Mind the Gap : BBC Costing the Earth

I listened to an interesting mix of myth, mystery and magic on BBC Radio 4.

Myths included the notion that long-term, nuclear power would be cheap; that “alternative” energy technologies are expensive (well, nuclear power is, but true renewables are most certainly not); and the idea that burning biomass to create heat to create steam to turn turbines to generate electricity is an acceptably efficient use of biomass (it is not).

Biofuelwatch are hosting a public meeting on this very subject :-
http://www.biofuelwatch.org.uk/2013/burning_issue_public_event/
“A Burning Issue – biomass and its impacts on forests and communities”
Tuesday, 29th October 2013, 7-9pm
Lumen Centre, London (close to St Pancras train station)
http://www.lumenurc.org.uk/lumencontact.htm
Lumen Centre, 88 Tavistock Place, London WC1H 9RS

Interesting hints in the interviews I thought pointed to the idea that maybe, just maybe, some electricity generation capacity should be wholly owned by the Government – since the country is paying for it one way or another. A socialist model for gas-fired generation capacity that’s used as backup to wind and solar power ? Now there’s an interesting idea…




http://www.bbc.co.uk/programmes/b03cn0rb

“Mind the Gap”
Channel: BBC Radio 4
Series: Costing the Earth
Presenter: Tom Heap
First broadcast: Tuesday 15th October 2013

Programme Notes :

“Our energy needs are growing as our energy supply dwindles.
Renewables have not come online quickly enough and we are increasingly
reliant on expensive imported gas or cheap but dirty coal. Last year
the UK burnt 50% more coal than in previous years but this helped
reverse years of steadily declining carbon dioxide emissions. By 2015
6 coal fired power stations will close and the cost of burning coal
will increase hugely due to the introduction of the carbon price
floor. Shale gas and biomass have been suggested as quick and easy
solutions but are they really sustainable, or cheap?”

“Carbon Capture and Storage could make coal or gas cleaner and a new
study suggests that with CCS bio energy could even decrease global
warming. Yet CCS has stalled in the UK and the rest of Europe and the
debate about the green credentials of biomass is intensifying. So what
is really the best answer to Britain’s energy needs? Tom Heap
investigates.”

00:44 – 00:48
[ Channel anchor ]
Britain’s energy needs are top of the agenda in “Costing the Earth”…

01:17
[ Channel anchor ]
…this week on “Costing the Earth”, Tom Heap is asking if our
ambitions to go green are being lost to the more immediate fear of
blackouts and brownouts.

01:27
[ Music : Arcade Fire – “Neighbourhood 3 (Power Out)” ]

[ Tom Heap ]

Energy is suddenly big news – central to politics and the economy. The
countdown has started towards the imminent shutdown of many coal-fired
power stations, but the timetable to build their replacements has
barely begun.

It’ll cost a lot, we’ll have to pay, and the politicians are reluctant
to lay out the bill. But both the official regulator and industry are
warning that a crunch is coming.

So in this week’s “Costing the Earth”, we ask if the goal of clean,
green and affordable energy is being lost to a much darker reality.

02:14
[ Historical recordings ]

“The lights have started going out in the West Country : Bristol,
Exeter and Plymouth have all had their first power cuts this
afternoon.”

“One of the biggest effects of the cuts was on traffic, because with
the traffic lights out of commission, major jams have built up,
particularly in the town centres. One of the oddest sights I saw is a
couple of ladies coming out of a hairdressers with towels around their
heads because the dryers weren’t working.”

“Television closes down at 10.30 [ pm ], and although the cinemas are
carrying on more or less normally, some London theatres have had to
close.”

“The various [ gas ] boards on both sides of the Pennines admit to
being taken by surprise with today’s cold spell which brought about
the cuts.”

“And now the major scandal sweeping the front pages of the papers this
morning, the advertisement by the South Eastern Gas Board recommending
that to save fuel, couples should share their bath.”

[ Caller ]
“I shall write to my local gas board and say don’t do it in
Birmingham. It might be alright for the trendy South, but we don’t
want it in Birmingham.”

03:13
[ Tom Heap ]

That was 1974.

Some things have changed today – maybe a more liberal attitude to
sharing the tub. But some things remain the same – an absence of
coal-fired electricity – threatening a blackout.

Back then it was strikes by miners. Now it’s old age of the power
plants, combined with an EU Directive obliging them to cut their
sulphur dioxide and nitrous oxide emissions by 2016, or close.

Some coal burners are avoiding the switch off by substituting wood;
and mothballed gas stations are also on standby.

But Dieter Helm, Professor of Energy Policy at the University of
Oxford, now believes power cuts are likely.

03:57
[ Dieter Helm ]

Well, if we take the numbers produced by the key responsible bodies,
they predict that there’s a chance that by the winter of 2-15 [sic,
meaning 2015] 2-16 [sic, meaning 2016], the gap between the demand for
electricity and the supply could be as low as 2%.

And it turns out that those forecasts are based on extremely
optimistic assumptions about how far demand will fall in that period
(that the “Green Deal” will work, and so on) and that we won’t have
much economic growth.

So basically we are on course for a very serious energy crunch by the
winter of 2-15 [sic, meaning 2015] 2-16 [sic, meaning 2016], almost
regardless of what happens now, because nobody can build any power
stations between now and then.

It’s sort of one of those slow motion car crashes – you see the whole
symptoms of it, and people have been messing around reforming markets
and so on, without addressing what’s immediately in front of them.

[ Tom Heap ]

And that’s where you think we are now ?

[ Dieter Helm ]

I think there’s every risk of doing so.

Fortunately, the [ General ] Election is a year and a half away, and
there’s many opportunities for all the political parties to get real
about two things : get real about the energy crunch in 2-15 [sic,
meaning 2015] 2-16 [sic, meaning 2016] and how they’re going to handle
it; and get real about creating the incentives to decarbonise our
electricity system, and deal with the serious environmental and
security and competitive issues which our electricity system faces.

And this is a massive investment requirement [ in ] electricity : all
those old stations retiring [ originally built ] back from the 1970s –
they’re all going to be gone.

Most of the nuclear power stations are coming to the end of their lives.

We need a really big investment programme. And if you really want an
investment programme, you have to sit down and work out how you’re
going to incentivise people to do that building.

[ Tom Heap ]

If we want a new energy infrastructure based on renewables and
carbon-free alternatives, then now is the time to put those incentives
on the table.

The problem is that no-one seems to want to make the necessary
investment, least of all the “Big Six” energy companies, who are
already under pressure about high bills.

[ “Big Six” are : British Gas / Centrica, EdF Energy (Electricite
de France), E.On UK, RWE npower, Scottish Power and SSE ]

Sam Peacock of the energy company SSE [ Scottish and Southern Energy ]
gives the commercial proof of Dieter’s prediction.

If energy generators can’t make money out of generating energy,
they’ll be reluctant to do it.

[ Sam Peacock ]

Ofgem, the energy regulator, has looked at this in a lot of detail,
and said that around 2015, 2016, things start to get tighter. The
reason for this is European Directives, [ is [ a ] ] closing down some
of the old coal plants. And also the current poor economics around [
or surround [ -ing ] ] both existing plant and potential new plant.

So, at the moment it’s very, very difficult to make money out of a gas
plant, or invest in a new one. So this leads to there being, you know,
something of a crunch point around 2015, 2016, and Ofgem’s analysis
looks pretty sensible to us.

[ Tom Heap ]

And Sam Peacock lays the blame for this crisis firmly at the Government’s door.

