] is going to get their head round this before 2050.

    The UK Government are saying that 16 GW of nuclear by 2030 should be seen as a first tranche, and that it could double or triple by 2040 – that’s one heck of a deployment rate ! If they think they can get 16 GW by 2030 – then triple that by 10 years later ? It’s not going to happen. And even 30 GW would be horrific. But it’s probably more plausible – if they can get 16 GW by 2030, they can arguably get double that by 2040.

    As a rule of thumb, you would need around 10 tonnes of fissionable fuel to kickstart a Gen IV reactor. They’ve got 106 tonnes of Plutonium, plus 3 or 4 tonnes they recently acquired – from France or Germany (I forget which). So they could start 11 GW of Gen IV – possibly the PRISM – the Hitachi thing – sodium-cooled. They’ve been trying them since the Year Dot – these Fast Reactors – the Breeders – Dounreay. People are expressing more confidence in them now – “Pandora’s Promise” hangs around the narrative that the Clinton administration stopped research into Fast Reactors – Oak Ridge couldn’t be commercial. Throwing sodium around a core 80 times hotter than current core heats – you can’t throw water at it easily. You need something that can carry more heat out. It’s a high technological risk. But then get some French notable nuclear person saying Gen IV technologies – “they’re on the way and they can be done”.

    Radioactive Waste Disposal Woes

    The point being is – if you’re commissioning 30 GW of Gen III in the belief that Gen IV will be developed – then you are setting yourself up to be a hostage to technological fortune. That is a real ethical consideration. Because if you can’t burn the waste fuel from Gen III, you’re left with up to 10 radioactive waste repositories required when you can’t even get one at the moment. The default position is that radioactive spent nuclear fuel will be left at the power stations where they’re created. Typically, nuclear power plants are built on the coast as they need a lot of cooling water. If you are going for 30 GW you will need a load of new sites – possibly somewhere round the South East of England. This is where climate change comes in – rising sea levels, increased storm surge, dissolving, sinking, washed-away beaches, more extreme storms [...] The default spent fuel scenario with numerous coastal decommissioned sites with radioactive interim stores which contain nearly half the current legacy radioactive waste [...]

    Based on the figures from the new Greenpeace report, I calculate that the added radioactive waste and radioactive spent fuel arisings from a programme of 16 GW of nuclear new build would be 244 million Terabequerel (TBq), compared to the legacy level of 87 million TBq.

    The Nuclear Decommissioning Authority (NDA) are due to publish their Radioactive Waste Inventory and their Report on Radioactive Materials not in the Waste Inventory at the end of January 2014. We need to keep a watch out for that, because they may have adapted their anticipated Minimum and Maxmium Derived Inventory.

    Politics Is Living In The Past

    What you hear from politicians is they’re still talking about “baseload”, as if they’ve just found the Holy Grail of Energy Policy. And failed nuclear power. Then tidal. And barrages. This is all in the past. Stuff they’ve either read – in an article in a magazine at the dentist’s surgery waiting room, and they think, alright I’ll use that in a TV programme I’ve been invited to speak on, like Question Time. I think that perhaps, to change the direction of the argument, we might need to rubbish their contribution. A technological society needs to be talking about gasification, catalysis. If you regard yourselves as educated, and have a technological society – your way of living in the future is not only in manufacturing but also ideas – you need to be talking about this not that : low carbon gas fuels, not nuclear power. Ministers and senior civil servants probably suffer from poor briefing – or no briefing. They are relying on what is literally hearsay – informal discussions, or journalists effectively representing industrial interests. Newspapers are full of rubbish and it circulates, like gyres in the oceans. Just circulates around and around – full of rubbish.

    I think part of the problem is that the politicians and chief civil servants and ministers are briefed by the “Old Guard” – very often the ex-nuclear power industry guard. They still believe in big construction projects, with long lead times and massive capital investment, whereas Renewable Electricity is racing ahead, piecemeal, and private investors are desperate to get their money into wind power and solar power because the returns are almost immediate and risk-free.

    Together in Electric Dreams

    Question : Why are the UK Government ploughing on with plans for so much nuclear power ?

    1. They believe that a lot of transport and heat can be made to go electric.
    2. They think they can use spent nuclear fuel in new reactors.
    3. They think it will be cheaper than everything else.
    4. They say it’s vital for UK Energy Security – for emissions reductions, for cost, and for baseload. The big three – always the stated aim of energy policy, and they think nuclear ticks all those three boxes. But it doesn’t.

    What they’ll say is, yes, you have to import uranium, but you’ve got a 4 year stock. Any war you’re going to get yourselves involved in you can probably resolve in 4 days, or 4 weeks. If you go for a very high nuclear scenario, you would be taking quite a big share of the global resource of uranium. There’s 2,600 TWh of nuclear being produced globally. And global final energy demand is around 100,000 TWh – so nuclear power currently produces around 2.6% of global energy supply. At current rates of nuclear generation, according to the World Nuclear Association, you’ve got around 80 years of proven reserves and probably a bit more. Let’s say you double nuclear output by 2050 or 2040 – but in the same time you might just have enough uranium – and then find a bit more. But global energy demand rises significantly as well – so nuclear will still only provide around 3% of global energy demand. That’s not a climate solution – it’s just an energy distraction. All this guff about fusion. Well.

    Cornering The Market In Undug Uranium

    A 75 GW programme would produce at baseload 590 TWh a year – divide by 2,600 – is about 23% of proven global uranium reserves. You’re having to import, regardless of what other countries are doing, you’re trying to corner the market – roughly a quarter. Not even a quarter of the market – a quarter of all known reserves – it’s not all been produced yet. It’s still in the ground. So could you be sure that you could actually run these power stations if you build them ? Without global domination of the New British Empire [...]. The security issues alone – defending coastal targets from a tweeb with a desire to blow them up. 50 years down the line they’re full of radioactive spent fuel that won’t have a repository to go to – we don’t want one here – and how much is it going to cost ?

    My view is that offshore wind will be a major contributor in a high or 100% Renewable Electricity scenario by 2050 or 2060. Maybe 180 GW, that will also be around 600 TWh a year – comparable to that maximum nuclear programme. DECC’s final energy demand 2050 – several scenarios – final energy demand from 6 scenarios came out as between roughly 1,500 TWh a year and the maximum 2,500 TWh. Broadly speaking, if you’re trying to do that just with Renewable Electricity, you begin to struggle quite honestly, unless you’re doing over 600 TWh of offshore wind, and even then you need a fair amount of heat pump stuff which I’m not sure will come through. The good news is that solar might – because of the cost and technology breakthroughs. That brings with it a problem – because you’re delivering a lot of that energy in summer. The other point – David MacKay would say – in his book his estimate was 150 TWh from solar by 2050, on the grounds that that’s where you south-facing roofs are – you need to use higher efficiency triple junction cells with more than 40% efficiency and this would be too expensive for a rollout which would double or triple that 150 TWh – that would be too costly – because those cells are too costly. But with this new stuff, you might get that. Not only the cost goes down, but the coverage goes down. Not doing solar across swathes of countryside. There have always been two issues with solar power – cost and where it’s being deployed.

    Uh-Oh, Summer Days. Uh-Oh, Summer Nights

    With the solar-wind headline, summer days and summer nights are an issue.

    With the nuclear headline, 2040 – they would have up to 50 GW, and that would need to run at somewhere between 75% and 95% capacity – to protect the investment and electric generation turbines.

    It will be interesting to provide some figures – this is how much over-capacity you’re likely to get with this amount of offshore wind. But if you have this amount of nuclear power, you’ll get this amount [...]

    Energy demand is strongly variable with season. We have to consider not just power, but heat – you need to get that energy out in winter – up to 4 times as much during peak in winter evenings. How are you going to do that ? You need gas – or you need extensive Combined Heat and Power (CHP) (which needs gas). Or you need an unimaginable deployment of domestic heat pumps. Air source heat pumps won’t work at the time you need them most. Ground source heat pumps would require the digging up of Britain – and you can’t do that in most urban settings.

    District Heat Fields

    The other way to get heat out to everyone in a low carbon world – apart from low carbon gas – is having a field-based ground source heat pump scheme – just dig up a field next to a city – and just put in pipes and boreholes in a field. You’re not disturbing anybody. You could even grow crops on it next season. Low cost and large scale – but would need a District Heating (DH) network. There are one or two heat pump schemes around the world. Not sure if they are used for cooling in summer or heat extraction in the winter. The other thing is hot water underground. Put in an extra pipe in the normal channels to domestic dwellings. Any excess heat from power generation or electrolysis or whatever is put down this loop and heats the sub-ground. Because heat travels about 1 metre a month in soil, that heat should be retained for winter. A ground source heat sink. Geothermal energy could come through – they’re doing a scheme in Manchester. If there’s a nearby heat district network – it makes it easier. Just want to tee it into the nearest DH system. The urban heat demand is 150 TWh a year. You might be able to put DH out to suburban areas as well. There are 9 million gas-connected suburban homes – another about 150 TWh there as well – or a bit more maybe. Might get to dispose of 300 TWh in heat through DH. The Green Deal insulation gains might not be what is claimed – and condensing gas boiler efficiencies are not that great – which feeds into the argument that in terms of energy efficiency, you not only want to do insulation, but also DH – or low carbon gas. Which is the most cost-effective ? Could argue reasonable energy efficiency measures are cheapest – but DH might be a better bet. That involves a lot of digging.

    Gas Is The Logical Answer

    But everything’s already laid for gas. (…but from the greatest efficiency first perspective, if you’re not doing DH, you’re not using a lot of Renewable Heat you could otherwise use [...] )

    The best package would be the use of low carbon gases and sufficient DH to use Renewable Heat where it is available – such as desalination, electrolysis or other energy plant. It depends where the electrolysis is being done.

    The Age of Your Carbon

    It also depends on which carbon atoms you’re using. If you are recycling carbon from the combustion of fossil fuels into Renewable Gas, that’s OK. But you can’t easily recapture carbon emissions from the built environment (although you could effectively do that with heat storage). You can’t do carbon capture from transport either. So your low carbon gas has to come from biogenic molecules. Your Renewable Gas has to be synthesised using biogenic carbon molecules rather than fossil ones.

    [...] I’m using the phrase “Young Carbon”. Young Carbon doesn’t have to be from plants – biological things that grow.

    Well, there’s Direct Air Capture (DAC). It’s simple. David Sevier, London-based, is working on this. He’s using heat to capture carbon dioxide. You could do it from exhaust in a chimney or a gasification process – or force a load of air through a space. He would use heat and cooling to create an updraft. It would enable the “beyond capture” problem to be circumvented. Cost is non-competitive. Can be done technically. Using reject heat from power stations for the energy to do it. People don’t realise you can use a lot of heat to capture carbon, not electricity.

    Young Carbon from Seawater

    If you’re playing around with large amounts of seawater anyway – that is, for desalination for irrigation, why not also do Renewable Hydrogen, and pluck the Carbon Dioxide out of there too to react with the Renewable Hydrogen to make Renewable Methane ? I’m talking about very large amounts of seawater. Not “Seawater Greenhouses” – condensation designs mainly for growing exotic food. If you want large amounts of desalinated water – and you’re using Concentrated Solar Power – for irrigating deserts – you would want to grow things like cacti for biological carbon.

    Say you had 40 GW of wind power on Dogger Bank, spinning at 40% load factor a year. You’ve also got electrolysers there. Any time you’re not powering the grid, you’re making gas – so capturing carbon dioxide from seawater, splitting water for hydrogen, making methane gas. Wouldn’t you want to use flash desalination first to get cleaner water for electrolysis ? Straight seawater electrolysis is also being done.

    It depends on the relative quantities of gas concentrated in the seawater. If you’ve got oxygen, hydrogen and carbon dioxide, that would be nice. You might get loads of oxygen and hydrogen, and only poor quantities of carbon dioxide ?

    But if you could get hydrogen production going from spare wind power. And even if you had to pipe the carbon dioxide from conventional thermal power plants, you’re starting to look at a sea-based solution for gas production. Using seawater, though, chlorine is the problem [...]

    Look at the relative density of molecules – that sort of calculation that will show if this is going to fly. Carbon dioxide is a very fixed, stable molecule – it’s at about the bottom of the energy potential well – you have to get that reaction energy from somewhere.

    How Much Spare Power Will There Be ?

    If you’ve got an offshore wind and solar system. At night, obviously, the solar’s not working (unless new cells are built that can run on infrared night-time Earthshine). But you could still have 100 GWh of wind power at night not used for the power grid. The anticipated new nuclear 40 GW nuclear by 2030 will produce about 140 GWh – this would just complicate problems – adding baseload nuclear to a renewables-inclusive scenario. 40 GW is arguably a reasonable deployment of wind power by 2030 – low if anything.

    You get less wind in a nuclear-inclusive scenario, but the upshot is you’ve definitely got a lot of power to deal with on a summer night with nuclear power. You do have with Renewable Electricity as well, but it varies more. Whichever route we take we’re likely to end up with excess electricity generation on summer nights.

    In a 70 GW wind power deployment (50 GW offshore, 20 GW onshore – 160 TWh a year), you might have something like 50 to 100 GWh per night of excess (might get up to 150 GWh to store on a windy night). But if you have a 16 GW nuclear deployment by 2030 (125 TWh a year), you are definitely going to have 140 GWh of excess per night (that’s 16 GW for 10 hours less a bit). Night time by the way is roughly between 9pm and 7am between peak demands.

    We could be making a lot of Renewable Gas !

    Can you build enough Renewable Gas or whatever to soak up this excess nuclear or wind power ?

    The energy mix is likely to be in reality somewhere in between these two extremes of high nuclear or high wind.

    But if you develop a lot of solar – so that it knocks out nuclear power – it will be the summer day excess that’s most significant. And that’s what Germany is experiencing now.

    Choices, choices, choices

    There is a big choice in fossil fuels which isn’t really talked about very often – whether the oil and gas industry should go for unconventional fossil fuels, or attempt to make use of the remaining conventional resources that have a lower quality. The unconventionals narrative – shale gas, coalbed methane, methane hydrates, deepwater gas, Arctic oil and gas, heavy oil, is running out of steam as it becomes clear that some of these choices are expensive, and environmentally damaging (besides their climate change impact). So the option will be making use of gas with high acid gas composition. And the technological solutions for this will be the same as needed to start major production of Renewable Gas.

    Capacity Payments

    But you still need to answer the balancing question. If you have a high nuclear power scenario, you need maybe 50 TWh a year of gas-fired power generation. If high Renewable Electricity, you will need something like 100 TWh of gas, so you need Carbon Capture and Storage – or low carbon gas.

    Even then, the gas power plants could be running only 30% of the year, and so you will need capacity payments to make sure new flexible plants get built and stay available for use.

    If you have a high nuclear scenario, coupled with gas, you can meet the carbon budget – but it will squeeze out Renewable Electricity. If high in renewables, you need Carbon Capture and Storage (CCS) or Carbon Capture and Recycling into Renewable Gas, but this would rule out nuclear power. It depends which sector joins up with which.

    Carbon Capture, Carbon Budget

    Can the Drax power plant – with maybe one pipeline 24 inches in diameter, carrying away 20 megatonnes of carbon dioxide per year – can it meet the UK’s Carbon Budget target ?

  • Curmudgeons Happen

    Posted on January 5th, 2014 Jo 1 comment

    I was talking with people at my friend’s big birthday bash yesterday. I mentioned I’m writing about Renewable Gas, and this led to a variety of conversations. Here is a kind of summary of one of the threads, involving several people.

    Why do people continue to insist that the wind turbine at Reading uses more energy than it generates ?

    Would it still be there if it wasn’t producing power ? Does David Cameron still have a wind turbine on his roof ? No. It wasn’t working, so it was taken down. I would ask – what are their sources of information ? What newspapers and websites do they read ?

    They say that the wind turbine at Reading is just there for show.

    Ah. The “Potemkin Village” meme – an idyllic-looking setting, but everything’s faked. The Chinese painting the desert green, etc.

    And then there are people that say that the only reason wind farms continue to make money is because they run the turbines inefficiently to get the subsidies.

    Ah. The “De-rating Machine” meme. You want to compare and contrast. Look at the amount of money, resources, time and tax breaks being poured into the UK Continental Shelf, and Shale Gas, by the current Government.

    Every new technology needs a kick start, a leg up. You need to read some of the reports on wind power as an asset – for example, the Offshore Valuation – showing a Net Present Value. After it’s all deployed, even with the costs of re-powering at the end of turbine life, offshore North Sea wind power will be a genuine asset.

    What I don’t understand is, why do people continue to complain that wind turbines spoil the view ? Look at the arguments about the Jurassic Coast in Dorset.

    I have contacts there who forward me emails about the disputes. The yachtsmen of Poole are in open rebellion because the wind turbines will be set in in their channels ! The tourists will still come though, and that’s what really counts. People in Dorset just appear to love arguing, and you’ve got some people doing good impressions of curmudgeons at the head of the branches of the Campaign for the Protection of Rural England (CPRE) and English Heritage.

    There are so many people who resist renewable energy, and refuse to accept we need to act on climate change. Why do they need to be so contrarian ? I meet them all the time.

    People don’t like change, but change happens. The majority of people accept that climate change is significant enough to act on, and the majority of people want renewable energy. It may not seem like that though. It depends on who you talk with. There’s a small number of people who vocalise scepticism and who have a disproportionate effect. I expect you are talking about people who are aged 55 and above ?

    Example : “Climate Change ? Haw haw haw !” and “Wind turbines ? They don’t work !” This is a cohort problem. All the nasty white racists are dying and being buried with respect by black undertakers. All the rabid xenophobes are in nursing homes being cared for in dignity by “foreigners”. Pretty soon Nigel Lawson could suffer from vascular dementia and be unable to appear on television.

    The media have been insisting that they need a balance of views, but ignoring the fact that the climate change “sceptics” are very small in number and not backed up by the science.

    Why does Nigel Lawson, with all his access and privilege, continue to insist that global warming is not a problem ?

    Fortunately, even though he’s “establishment” and has more influence than he really should have, the people that are really in charge know better. He should talk to the climate change scientists – the Met Office continue to invite sceptics to come and talk with them. He should talk to people in the energy sector – engineers and project managers. He should talk to people in the cross-party Parliamentary groups who have access to the information from the expert Select Committees.

    And what about Owen Paterson ? I cannot understand why they put a climate change sceptic in charge of the Department of the Environment.

    Well, we’ve always done that, haven’t we ? Put Ministers in Departments they know nothing about, so that they can learn their briefs. We keep putting smokers in charge of health policy. Why do you think he was put in there ?

    To pacify the Conservative Party.

    But I know Conservative Party activists who are very much in favour of renewable energy and understand the problems of climate change. It’s not the whole Party.

    We need to convince so many people.

    We only need to convince the people who matter. And anyway, we don’t need to do any convincing. Leaders in the energy industry, in engineering, in science, in Government (the real government is the Civil Service), the Parliament, they already understand the risks of climate change and the need for a major energy transition.

    People should continue to express their views, but people only vote on economic values. That’s why Ed Miliband has pushed the issue of the cost of energy – to try to bring energy to the forefront of political debate.

    What about nuclear fusion ?

    Nuclear fusion has been 35 years away for the last 35 years. It would be nice to have, because it could really solve the problem. Plus, it keeps smart people busy.

    What about conventional nuclear fission power ?

    I say, “Let them try !” The Hinkley Point C deal has so many holes in it, it’s nearly collapsed several times. I’m sure they will continue to try to build it, but I’m not confident they will finish it. Nuclear power as an industry is basically washed up in my view, despite the lengths that it goes to to influence society and lobby the Government.

    It’s going to be too late to answer serious and urgent problems – there is an energy crunch approaching fast, and the only things that can answer it are quick-to-build options such as new gas-fired power plants, wind farms, solar farms, demand reduction systems such as shutting down industry and smart fridges.

    How can the energy companies turn your fridge off ?

    If the appliances have the right software, simple frequency modulation of the power supply should be sufficient to trip fridges and freezers off. Or you could connect them to the Internet via a gateway. The problem is peak power demand periods, twice a day, the evening peak worse than the morning. There has been some progress in managing this due to switching light bulbs and efficient appliances, but it’s still critical. Alistair Buchanan, ex of Ofgem, went out on a limb to say that we could lose all our power production margins within a couple of years, in winter.

    But the refrigerators are being opened and closed in the early evening, so it would be the wrong time of day to switch them off. And anyway, don’t the fridges stop using power when they’re down to temperature ?

    Some of these things will need to be imposed regardless of concerns, because control of peak power demand is critical. Smart fridges may be some years away, but the National Grid already have contracts with major energy users to shed their load under certain circumstances. Certain key elements of the energy infrastructure will be pushed through. They will need to be pushed through, because the energy crunch is imminent.

    The time for democracy was ten years ago. To get better democracy you need much more education. Fortunately, young people (which includes young journalists) are getting that education. If you don’t want to be irritated by the views of climate change and energy sceptics, don’t bother to read the Daily Telegraph, the Daily Express, the Daily Mail, the online Register or the Spectator. The old school journalists love to keep scandal alive, even though any reason to doubt climate change science and renewable energy died in the 1980s.

    Although I’ve long since stopped trusting what a journalist writes, I’m one of those people who think that you should read those sources.

    I must admit I do myself from time to time, but just for entertainment.

  • Making The Sour Sweet

    Posted on January 1st, 2014 Jo No comments

    In the long view, some things are inevitable, and I don’t just mean death and taxes. Within the lifetime of children born today, there must be a complete transformation in energy. The future is renewable, and carefully deployed renewable energy systems can be reliable, sustainable and low cost, besides being low in carbon dioxide emissions to air. This climate safety response is also the answer to a degradation and decline in high quality mineral hydrocarbons – the so-called “fossil” fuels. Over the course of 2014 I shall be writing about Renewable Gas – sustainable, low emissions gas fuels made on the surface of the earth without recourse to mining for energy. Renewable Gas can store the energy from currently underused Renewable Electricity from major producers such as wind and solar farms, and help to balance out power we capture from the variable wind and sun. Key chemical players in these fuels : hydrogen, methane, carbon monoxide and carbon dioxide. Key chemistry : how to use hydrogen to recycle the carbon oxides to methane. How we get from here to there is incredibly important, and interestingly, methods and techniques for increasing the production volumes of Renewable Gas will be useful for the gradually fading fossil fuel industry. Much of the world’s remaining easily accessible Natural Gas is “sour” – laced with high concentrations of hydrogen sulfide and carbon dioxide. Hydrogen sulfide needs to be removed from the gas, but carbon dioxide can be recycled into methane, raising the quality of the gas. We can preserve the Arctic from fossil gas exploitation, and save ourselves from this economic burden and ecological risk, by employing relatively cheap ways to upgrade sour Natural Gas, from Iran, for example, while we are on the decades-long road of transitioning to Renewable Gas. The new burn is coming.

  • Champagne with Michael Caine

    Posted on December 11th, 2013 Jo No comments

    It was like a very bad sitcom from 1983 at the House of Commons this afternoon. “You saw Ed Balls running around in full Santa outfit ?” “Yeah ! The proper job.” “You know what we should do ? Put a piece of misteltoe above that door that everyone has to go through.” “You do it. I’ve heard you’re very good with sticky-backed plastic…”

    Once again Alan Whitehead MP has put on a marvellous Christmas reception of the All Party Parliamentary Renewable And Sustainable Energy Group, or PRASEG. The one flute of champagne in the desert-like heat of the Terrace Pavilion at the Houses of Parliament was enough to turn me the colour of beetroot and tomato soup, so when Alan despaired of getting anything altered, I took on the role of asking the lovely Pavilion staff to turn the heating down, what with Climate Change and everything, which they nobly obliged to do.

    In the meantime, I was invited onto the terrace overlooking the Thames by Christopher Maltin of Organic Power, to refresh myself. The winter night had fallen like a grey duvet, and what with the lingering fog and the lighting schemes for famous buildings, and the purple-blue sky behind it all, it was quite romantic out there. But very, very cold, so we didn’t discuss biogas and biosyngas for long.

    Back in the Pavilion, we were addressed by the fabulously debonair Lord Deben, John Gummer, sporting a cheery red pocket kerchief in his dark suit. During his talk, announcing the Committee on Climate Change confirmation of the Fourth Carbon Budget, and urging us to be “missionary” in influencing others over Climate Change mitigation, across the room I espied a younger gentleman who had, shall I say, a rather keen appearance. Was he a journalist, I asked myself, paying so much attention ? In fact, wasn’t he Leo Hickman, formerly of The Guardian ? No, he was not, but it was a bit shadowed at that end of the room, so I can’t blame myself for this mistake.

    When he had finally worked the room and ended up talking with me, he turned out to be Jack Tinley, Relationship Manager for Utilities at Lloyds Bank, in other words, in Big Finance, and currently seconded to the UK Government Department of Energy and Climate Change (DECC), so that was what explained his preppiness. I explained my continuing research into Renewable Gas, and he recommended Climate Change Capital for all questions of financing renewable energy, should I encounter any project that needed investment. Very helpful. Although he didn’t know who Leo Hickman is. Talking with him, and the guy from TEQs (Tradable Energy Quotas) was so interesting, I absentmindedly ate some…no… loads of party snacks. I need to make a strong mental note not to eat too many party snacks in future.

    After the illuminating and encouraging speeches from Lord Deben and Alan Whitehead MP, we were delightfully surprised by the attendance of, and an address by, Greg Barker MP, a “drive by speech” according to Alan. I was struck, that with his new specs, “Curly” Greg looks astonishingly like a young Michael Caine. During his speech he said that we ought to put the damaging controversy about energy behind us and move on into a year of great opportunity, now that the House of Lords had approved the Energy Bill. And then he pushed his glasses back up his nose in a way that was so Michael Caine, I nearly laughed out loud. Greg expressed the wish that the energy industry would become a “sexy sector”, at which point I corpsed and had to turn away silently laughing with a hand clamped over my mouth.

    Afterwards, I shook Greg by the hand, and asked if he would please unblock me on Twitter. He asked if I had been posting streams and streams of Tweets, and I said I don’t do that these days. When I suggested that he reminded me of Michael Caine, he was rather amused, but he did check I meant the Michael Caine of the 1960s, not the actor of today.

    Other people I spent time talking to at the PRASEG reception were Professor Dave Elliott of the Open University, and author on renewable energy; Steven English who installs ground source heat pumps; and Steve Browning, formerly of the National Grid; all in the Claverton Energy Research Group forum.

    I explained the foundations of my research into Renewable Gas to a number of people, and used the rhetorical question, “Germany’s doing it, so why can’t we ?” several times. I bet the Chinese are doing it too. I mean they’re doing everything else in renewable energy. In copious quantities, now they’ve seen the light about air pollution.

    I ended the event by having a serious chat with a guy from AMEC, the international engineering firm. He commented that the “Big Six” energy production and supply companies are being joined by smaller companies with new sources of investment capital in delivering new energy infrastructure.

    I said it was clear that “the flight of international capital” had become so bad, it had gone into geostationary orbit, not coming down to land very often, and that funding real projects could be hard.

    I suggested to him that the “Big Six” might need to be broken up, in the light of their edge-of-break-even, being locked into the use of fossil fuels, and the emergence of some of these smaller, more liquid players, such as Infinis.

    I also suggested that large companies such as AMEC should really concentrate on investing in new energy infrastructure projects, as some things, like the wind power development of the North Sea are creating genuine energy assets, easily shown if you consider the price of Natural Gas, which the UK is having to increasingly import.

  • Economic Ecology

    Posted on October 25th, 2013 Jo No comments

    Managing the balance between, on the one hand, extraction of natural resources from the environment, and on the other hand, economic production, shouldn’t have to be either, or. We shouldn’t value higher throughput and consumption at the expense of exhausting what the Earth can supply. We shouldn’t be “economic” in our ecology, we shouldn’t be penny-pinching and miserly and short-change the Earth. The Earth, after all, is the biosystem that nourishes us. What we should be aiming for is an ecology of economy – a balance in the systems of manufacture, agriculture, industry, mining and trade that doesn’t empty the Earth’s store cupboard. This, at its root, is a conservation strategy, maintaining humanity through a conservative economy. Political conservatives have lost their way. These days they espouse the profligate use of the Earth’s resources by preaching the pursuit of “economic growth”, by sponsoring and promoting free trade, and reversing environmental protection. Some in a neoliberal or capitalist economy may get rich, but they do so at the expense of everybody and everything else. It is time for an ecology in economics.

    Over the course of the next couple of years, in between doing other things, I shall be taking part in a new project called “Joy in Enough”, which seeks to promote economic ecology. One of the key texts of this multi-workstream group is “Enough is Enough”, a book written by Rob Dietz and Dan O’Neill. In their Preface they write :-

    “But how do we share this one planet and provide a high quality of life for all ? The economic orthodoxy in use around the world is not up to the challenge. [...] That strategy, the pursuit of never-ending economic growth has become dysfunctional. With each passing day, we are witnessing more and more uneconomic growth – growth that costs more than it is worth. An economy that chases perpetually increasing production and consumption, always in search of more, stands no chance of achieving a lasting prosperity. [...] Now is the time to change the goal from the madness of more to the ethic of enough, to accept the limits to growth and build an economy that meets our needs without undermining the life-support systems of the planet.”

    One of the outcomes of global capitalism is huge disparities, inequalities between rich and poor, between haves and have-nots. Concern about this is not just esoteric morality – it has consequences on the whole system. Take, for example, a field of grass. No pastoral herder with a flock of goats is going to permit the animals to graze in just one corner of this field, for if they do, part of the grassland will over-grow, and part will become dust or mud, and this will destroy the value of the field for the purposes of grazing. And take another example – wealth distribution in the United Kingdom. Since most people do not have enough capital to live on the proceeds of investment, most people need to earn money for their wealth through working. The recent economic contraction has persuaded companies and the public sector to squeeze more productivity out of a smaller number of employees, or abandon services along with their employees. A simple map of unemployment shows how parts of the British population have been over-grazed to prop up the economic order. This is already having impacts – increasing levels of poverty, and the consequent social breakdown that accompanies it. Poverty and the consequent worsening social environment make people less able to look after themselves, their families, and their communities, and this has a direct impact on the national economy. We are all poorer because some of our fellow citizens need to use food banks, or have to make the choice in winter to Heat or Eat.