[ Sam Peacock ]

The trilemma, as they call it – of decarbonisation, security of supply
and affordability – is being stretched, because the Government’s
moving us more towards cleaner technologies, which…which are more
expensive.

However, if you were to take the costs of, you know, the extra costs
of developing these technologies off government [ sic, meaning
customer ] bills and into general taxation, you could knock about over
£100 off customer bills today, it’ll be bigger in the future, and you
can still get that much-needed investment going.

So, we think you can square the circle, but it’s going to take a
little bit of policy movement [ and ] it’s going to take shifting some
of those costs off customers and actually back where the policymakers
should be controlling them.

[ KLAXON ! Does he mean controlled energy prices ? That sounds a bit
centrally managed economy to me… ]

[ Tom Heap ]

No surprise that a power company would want to shift the pain of
rising energy costs from their bills to the tax bill.

But neither the Government nor the Opposition are actually proposing this.

Who pays the premium for expensve new energy sources is becoming like
a game of pass the toxic parcel.

[ Reference : http://en.wikipedia.org/wiki/Hot_potato_%28game%29 ]

I asked the [ UK Government Department of ] Energy and Climate Change
Secretary, Ed Davey, how much new money is required between now and
2020.

08:06

[ Ed Davey ]

About £110 billion – er, that’s critical to replace a lot of the coal
power stations that are closing, the nuclear power stations that are [
at the ] end of their lives, and replace a lot of the network which
has come to the end of its life, too.

So it’s a huge, massive investment task.

[ Tom Heap ]

So in the end we’re going to have to foot the bill for the £110 billion ?

[ Ed Davey ]

Yeah. Of course. That’s what happens now. People, in their bills that
they pay now, are paying for the network costs of investments made
several years, even several decades ago.

[ Yes – we’re still paying through our national nose to dispose of
radioactive waste and decommission old nuclear reactors. The liability
of it all weighs heavily on the country’s neck… ]

And there’s no escaping that – we’ve got to keep the lights on – we’ve
got to keep the country powered.

You have to look at both sides of the equation. If we’re helping
people make their homes more inefficient [ sic, meaning energy
efficient ], their product appliances more efficient, we’re doing
everything we possibly can to try to help the bills be kept down,

while we’re having to make these big investments to keep the lights
on, and to make sure that we don’t cook the planet, as you say.

[ Tom Heap ]

You mention the lights going out. There are predictions that we’re
headed towards just 2% of spare capacity in the system in a few years’
time.

Are you worried about the dangers of, I don’t know, maybe not lights
going out for some people, but perhaps big energy users being told
when and when [ sic, meaning where ] they can’t use power in the
winter ?

[ Ed Davey ]

Well, there’s no doubt that as the coal power stations come offline,
and the nuclear power plants, er, close, we’re going to have make sure
that new power plants are coming on to replace them.

And if we don’t, there will be a problem with energy security.

Now we’ve been working very hard over a long time now to make sure we
attract that investment. We’ve been working with Ofgem, the regulator;
with National Grid, and we’re…

[ Tom Heap ]

…Being [ or it’s being ] tough. I don’t see companies racing to come
and fill in the gap here and those coal power plants are going off
soon.

[ Ed Davey ]

…we’re actually having record levels of energy investment in the country.

The problem was for 13 years under the last Government
[ same old, same old Coalition argument ] we saw low levels of investment
in energy, and we’re having to race to catch up, but fortunately we’re
winning that race. And we’re seeing, you know, billions of pounds
invested but we’ve still got to do more. We’re not there. I’m not
pretending we’re there yet. [ Are we there, yet ? ] But we do have the
policies in place.

So, Ofgem is currently consulting on a set of proposals which will
enable it to have reserve power to switch on at the peak if it’s
needed.

We’re, we’ve, bringing forward proposals in the Energy Bill for what’s
called a Capacity Market, so we can auction to get that extra capacity
we need.

So we’ve got the policies in place.

[ Tom Heap ]

Some of Ed Davey’s policies, not least the LibDem [ Liberal Democrat
Party ] U-turn on nuclear, have been guided by DECC [ Department of
Energy and Climate Change ] Chief Scientist David MacKay, author of
the influential book “Renewable Energy without the Hot Air” [ sic,
actually “Sustainable Energy without the Hot Air” ].

Does he think the lights will dim in the second half of this decade ?

[ David MacKay ]

I don’t think there’s going to be any problem maintaining the capacity
that we need. We just need to make clear where Electricity Market
Reform [ EMR, part of the Energy Bill ] is going, and the way in which
we will be maintaining capacity.

[ Tom Heap ]

But I don’t quite understand that, because it seems to me, you know,
some of those big coal-fired power stations are going to be going off.
What’s going to be coming in their place ?

[ David MacKay ]

Well, the biggest number of power stations that’s been built in the
last few years are gas power stations, and we just need a few more gas
power stations like that, to replace the coal
, and hopefully some
nuclear power stations will be coming on the bars, as well as the wind
farms that are being built at the moment.

[ Tom Heap ]

And you’re happy with that increase in gas-fired power stations, are
you ? I mean, you do care deeply, personally, about reducing our
greenhouse gases, and yet you’re saying we’re going to have to build
more gas-fired power stations.

[ David MacKay ]

I do. Even in many of the pathways that reach the 2050 target, there’s
still a role for gas in the long-term, because some power sources like
wind and solar power are intermittent, so if you want to be keeping
the lights on in 2050 when there’s no wind and there’s no sun, you’re
going to need some gas power stations there
. Maybe not operating so
much of the time as they do today, but there’ll still be a role in
keeping the lights on.

[ KLAXON ! If gas plants are used only for peak periods or for backup to
renewables, then the carbon emissions will be much less than if they are
running all the time. ]

[ Tom Heap ]

Many energy experts though doubt that enough new wind power or nuclear
capacity could be built fast enough to affect the sums in a big way by
2020.

But that isn’t the only critical date looming over our energy system.
Even more challenging, though more distant, is the legally binding
objective of cutting greenhouse gas emissions in 2050.

David MacKay wants that certainty to provide the foundation for energy
decisions, and he showed me the effect of different choices with the
“Ultimate Future Energy App”. I was in his office, but anyone can try it online.

[ David MacKay ]

It’s a 2050 calculator. It computes energy demand and supply in
response to your choices, and it computes multiple consequences of
your choices. It computes carbon consequences. It also computes for
you estimates of air quality, consequences of different choices;
security of supply, consequences; and the costs of your choices.

So with this 2050 calculator, it’s an open source tool, and anyone can
go on the web and use the levers to imagine different futures in 2050
of how much action we’ve taken in different demand sectors and in
different supply sectors.

The calculator has many visualisations of the pathway that you’re choosing
and helps people understand all the trade-offs… There’s no silver
bullet for any of this. If I dial up a pathway someone made earlier,
we can visualise the implications in terms of the area occupied for
the onshore wind farms, and the area in the sea for the offshore wind
farms, and the length of the wave farms that you’ve built, and the
land area required for energy crops.

And many organisations have used this tool and some of them have given
us their preferred pathway. So you can see here the Friends of the
Earth have got their chosen pathway, the Campaign to Protect Rural
England, and various engineers like National Grid and Atkins have got
their pathways.

So you can see alternative ways of achieving our targets, of keeping
the lights on and taking climate change action. All of those pathways
all meet the 2050 target, but they do so with different mixes.

[ Tom Heap ]

And your view of this is you sort of can’t escape from the scientific
logic and rigour of it. You might wish things were different or you
could do it differently, but you’re sort of saying “Look, it’s either
one thing or the other”. That’s the point of this.