    And let’s look more closely at energy. Whilst the large energy producers and energy suppliers continue to make significant profits – or put their prices up to make sure they do so – families in the lower income brackets are experiencing unffordability issues with energy. Yes, of course, the energy companies would fail if they cannot keep their shareholders and investors happy. Private concerns need to make a profit to survive. But in the grand scheme of things, the economic temperature is low, so they should not expect major returns. The energy companies are complaining that they fear for their abilities to invest in new resources and infrastructure, but many of their customers cannot afford their products. What have we come to, when a “trophy project” such as the Hinkley Point C nuclear power station gets signed off, with billions in concomitant subsidy support, and yet people in Scotland and the North East and North West of England are failing to keep their homes at a comfortable temperature ?

    There is a basic conflict at the centre of all of this – energy companies make money by selling energy. Their strategy for survival is to make profit. This means they either have to sell more energy, or they have to charge more for the same amount of energy. Purchasing energy for most people is not a choice – it is a mandatory part of their spending. You could say that charging people for energy is akin to charging people for air to breathe. Energy is a essential utility, not an option. Some of the energy services we all need could be provided without purchasing the products of the energy companies. From the point of view of government budgets, it would be better to insulate the homes of lower income families than to offer them social benefit payments to pay their energy bills, but this would reduce the profits to the energy companies. Insulation is not a priority activity, because it lowers economic production – unless insulation itself is counted somehow as productivity. The ECO, the Energy Company Obligation – an obligation on energy companies to provide insulation for lower income family homes, could well become part of UK Prime Minister David Cameron’s “Bonfire of the Green Tax Vanities”. The ECO was set up as a subsidy payment, since energy companies will not provide energy services without charging somebody for them. The model of an ESCO – an Energy Services Company – an energy company that sells both energy and energy efficiency services is what is needed – but this means that energy companies need to diversify. They need to sell energy, and also sell people the means to avoid having to buy energy.

    Selling energy demand reduction services alongside energy is the only way that privatised energy companies can evolve – or the energy sector could have to be taken back into public ownership because the energy companies are not being socially responsible. A combination of economic adjustment measures, essential climate change policy and wholesale price rises for fossil fuel energy mean that energy demand reduction is essential to keep the economy stable. This cannot be achieved by merely increasing end consumer bills, in an effort to change behaviour. There is only so much reduction in energy use that a family can make, and it is a one-time change, it cannot be repeated. You can nudge people to turn their lights off and their thermostats down by one degree, but they won’t do it again. The people need to be provided with energy control. Smart meters may or may not provide an extra tranche of energy demand reduction. Smart fridges and freezers will almost certainly offer the potential for further domestic energy reduction. Mandatory energy efficiency in all electrical appliances sold is essential. But so is insulation. If we don’t get higher rates of insulation in buildings, we cannot win the energy challenge. In the UK, one style of Government policies for insulation were dropped – and their replacements are simply not working. The mistake was to assume that the energy companies would play the energy conservation game without proper incentives – and by incentive, I don’t mean subsidy.

    An obligation on energy companies to deploy insulation as well as other energy control measures shouldn’t need to be subsidised. What ? An obligation without a subsidy ? How refreshing ! If it is made the responsibility of the energy companies to provide energy services, and they are rated, and major energy procurement contracts are based on how well the energy companies perform on providing energy reduction services, then this could have an influence. If shareholders begin to understand the value of energy conservation and energy efficiency and begin to value their energy company holdings by their energy services portfolio, this could have an influence. If an energy utility’s licence to operate is based on their ESCO performance, this could have an influence : an energy utility could face being disbarred through the National Grid’s management of the electricity and gas networks – if an energy company does not provide policy-compliant levels of insulation and other demand control measures, it will not get preferential access for its products to supply the grids. If this sounds like the socialising of free trade, that’s not the case. Responsible companies are already beginning to respond to the unfolding crisis in energy. Companies that use large amounts of energy are seeking ways to cut their consumption – for reasons related to economic contraction, carbon emissions control and energy price rises – their bottom line – their profits – rely on energy management.

    It’s flawed reasoning to claim that taxing bad behaviour promotes good behaviour. It’s unlikely that the UK’s Carbon Floor Price will do much apart from making energy more unaffordable for consumers – it’s not going to make energy companies change the resources that they use. To really beat carbon emissions, low carbon energy needs to be mandated. Mandated, but not subsidised. The only reason subsidies are required for renewable electricity is because the initial investment is entirely new development – the subsidies don’t need to remain in place forever. Insulation is another one-off cost, so short-term subsidies should be in place to promote it. As Nick Clegg MP proposes, subsidies for energy conservation should come from the Treasury, through a progressive tax, not via energy companies, who will pass costs on to energy consumers, where it stands a chance of penalising lower-income households. Wind power and solar power, after their initial investment costs, provide almost free electricity – wind turbines and solar panels are in effect providing energy services. Energy companies should be mandated to provide more renewable electricity as part of their commitment to energy services.

    In a carbon-constrained world, we must use less carbon dioxide emitting fossil fuel energy. Since the industrialised economies use fossil fuels for more than abut 80% of their energy, lowering carbon emissions means using less energy, and having less building comfort, unless renewables and insulation can be rapidly increased. This is one part of the economy that should be growing, even as the rest is shrinking.

    Energy companies can claim that they don’t want to provide insulation as an energy service, because insulation is a one-off cost, it’s not a continuing source of profit. Well, when the Big Six have finished insulating all the roofs, walls and windows, they can move on to building all the wind turbines and solar farms we need. They’ll make a margin on that.

  • 616 : The Number of the IPCC

    Posted on October 23rd, 2013 Jo 1 comment

    I have been looking into an anomaly in the recently published IPCC Fifth Assessment Report.

    No, I don’t think that global warming has paused, or that climate change is a hoax. We’re still on course for some very disturbing times, and the risks of rainfall change, sea level rise, and temperature and weather extremes are still gobsmackingly frightening.

    However, I’d like to ask why one particular figure from the Summary for Policymakers for Working Group 1 differs from the Chapters that underly it.

    Reference : Intergovernmental Panel on Climate Change, Fifth Assessment Report, Working Group 1

    Summary for Policymakers, 27 September 2013

    Section E.8
    “Climate Stabilization, Climate Change Commitment and Irreversibility”

    “Limiting the warming caused by anthropogenic CO2 emissions alone with a probability of >33%, >50%, and >66% to less than 2°C since the period 1861–1880 [22], will require cumulative CO2 emissions from all anthropogenic sources to stay between 0 and about 1560 GtC, 0 and about 1210 GtC, and 0 and about 1000 GtC since that period respectively [23]. These upper amounts are reduced to about 880 GtC, 840 GtC, and 800 GtC respectively, when accounting for non-CO2 forcings as in RCP2.6. An amount of 531 [446 to 616] GtC, was already emitted by 2011. {12.5}”

    This refers to Chapter 12, Section 12.5, so I looked that up :-

    Chapter 12

    Executive Summary

    “Climate Stabilization : The principal driver of long term warming is total emissions of CO2 and the two quantities are approximately linearly related. The global mean warming per 1000 PgC (transient climate response to cumulative carbon emissions, TCRE) is likely between 0.8°C–2.5°C per 1000 PgC, for cumulative emissions less than about 2000 PgC until the time at which temperatures peak. To limit the warming caused by anthropogenic CO2 emissions alone to be likely less than 2°C relative to preindustrial, total CO2 emissions from all anthropogenic sources would need to be limited to a cumulative budget of about 1000 PgC over the entire industrial era. About half [460–630 PgC] of this budget was already emitted by 2011.”

    Section 12.5
    “Climate Change Beyond 2100, Commitment, Stabilization and Irreversibility”

    12.5.4

    “Based on the evidence presented above, to limit warming caused by CO2 emissions alone to be likely less than 2°C, total CO2 emissions from all anthropogenic sources would need to be limited to a cumulative budget of about 1000 PgC over the entire industrial era, about half of which [460 to 630 PgC] (Section 6.3.1) have been emitted by 2011.”

    This refers to Chapter 6, Section 6.3.1, so I looked that up :-

    Chapter 6

    Executive Summary

    “Anthropogenic CO2 emissions to the atmosphere were 545 ± 85 PgC (1 PgC = 10^15 gC) between 1750 and 2011. Of this amount, fossil fuel combustion and cement production contributed 365 ± 30 PgC and land use change (including deforestation, afforestation and reforestation) contributed 180 ± 80 PgC. [6.3.1, Table 6.1]”

    Section 6.3
    “Evolution of Biogeochemical Cycles Since the Industrial Revolution”

    Section 6.3.1
    “CO2 Emissions and Their Fate Since 1750″

    “Prior to the Industrial Era, that began in 1750, the concentration of atmospheric CO2 fluctuated roughly between 180 ppm and 290 ppm for at least 2.1 million years (see Chapter 5, Section 5.2.2 and Hönisch et al., 2009; Lüthi et al., 2008; Petit et al., 1999). Between 1750 and 2011, the combustion of fossil fuels (coal, gas, oil, and gas flaring) and the production of cement have released 365 ± 30 PgC (1 Pg C = 10^15 gC) to the atmosphere (Table 6. 1; Boden et al., 2011). Land use change activities, mainly deforestation, has released an additional 180 ± 80 PgC (Table 6.1). This carbon released by human activities is called anthropogenic carbon.”

    Table 6.1 has :-

    “Fossil fuel combustion and cement production (b) 365 ± 30 (f)”
    “Net land use change (d) 180 ± 80 (f), (g)”
    “(b) Estimated by the Carbon Dioxide Information Analysis Center (CDIAC) based on UN energy statistics for fossil fuel combustion (up to 2009) and US Geological Survey for cement production (Boden et al., 2011), and updated to
    2011 using BP energy statistics.”
    “(d) Based on the “bookkeeping” land use change flux accounting model of Houghton et al. (2012) until 2010, and assuming constant LUC emissions for 2011, consistent with satellite-based fire emissions (Le Quéré et al., 2013; see 6.3.2.2. and Table 6.2).”
    “(f) “The 1750–2011 estimate and its uncertainty is rounded to the nearest 5 PgC.”
    “(g) Estimated from the cumulative net land use change emissions of Houghton et al. (2012) during 1850–2011 and the average of four publications (Pongratz at al., 2009; van Minnen et al., 2009; Shevliakova et al., 2009; and Zaehle et al., 2011) during 1750–1850.”

    So how come the Summary for Policymakers gives total carbon emissions as :-

    “An amount of 531 [446 to 616] GtC, was already emitted by 2011

    but Chapter 6 and Chapter 12 have :-

    “Anthropogenic CO2 emissions to the atmosphere were 545 ± 85 PgC (1 PgC = 10^15 gC) between 1750 and 2011.” [ This equates to a range of 460 to 630 PgC. ]

    About half [460–630 PgC] of this budget was already emitted by 2011.

    With the help of Aubrey Meyer of the Global Commons Institute, I have tracked down the source of the 531 PgC figure from the Summary for Policymakers – it’s the sum total of columns B and C of the “Harmonized Emissions” spreadsheet for the RCP 2.6 (also known as RCP 3-PD) scenario between 1765 and 2011 :-

    http://www.pik-potsdam.de/~mmalte/rcps/

    Go to the link at the row :-
    “RCP3-PD: Low RCP with Peak & Decline (2005-2500)”
    in the column :-
    “For information : Harmonized Emissions”

    http://www.pik-potsdam.de/~mmalte/rcps/data/RCP3PD_EMISSIONS.xls

    The 531 PgC (equivalent to GtC) comes from summing the Harmonized Emissions from the year 1765 to 2011 by applying the formula :-

    =SUM(B39:B285)+SUM(C39:C285)

    and you get :-

    531.40626 GtC

    This still doesn’t explain where the 616 PgC number comes from…but I’d guess they come from the run of the MAGICC programme.

    What disturbs me is that this change from using the workbook methods to using the harmonized emissions from the CMIP5 computer modelling runs is not noted or explained (or defended) in the Summary for Policymakers.

    They need to get more sleep at UNFCCC and IPCC conferences, clearly.

  • This post has had 26,783 views

    Posted on October 16th, 2013 Jo No comments

    This Forbes “op/ed” or “opposite the editorial page” article entitled “The True Global Warming Crisis: The Fibs Underlying The Theory” posted on the Internet has had, at the last count, 26,783 views, despite the fact that it appears to me that it’s not dissimilar to a sackload of rotting spume.

    I am so totally fed up with reading this kind of, what I read as, convoluted diatribe, written in a style that I consider to be cant, bile or just ill-informed and ill-intentioned sensationalist claptrap.

    Professor of Meteorology at MIT, Dr Richard “Dick” Lindzen has totally let himself, and the whole of world, down, in my view, with this quotation in the article :-

    “The latest IPCC report truly sank to the level of hilarious incoherence – it is quite amazing to see the contortions the IPCC has to go through in order to keep the international climate agenda going.”

    The article claims, apparently in total ignorance, that “the IPCC actually admitted that its 2007 report estimate of greenhouse gas influence had been significantly exaggerated”, which would be a scandal if the article writer had any foundation for that claim, but is so patently untrue that I don’t really know how the Forbes editors didn’t wonder whether they should publish this or not.

    And the following is, I feel, simply facetious, in a section claiming that global warming has stopped, essentially – “some beleaguered IPCC participants wasted no time latching onto a hail-Mary hypothesis advanced by New Zealander Kevin Trenberth that the oceans ate their recent global warming temperatures.”

    To put the author, Larry Bell, in the picture, THERE IS NO PAUSE – global warming of the whole Earth system has carried on unabated – it’s just that the surface air temperatures (a small part of the picture) have hit a bit of a hiatus in their inexorable climb – due to cyclic variations in climate patterns.

    It seems Larry Bell doesn’t know this, because it’s unlikely that he’s read the science, especially the latest IPCC report. So why should he expect you to read what he has written and accept it ? Why has he, indeed, bothered to write this piece, that gives to me a good impression of being useless waste and an insult to intelligence ?

    I think it is really time for what looks like malicious nonsense to me – like this article – to be refused publication. It seems to be not based on fact, merely on ideologically-motivated and borrowed opinion. Would Larry Bell ever condescend to hold an original opinion, I ask myself ? And would he ever base an article about climate change on the science ?

    Deep questions, I’m sure you’ll agree, when you’ve stopped chastising me for urging censorship of what I see as downright non-scientific and dubious verbiage dressed up badly as informed opinion.

    Set phasers to stun.

  • Mind the Gap : BBC Costing the Earth

    Posted on October 16th, 2013 Jo No comments

    I listened to an interesting mix of myth, mystery and magic on BBC Radio 4.