[ David MacKay ]

That’s true. You can’t be anti-everything. You can’t be anti-wind and
anti-nuclear and anti-home insulation. You won’t end up with a plan
that adds up.

[ KLAXON ! But you can be rationally against one or two things, like
expensive new nuclear power, and carbon and particulate emissions-heavy
biomass for the generation of electricity. ]

[ Tom Heap ]

But isn’t that exactly kind of the problem that we’ve had, without
pointing political fingers, that people rather have been
anti-everything, and that’s why we’re sort of not producing enough new
energy sources ?

[ David MacKay ]

Yeah. The majority of the British public I think are in favour of many
of these sources, but there are strong minorities who are vocally
opposed to every one of the major levers in this calculator. So one
aspiration I have for this tool is it may help those people come to a
position where they have a view that’s actually consistent with the
goal of keeping the lights on.

[ Tom Heap ]

Professor MacKay’s calculator also computes pounds and pence,
suggesting that both high and low carbon electricity work out pricey
in the end.

[ David MacKay ]

The total costs of all the pathways are pretty much the same.
“Business as Usual” is cheaper in the early years, and then pays more,
because on the “Business as Usual”, you carry on using fossil fuels,
and the prices of those fossil fuels are probably going to go up.

All of the pathways that take climate change action have a similar
total cost, but they pay more in the early years, ’cause you have to
pay for things like building insulation and power stations, like
nuclear power stations, or wind power, which cost up-front, but then
they’re very cheap to run in the future.

[ KLAXON ! Will the cost of decommissioning nuclear reactors and the
costs of the waste disposal be cheap ? I think not… ]

So the totals over the 40 or 50 year period here, are much the same for these.

[ Tom Heap ]

The cheapest immediate option of all is to keep shovelling the coal.
And last year coal overtook gas to be our biggest electricity
generation source, pushing up overall carbon emissions along the way
by 4.5%

[ KLAXON ! This is not very good for energy security – look where the
coal comes from… ]

As we heard earlier, most coal-fired power stations are scheduled for
termination, but some have won a reprieve, and trees are their
unlikely saviour.

Burning plenty of wood chip [ actually, Tom, it’s not wood “chip”, it’s
wood “pellets” – which often have other things mixed in with the wood,
like coal… ] allows coal furnaces to cut the sulphur dioxide and nitrous
oxide belching from their chimneys to below the level that requires their
closure under European law.

But some enthusiasts see wood being good for even more.

16:19

[ Outside ]

It’s one of those Autumn days that promises to be warm, but currently
is rather moist. I’m in a field surrounded by those dew-laden cobwebs
you get at this time of year.

But in the middle of this field is a plantation of willow. And I’m at
Rothamsted Research with Angela Karp who’s one of the directors here.

Angela, tell me about this willow I’m standing in front of here. I
mean, it’s about ten foot high or so, but what are you seeing ?

[ Angela Karp ]

Well, I’m seeing one of our better varieties that’s on display here.
We have a demonstration trial of about ten different varieties. This
is a good one, because it produces a lot of biomass, quite easily,
without a lot of additional fertilisers or anything. And as you can
see it’s got lovely straight stems. It’s got many stems, and at the
end of three years, we would harvest all those stems to get the
biomass from it. It’s nice and straight – it’s a lovely-looking, it’s
got no disease, no insects on it, very nice, clean willow.

[ Tom Heap ]

So, what you’ve been working on here as I understand it is trying to
create is the perfect willow – the most fuel for the least input – and
the easiest to harvest.

[ Angela Karp ]

That’s absolutely correct, because the whole reason for growing these
crops is to get the carbon from the atmosphere into the wood, and to
use that wood as a replacement for fossil fuels. Without putting a lot
of inputs in, because as soon as you add fertilisers you’re using
energy and carbon to make them, and that kind of defeats the whole
purpose of doing this.

[ KLAXON ! You don’t need to use fossil fuel energy or petrochemicals or
anything with carbon emissions to make fertiliser ! … Hang on, these
are GM trees, right ? So they will need inputs… ]

[ Tom Heap ]

And how much better do you think your new super-variety is, than say,
what was around, you know, 10 or 15 years ago. ‘Cause willow as an
idea for burning has been around for a bit. How much of an improvement
is this one here ?

[ Angela Karp ]

Quite a bit. So, these are actually are some of the, if you like,
middle-term varieties. So we started off yielding about 8 oven-dry
tonnes per hectare, and now we’ve almost doubled that.

[ Tom Heap ]

How big a place do you think biomass can have in the UK’s energy
picture in the future ?

[ Angela Karp ]

I think that it could contribute between 10% and 15% of our energy. If
we were to cultivate willows on 1 million hectares, we would probably
provide about 3% to 4% of energy in terms of electricity, and I think
that’s kind of a baseline figure. We could cultivate them on up to 3
million hectares, so you can multiply things up, and we could use them
in a much more energy-efficient way.

[ KLAXON ! Is that 4% of total energy or 4% of total electricity ?
Confused. ]

[ Tom Heap ]

Do we really have 3 million hectares going a-begging for planting willow in ?

[ Angela Karp ]

Actually, surprisingly we do. So, people have this kind of myth
there’s not enough land, but just look around you and you will find
there’s lots of land that’s not used for cultivating food crops.

We don’t see them taking over the whole country. We see them being
grown synergistically with food crops.

[ KLAXON ! This is a bit different than the statement made in 2009. ]

[ Tom Heap ]

But I’d just like to dig down a little bit more into the carbon cycle
of the combustion of these things, because that’s been the recent
criticism of burning a lot of biomass, is that you put an early spike
in the amount of carbon in the atmosphere, if you start burning a lot
of biomass, because this [ sounds of rustling ], this plant is going
to be turned into, well, partly, CO2 in the atmosphere.

[ Angela Karp ]

Yes, I think that’s probably a simple and not totally correct way of
looking at it. ‘Cause a lot depends on the actual conversion process
you are using.

So some conversion processes are much more efficient at taking
everything and converting it into what you want.

Heat for example is in excess of 80%, 90% conversion efficiency.

Electricity is a little bit more of the problem. And there, what
they’re looking at is capturing some of the carbon that you lose, and
converting that back in, in carbon storage processes, and that’s why
there’s a lot of talk now about carbon storage from these power
stations.

That I think is the future. It’s a question of connecting up all parts
of the process, and making sure that’s nothing wasted.

20:02

[ Tom Heap ]

So, is wood a desirable greener fuel ?

Not according to Almuth Ernsting of Biofuelwatch, who objects to the
current plans for large-scale wood burning, its use to prop up coal,
and even its low carbon claims.

[ Almuth Ernsting ]

The currently-announced industry plans, and by that I mean existing
power stations, but far more so, power stations which are in the
planning process [ and ] many of which have already been consented –
those [ biomass ] power stations, would, if they all go ahead,
require to burn around 82 million tonnes of biomass, primarily wood,
every year. Now by comparison, the UK in total only produces around
10 million tonnes, so one eighth of that amount, in wood, for all
industries and purposes, every year.

We are looking on the one hand at a significant number of proposed,
and in some cases, under-construction or operating new-build biomass
power stations, but the largest single investment so far going into
the conversion of coal power station units to biomass, the largest and
most advanced one of which at the moment is Drax, who are, have
started to move towards converting half their capacity to burning wood
pellets.

[ Tom Heap ]

Drax is that huge former, or still currently, coal-fired power station
in Yorkshire, isn’t it ?