    Myths included the notion that long-term, nuclear power would be cheap; that “alternative” energy technologies are expensive (well, nuclear power is, but true renewables are most certainly not); and the idea that burning biomass to create heat to create steam to turn turbines to generate electricity is an acceptably efficient use of biomass (it is not).

    Biofuelwatch are hosting a public meeting on this very subject :-
    http://www.biofuelwatch.org.uk/2013/burning_issue_public_event/
    “A Burning Issue – biomass and its impacts on forests and communities”
    Tuesday, 29th October 2013, 7-9pm
    Lumen Centre, London (close to St Pancras train station)
    http://www.lumenurc.org.uk/lumencontact.htm
    Lumen Centre, 88 Tavistock Place, London WC1H 9RS

    Interesting hints in the interviews I thought pointed to the idea that maybe, just maybe, some electricity generation capacity should be wholly owned by the Government – since the country is paying for it one way or another. A socialist model for gas-fired generation capacity that’s used as backup to wind and solar power ? Now there’s an interesting idea…




    http://www.bbc.co.uk/programmes/b03cn0rb

    “Mind the Gap”
    Channel: BBC Radio 4
    Series: Costing the Earth
    Presenter: Tom Heap
    First broadcast: Tuesday 15th October 2013

    Programme Notes :

    “Our energy needs are growing as our energy supply dwindles.
    Renewables have not come online quickly enough and we are increasingly
    reliant on expensive imported gas or cheap but dirty coal. Last year
    the UK burnt 50% more coal than in previous years but this helped
    reverse years of steadily declining carbon dioxide emissions. By 2015
    6 coal fired power stations will close and the cost of burning coal
    will increase hugely due to the introduction of the carbon price
    floor. Shale gas and biomass have been suggested as quick and easy
    solutions but are they really sustainable, or cheap?”

    “Carbon Capture and Storage could make coal or gas cleaner and a new
    study suggests that with CCS bio energy could even decrease global
    warming. Yet CCS has stalled in the UK and the rest of Europe and the
    debate about the green credentials of biomass is intensifying. So what
    is really the best answer to Britain’s energy needs? Tom Heap
    investigates.”

    00:44 – 00:48
    [ Channel anchor ]
    Britain’s energy needs are top of the agenda in “Costing the Earth”…

    01:17
    [ Channel anchor ]
    …this week on “Costing the Earth”, Tom Heap is asking if our
    ambitions to go green are being lost to the more immediate fear of
    blackouts and brownouts.

    01:27
    [ Music : Arcade Fire - "Neighbourhood 3 (Power Out)" ]

    [ Tom Heap ]

    Energy is suddenly big news – central to politics and the economy. The
    countdown has started towards the imminent shutdown of many coal-fired
    power stations, but the timetable to build their replacements has
    barely begun.

    It’ll cost a lot, we’ll have to pay, and the politicians are reluctant
    to lay out the bill. But both the official regulator and industry are
    warning that a crunch is coming.

    So in this week’s “Costing the Earth”, we ask if the goal of clean,
    green and affordable energy is being lost to a much darker reality.

    02:14
    [ Historical recordings ]

    “The lights have started going out in the West Country : Bristol,
    Exeter and Plymouth have all had their first power cuts this
    afternoon.”

    “One of the biggest effects of the cuts was on traffic, because with
    the traffic lights out of commission, major jams have built up,
    particularly in the town centres. One of the oddest sights I saw is a
    couple of ladies coming out of a hairdressers with towels around their
    heads because the dryers weren’t working.”

    “Television closes down at 10.30 [ pm ], and although the cinemas are
    carrying on more or less normally, some London theatres have had to
    close.”

    “The various [ gas ] boards on both sides of the Pennines admit to
    being taken by surprise with today’s cold spell which brought about
    the cuts.”

    “And now the major scandal sweeping the front pages of the papers this
    morning, the advertisement by the South Eastern Gas Board recommending
    that to save fuel, couples should share their bath.”

    [ Caller ]
    “I shall write to my local gas board and say don’t do it in
    Birmingham. It might be alright for the trendy South, but we don’t
    want it in Birmingham.”

    03:13
    [ Tom Heap ]

    That was 1974.

    Some things have changed today – maybe a more liberal attitude to
    sharing the tub. But some things remain the same – an absence of
    coal-fired electricity – threatening a blackout.

    Back then it was strikes by miners. Now it’s old age of the power
    plants, combined with an EU Directive obliging them to cut their
    sulphur dioxide and nitrous oxide emissions by 2016, or close.

    Some coal burners are avoiding the switch off by substituting wood;
    and mothballed gas stations are also on standby.

    But Dieter Helm, Professor of Energy Policy at the University of
    Oxford, now believes power cuts are likely.

    03:57
    [ Dieter Helm ]

    Well, if we take the numbers produced by the key responsible bodies,
    they predict that there’s a chance that by the winter of 2-15 [sic,
    meaning 2015] 2-16 [sic, meaning 2016], the gap between the demand for
    electricity and the supply could be as low as 2%.

    And it turns out that those forecasts are based on extremely
    optimistic assumptions about how far demand will fall in that period
    (that the “Green Deal” will work, and so on) and that we won’t have
    much economic growth.

    So basically we are on course for a very serious energy crunch by the
    winter of 2-15 [sic, meaning 2015] 2-16 [sic, meaning 2016], almost
    regardless of what happens now, because nobody can build any power
    stations between now and then.

    It’s sort of one of those slow motion car crashes – you see the whole
    symptoms of it, and people have been messing around reforming markets
    and so on, without addressing what’s immediately in front of them.

    [ Tom Heap ]

    And that’s where you think we are now ?

    [ Dieter Helm ]

    I think there’s every risk of doing so.

    Fortunately, the [ General ] Election is a year and a half away, and
    there’s many opportunities for all the political parties to get real
    about two things : get real about the energy crunch in 2-15 [sic,
    meaning 2015] 2-16 [sic, meaning 2016] and how they’re going to handle
    it; and get real about creating the incentives to decarbonise our
    electricity system, and deal with the serious environmental and
    security and competitive issues which our electricity system faces.

    And this is a massive investment requirement [ in ] electricity : all
    those old stations retiring [ originally built ] back from the 1970s -
    they’re all going to be gone.

    Most of the nuclear power stations are coming to the end of their lives.

    We need a really big investment programme. And if you really want an
    investment programme, you have to sit down and work out how you’re
    going to incentivise people to do that building.

    [ Tom Heap ]

    If we want a new energy infrastructure based on renewables and
    carbon-free alternatives, then now is the time to put those incentives
    on the table.

    The problem is that no-one seems to want to make the necessary
    investment, least of all the “Big Six” energy companies, who are
    already under pressure about high bills.

    [ "Big Six" are : British Gas / Centrica, EdF Energy (Electricite
    de France), E.On UK, RWE npower, Scottish Power and SSE ]

    Sam Peacock of the energy company SSE [ Scottish and Southern Energy ]
    gives the commercial proof of Dieter’s prediction.

    If energy generators can’t make money out of generating energy,
    they’ll be reluctant to do it.

    [ Sam Peacock ]

    Ofgem, the energy regulator, has looked at this in a lot of detail,
    and said that around 2015, 2016, things start to get tighter. The
    reason for this is European Directives, [ is [ a ] ] closing down some
    of the old coal plants. And also the current poor economics around [
    or surround [ -ing ] ] both existing plant and potential new plant.

    So, at the moment it’s very, very difficult to make money out of a gas
    plant, or invest in a new one. So this leads to there being, you know,
    something of a crunch point around 2015, 2016, and Ofgem’s analysis
    looks pretty sensible to us.

    [ Tom Heap ]

    And Sam Peacock lays the blame for this crisis firmly at the Government’s door.

    [ Sam Peacock ]

    The trilemma, as they call it – of decarbonisation, security of supply
    and affordability – is being stretched, because the Government’s
    moving us more towards cleaner technologies, which…which are more
    expensive.

    However, if you were to take the costs of, you know, the extra costs
    of developing these technologies off government [ sic, meaning
    customer ] bills and into general taxation, you could knock about over
    £100 off customer bills today, it’ll be bigger in the future, and you
    can still get that much-needed investment going.

    So, we think you can square the circle, but it’s going to take a
    little bit of policy movement [ and ] it’s going to take shifting some
    of those costs off customers and actually back where the policymakers
    should be controlling them.

    [ KLAXON ! Does he mean controlled energy prices ? That sounds a bit
    centrally managed economy to me... ]

    [ Tom Heap ]

    No surprise that a power company would want to shift the pain of
    rising energy costs from their bills to the tax bill.

    But neither the Government nor the Opposition are actually proposing this.

    Who pays the premium for expensve new energy sources is becoming like
    a game of pass the toxic parcel.

    [ Reference : http://en.wikipedia.org/wiki/Hot_potato_%28game%29 ]

    I asked the [ UK Government Department of ] Energy and Climate Change
    Secretary, Ed Davey, how much new money is required between now and
    2020.

    08:06

    [ Ed Davey ]

    About £110 billion – er, that’s critical to replace a lot of the coal
    power stations that are closing, the nuclear power stations that are [
    at the ] end of their lives, and replace a lot of the network which
    has come to the end of its life, too.

    So it’s a huge, massive investment task.

    [ Tom Heap ]

    So in the end we’re going to have to foot the bill for the £110 billion ?

    [ Ed Davey ]

    Yeah. Of course. That’s what happens now. People, in their bills that
    they pay now, are paying for the network costs of investments made
    several years, even several decades ago.

    [ Yes - we're still paying through our national nose to dispose of
    radioactive waste and decommission old nuclear reactors. The liability
    of it all weighs heavily on the country's neck... ]

    And there’s no escaping that – we’ve got to keep the lights on – we’ve
    got to keep the country powered.

    You have to look at both sides of the equation. If we’re helping
    people make their homes more inefficient [ sic, meaning energy
    efficient ], their product appliances more efficient, we’re doing
    everything we possibly can to try to help the bills be kept down,

    while we’re having to make these big investments to keep the lights
    on, and to make sure that we don’t cook the planet, as you say.

    [ Tom Heap ]

    You mention the lights going out. There are predictions that we’re
    headed towards just 2% of spare capacity in the system in a few years’
    time.

    Are you worried about the dangers of, I don’t know, maybe not lights
    going out for some people, but perhaps big energy users being told
    when and when [ sic, meaning where ] they can’t use power in the
    winter ?

    [ Ed Davey ]

    Well, there’s no doubt that as the coal power stations come offline,
    and the nuclear power plants, er, close, we’re going to have make sure
    that new power plants are coming on to replace them.

    And if we don’t, there will be a problem with energy security.

    Now we’ve been working very hard over a long time now to make sure we
    attract that investment. We’ve been working with Ofgem, the regulator;
    with National Grid, and we’re…

    [ Tom Heap ]

    …Being [ or it's being ] tough. I don’t see companies racing to come
    and fill in the gap here and those coal power plants are going off
    soon.

    [ Ed Davey ]

    …we’re actually having record levels of energy investment in the country.

    The problem was for 13 years under the last Government
    [ same old, same old Coalition argument ] we saw low levels of investment
    in energy, and we’re having to race to catch up, but fortunately we’re
    winning that race. And we’re seeing, you know, billions of pounds
    invested but we’ve still got to do more. We’re not there. I’m not
    pretending we’re there yet. [ Are we there, yet ? ] But we do have the
    policies in place.

    So, Ofgem is currently consulting on a set of proposals which will
    enable it to have reserve power to switch on at the peak if it’s
    needed.

    We’re, we’ve, bringing forward proposals in the Energy Bill for what’s
    called a Capacity Market, so we can auction to get that extra capacity
    we need.

    So we’ve got the policies in place.

    [ Tom Heap ]

    Some of Ed Davey’s policies, not least the LibDem [ Liberal Democrat
    Party ] U-turn on nuclear, have been guided by DECC [ Department of
    Energy and Climate Change ] Chief Scientist David MacKay, author of
    the influential book “Renewable Energy without the Hot Air” [ sic,
    actually "Sustainable Energy without the Hot Air" ].

    Does he think the lights will dim in the second half of this decade ?

    [ David MacKay ]

    I don’t think there’s going to be any problem maintaining the capacity
    that we need. We just need to make clear where Electricity Market
    Reform [ EMR, part of the Energy Bill ] is going, and the way in which
    we will be maintaining capacity.

    [ Tom Heap ]

    But I don’t quite understand that, because it seems to me, you know,
    some of those big coal-fired power stations are going to be going off.
    What’s going to be coming in their place ?

    [ David MacKay ]

    Well, the biggest number of power stations that’s been built in the
    last few years are gas power stations, and we just need a few more gas
    power stations like that, to replace the coal
    , and hopefully some
    nuclear power stations will be coming on the bars, as well as the wind
    farms that are being built at the moment.

    [ Tom Heap ]

    And you’re happy with that increase in gas-fired power stations, are
    you ? I mean, you do care deeply, personally, about reducing our
    greenhouse gases, and yet you’re saying we’re going to have to build
    more gas-fired power stations.

    [ David MacKay ]

    I do. Even in many of the pathways that reach the 2050 target, there’s
    still a role for gas in the long-term, because some power sources like
    wind and solar power are intermittent, so if you want to be keeping
    the lights on in 2050 when there’s no wind and there’s no sun, you’re
    going to need some gas power stations there
    . Maybe not operating so
    much of the time as they do today, but there’ll still be a role in
    keeping the lights on.

    [ KLAXON ! If gas plants are used only for peak periods or for backup to
    renewables, then the carbon emissions will be much less than if they are
    running all the time. ]

    [ Tom Heap ]

    Many energy experts though doubt that enough new wind power or nuclear
    capacity could be built fast enough to affect the sums in a big way by
    2020.

    But that isn’t the only critical date looming over our energy system.
    Even more challenging, though more distant, is the legally binding
    objective of cutting greenhouse gas emissions in 2050.

    David MacKay wants that certainty to provide the foundation for energy
    decisions, and he showed me the effect of different choices with the
    “Ultimate Future Energy App”. I was in his office, but anyone can try it online.

    [ David MacKay ]

    It’s a 2050 calculator. It computes energy demand and supply in
    response to your choices, and it computes multiple consequences of
    your choices. It computes carbon consequences. It also computes for
    you estimates of air quality, consequences of different choices;
    security of supply, consequences; and the costs of your choices.

    So with this 2050 calculator, it’s an open source tool, and anyone can
    go on the web and use the levers to imagine different futures in 2050
    of how much action we’ve taken in different demand sectors and in
    different supply sectors.

    The calculator has many visualisations of the pathway that you’re choosing
    and helps people understand all the trade-offs… There’s no silver
    bullet for any of this. If I dial up a pathway someone made earlier,
    we can visualise the implications in terms of the area occupied for
    the onshore wind farms, and the area in the sea for the offshore wind
    farms, and the length of the wave farms that you’ve built, and the
    land area required for energy crops.