[ Almuth Ernsting ]

Right, and they still want to keep burning coal as well. I mean, their
long-term vision, as they’ve announced, would be for 50:50 coal and
biomass.

[ Tom Heap ]

What do you think about that potential growth ?

[ Almuth Ernsting ]

Well, we’re seriously concerned. We believe it’s seriously bad news
for climate change, it’s seriously bad news for forests, and it’s
really bad news for communities, especially in the Global South, who
are at risk of losing their land for further expansion of monoculture
tree plantations, to in future supply new power stations in the UK.

A really large amount, increasingly so, of the wood being burned,
comes from slow-growing, whole trees that are cut down for that
purpose, especially at the moment in temperate forests in North
America. Now those trees will take many, many decades to grow back
and potentially re-absorb that carbon dioxide, that’s if they’re
allowed and able to ever grow back.

[ Tom Heap ]

There’s another technology desperate for investment, which is critical
to avoiding power failure, whilst still hitting our mid-century carbon
reduction goals – CCS – Carbon Capture and Storage, the ability to
take the greenhouse gases from the chimney and bury them underground.

It’s especially useful for biomass and coal, with their relatively
high carbon emissions, but would also help gas be greener.

The Chancellor has approved 30 new gas-fired power stations, so long
as they are CCS-ready [ sic, should be “capture ready”, or
“carbon capture ready” ].

Jon Gibbons is the boss of the UK CCS Research Centre, based in an
industrial estate in Sheffield.

[ Noise of processing plant ]

Jon’s just brought me up a sort of 3D maze of galvanized steel and
shiny metal pipes to the top of a tower that must be 20 or so metres
high.

Jon, what is this ?

[ Jon Gibbons ]

OK, so this is our capture unit, to take the CO2 out of the combustion
products from gas or coal. In the building behind us, in the test rigs
we’ve got, the gas turbine or the combustor rig, we’re burning coal or
gas, or oil, but mainly coal or gas.

We’re taking the combustion products through the green pipe over
there, bringing it into the bottom of the unit, and then you can see
these big tall columns we’ve got, about 18 inches diameter, half a
metre diameter, coming all the way up from the ground up to the level
we’re at.

It goes into one of those, it gets washed clean with water, and it
goes into this unit over here, and there it meets an amine solvent, a
chemical that will react reversibly with CO2, coming in the opposite
direction, over packing. So, it’s like sort of pebbles, if you can
imagine it, there’s a lot of surface area. The gas flows up, the
liquid flows down, and it picks up the CO2, just mainly the CO2.

[ Tom Heap ]

And that amine, that chemical as you call it, is stripping the CO2 out
of that exhaust gas. This will link to a storage facility.

What would then happen to the CO2 ?

[ Jon Gibbons ]

What would then happen is that the CO2 would be compressed up to
somewhere in excess of about 100 atmospheres. And it would turn from
being a gas into something that looks like a liquid, like water, about
the same density as water. And then it would be taken offshore in the
UK, probably tens or hundreds of kilometres offshore, and it would go
deep, deep down, over a kilometre down into the ground, and basically
get squeezed into stuff that looks like solid rock. If you go and look
at a sandstone building – looks solid, but actually, maybe a third of
it is little holes. And underground, where you’ve got cubic kilometres
of space, those little holes add up to an awful lot of free space. And
the CO2 gets squeezed into those, over time, and it spreads out, and
it just basically sits there forever, dissolves in the water, reacts
with the rocks, and will stay there for millions of years.

[ Tom Heap ]

Back in his office, I asked Jon why CCS seemed to be stuck in the lab.

[ Jon Gibbons ]

We’re doing enough I think on the research side, but what we really
need to do, is to do work on a full-scale deployment. Because you
can’t work on research in a vacuum. You need to get feedback –
learning by doing – from actual real projects.

And a lot of the problems we’ve got on delivering CCS, are to do with
how you handle the regulation for injecting CO2, and again, you can
only do that in real life.

So what we need to do is to see the commercialisation projects that
are being run by the Department of Energy and Climate Change actually
going through to real projects that can be delivered.

[ Tom Heap ]

Hmm. When I talk to engineers, they’re always very passionate and
actually quite optimistic about Carbon Capture and Storage. And when
I talk to people in industry, or indeed read the headlines, not least
a recent cancellation in Norway, it always seems like a very bleak picture.

[ Jon Gibbons ]

I think people are recognising that it’s getting quite hard to get
money for low carbon technologies.

So – recent presentation we had at one of our centre meetings, was
actually a professor from the United States, Howard Herzog. And he
said “You think you’re seeing a crisis in Carbon Capture and Storage.
But what you’re actually seeing is a crisis in climate change
mitigation.”

[ KLAXON ! Priming us for a scaling back of commitment to the
Climate Change Act ? I do hope not. ]

Now, Carbon Capture and Storage, you do for no other purpose than
cutting CO2 emissions to the atmosphere, and it does that extremely
effectively. It’s an essential technology for cutting emissions. But
until you’ve got a global process that says – actually we’re going to
get on top of this problem; we’re going to cut emissions – get them to
safe level before we actually see people dying in large numbers from
climate change effects – ’cause, certainly, if people start dying,
then we will see a response – but ideally, you’d like to do it before
then. But until you get that going, then actually persuading people to
spend money for no other benefit than sorting out the climate is
difficult.

There’s just no point, you know, no country can go it alone, so you
have to get accommodation. And there, we’re going through various
processes to debate that. Maybe people will come to an accommodation.
Maybe the USA and China will agree to tackle climate change. Maybe
they won’t.

What I am fairly confident is that you won’t see huge, you know,
really big cuts in CO2 emissions without that global agreement. But
I’m also confident that you won’t see big cuts in CO2 emissions
without CCS deployment.

And my guess is there’s about a 50:50 chance that we do CCS before we
need to, and about a 50:50 chance we do it after we have to. But I’m
pretty damn certain we’re going to do it.

[ Tom Heap ]

But we can’t wait for a global agreement that’s already been decades
in the making, with still no end in sight.

We need decisions now to provide more power with less pollution.

[ Music lyrics : “What’s the plan ? What’s the plan ?” ]

[ Tom Heap ]

Dieter Helm, Professor of Energy Policy at the University of Oxford
believes we can only deliver our plentiful green energy future if we
abandon our attitude of buy-now pay-later.

[ KLAXON ! Does he mean a kind of hire purchase energy economy ?
I mean, we’re still paying for nuclear electricity from decades ago,
in our bills, and through our taxes to the Department of Energy and
Climate Change. ]

[ Dieter Helm ]

There’s a short-term requirement and a long-term requirement. The
short-term requirement is that we’re now in a real pickle. We face
this energy crunch. We’ve got to try to make the best of what we’ve
got. And I think it’s really like, you know, trying to get the
Spitfires back up again during the Battle of Britain. You know, you
patch and mend. You need somebody in command. You need someone
in control. And you do the best with what you’ve got.

In that context, we then have to really stand back and say, “And this
is what we have to do to get a serious, long-term, continuous, stable
investment environment, going forward.” In which, you know, we pay the
costs, but of course, not any monopoly profits, not any excess
profits, but we have a world in which the price of electricity is
related to the cost.”

[ KLAXON ! Is Dieter Helm proposing state ownership of energy plant ? ]

29:04

[ Programme anchor ]

“Costing the Earth” was presented by Tom Heap, and made in Bristol by
Helen Lennard.

[ Next broadcast : 16th October 2013, 21:00, BBC Radio 4 ]

High Stakes Energy Chutzpah





Image Credit : Carbon Brief


After Gordon Brown MP, the UK’s former Prime Minister, was involved in several diplomatic missions around the time of the oil price spike crisis in 2008, and the G20 group of countries went after fossil fuel subsidies (causing easily predictable civil disturbances in several parts of the world), it seemed to me to be obvious that energy price control would be a defining aspect of near-term global policy.

With the economy still in a contracted state (with perhaps further contraction to follow on), national interest for industrialised countries rests in maintaining domestic production and money flows – meaning that citizens should not face sharply-rising utility bills, so that they can remain active in the economy.

In the UK, those at the fringe of financial sustainability are notoriously having to face the decision about whether to Eat or Heat, and Food Banks are in the ascendance. Various charity campaigns have emphasised the importance of affordable energy at home, and the leader of the Labour Party, Ed Miliband MP has made an energy price freeze a potential plank of his policy ahead of the push for the next General Election.

The current Prime Minister, David Cameron MP has called this commitment a “con”, as his political counterpart cannot determine the wholesale price of gas (or power) in the future.

This debate comes at a crucial time in the passage of the UK Energy Bill, as the Electricity Market Reform (EMR), a key component of this legislation has weighty subsidies embedded in it for new nuclear power and renewable energy, and also backup plants (mostly Natural Gas-fired) for periods of high power demand, in what is called the “Capacity Market“. These subsidies will largely be paid for by increases in electricity bills, in one way or another.

The EMR hasn’t yet passed into the statute books, so the majority of “green energy taxes” haven’t yet coming into being – although letters of “comfort” may have been sent to to (one or more) companies seeking to invest in new nuclear power facilities, making clear the UK Government’s monetary commitment to fully supporting the atomic “renaissance”.

With a bucketload of chutzpah, Scottish and Southern Energy (SSE) and Electricite de France’s Vincent de Rivaz blamed green energy policies for contributing to past, current and future power price rises. Both of these companies stand to gain quite a lot from the EMR, so their blame-passing sounds rather hollow.

The Daily Mail and the Daily Telegraph have seemed to me to be incendiary regarding green energy subsidies, omitting to mention that whilst the trajectory of the cost of state support for renewable energy is easily calculated, volatility in global energy markets for gas and oil – and even coal – are indeterminable. Although “scandal-hugging” (sensation equals sales) columnists and editors at the newspapers don’t seem to have an appreciation of what’s really behind energy price rises, the Prime Minister – and Ed Davey MP – have got it – and squarely placed the responsibility for energy price rises on fossil fuels.

The price tag for “green energy policies” – even those being offered to (low carbon, but not “green”) nuclear power – should be considerably less than the total bill burden for energy, and hold out the promise of energy price stabilisation or even suppression in the medium- to long-term, which is why most political parties back them.

The agenda for new nuclear power appears to be floundering – it has been suggested by some that European and American nuclear power companies are not solvent enough to finance a new “fleet” of reactors. In the UK, the Government and its friends in the nuclear industry are planning to pull in east Asian investment (in exchange for large amounts of green energy subsidies, in effect). I suspect a legal challenge will be put forward should a trade agreement of this nature be signed, as soon as its contents are public knowledge.

The anger stirred up about green energy subsidies has had a reaction from David Cameron who has not dispensed with green energy policy, but declared that subsidies should not last longer than they are needed – probably pointing at the Germany experience of degressing the solar power Feed-in Tariff – although he hasn’t mentioned how nuclear subsidies could be ratcheted down, since the new nuclear programme will probably have to rely on state support for the whole of its lifecycle.

Meanwhile, in the Press, it seems that green energy doesn’t work, that green energy subsidies are the only reason for energy bill rises, we should drop the Climate Change Act, and John Prescott MP, and strangely, a woman called Susan Thomas, are pushing coal-fired power claiming it as the cheaper, surer – even cleaner – solution, and there is much scaremongering about blackouts.




http://www.mirror.co.uk/news/uk-news/john-prescott-its-coal-power-2366172

John Prescott on why it’s coal power to the people

12 Oct 2013

We can’t just stand back and give these energy companies money to burn.

It’s only 72 days until Christmas. But the greedy big six energy companies are giving themselves an early present. SSE has just announced an inflation-beating 8.2 per cent price rise on gas and electricity.

The other five will soon follow suit, no doubt doing their best to beat their combined profit from last year of £10billion.

Their excuse now is to blame climate change. SSE says it could cut bills by £110 if Government, not the Big Six, paid for green energy ­subsidies and other environmental costs, such as free loft insulation.

So your bill would look smaller but you’d pay for it with higher taxes. Talk about smoke and mirrors.

But Tory-led governments have always been hopeless at protecting the energy security of this country.

It’s almost 40 years since Britain was hit by blackouts when the Tories forced the UK into a three-day week to conserve energy supplies.

But Ofgem says the margin of ­security between energy demand and supply will drop from 14 per cent to 4 per cent by 2016. That’s because we’ve committed to closing nine oil and coal power stations to meet EU ­environmental law and emissions targets. These targets were meant to encourage the UK to move to cleaner sources of energy.

But this government drastically reduced subsidies for renewable energy such as wind and solar, let Tory energy ministers say “enough is enough” to onshore wind and failed to get agreement on replacing old
nuclear power stations.

On top of that, if we experience a particularly cold winter, we only have a reserve of 5 per cent.

But the Government is committed to hundreds of millions pounds of subsidies to pay the energy ­companies to mothball these oil and coal power stations. As someone who ­negotiated the first Kyoto agreement in 1997 and is involved in its replacement by 2015, it is clear European emissions targets will not be met in the short term by 2020.

So we have to be realistic and do what we can to keep the lights on, our people warm and our country running.

We should keep these oil and coal power stations open to reduce the risk of blackouts – not on stand-by or mothballed but working now.

The former Tory Energy minister John Hayes hinted at this but knew he couldn’t get it past his Lib Dem Energy Secretary boss Ed Davey. He bragged he’d put the coal in coalition. Instead he put the fire in fired.

We can’t just stand back and give these energy companies money to burn. The only energy security they’re interested in is securing profit and maximising taxpayer subsidies.

That’s why Ed Miliband’s right to say he’d freeze bills for 20 months and to call for more ­transparency.

We also need an integrated mixed energy policy – gas, oil, wind, nuclear and, yes, coal.




http://www.oxfordmail.co.uk/yoursay/letters/10722697.Bills_have_risen_to_pay_for_policy_changes/?ref=arc

Letters

Bills have risen to pay for policy changes

Tuesday 8th October 2013

in Letters

THE recent Labour Party pledge to freeze energy bills demonstrated how to have a political cake and eat it. The pledge is an attempt to rectify a heinous political mistake caused by political hubris and vanity.

In 2008, the then energy minister, Ed Miliband, vowed to enact the most stringent cuts in power emissions in the entire world to achieve an unrealistic 80 per cent cut in carbon emissions by closing down fully functioning coal power stations.

He was playing the role of climate saint to win popularity and votes.

I was a member when Ed Miliband spoke in Oxford Town Hall to loud cheers from numerous low-carbon businesses, who stood to profit from his legislation. I was concerned at the impact on the consumer, since it is widely known that coal power stations offer the cheapest energy to consumers compared to nuclear and wind.

So I wrote to Andrew Smith MP at great length and he passed on my concerns to the newly-formed Department of Energy and Climate Change that had replaced the previous Department of Energy and Business.

This new department sent me a lengthy reply, mapping out their plans for wind turbines at a projected cost to the consumer of £100bn to include new infrastructure and amendments to the National Grid. This cost would be added to consumer electricity bills via a hidden green policy tariff.
This has already happened and explains the rise in utility bills.