    And many organisations have used this tool and some of them have given
    us their preferred pathway. So you can see here the Friends of the
    Earth have got their chosen pathway, the Campaign to Protect Rural
    England, and various engineers like National Grid and Atkins have got
    their pathways.

    So you can see alternative ways of achieving our targets, of keeping
    the lights on and taking climate change action. All of those pathways
    all meet the 2050 target, but they do so with different mixes.

    [ Tom Heap ]

    And your view of this is you sort of can’t escape from the scientific
    logic and rigour of it. You might wish things were different or you
    could do it differently, but you’re sort of saying “Look, it’s either
    one thing or the other”. That’s the point of this.

    [ David MacKay ]

    That’s true. You can’t be anti-everything. You can’t be anti-wind and
    anti-nuclear and anti-home insulation. You won’t end up with a plan
    that adds up.

    [ KLAXON ! But you can be rationally against one or two things, like
    expensive new nuclear power, and carbon and particulate emissions-heavy
    biomass for the generation of electricity. ]

    [ Tom Heap ]

    But isn’t that exactly kind of the problem that we’ve had, without
    pointing political fingers, that people rather have been
    anti-everything, and that’s why we’re sort of not producing enough new
    energy sources ?

    [ David MacKay ]

    Yeah. The majority of the British public I think are in favour of many
    of these sources, but there are strong minorities who are vocally
    opposed to every one of the major levers in this calculator. So one
    aspiration I have for this tool is it may help those people come to a
    position where they have a view that’s actually consistent with the
    goal of keeping the lights on.

    [ Tom Heap ]

    Professor MacKay’s calculator also computes pounds and pence,
    suggesting that both high and low carbon electricity work out pricey
    in the end.

    [ David MacKay ]

    The total costs of all the pathways are pretty much the same.
    “Business as Usual” is cheaper in the early years, and then pays more,
    because on the “Business as Usual”, you carry on using fossil fuels,
    and the prices of those fossil fuels are probably going to go up.

    All of the pathways that take climate change action have a similar
    total cost, but they pay more in the early years, ’cause you have to
    pay for things like building insulation and power stations, like
    nuclear power stations, or wind power, which cost up-front, but then
    they’re very cheap to run in the future.

    [ KLAXON ! Will the cost of decommissioning nuclear reactors and the
    costs of the waste disposal be cheap ? I think not... ]

    So the totals over the 40 or 50 year period here, are much the same for these.

    [ Tom Heap ]

    The cheapest immediate option of all is to keep shovelling the coal.
    And last year coal overtook gas to be our biggest electricity
    generation source, pushing up overall carbon emissions along the way
    by 4.5%

    [ KLAXON ! This is not very good for energy security - look where the
    coal comes from... ]

    As we heard earlier, most coal-fired power stations are scheduled for
    termination, but some have won a reprieve, and trees are their
    unlikely saviour.

    Burning plenty of wood chip [ actually, Tom, it's not wood "chip", it's
    wood "pellets" - which often have other things mixed in with the wood,
    like coal... ] allows coal furnaces to cut the sulphur dioxide and nitrous
    oxide belching from their chimneys to below the level that requires their
    closure under European law.

    But some enthusiasts see wood being good for even more.

    16:19

    [ Outside ]

    It’s one of those Autumn days that promises to be warm, but currently
    is rather moist. I’m in a field surrounded by those dew-laden cobwebs
    you get at this time of year.

    But in the middle of this field is a plantation of willow. And I’m at
    Rothamsted Research with Angela Karp who’s one of the directors here.

    Angela, tell me about this willow I’m standing in front of here. I
    mean, it’s about ten foot high or so, but what are you seeing ?

    [ Angela Karp ]

    Well, I’m seeing one of our better varieties that’s on display here.
    We have a demonstration trial of about ten different varieties. This
    is a good one, because it produces a lot of biomass, quite easily,
    without a lot of additional fertilisers or anything. And as you can
    see it’s got lovely straight stems. It’s got many stems, and at the
    end of three years, we would harvest all those stems to get the
    biomass from it. It’s nice and straight – it’s a lovely-looking, it’s
    got no disease, no insects on it, very nice, clean willow.

    [ Tom Heap ]

    So, what you’ve been working on here as I understand it is trying to
    create is the perfect willow – the most fuel for the least input – and
    the easiest to harvest.

    [ Angela Karp ]

    That’s absolutely correct, because the whole reason for growing these
    crops is to get the carbon from the atmosphere into the wood, and to
    use that wood as a replacement for fossil fuels. Without putting a lot
    of inputs in, because as soon as you add fertilisers you’re using
    energy and carbon to make them, and that kind of defeats the whole
    purpose of doing this.

    [ KLAXON ! You don't need to use fossil fuel energy or petrochemicals or
    anything with carbon emissions to make fertiliser ! ... Hang on, these
    are GM trees, right ? So they will need inputs... ]

    [ Tom Heap ]

    And how much better do you think your new super-variety is, than say,
    what was around, you know, 10 or 15 years ago. ‘Cause willow as an
    idea for burning has been around for a bit. How much of an improvement
    is this one here ?

    [ Angela Karp ]

    Quite a bit. So, these are actually are some of the, if you like,
    middle-term varieties. So we started off yielding about 8 oven-dry
    tonnes per hectare, and now we’ve almost doubled that.

    [ Tom Heap ]

    How big a place do you think biomass can have in the UK’s energy
    picture in the future ?

    [ Angela Karp ]

    I think that it could contribute between 10% and 15% of our energy. If
    we were to cultivate willows on 1 million hectares, we would probably
    provide about 3% to 4% of energy in terms of electricity, and I think
    that’s kind of a baseline figure. We could cultivate them on up to 3
    million hectares, so you can multiply things up, and we could use them
    in a much more energy-efficient way.

    [ KLAXON ! Is that 4% of total energy or 4% of total electricity ?
    Confused. ]

    [ Tom Heap ]

    Do we really have 3 million hectares going a-begging for planting willow in ?

    [ Angela Karp ]

    Actually, surprisingly we do. So, people have this kind of myth
    there’s not enough land, but just look around you and you will find
    there’s lots of land that’s not used for cultivating food crops.

    We don’t see them taking over the whole country. We see them being
    grown synergistically with food crops.

    [ KLAXON ! This is a bit different than the statement made in 2009. ]

    [ Tom Heap ]

    But I’d just like to dig down a little bit more into the carbon cycle
    of the combustion of these things, because that’s been the recent
    criticism of burning a lot of biomass, is that you put an early spike
    in the amount of carbon in the atmosphere, if you start burning a lot
    of biomass, because this [ sounds of rustling ], this plant is going
    to be turned into, well, partly, CO2 in the atmosphere.

    [ Angela Karp ]

    Yes, I think that’s probably a simple and not totally correct way of
    looking at it. ‘Cause a lot depends on the actual conversion process
    you are using.

    So some conversion processes are much more efficient at taking
    everything and converting it into what you want.

    Heat for example is in excess of 80%, 90% conversion efficiency.

    Electricity is a little bit more of the problem. And there, what
    they’re looking at is capturing some of the carbon that you lose, and
    converting that back in, in carbon storage processes, and that’s why
    there’s a lot of talk now about carbon storage from these power
    stations.

    That I think is the future. It’s a question of connecting up all parts
    of the process, and making sure that’s nothing wasted.

    20:02

    [ Tom Heap ]

    So, is wood a desirable greener fuel ?

    Not according to Almuth Ernsting of Biofuelwatch, who objects to the
    current plans for large-scale wood burning, its use to prop up coal,
    and even its low carbon claims.

    [ Almuth Ernsting ]

    The currently-announced industry plans, and by that I mean existing
    power stations, but far more so, power stations which are in the
    planning process [ and ] many of which have already been consented -
    those [ biomass ] power stations, would, if they all go ahead,
    require to burn around 82 million tonnes of biomass, primarily wood,
    every year. Now by comparison, the UK in total only produces around
    10 million tonnes, so one eighth of that amount, in wood, for all
    industries and purposes, every year.

    We are looking on the one hand at a significant number of proposed,
    and in some cases, under-construction or operating new-build biomass
    power stations, but the largest single investment so far going into
    the conversion of coal power station units to biomass, the largest and
    most advanced one of which at the moment is Drax, who are, have
    started to move towards converting half their capacity to burning wood
    pellets.

    [ Tom Heap ]

    Drax is that huge former, or still currently, coal-fired power station
    in Yorkshire, isn’t it ?

    [ Almuth Ernsting ]

    Right, and they still want to keep burning coal as well. I mean, their
    long-term vision, as they’ve announced, would be for 50:50 coal and
    biomass.

    [ Tom Heap ]

    What do you think about that potential growth ?

    [ Almuth Ernsting ]

    Well, we’re seriously concerned. We believe it’s seriously bad news
    for climate change, it’s seriously bad news for forests, and it’s
    really bad news for communities, especially in the Global South, who
    are at risk of losing their land for further expansion of monoculture
    tree plantations, to in future supply new power stations in the UK.

    A really large amount, increasingly so, of the wood being burned,
    comes from slow-growing, whole trees that are cut down for that
    purpose, especially at the moment in temperate forests in North
    America. Now those trees will take many, many decades to grow back
    and potentially re-absorb that carbon dioxide, that’s if they’re
    allowed and able to ever grow back.

    [ Tom Heap ]

    There’s another technology desperate for investment, which is critical
    to avoiding power failure, whilst still hitting our mid-century carbon
    reduction goals – CCS – Carbon Capture and Storage, the ability to
    take the greenhouse gases from the chimney and bury them underground.

    It’s especially useful for biomass and coal, with their relatively
    high carbon emissions, but would also help gas be greener.

    The Chancellor has approved 30 new gas-fired power stations, so long
    as they are CCS-ready [ sic, should be "capture ready", or
    "carbon capture ready" ].

    Jon Gibbons is the boss of the UK CCS Research Centre, based in an
    industrial estate in Sheffield.

    [ Noise of processing plant ]

    Jon’s just brought me up a sort of 3D maze of galvanized steel and
    shiny metal pipes to the top of a tower that must be 20 or so metres
    high.

    Jon, what is this ?

    [ Jon Gibbons ]

    OK, so this is our capture unit, to take the CO2 out of the combustion
    products from gas or coal. In the building behind us, in the test rigs
    we’ve got, the gas turbine or the combustor rig, we’re burning coal or
    gas, or oil, but mainly coal or gas.

    We’re taking the combustion products through the green pipe over
    there, bringing it into the bottom of the unit, and then you can see
    these big tall columns we’ve got, about 18 inches diameter, half a
    metre diameter, coming all the way up from the ground up to the level
    we’re at.

    It goes into one of those, it gets washed clean with water, and it
    goes into this unit over here, and there it meets an amine solvent, a
    chemical that will react reversibly with CO2, coming in the opposite
    direction, over packing. So, it’s like sort of pebbles, if you can
    imagine it, there’s a lot of surface area. The gas flows up, the
    liquid flows down, and it picks up the CO2, just mainly the CO2.

    [ Tom Heap ]

    And that amine, that chemical as you call it, is stripping the CO2 out
    of that exhaust gas. This will link to a storage facility.

    What would then happen to the CO2 ?

    [ Jon Gibbons ]

    What would then happen is that the CO2 would be compressed up to
    somewhere in excess of about 100 atmospheres. And it would turn from
    being a gas into something that looks like a liquid, like water, about
    the same density as water. And then it would be taken offshore in the
    UK, probably tens or hundreds of kilometres offshore, and it would go
    deep, deep down, over a kilometre down into the ground, and basically
    get squeezed into stuff that looks like solid rock. If you go and look
    at a sandstone building – looks solid, but actually, maybe a third of
    it is little holes. And underground, where you’ve got cubic kilometres
    of space, those little holes add up to an awful lot of free space. And
    the CO2 gets squeezed into those, over time, and it spreads out, and
    it just basically sits there forever, dissolves in the water, reacts
    with the rocks, and will stay there for millions of years.

    [ Tom Heap ]

    Back in his office, I asked Jon why CCS seemed to be stuck in the lab.

    [ Jon Gibbons ]

    We’re doing enough I think on the research side, but what we really
    need to do, is to do work on a full-scale deployment. Because you
    can’t work on research in a vacuum. You need to get feedback -
    learning by doing – from actual real projects.

    And a lot of the problems we’ve got on delivering CCS, are to do with
    how you handle the regulation for injecting CO2, and again, you can
    only do that in real life.

    So what we need to do is to see the commercialisation projects that
    are being run by the Department of Energy and Climate Change actually
    going through to real projects that can be delivered.

    [ Tom Heap ]

    Hmm. When I talk to engineers, they’re always very passionate and
    actually quite optimistic about Carbon Capture and Storage. And when
    I talk to people in industry, or indeed read the headlines, not least
    a recent cancellation in Norway, it always seems like a very bleak picture.

    [ Jon Gibbons ]

    I think people are recognising that it’s getting quite hard to get
    money for low carbon technologies.

    So – recent presentation we had at one of our centre meetings, was
    actually a professor from the United States, Howard Herzog. And he
    said “You think you’re seeing a crisis in Carbon Capture and Storage.
    But what you’re actually seeing is a crisis in climate change
    mitigation.”

    [ KLAXON ! Priming us for a scaling back of commitment to the
    Climate Change Act ? I do hope not. ]

    Now, Carbon Capture and Storage, you do for no other purpose than
    cutting CO2 emissions to the atmosphere, and it does that extremely
    effectively. It’s an essential technology for cutting emissions. But
    until you’ve got a global process that says – actually we’re going to
    get on top of this problem; we’re going to cut emissions – get them to
    safe level before we actually see people dying in large numbers from
    climate change effects – ’cause, certainly, if people start dying,
    then we will see a response – but ideally, you’d like to do it before
    then. But until you get that going, then actually persuading people to
    spend money for no other benefit than sorting out the climate is
    difficult.

    There’s just no point, you know, no country can go it alone, so you
    have to get accommodation. And there, we’re going through various
    processes to debate that. Maybe people will come to an accommodation.
    Maybe the USA and China will agree to tackle climate change. Maybe
    they won’t.

    What I am fairly confident is that you won’t see huge, you know,
    really big cuts in CO2 emissions without that global agreement. But
    I’m also confident that you won’t see big cuts in CO2 emissions
    without CCS deployment.

    And my guess is there’s about a 50:50 chance that we do CCS before we
    need to, and about a 50:50 chance we do it after we have to. But I’m
    pretty damn certain we’re going to do it.

    [ Tom Heap ]

    But we can’t wait for a global agreement that’s already been decades
    in the making, with still no end in sight.

    We need decisions now to provide more power with less pollution.

    [ Music lyrics : "What's the plan ? What's the plan ?" ]

    [ Tom Heap ]

    Dieter Helm, Professor of Energy Policy at the University of Oxford
    believes we can only deliver our plentiful green energy future if we
    abandon our attitude of buy-now pay-later.