Some consumers are confused and wrongly believe that energy companies are ‘ripping them off’.

It was clearly stated on Channel 4 recently that energy bills have risen to pay for new policy changes. These policy changes were enacted by Ed Miliband in his popularity bid to play climate saviour in 2008. Energy bills have now rocketed. So Ed has cost every single consumer in the land several hundred pounds extra on their bills each year.

SUSAN THOMAS, Magdalen Road, Oxford




LETTERS
Daily Mail
14th October 2013

[ Turned off: Didcot power station’s closure could lead to power cuts. ]

Labour’s power failures will cost us all dear

THE Labour Party’s pledge to freeze energy bills is an attempt to rectify a horrible political mistake. But it might be too late to dig us out of the financial black hole caused by political vanity.

In 2008, then Energy Minister Ed Miliband vowed to enact the most stringent cuts in power emissions in the world to achieve an unrealistic 80 per cent cut in carbon emissions by closing down coal power stations. He was playing the role of climate saint to win votes.

I was in the audience in Oxford Town Hall that day and recall the loud cheers from numerous representatives of low-carbon businesses as his policies stood to make them all rather wealthy, albeit at the expense of every electricity consumer in the land.

I thought Ed had become entangled in a spider’s web.

I was concerned at the impact on the consumer as it’s widely known that coal power stations offer the cheapest energy to consumers.

I contacted the Department of Energy and Climate Change and it sent me a lengthy reply mapping out its plans for energy projects and wind turbines – at a projected cost to the consumer of £100 billion – including new infrastructure and national grid amendments.

It explained the cost would be added to consumer electricity bills via a ‘green policy’ tariff. This has now happened and explains the rise in utility bills.

Some consumers wrongly believe the energy companies are ripping them off. In fact, energy bills have risen to pay for policy changes.

The people to benefit from this are low-carbon venture capitalists and rich landowners who reap subsidy money (which ultimately comes from the hard-hit consumer) for having wind farms on their land.

Since Didcot power station closed I’ve suffered five power cuts in my Oxford home. If we have a cold winter, we now have a one-in-four chance of a power cut.

The 2008 legislation was a huge mistake. When power cuts happen, people will be forced to burn filthy coal and wood in their grates to keep warm, emitting cancer-causing particulates.

Didcot had already got rid of these asthma-causing particulates and smoke. It emitted mainly steam and carbon dioxide which aren’t harmful to our lungs. But the clean, non-toxic carbon dioxide emitted by Didcot was classified by Mr Miliband as a pollutant. We are heading into a public health and financial disaster.

SUSAN THOMAS, Oxford




http://www.europeanvoice.com/article/2013/october/ceos-demand-reform-of-eu-renewable-subsidies/78418.aspx

CEOs demand reform of EU renewable subsidies
By Dave Keating – 11.10.2013

Companies ask the EU to stop subsidising the renewable energy sector.

The CEOs of Europe’s ten biggest energy companies called for the European Union and member states to stop subsidising the renewable energy sector on Friday (11 October), saying that the priority access given to the sector could cause widespread blackouts in Europe over the winter.

At a press conference in Brussels, Paolo Scaroni, CEO of Italian oil and gas company ENI, said: “In the EU, companies pay three times the price of gas in America, twice the price of power. How can we dream of an industrial renaissance with such a differential?”

The CEOs said the low price of renewable energy as a result of government subsidies is causing it to flood the market. They called for an EU capacity mechanism that would pay utilities for keeping electric power-generating capacity on standby to remedy this problem.

They also complained that the low price of carbon in the EU’s emissions trading scheme (ETS) is exacerbating the problem…




http://www.dailymail.co.uk/debate/article-2458333/DAILY-MAIL-COMMENT-Press-freedom-life-death-matter.html

Well said, Sir Tim

Days after David Cameron orders a review of green taxes, which add £132 to power bills, the Lib Dem Energy Secretary vows to block any attempt to cut them.

Reaffirming his commitment to the levies, which will subsidise record numbers of inefficient wind farms approved this year, Ed Davey adds: ‘I think we will see more price rises.’

The Mail can do no better than quote lyricist Sir Tim Rice, who has declined more than £1million to allow a wind farm on his Scottish estate. ‘I don’t see why rich twits like me should be paid to put up everybody else’s bills,’ he says. ‘Especially for something that doesn’t work.’

Wind Powers Electricity Security




Have the anti-wind power lobby struck again ? A seemingly turbulent researcher from Private Eye magazine rang me on Thursday evening to ask me to revise my interpretation of his “Keeping The Lights On” piece of a few weeks previously. His article seemed at first glance to be quite derogatory regarding the contribution of wind power to the UK’s electricity supply. If I were to look again, I would find out, he was sure, that I was wrong, and he was right.

So I have been re-reviewing the annual 2013 “Electricity Capacity Assessment Report” prepared by Ofgem, the UK Government’s Office of Gas and Electricity Markets, an independent National Regulatory Authority. I have tried to be as fair-minded and generous as possible to “Old Sparky” at Private Eye magazine, but a close re-reading of the Ofgem report suggests he is apparently mistaken – wind power is a boon, not a burden (as he seems to claim).

In the overview to the Ofgem report, they state, “our assessment suggests that the risks to electricity security of supply over the next six winters have increased since our last report in October 2012. This is due in particular to deterioration in the supply-side outlook. There is also uncertainty over projected reductions in demand.” Neither of these issues can be associated with wind power, which is being deployed at an accelerating rate and so is providing increasing amounts of electricity.

The report considers risks to security of the electricity supply, not an evaluation of the actual amounts of power that will be supplied. How are these risks to the security of supply quantified ? There are several metrics provided from Ofgem’s modelling, including :-

a. LOLE – Loss of Load Expectation – the average number of hours per year in which electricity supply does not meet electricity demand (if the grid System Operator does not take steps to balance it out).

(Note that Ofgem’s definition of LOLE is difference from other people’s “LOLE is often interpreted in the academic literature as representing the probability of disconnections after all mitigation actions available to the System Operator have been exhausted. We consider that a well functioning market should avoid using mitigation actions in [sic] regular basis and as such we interpret LOLE as the probability of having to implement mitigation actions.”)

b. EEU – Expected Energy Unserved (or “Un-served”) – the average amount of electricity demand that is not met in a year – a metric that combines both the likelihood and the size of any shortfall.

c. Frequency and Duration of Expected Outages – a measure of the risk that an electricity consumer faces of controlled disconnection because supply does not meet demand.

The first important thing to note is that the lights are very unlikely to go out. The highest value of LOLE, measured in hours per year is under 20. That’s 20 hours each year. Not 20 days. And this is not anticipated to be 20 days in a row, either. Section 1.11 says “LOLE, as interpreted in this report, is not a measure of the expected number of hours per year in which customers may be disconnected. For a given level of LOLE and EEU, results may come from a large number of small events where demand exceeds supply in principle but that can be managed by National Grid through a set of mitigation actions available to them as System Operator. […] Given the characteristics of the GB system, any shortfall is more likely to take the form of a large number of small events that would not have a direct impact on customers.”

Section 2.19 states, “The probabilistic measures of security of supply presented in this report are often misinterpreted. LOLE is the expected number of hours per year in which supply does not meet demand. This does not however mean that customers will be disconnected or that there will be blackouts for that number of hours a year. Most of the time, when available supply is not high enough to meet demand, National Grid may implement mitigation actions to solve the problem without disconnecting any customers. However, the system should be planned to avoid the use of mitigation actions and that is why we measure LOLE ahead of any mitigation actions being used”. And Section 2.20, “LOLE does not necessarily mean disconnections but they do remain a possibility. If the difference between available supply and demand is so large that the mitigation actions are not enough to meet demand then some customers have to be disconnected – this is the controlled disconnections step in Figure 14 above. In this case the [System Operator] SO will disconnect industrial demand before household demand.”

And in Section 2.21. “The model output numbers presented here refer to a loss of load of any kind. This could be the sum of several small events (controlled through mitigation actions) or a single large event. As a consequence of the mitigation actions available, the total period of disconnections for a customer will be lower than the value of LOLE.”

The report does anticipate that there are risks of large events where the lights could go out, even if only very briefly, for non-emergency customers : “The results may also come from a small number of large events (eg the supply deficit is more than 2 – 3 gigawatts (GW)) where controlled disconnections cannot be avoided.” But in this kind of scenario two very important things would happen. Those with electricity contracts with a clause permitting forced disconnection would lose power. And immediate backup power generation would be called upon to bridge the gap. There are many kinds of electricity generation that can be called on to start up in a supply crisis – some of them becoming operational in minutes, and others in hours.

As the report says in Section 2.24 “Each [Distribution Network Operator] DNO ensures it can provide a 20% reduction of its total system demand in four incremental stages (between 4% and 6%), which can be achieved at all times, with or without prior warning, and within 5 minutes of receipt of an instruction from the System Operator. The reduction of a further 20% (40% in total) can be achieved following issue of the appropriate GB System Warning by National Grid within agreed timescales”.

It’s all about the need for National Grid to balance the system. Section 2.9 says, “LOLE is not a measure of the expected number of hours per year in which customers may be disconnected. We define LOLE to indicate the number of hours in which the system may need to respond to tight conditions.”

The report also rules some potential sources of disruption of supply outside the remit of this particular analysis – see Section 3.17 “There are other reasons why electricity consumers might experience disruptions to supply, which are out of the scope of this assessment and thus not captured by this model, such as: Flexibility : The ability of generators to ramp up in response to rapid increases in demand or decreases in the output of other generators; Insufficient reserve : Unexpected increases in demand or decreases in available capacity in real time which must be managed by the System Operator through procurement and use of reserve capacity; Network outages : Failures on the electricity transmission or distribution networks; Fuel availability : The availability of the fuel used by generators. In particular the security of supplies of natural gas at times of peak electricity demand.”

Crucially, the report says there is much uncertainty in their modelling of LOLE and EEU. In Section 2.26, “The LOLE and EEU estimates are just an indication of risk. There is considerable uncertainty around the main variables in the calculation (eg demand, the behaviour of interconnectors etc.)”

(Note : interconnectors are electricity supply cables that join the UK to other countries such as Ireland and Holland).

Part of the reason for Ofgem’s caveat of uncertainty is the lack of appropriate data. Although they believe they have better modelling of wind power since their 2012 report (see Sections 3.39 to 3.50), there are data sets they believe should be improved. For example, data on Demand Side Response (DSR) – the ability of the National Grid and its larger or aggregated consumers to alter levels of demand on cue (see Sections 4.7 to 4.10 of the document detailing decisions about the methodology). A lack of data has led to certain assumptions being retained, for example, the assumption that there is no relationship between available wind power and periods of high demand – in the winter season (see Section 2.5 and Sections 4.11 to 4.17 of the methodology decisions document).

In addition to these uncertainties, the sensitivity cases used in the modelling are known to not accurately reflect the capability of management of the power grid. In the Executive Summary on page 4, the report says, “These sensitivities only illustrate changes in one variable at a time and so do not capture potential mitigating effects, for example of the supply side reacting to higher demand projections.” And in Section 2.16 it says, “Each sensitivity assumes a change in one variable from the Reference Scenario, with all other assumptions being held constant. The purpose of this is to assess the impact of the uncertainty related to each variable in isolation, on the risk measures. Our report is not using scenarios (ie a combination of changes in several variables to reflect alternative worlds or different futures), as this would not allow us to isolate the impact of each variable on the risk measures.”

Thus, the numbers that are output by the modelling are perforce illustrative, not definitive.

What “Old Sparky” at Private Eye was rattled by in his recent piece was the calculation of Equivalent Firm Capacity (EFC) in the Ofgem report.

On page 87, Section 3.55, the Ofgem report defines the “standard measure” EFC as “the amount of capacity that is required to replace the wind capacity to achieve the same level of LOLE”, meaning the amount of always-on generation capacity required to replace the wind capacity to achieve the same level of LOLE. Putting it another way on page 33, in the footnotes for Section 3.29, the report states, “The EFC is the quantity of firm capacity (ie always available) that can be replaced by a certain volume of wind generation to give the same level of security of supply, as measured by LOLE.”

Wind power is different from fossil fuel-powered generation as there is a lot of variability in output. Section 1.48 of the report says, “Wind generation capacity is analysed separately given that its outcome in terms of generation availability is much more variable and difficult to predict.” Several of the indicators calculated for the report are connected with the impact of wind on security of the power supply. However, variation in wind power is not the underlying reason for the necessity of this report. Other electricity generation plant has variation in output leading to questions of security of supply. In addition, besides planned plant closures and openings, there are as-yet-unknown factors that could impact overall generation capacity. Section 2.2 reads, “We use a probabilistic approach to assess the uncertainty related to short-term variations in demand and available conventional generation due to outages and wind generation. This is combined with sensitivity analysis to assess the uncertainty related to the evolution of electricity demand and supply due to investment and retirement decisions (ie mothballing, closures) and interconnector flows, among others.”

The report examines the possibility that wind power availability could be correlated to winter season peak demand, based on limited available data, and models a “Wind Generation Availability” sensitivity (see Section 3.94 to Section 3.98, especially Figure 64). In Section 3.42 the report says, “For the wind generation availability sensitivity we assume that wind availability decreases at time of high demand. In particular this sensitivity assumes a reduction in the available wind resource for demand levels higher than 92% of the ACS peak demand. The maximum reduction is assumed to be 50% for demand levels higher than 102% of ACS peak demand.” Bear in mind that this is only an assumption.

In Appendix 5 “Detailed results tables”, Table 34, Table 35 and Table 37 show how this modelling impacts the calculation of the indicative Equivalent Firm Capacity (EFC) of wind power.

In the 2018/2019 timeframe, when there is expected to be a combined wind power capacity of 8405 megawatts (MW) onshore plus 11705 MW offshore = 20110 MW, the EFC for wind power is calculated to be 2546 MW in the “Wind Generation Availability” sensitivity line, which works out at 12.66% of the nameplate capacity of the wind power. Note : 100 divided by 12.66 is 7.88, or a factor of roughly 8.

At the earlier 2013/2014 timeframe, when combined wind power capacity is expected to be 3970 + 6235 MW = 10205 MW, and the EFC is at 1624 MW or 15.91% for the “Wind Generation Sensitivity” line. Note : 100 divided by 15.91 = 6.285, or a factor of roughly 6.

“Old Sparky” is referring to these factor figures when he says in his piece (see below) :-

“[…] For every one megawatt of reliable capacity (eg a coal-fired power
station) that gets closed, Ofgem calculates Britain would need six to
eight
megawatts of windfarm capacity to achieve the original level of
reliability – and the multiple is rising all the time. Windfarms are
not of course being built at eight times the rate coal plants are
closing – hence the ever-increasing likelihood of blackouts. […]”

Yet he has ignored several caveats given in the report that place these factors in doubt. For example, the sensitivity analysis only varies one factor at a time and does not attempt to model correlated changes in other variables. He has also omitted to consider the relative impacts of change.