    [ KLAXON ! Does he mean a kind of hire purchase energy economy ?
    I mean, we're still paying for nuclear electricity from decades ago,
    in our bills, and through our taxes to the Department of Energy and
    Climate Change. ]

    [ Dieter Helm ]

    There’s a short-term requirement and a long-term requirement. The
    short-term requirement is that we’re now in a real pickle. We face
    this energy crunch. We’ve got to try to make the best of what we’ve
    got. And I think it’s really like, you know, trying to get the
    Spitfires back up again during the Battle of Britain. You know, you
    patch and mend. You need somebody in command. You need someone
    in control. And you do the best with what you’ve got.

    In that context, we then have to really stand back and say, “And this
    is what we have to do to get a serious, long-term, continuous, stable
    investment environment, going forward.” In which, you know, we pay the
    costs, but of course, not any monopoly profits, not any excess
    profits, but we have a world in which the price of electricity is
    related to the cost.”

    [ KLAXON ! Is Dieter Helm proposing state ownership of energy plant ? ]

    29:04

    [ Programme anchor ]

    “Costing the Earth” was presented by Tom Heap, and made in Bristol by
    Helen Lennard.

    [ Next broadcast : 16th October 2013, 21:00, BBC Radio 4 ]

  • The BBC loses its perch

    Posted on October 10th, 2013 Jo No comments


    Image Credit : Sea Angling Staithes

    In the matter of the BBC and balance in the reporting of Climate Change, I believe they might have lost their perch. Admittedly, it wasn’t a very large perch – and some were swaying in any breeze that came along. But to invite one of the fringiest of the fringe of science “sceptics” onto a Radio 4 broadcast on the day of the publication of the Intergovernmental Panel on Climate Change Fifth Assessment Report Working Group 1 demonstrates that the BBC policy on achieving a suitable, accurate and appropriate fulcrum in the balance of science reporting is an ex-policy, a former policy, gone and pushing up the Cleeseian daisies.

    Citizens have been piqued, annoyed, needled, frustrated, despairing and, frankly, appalled, and some measures have been taken to remonstrate with the BBC. One such is below. Dear Reader, your comments on the subject of media balance are welcome, unless of course you haven’t read any Climate Change science and think it’s all a hoax, that the scientists are lying, and the Earth’s climate has always gone in similar cycles to the current warming, think that Global Warming is undergoing a “pause” etc etc – because you’re wrong. Plain and simple. If you don’t accept Climate Change science, if you haven’t read any of the relevant research papers, if you haven’t taken the trouble to understand what it’s all about, you are likely to be a clanging gong, a thorn in the side, and your views may well signify nothing, and certainly shouldn’t be aired in a public broadcast without challenge.

    It is time for the BBC to stop inviting Climate Change science “sceptics” – no, “deniers” onto their programmes. Once and for all. I mean, to go all Godwin on you, the BBC wouldn’t invite Adolf Hitler onto their shows to comment about the contribution that Judaism has brought to humanity, or to deny the Holocaust ? And they wouldn’t invite the CEO of a cigarette manufacture company on to insist that smoking doesn’t cause lung cancer, would they ? There is a bar, a standard, to which the BBC should aspire, on science reporting, and I feel that in this case they slid disgracefully under it and landed in a stinky puddle of failure on the studio floor. The programme editors should be ashamed, in my honest opinion.




    Open letter to Tony Hall, Lord Hall of Birkenhead and Director General of the BBC, on the platform given to Prof Bob Carter on the World at One programme (Fri 27th Sept 2013)

    Dear Lord Hall,

    We, the undersigned scientists and engineers, write to condemn the appearance of Prof Bob Carter on BBC Radio 4’s World at One programme, and to urge the BBC to seriously rethink the treatment given to climate change in its factual programming, and particularly its coverage of the Intergovernmental Panel on Climate Change’s Fifth Assessment Report.

    The BBC, uniquely amongst broadcasters, has a public duty to provide a balanced coverage of news across its media channels, yet when it comes to its coverage of climate change it has frequently failed to do so. Furthermore, the BBC’s status as a trusted source of news means that damage done by its biased reporting of the overwhelming evidence of the certainty and significance of man-made climate change is inexorably greater. Not only does this damage public trust in climate science, but it also damages public trust in scientific evidence in general. This assertion is even supported by the BBC’s own surveys on public attitudes to climate change.

    The IPPC’s Assessment Reports represent the consensus of evidence and opinion from thousands of scientists and engineers around the world, working in all of the many fields encompassed by climate change. That consensus is overwhelmingly of the view that the evidence that human activities are driving changes in our climate at an unprecedented rate and scale – there is no ‘climate debate’ in the scientific community.

    The appearance of Prof Carter on the World at One, and that of climate change deniers on other BBC programmes, is the equivalent of giving a stork the right to reply on every appearance by Prof Robert Winston. Prof Carter is a geologist who speaks for the “Nongovernmental International Panel on Climate Change”, or NIPCC, a name which non-experts could be forgiven for confusing with the IPCC, however Prof Carter is not a climate scientist and the NIPCC is not the IPCC.

    Indeed, had the editors of the World at One bothered to check the credentials of the NIPCC they would have realised that far from being an independent organisation, it is backed by the Heartland Institute, a US-based free-market thinktank that opposes urgent action on climate change, which is itself opaquely funded by ‘family foundations’ suspected of having significant vested interests in undermining climate science. To return to the analogy, that stork would be funded by the Discovery Institute.

    For climate scientists, and those of us working in related fields, it is hard enough to accept that the BBC is required to give a platform to politicians whose lack of knowledge of climate science is matched only by their unwillingness to ‘use sound science responsibly’. When the Environment Secretary Owen Paterson describes climate change as “not all bad” he may be committing an abuse of the evidence and his position, but he at least does so with the rights and responsibilities of a democratically elected Member of Parliament. However when deniers such as Prof Carter use the media to argue that the scientific consensus on climate change is anything but overwhelming, the evidence on which they claim to be basing their arguments, and their sources of funding, are frequently left unrevealed and unquestioned.

    It is therefore hardly surprising that the BBC and other media outlets sometimes struggle to find climate scientists willing to speak to them, and by providing a platform for Prof Cater and other deniers the BBC is also complicit in engendering the environment in which climate scientists are often reluctant to speak to the media.

    The BBC should now issue an explanation for the appearance of Prof Carter and the treatment given to his opinions on a flagship news programme. Furthermore, it should urgently review the treatment of climate change across all of its outputs, and require full disclosures of any and all vested interests held by commentators on the subject. Finally, it should also ensure that the editorial boards covering all its scientific outputs include members with appropriate scientific backgrounds who are able to give independent advice on the subject matter, and that their advice is recorded and adhered to.

    Yours sincerely,

    Dr Keith Baker, School of Engineering and the Built Environment, Glasgow Caledonian University

    Herbert Eppel CEng CEnv, HE Translations

    Ms J. Abbess MSc, Independent Energy Research

    Chris Jones CEnv IEng FEI MCIBSE MIET

    Mark Boulton OBE

    David Hirst, Hirst Solutions Ltd

    David Andrews, Chair, Claverton Energy Research Group

    Ruth Jarman MA (Oxon) Chemistry, Member of the Board of Christian Ecology Link

    Gordon Blair, Distinguished Professor, School of Computing and Communications, Lancaster University

    Susan Chapman

    David Weight, Associate Director, Aecom

    Sam Chapman, En-Count

    Camilla Thomson, PhD candidate, University of Edinburgh

    Dr Rachel Dunk

    Prof Susan Roaf, Heriot-Watt University

    Helen Woodall

    Ian Stannage

    Andy Chyba, BSc

    Isabel Carter, Chair, Operation Noah

    Ben Samuel, BSc

    Dr Marion Hersh, University of Glasgow, MIET

    Almuth Ernsting

    Simon O’Connor

    Martin Quick MA CEng MIMechE

    Hugh Walding, MA PhD

  • There Is No Pause

    Posted on September 27th, 2013 Jo No comments




    The Intergovernmental Panel on Climate Change (IPCC) have today released the Fifth Assessment Report’s (AR5) Summary for Policymakers (SPM) from their Working Group 1 (WG1), those who have reviewed the science basis.

    The world is certainly warming, and it is virtually certain that mankind is the dominant cause since 1950.

    Plus, there’s no apparent hiatus in global warming. There is no pause.

    The report reads to me to say that although air temperatures near the surface of the Earth have not changed much in the last 15 years, the trends for temperature in the combined land and ocean data sets show a clear upwards movement overall, with the usual jiggledyness of natural system data, sometimes a little up here, sometimes a little down there, but overall rising.

    Of note, word from the IPCC Press Conference and related commentary is that in some regards, there is simply not enough data to be 100% comprehensive in reporting on temperatures. And yet despite that, the picture on global warming is still remarkably sharper than in 2007.

    There should no longer be any fence to sit on as regards climate change.

  • Ed Davey : Polish Barbecue

    Posted on July 12th, 2013 Jo 1 comment



    This week, both Caroline Flint MP and Ed Balls MP have publicly repeated the commitment by the UK’s Labour Party to a total decarbonisation of the power sector by 2030, should they become the governing political party. At PRASEG’s Annual Conference, Caroline Flint said “In around ten years time, a quarter of our power supply will be shut down. Decisions made in the next few years [...] consequences will last for decades [...] keeping the lights on, and [ensuring reasonably priced] energy bills, and preventing dangerous climate change. [...] Labour will have as an election [promise] a legally binding target for 2030. [...] This Government has no vision.”

    And when I was in an informal conversation group with Ed Davey MP and Professor Mayer Hillman of the Policy Studies Institute at a drinks reception after the event hosted by PRASEG, the Secretary of State for Energy and Climate Change seemed to me to also be clear on his personal position backing the 2030 “decarb” target.

    Ed Davey showed concern about the work necessary to get a Europe-wide commitment on Energy and Climate Change. He took Professor Hillman’s point that carbon dioxide emissions from the burning of fossil fuels are already causing dangerous climate change, and that the risks are increasing. However, he doubted that immediate responses can be made. He gave the impression that he singled out Poland of all the countries in the European Union to be an annoyance, standing in the way of success. He suggested that if Professor Hillman wanted to do something helpful, he could fly to Poland…at this point Professor Hillman interjected to say he hasn’t taken a flight in 70 years and doesn’t intend to now…and Ed Davey continued that if the Professor wanted to make a valuable contribution, he could travel to Poland, taking a train, or…”I don’t care how you get there”, but go to Poland and persuade the Poles to sign up to the 2030 ambition.

    Clearly, machinations are already afoot. At the PRASEG Annual Conference were a number of communications professionals, tightly linked to the debate on the progress of national energy policy. Plus, one rather exceedingly highly-networked individual, David Andrews, the key driver behind the Claverton Energy Research Group forum, of which I am an occasional participant. He had ditched the normal navy blue polyester necktie and sombre suit for a shiveringly sharp and open-necked striped shirt, and was doing his best to look dapper, yet zoned. I found him talking to a communications professional, which didn’t surprise me. He asked how I was.

    JA : “I think I need to find a new job.”
    DA : “MI6 ?”
    JA : “Too boring !”

    What I really should have said was :-

    JA : “Absolutely and seriously not ! Who’d want to keep State Secrets ? Too much travel and being nice to people who are nasty. And making unbelievable compromises. The excitement of privilege and access would wear off after about six minutes. Plus there’s the risk of ending up decomposing in something like a locked sports holdall in some strange bathroom in the semblance of a hostelry in a godforsaken infested hellhole in a desolate backwater like Cheltenham or Gloucester. Plus, I’d never keep track of all the narratives. Or the sliding door parallel lives. Besides, I’m a bit of a Marmite personality – you either like me or you really don’t : I respond poorly to orders, I’m not an arch-persuader and I’m not very diplomatic or patient (except with the genuinely unfortunate), and I’m well-known for leaping into spats. Call me awkward (and some do), but I think national security and genuine Zero Carbon prosperity can be assured by other means than dark arts and high stakes threats. I like the responsibility of deciding for myself what information should be broadcast in the better interests of the common good, and which held back for some time (for the truth will invariably out). And over and above all that, I’m a technologist, which means I prefer details over giving vague impressions. And I like genuine democratic processes, and am averse to social engineering. I am entirely unsuited to the work of a secret propaganda and diplomatic unit.”

    I would be prepared to work for a UK or EU Parliamentary delegation to Poland, I guess, if I could be useful in assisting with dialogue, perhaps in the technical area. I do after all have several academic degrees pertinent to the questions of Energy and Climate Change.

    But in a room full of politicians and communications experts, I felt a little like a fished fish. Here, then, is a demonstration. I was talking with Rhys Williams, the Coordinator of PRASEG, and telling him I’d met the wonderful Professor Geoff Williams, of Durham Univeristy, who has put together a system of organic light emitting diode (LED) lighting and a 3-D printed control unit, and, and, and Rhys actually yawned. He couldn’t contain it, it just kind of spilled out. I told myself : “It’s not me. It’s the subject matter”, and I promptly forgave him. Proof, though, of the threshold for things technical amongst Westminster fixers and shakers.

    Poland. I mean, I know James Delingpole has been to Poland, and I thought at the time he was possibly going to interfere with the political process on climate change, or drum up support for shale gas. But I’m a Zero Carbon kind of actor. I don’t need to go far to start a dialogue with Poland by going to Poland – I have Poles living in my street, and I’m invited to all their barbecues. Maybe I should invite Professor Mayer Hillman to cycle over to Waltham Forest and address my near neighbours and their extended friendship circle on the importance of renewable energy and energy efficiency targets, and ask them to communicate with the folks back home with any form of influence.

  • Battle of the Lords

    Posted on July 12th, 2013 Jo 1 comment

    I don’t quite know what powers Lord Deben, John Gummer, but he looks remarkably wired on it. At this week’s PRASEG Annual Conference, he positively glowed with fervour and gumption. He regaled us with tales of debate in the House of Lords, the UK’s parliamentary “senior” chamber. He is a known climate change science adherent, and in speaking to PRASEG, he was preaching to the choir, but boy, did he give a bone-rattling homily !

    As Chairman of the Committee on Climate Change, he is fighting the good fight for carbon targets to be established in all areas of legislation, especially the in-progress Energy Bill. He makes the case that emissions restraint and constraint is now an international business value, and of importance to infrastructure investment :-

    “The trouble with energy efficiency is that it’s not “boys’ toys” – there’s no “sex” in it. It is many small things put together to make a big thing. We won’t get to a point of decarbonisation unless we [continuously] make [the case for] [continuous] investment. [...] GLOBE [of which I am a member] in a report – 33 major countries – doing so much. [...] Look at what China is doing. Now a competitive world. If we want people to come here and invest, we need to have a carbon intensity target in 2030 [which will impact] [manufacturing] and the supply chain. [With the current strategy, the carbon targets are] put down in 2020 and picked up again in 2050. Too long a gap for business. They don’t know what happens in between. This is not all about climate change. It is about UK plc.”

    To supplement this diet of upbeat encouragement, he added a good dose of scorn for fellow Lords of the House, the Lords Lawson (Nigel Lawson) and Lord Ridley (Matt Ridley) who, he seemed to be suggesting, clearly have not mastered the science of climate change, and who, I believe he imputed, have lost their marbles :-

    “Apart from one or two necessary sideswipes, I agree with the previous speaker. There is no need for disagreement except for those who dismiss climate change. [I call them "dismissers" as we should not] dignify their position by calling them “sceptics”. We are the sceptics. We come to a conclusion based on science and we revisit it every time new science comes our way. They rifle through every [paper] to find every little bit that suppports their argument. I’ve listened to the interventions [in the House of Lords reading of and debate on the Energy Bill] of that group. Their line is the Earth is not [really] warming, so, it’s too expensive to do anything. This conflicts with today’s World Meteorological Organization measurements – that the last decade has been the warmest ever. I bet you that none of them [Lords] will stand up [in the House of Lords] and say “Sorry. We got it wrong.” They pick one set of statistics and ignore the rest. It is a concentrated effort to undermine by creating doubt. Our job is constantly to make it clear they we don’t need to argue the case – the very best science makes it certain [but never absolute]. You would be very foolish to ignore the consensus of view. [...] In a serious grown-up world, we accept the best advice – always keeping an eye out for new information. Otherwise, [you would] make decisions on worst information – no sane person does that.”

    He encouraged us to encourage the dissenters on climate change science to view the green economy as an insurance policy :-

    “Is there a householder here who does not insure their houses against fire ? You have a 98% change of not having a fire. Yet you spend on average £140 a year on insurance. Because of the size of the disaster – the enormity of the [potential] loss. Basic life-supporting insurance. I’m asking for half of that. If only Lord Lawson would listen to the facts instead of that Doctor of Sports Science, Benny Peiser. Or Matt Ridley – an expert in the sexual habits of pheasants. If I want to know about pheasants, I will first ask Lord Ridley. Can he understand why I go to a climatologist first ? [To accept his view of the] risks effects of climate change means relying on the infallibility of Lord Lawson [...]”

    He spoke of cross-party unity over the signing into law of the Climate Change Act, and the strength of purpose within Parliament to do the right thing on carbon. He admitted that there were elements of the media and establishment who were belligerently or obfuscatingly opposing the right thing to do :-

    “[We] can only win if the world outside has certainty about institutional government. This is a battle we have taken on and won’t stop till we win it. [The Lord Lawson and Lord Ridley and their position is] contrary to science, contrary to sense and contrary to the principle of insurance. They will not be listened to, not now, until UK has reduced level of carbon emissions, and we have [promised] our grandchildren they they are safe from climate change.”

    Phew ! That was a war cry, if ever there was one ! We are clearly in the Salvation Army ! I noted the attendance list, that showed several Gentlemen and Ladies of the Press should have been present, and hope to read good reports, but know that in some parts of the Gutter, anti-science faecal detritus still swirls. We in One Birdcage Walk were the assembly of believers, but the general public conversation on carbon is poisoned with sulphurous intent.

  • Birdcage Walk : Cheesestick Rationing

    Posted on July 12th, 2013 Jo 1 comment


    Yesterday…no, it’s later than I think…two days ago, I attended the 2013 Conference of PRASEG, the Parliamentary Renewable and Sustainable Energy Group, at the invitation of Rhys Williams, the long-suffering Coordinator. “…Sorry…Are you upset ?” “No, look at my face. Is there any emotion displayed there ?” “No, you look rather dead fish, actually”, etc.

    At the prestigious seat of the Institute of Mechanical Engineers (IMechE), One Birdcage Walk, we were invited down into the basement for a “drinks reception”, after hearing some stirring speeches and intriguing panel discussions. Despite being promised “refreshments” on the invitation, there had only been beverages and a couple of bikkies up until now, and I think several of the people in the room were starting to get quite hypoglycemic, so were grateful to see actual food being offered.

    A market economy immediately sprang up, as there was a definite scarcity in the resources of cheesesticks, and people jostled amiably, but intentionally, so they could cluster closest to the long, crispy cow-based snacks. The trading medium of exchange was conversation. “Jo, meet Mat Hope from Carbon Brief, no Maf Smith from Renewable UK. You’ve both been eviscerated by Delingpole online”, and so on.

    “Welcome to our own private pedestal”, I said to somebody, who it turned out had built, probably in the capacity of developer, a sugarcane bagasse Combined Heat and Power plant. The little table in the corner had only got room around it for three or at most four people, and yet had a full complement of snack bowls. Bonus. I didn’t insist on memorising what this fellow told me his name was. OK, I didn’t actually hear it above the hubbub. And he was wearing no discernible badge, apart from what appeared to be the tinge of wealth. He had what looked like a trailing truculent teenager with him, but that could have been a figment of my imagination, because the dark ghost child spoke not one word. But that sullenness, and general anonymity, and the talkative gentleman’s lack of a necktie, and his slightly artificial, orange skin tone, didn’t prevent us from engaging wholeheartedly in a discussion about energy futures – in particular the default options for the UK, since there is a capacity crunch coming very soon in electricity generation, and new nuclear power reactors won’t be ready in time, and neither will Carbon Capture and Storage-fitted coal-fired power plants.

    Of course, the default options are basically Natural Gas and wind power, because large amounts can be made functional within a five year timeframe. My correspondent moaned that gas plants are closing down in the UK. We agreed that we thought that new Combined Cycle Gas Turbine plant urgently needs to be built as soon as possible – but he despaired of seeing it happen. He seemed to think it was essential that the Energy Bill should be completed as soon as possible, with built-in incentives to make Gas Futures a reality.

    I said, “Don’t wait for the Energy Bill”. I said, “Intelligent people have forecast what could happen to Natural Gas prices within a few years from high European demand and UK dependence, and are going to build gas plant for themselves. We simply cannot have extensions on coal-fired power plants…” He agreed that the Large Combustion Plant Directive would be closing the coal. I said that there was still something like 20 gigawatts of permissioned gas plant ready to build – and with conditions shaping up like they are, they could easily get financed.

    Earlier, Nigel Cornwall, of Cornwall Energy had put it like this :-

    “Deliverability and the trilemma [meeting all three of climate change, energy security and end-consumer affordability concerns] [are key]. Needs to be some joined-up thinking. [...] There is clearly a deteriorating capacity in output – 2% to 5% reduction. As long as I’ve worked in the sector it’s been five minutes to midnight, [only assuaged by] creative thinking from National Grid.”

    However, the current situation is far from bog standard. As Paul Dickson of Glennmont Partners said :-

    “£110 billion [is needed] to meet the [electricity generation] gap. We are looking for new sources of capital. Some of the strategic institutional capital – pension funds [for example] – that’s who policy needs to be directed towards. We need to look at sources of capital.”

    Alistair Buchanan, formerly of Ofgem, the power sector regulator, and now going to KPMG, spent the last year or so of his Ofgem tenure presenting the “Crunch Winter” problem to as many people as he could find. His projections were based on a number of factors, including Natural Gas supply questions, and his conclusion was that in the winter of 2015/2016 (or 2016/2017) power supply could get thin in terms of expansion capacity – for moments of peak demand. Could spell crisis.

    The Government might be cutting it all a bit fine. As Jenny Holland of the Association for the Conservation of Energy said :-

    “[Having Demand Reduction in the Capacity Mechanism] Not our tip-top favourite policy outcome [...] No point to wait for “capacity crunch” to start [Energy Demand Reduction] market.”

    It does seem that people are bypassing the policy waiting queue and getting on with drawing capital into the frame. And it is becoming more and more clear the scale of what is required. Earlier in the afternoon, Caroline Flint MP had said :-

    “In around ten years time, a quarter of our power supply will be shut down. Decisions made in the next few years. Consequences will last for decades. Keeping the lights on, and [ensuring reasonably priced] energy bills, and preventing dangerous climate change.”

    It could come to pass that scarcity, not only in cheesesticks, but in electricity generation capacity, becomes a reality. What would policy achieve then ? And how should Government react ? Even though Lord Deben (John Gummer) decried in the early afternoon a suggestion implying carbon rationing, proposed to him by Professor Mayer Hillman of the Policy Studies Institute, it could yet turn out that electricity demand reduction becomes a measure that is imposed in a crisis of scarcity.

    As I put it to my sugarcane fellow discussionee, people could get their gas for heating cut off at home in order to guarantee the lights and banks and industry stay on, because UK generation is so dependent on Natural Gas-fired power.

    Think about it – the uptake of hyper-efficient home appliances has turned down owing to the contracting economy, and people are continuing to buy and use electronics, computers, TVs and other power-sucking gadgets. Despite all sizes of business having made inroads into energy management, electricity consumption is not shifting downwards significantly overall.

    We could beef up the interconnectors between the UK and mainland Europe, but who can say that in a Crunch Winter, the French and Germans will have any spare juice for us ?

    If new, efficient gas-fired power plants are not built starting now, and wind farms roll out is not accelerated, the Generation Gap could mean top-down Energy Demand Reduction measures.

    It would certainly be a great social equaliser – Fuel Poverty for all !

  • Ed Davey MP, closer

    Posted on July 10th, 2013 Jo 2 comments

    Closer up, Ed Davey MP doesn’t look anything like Wayne Rooney, the soccer star, which is a good thing really, as that impression, drawn from paparazzi photographs mostly, made me fear I could get overwhelmed by alcohol-fuelled footballer charisma or overpowering aftershave, of which Ed Davey appeared to have neither. He did keep flashing an annoying gold signet ring, but he seems to have his sideburns well under control, and my attention was really drawn to the fact that he looks a lot slimmer than last year when he spoke at last year’s Parliamentary Renewable and Sustainable Energy Group or “PRASEG” do, doing a very passable Rooney impression, somehow. As we spoke this evening, in the basement of One Birdcage Walk, I don’t know what he thought I was thinking, but I was wondering : has Ed Davey MP got a “podge coach” ? Or is he indulging in a spot of extra-curricular skin-on-skin activity ? Or is he merely in competition with Ed Balls MP ? It can be so hard to differentiate between one upwardly-mobile and upwardly-weighted political Ed and another these days, and find yourself a Unique Selling Point in Generation Ed.

    I asked the Minister, the Secretary of State for Energy and Climate Change, over some very garlicky olive nibbles, and some evil wasabi peanuts, and some OK OJ, whether I could possibly have heard aright in his comments about Community Energy. Somewhere in the building, a masonry drill had started to rumble, and Ed D had made a reference to “drilling” as he opined on the meaning of “local energy”. I thought he meant shale gas development, and I was hoping to clarify if he really did mean that or not. No. I was wrong. It was a joke.

    Well, OK then. Onwards and outwards. “…So, Ed, I read recently that you would be prepared to consider a bid to build new nuclear reactors from GE Hitachi, who have purchased the company Horizon, which already have planning options in the UK at approved sites. You said you would be prepared to consider them instead of Electricite de France. You’ve said you have a level of strike price in mind, and you’re not prepared to go above it, despite EdF proposals. So, Ed, did you know that in February 2011, you know, just before the Multiple Nuclear Reactor Accident at Fukushima Dai-ichi in Japan, that 24 (actually, it turns out it’s 35) of GE Hitachi’s nuclear reactors in the USA had been warned that they were out of safety compliance owing to buckled control rods ? And that the Nuclear Regulatory Commission had issued a fix notice ? Would reactors in the UK built by GE Hitachi going to be of the same design ?” Ed Davey, wiser than his seemingly youthful football-short wearing years would allow, advised me to address my concerns to the Office for Nuclear Regulation, who would, of course, vet each design thoroughly.

    After which helpful direction, I observed Mayer Hillman, Emeritus Professor of the Policy Studies Institute, regale the slimline Ed D with the news that the Climate Change Act is remiss as it does not include climate change feedbacks in its calculations for the necessary UK carbon emissions reductions. He is right, actually, but it’s a tough argument to push. The IPCC’s Fourth Assessment Report couldn’t include climate change feedback effects, because there were no reliable numbers. In the Fifth Assessment Report, there will be numbers, as Ed Davey noted. I noticed that Ed Davey was as calm as a sleeping dolphin, one eye watchfully open, but he was actually awake and listening, and not being dismissive. I thought to myself, actually, he’s rather polite, and I rather warmed to him. Not too much, of course, because otherwise the climate could have risked significant change.

  • Hadeo- and Archaeo-Geobiology

    Posted on July 8th, 2013 Jo No comments

    What can deep time teach us ?

    Whilst doing a little background research into biological routes to hydrogen production, I came across a scientific journal paper, I can’t recall which, that suggested that the geological evidence indicates that Earth’s second atmosphere not only had a high concentration of methane, but also high levels of hydrogen gas.

    Previously, my understanding was that the development of microbiological life included a good number of methanogens (micro-life that produces methane as a waste product) and methanotrophs (those that “trough” on methane), but that hydrogenogen (“respiring” hydrogen gas) and hydrogenotroph (metabolising hydrogen) species were a minority, and that this was reflected in modern-day decomposition, such as the cultures used in biogas plants for anaerobic digestion.

    If there were high densities of hydrogen cycle lifeforms in the early Earth, maybe there are remnants, descendants of this branch of the tree of life, optimal at producing hydrogen gas as a by-product, which could be employed for biohydrogen production, but which haven’t yet been scoped.

    After all, it has only been very recently that psychrophiles have been added to the range of microorganisms that have been found useful in biogas production – cold-loving, permafrost-living bugs to complement the thermophile and mesophile species.

    Since hydrogen and methane are both ideal gas fuels, for a variety of reasons, including gas storage, combustion profiles and simple chemistry, I decided I needed to learn a little more.

    I have now read a plethora of new theories and several books about the formation of the Earth (and the Moon) in the Hadean Eon, the development of Earth’s atmosphere, the development of life in the Archaean Eon, and the evolution of life caused by climate change, and these developments in living beings causing climate change in their turn.

    Most of this knowledge is mediated to us by geology, and geobiology. But right at its heart is catalytic chemistry, once again. Here’s Robert Hazen (Robert M. Hazen) from page 138 of “The Story of Earth” :-

    “Amino acids, sugars, and the components of DNA and RNA adsorb onto all of Earth’s most common rock-forming minerals [...] We concluded that wherever the prebiotic ocean contacted minerals, highly concentrated arrangements of life’s molecules are likely to have emerged from the formless broth [...] Many other researchers have also settled on such a conclusion – indeed, more than a few prominent biologists have also gravitated to minerals, because origins-of-life scenarios that involve only oceans and atmosphere face insurmountable problems in accounting for efficient mechanisms of molecular selection and concentration. Solid minerals have an unmatched potential to select, concentrate, and organize molecules. So minerals much have played a central role in life’s origins. Biochemistry is complex, with interwoven cycles and networks of molecular reactions. For those intricately layered processes to work, molecules have to have just the right sizes and shapes. Molecular selection is the task of finding the best molecule for each biochemical job, and template-directed selection on mineral surfaces is now the leading candidate for how nature did it [...] left- and right-handed molecules [...] It turns out that life is incredibly picky : cells almost exclusively employ left-handed amino acids and right-handed sugars. Chirality matters [...] Our recent experiments have explored the possibility that chiral mineral surfaces played the starring role in selecting handed molecules, and perhaps the origins of life as well. [...] Our experiments showed that certain left-handed molecules can aggregate on one set of crystal surfaces, while the mirror image [...] on other sets [...] As handed molecules are separated and concentrated, each surface becomes a tiny experiment in molecular selection and organization. On its own, no such natural experiment with minerals and molecules is likely to have generated life. But take countless trillions of trillions of trillions of mineral surfaces, each bathed in molecule-rich organic broth [...] The tiny fraction of all those molecular combinations that wound up displaying easier self-assembly, or developed a stronger binding to mineral surfaces [...] survived [...] possibly to learn new tricks.”

  • Carbon Bubble : Unburnable Assets

    Posted on June 3rd, 2013 Jo No comments



    [ Image Credit : anonymous ]


    Yet again, the fossil fuel companies think they can get away with uncommented public relations in my London neighbourhood. Previously, it was BP, touting its green credentials in selling biofuels, at the train station, ahead of the Olympic Games. For some reason, after I made some scathing remarks about it, the advertisement disappeared, and there was a white blank board there for weeks.

    This time, it’s Esso, and they probably think they have more spine, as they’ve taken multiple billboard spots. In fact, the place is saturated with this advertisement. And my answer is – yes, fuel economy is important to me – that’s why I don’t have a car.

    And if this district is anything to go by, Esso must be pouring money into this advertising campaign, and so my question is : why ? Why aren’t they pouring this money into biofuels research ? Answer : because that’s not working. So, why aren’t they putting this public relations money into renewable gas fuels instead, sustainable above-surface gas fuels that can be used in compressed gas cars or fuel cell vehicles ?

    Are Esso retreating into their “core business” like BP, and Shell, concentrating on petroleum oil and Natural Gas, and thereby exposing all their shareholders to the risk of an implosion of the Carbon Bubble ? Or another Deepwater Horizon, Macondo-style blowout ?

    Meanwhile, the movement for portfolio investors to divest from fossil fuel assets continues apace…

  • Renewable Gas : Research Parameters

    Posted on May 25th, 2013 Jo No comments

    “So what do you do ?” is a question I quite frequently have to answer, as I meet a lot of new people, in a lot of new audiences and settings, on a regular basis, as an integral part of my personal process of discovery.

    My internal autocue answer has modified, evolved, over the years, but currently sounds a lot like this, “I have a couple of part-time jobs, office administration, really. I do a spot of weblogging in my spare time. But I’m also doing some research into the potential for Renewable Gas.” I then pause for roughly two seconds. “Renewable Gas ?” comes back the question.

    “Yes,” I affirm in the positive, “Industrial-scale chemistry to produce gas fuels not dug up out of the ground. It is useful to plug the gaps in Renewable Electricity when the sun isn’t shining and the wind isn’t blowing.”

    It’s not exactly an elevator pitch – I’m not really selling anything except a slight shift in the paradigm here. Renewable Energy. Renewable Electricity. Renewable Gas. Power and gas. Gas and power. It’s logical to want both to be as renewable and sustainable and as low carbon as possible.

    Wait another two seconds. “…What, you mean, like Biogas ?” comes the question. “Well, yes, and also high volumes of non-biological gas that’s produced above the ground instead of from fossil fuels.”

    The introductory chat normally fades after this exchange, as my respondent usually doesn’t have the necessary knowledge architecture to be able to make any sense of what my words represent. I think it’s fair to say I don’t win many chummy friends paradigm-bumping in this way, and some probably think I’m off the deep end psychologically, but hey, evolutionaries don’t ever have it easy.

    And I also find that it’s not easy to find a place in the hierarchy of established learning for my particular “research problem”. Which school could I possibly join ? Which research council would adopt me ?

    The first barrier to academic inclusion is that my research interest is clearly motivated by my concern about the risks of Climate Change – the degradation in the Earth’s life support systems from pumping unnaturally high volumes of carbon dioxide into the air – and Peak Fossil Fuels – the risks to humanity from a failure to grow subsurface energy production.

    My research is therefore “applied” research, according to the OECD definition (OECD, 2002). It’s not motivated simply by the desire to know new things – it is not “pure” research – it has an end game in mind. My research is being done in order to answer a practical problem – how to decarbonise gaseous, gas phase, energy fuel production.

    The second barrier to the ivory tower world that I have is that I do not have a technological contribution to make with this research. I am not inventing a chemical process that can “revolutionise” low carbon energy production. (I don’t believe in “revolutions” anyway. Nothing good ever happens by violent overthrow.) My research is not at the workbench end of engineering, so I am not going to work amongst a team of industrial technicians, so I am not going to produce a patent for clean energy that could save the world (or the economy).

    My research is more about observing and reporting the advances of others, and how these pieces add up to a journey of significant change in the energy sector. I want to join the dots from studies at the leading edge of research, showing how this demonstrates widespread aspiration for clean energy, and document instances of new energy technology, systems and infrastructure. I want to witness to the internal motivation of thousands of people working with the goal of clean energy across a very wide range of disciplines.

    This is positively positive; positivity, but it’s not positivism – it’s not pure, basic research. This piece of research could well influence people and events – it’s certainly already influencing me. It’s not hands-off neutral science. It interacts with its subjects. It intentionally intervenes.

    Since I don’t have an actual physical contribution or product to offer, and since I fully expect it to “interfere” with current dogma and political realities, what I am doing will be hard to acknowledge.

    This is not a PhD. But it is still a piece of philosophy, the love of wisdom that comes from the acquisition of knowledge.

    I have been clear for some time about what I should be studying. Call it “internal drive” if you like. The aim is to support the development of universal renewable energy as a response to the risks of climate change and peak fossil fuel energy production. That makes me automatically biased. I view my research subject through the prism of hope. But I would contend that this is a perfectly valid belief, as I already know some of what is possible. I’m not starting from a foundational blank slate – many Renewable Gas processes are already in use throughout industry and the energy sector. The fascinating part is watching these functions coalesce into a coherent alternative to the mining of fossil fuels. For the internal industry energy production conversation is changing its track, its tune.

    For a while now, “alternative” energy has been a minor vibration, a harmonic, accentuating the fossil fuel melody. As soon as the mid-noughties economic difficulties began to bite, greenwash activities were ditched, as oil and gas companies resorted to their core business. But the “green shoots” of green energy are still there, and every now and then, it is possible to see them poking up above the oilspill-desecrated soil. My role is to count blades and project bushes. Therefore my research is interpretivist or constructivist, although it is documenting positivist engineering progress. That’s quite hard for me to agree with, even though I reasoned it myself. I can still resist being labelled “post-positivist”, though, because I’m still interpreting reality not relativisms.

    So now, on from research paradigm to research methodologies. I was trained to be an experimentalist scientist, so this is a departure for me. In this case, I am not going to seek to make a physical contribution to the field by being actively involved as an engineer in a research programme, partly because from what I’ve read so far, most of the potential is already documented and scoped.

    I am going to use sociological methods, combining observation and rapportage, to and from various organisations through various media. Since I am involved in the narrative through my interactions with others, and I influence the outcomes of my research, this is partly auto-narrative, autoethnographic, ethnographic. An apt form for the research documentation is a weblog, as it is a longitudinal study, so discrete reports at time intervals are appropriate. Social media will be useful for joining the research to a potential audience, and Twitter has the kind of immediacy I prefer.

    My observation will therefore be akin to journalism – engineering journalism, where the term “engineering” covers both technological and sociological aspects of change. A kind of energy futures “travelogue”, an observer of an emerging reality.

    My research methods will include reading the science and interacting with engineers. I hope to do a study trip (or two) as a way of embedding myself into the new energy sector, with the explicit intention of ensuring I am not purely a commentator-observer. My research documentation will include a slow collation of my sources and references – a literature review that evolves over time.

    My personal contribution will be slight, but hopefully set archaic and inefficient proposals for energy development based on “traditional” answers (such as nuclear power, “unconventional” fossil fuel production and Carbon Capture and Storage for coal) in high relief.

    My research choices as they currently stand :-

    1. I do not think I want to join an academic group.

    2. I do not think I want to work for an energy engineering company.

    3. I do not want to claim a discovery in an experimental sense. Indeed, I do not need to, as I am documenting discoveries and experiments.

    4. I want to be clear about my bias towards promoting 100% renewable energy, as a desirable ambition, in response to the risks posed by climate change and peak fossil fuel production.

    5. I need to admit that my research may influence outcomes, and so is applied rather than basic (Roll-Hansen, 2009).

    References

    OECD, 2002. “Proposed Standard Practice for Surveys on Research and Experimental Development”, Frascati Manual :-
    http://browse.oecdbookshop.org/oecd/pdfs/free/9202081e.pdf

    Roll-Hansen, 2009. “Why the distinction between basic (theoretical) and applied (practical) research is important in the politics of science”, Nils Roll-Hansen, Centre for the Philosophy of Natural and Social Science Contingency and Dissent in Science, Technical Report 04/09 :-
    http://www2.lse.ac.uk/CPNSS/projects/CoreResearchProjects/ContingencyDissentInScience/DP/DPRoll-HansenOnline0409.pdf

  • Renewable Gas : Elemental Fuels

    Posted on May 23rd, 2013 Jo No comments

    It could be said that Climate Change science is an extreme sport – sojourns of several months in Antarctica to drill ancient ice pack, say, or collecting slices of deep sea and lake sediments. Recently, a Chinese team has taken three ice cores from Mount Everest, and a joint European and Japansese expedition have gone pond dipping in the Mariana Trench in the Pacific Ocean to try to better understand the global carbon cycle.

    Geophysicists are clearly a hardy bunch, and persistent. Recently there has been a number of breakthroughs into extremely old water, such as a Siberian lake formed by a crater millions of years ago and covered by ice, and water perhaps billions of years old circulating in a Canadian copper mine, an environment that may be older than the development of the earliest lifeforms. A brief article in New Scientist magazine intrigued me – the description of the water which they are studying for signs of microbial activity – “it is packed with hydrogen and methane – chemicals that microbes love to eat [...] perfect for life.”

    It seems that science has still to uncover the full family of microbes and what they consume and what they produce. Many microbes manufacture hydrogen and methane, and some eat. The migration of microbial life into all parts of the Earth’s crust, including their reach to the bottom of the oceans, was responsible for altering atmospheric chemistry, which enabled the development of oxygen-breathing multicellular lifeforms to evolve. And yet methane and hydrogen have remained vital. These are some of the most energy-packed molecules and some of the most basic. I started to reflect. What struck me was the simplicity and universality of the early chemistry of Earth life, and how these elemental fuels that are good for micro-organisms are also good for humans too.

    Methane is the major constitutent of Natural Gas. As one of the most common products of bacterial decomposition of ancient biomass, it is present in deposits of most fossil fuels, including coal seams. Most of this “Natural Methane” in the form of Natural Gas energy fuel produced today comes from fields where it is associated with petroleum oil. Natural Hydrogen is much less common, but research is showing that there could be significant resources in some places. Hydrogen is also a key component in some forms of biogas production – using the decomposing power of microbes to source environmentally clean fuel from harvested plant matter on the surface of the Earth.

    Methane and hydrogen are involved in a range of chemistry. Chemical reactions with methane and hydrogen are relatively easy to reverse, because of their molecular simplicity. This makes them highly suited as energy vectors for storage, and the energy they give off when burned in oxygen makes them valuable for human industry, for domestic heating and in the power sector.

    Although methane is widely used in energy systems, hydrogen has not been up until now, although there has been talk of a “Hydrogen Economy” eventually supplanting the use of hydrocarbon fuels. This is unlikely to come about in the very near future, although a transition away from fossil fuels is likely to be mediated through the use of Renewable Hydrogen from sustainable, aboveground resources. Why is hydrogen so important ? Because hydrogen chemistry can be used to recycle carbon gas – both carbon dioxide and carbon monoxide, making it a genuine possibility that one day carbon dioxide will be a vital component of energy systems, not a waste gas from combustion.

    The most efficient way to use the energy in fossil fuels and biomass is to gasify them for use in combustion, and the common products of this “syngas” or synthesised, synthesis or synthetic gas are hydrogen and carbon monoxide. Convincing hydrogen and carbon-rich gas to become methane packs the chemical energy into a small space and easier and safer to store than hydrogen on its own. Burning methane in oxygen produces carbon dioxide, which, can be coaxed to combine with hydrogen to make more gas fuel.

    So there we have it – Renewable Gas : methane, hydrogen, carbon monoxide and carbon dioxide. Using spare Renewable Electricity from our future abundance of solar and wind farms we can make useful gas fuels that can be stored to burn on demand when the air is calm and the sun is not shining. Renewable Gas can cover for the intermittency and variability of other forms of Renewable Energy. To develop Renewable Gas will take some investment, but it will not be an extreme sport like mining ever-more-inaccessible unconventional fossil fuels like shale gas, tar sands and deepwater Natural Gas.

  • Marcott : Like Never Before

    Posted on March 16th, 2013 Jo 6 comments

    We have changed the Earth. We are changing the Earth. The rate of change is phenomenal. The question is – will this tip the Earth system into an entirely new state, and will this be permanent ?

    Treasure every piece of ice, every cap, peak, glacier. We could be leaving the “icehouse world” forever.

    http://www.intechopen.com/books/climate-change-geophysical-foundations-and-ecological-effects/the-paleocene-eocene-thermal-maximum-feedbacks-between-climate-change-and-biogeochemical-cycles

  • A Report from Tasmania

    Posted on February 4th, 2013 Jo 1 comment

    During the worst of the austral summer in Tasmania at the start of 2013, an Austrian friend of mine was travelling through the region, and sent back the following report.


    “We arrived in Tassie [Tasmania] on the 6th of January 2013. When I looked outside the window of the plane I saw many burning fields and a lot of black smoke was in the air.”

    “We picked up our luggage and went to the car rental counter. Actually we were lucky to catch the last rental car, as most of the cars were stuck in the Peninsula at Port Arthur and people couldn’t drive them back as all roads were blocked already.

    There were over 40 bush-fires in the area and most of the people have been evacuated either by sailboats and ships, as the whole island (Peninsula) Dunally was on fire.

    We drove directly up to the northern part of Tasmania away from the bush-fires.

    On the radio we heard many additional fire-warnings and had to take another highway in order to reach the Cradle Mountain National Park.

    The air was filled with smoke and the smell was terrible. As we arrived in the National Park all of a sudden it started to rain and didn’t stop for the rest of the day. The next day also…rain, rain, rain.

    250km south of Tassie bush-fires and here we are and felt like we were swept away by the strong winds and rainfalls in the middle of Tassie. :) It has been also really cold. Strange feeling to experience such a different weather-condition within only one day.”


    Video which describes it best:
    http://www.youtube.com/watch?v=Qxz9x7HYIHo

    Arnie speaking German in front of students in Vienna on the 31st of January:
    http://www.youtube.com/watch?v=3AyEjgs-Bc0
    http://europa.eu/rapid/press-release_SPEECH-13-89_de.htm?locale=en
    http://www.r20vienna.org/


    “Let’s keep in touch. We have to step out of the comfort zone into the smoking zone in order to reach people for the “truth” about climate change. :)