If he were to contrast his statement with the “Conventional Low Generation Availability” sensitivity line, where wind power EFC in the 2013/2014 timeframe is calculated as a healthy 26.59% or a factor of roughly 4; or 2018/2019 when wind EFC is 19.80% or a factor of roughly 5.

Note : The “Conventional Low Generation Availability” sensitivity is drawn from historical conventional generation operating data, as outlined in Sections 3.31 to 3.38. Section 3.36 states, “The Reference Scenario availability is defined as the mean availability of the seven winter estimates. The availability values used for the low (high) availability sensitivities are defined as the mean minus (plus) one standard deviation of the seven winter estimates.”

Table 30 and Table 31 show that low conventional generation availability will probably be the largest contribution to energy security uncertainty in the critical 2015/2016 timeframe.

The upshot of all of this modelling is that wind power is actually off the hook. Unforeseen alterations in conventional generation capacity are likely to have the largest impact. As the report says in Section 4.21 “The figures indicate that reasonably small changes in conventional generation availability have a material impact on the risk of supply shortfalls. This is most notable in 2015/16, where the estimated LOLE ranges from 0.2 hours per year in the high availability sensitivity to 16 hours per year in the low availability sensitivity, for the Reference Scenario is 2.9 hours per year.”

However, Section 1.19 is careful to remind us, “Wind generation, onshore and offshore, is expected to grow rapidly in the period of analysis and especially after 2015/16, rising from around 9GW of installed capacity now to more than 20GW by 2018/19. Given the variability of wind speeds, we estimate that only 17% of this capacity can be counted as firm (ie always available) for security of supply purposes by 2018/19.” This is in the Reference Scenario.

The sensitivities modelled in the report are a measure of risk, and do not provide absolute values for any of the output metrics, especially since the calculations are dependent on so many factors, including economic stimulus for the building of new generation plant.

Importantly, recent decisions by gas-fired power plant operators to “mothball”, or close down their generation capacity, are inevitably going to matter more than how much exactly we can rely on wind power.

Many commentators neglect to make the obvious point that wind power is not being used to replace conventional generation entirely, but to save fossil fuel by reducing the number of hours conventional generators have to run. This is contributing to energy security, by reducing the cost of fossil fuel that needs to be imported. However, the knock-on effect is this is having an impact on the economic viability of these plant because they are not always in use, and so the UK Government is putting in place the “Capacity Mechanism” to make sure that mothballed plant can be put back into use when required, during those becalmed, winter afternoons when power demand is at its peak.




Private Eye
Issue Number 1345
26th July 2013 – 8th August 2013

“Keeping the Lights On”
page 14
by “Old Sparky”

The report from energy regulator Ofgem that sparked headlines on
potential power cuts contains much new analysis highlighting the
uselessness of wind generation in contributing to security of
electricity supply, aka the problem of windfarm “intermittency”. But
the problem is being studiously ignored by the Department of Energy
and Climate Change (DECC).

As coal power stations shut down, windfarms are notionally replacing
them. If, say, only one windfarm were serving the grid, its inherent
unreliability could easily be compensated for. But if there were
[italics] only windfarms, and no reliable sources of electricity
available at all, security of supply would be hugely at risk. Thus the
more windfarms there are, the less they contribute to security.

For every one megawatt of reliable capacity (eg a coal-fired power
station) that gets closed, Ofgem calculates Britain would need six to
eight megawatts of windfarm capacity to achieve the original level of
reliability – and the multiple is rising all the time. Windfarms are
not of course being built at eight times the rate coal plants are
closing – hence the ever-increasing likelihood of blackouts.

[…]

In consequence windfarms are being featherbedded – not only with
lavish subsidies, but also by not being billed for the ever-increasing
trouble they cause. When the DECC was still operating Plan B, aka the
dash for gas ([Private] Eye [Issue] 1266), the cost of intermittency
was defined in terms of balancing the grid by using relatively clean
and cheap natural gas. Now that the department has been forced to
adopt emergency Plan C ([Private] Eye [Issue] 1344), backup for
intermittent windfarm output will increasingly be provided by dirty,
expensive diesel generators.




Private Eye
Issue 1344
12 – 25 July 2013

page 15
“Keeping the Lights On”

As pandemonium breaks out in newspapers at the prospect of electricity
blackouts, emergency measures are being cobbled together to ensure the
lights stay on. They will probably succeed – but at a cost.

Three years ago incoming coalition ministers were briefed that when
energy policy Plan A (windfarms, new nukes and pixie-dust) failed, Plan B
would be in place – a new dash for gas ([Private] Eye [Issue] 1266).

Civil servants then devised complex “energy market reforms” (EMR) to make
this happen. It is now clear that these, too, have failed. Coal-fired power
stations are closing quicker than new gas plants are being built. As energy
regulator Ofgem put it bluntly last week: “The EMR aims to incentivise
industry to address security of supply in the medium term, but is not able
to bring forward investment in new capacity in time.”

Practical people in the National Grid are now hatching emergency Plan C.
They will pay large electricity users to switch off when requested;
encourage industrial companies and even hospitals to generate their own
diesel-fired electricity (not a hard sell when the grid can’t be relied
on); hire diesel generators to make up for the intermittency of windfarms
([Private] Eye [Issue] 1322); and bribe electricity companies to bring
mothballed gas-fired plants back into service.

Some of these steps are based on techniques previously used in extreme
circumstances, and will probably keep most of the lights on. But this
should not obscure the fact that planning routine use of emergency
measures is an indictment of energy policy. And since diesel is much
more expensive and polluting than gas, electricity prices and CO2
emissions will be higher than if Plan B had worked.

[…]

‘Old Sparky’




Keith MacLean : Big Choices

At last week’s 2013 Annual Conference for PRASEG, the UK parliamentary sustainable energy group, Keith MacLean from Scottish and Southern Energy outlined (see below) the major pathways for domestic (residential) energy, currently dependent on both a gas grid and a power grid.

He said that decarbonising heat requires significant, strategic infrastructure decisions on the various proposals and technology choices put forward, as “these options are incompatible”. He said that the UK “need to facilitate more towards ONE of those scenarios/configurations [for provision for heating at home] as they are mutually exclusive”.

There has been a commitment from Central Government in the UK to the concept of electrification of the energy requirements of both the transport and heat sectors, and Keith MacLean painted a scenario that could see the nation’s households ditching their gas central heating boilers for heat pumps in accord with that vision. Next, “the District Heating (DH) movement could take off, [where you stop using your heat pump and take local piped heat from a Combined Heat and Power (CHP) plant] until there is no spare market capacity. Then [big utilities] could start pumping biogas and hydrogen into the gas grid, and you get your boiler back !”

Since I view gas grid injection of Renewable Gas feedstocks as a potential way to easily decarbonise the gas supply, and as Keith MacLean said in his panel presentation, “The real opportunity to make a difference in our domestic [residential] energy consumption is in heat rather than power”, I sought him out during the drinks reception after the event, to compare notes.

I explained that I appreciate the awkward problem he posed, and that my continuing research interest is in Renewable Gas, which includes Renewable Hydrogen, BioHydrogen and BioMethane. I said I had been reading up on and speaking with some of those doing Hydrogen injection into the gas grid, and it looks like a useful way to decarbonise gas.

I said that if we could get 5% of the gas grid supply replaced with hydrogen…”Yes”, said Keith, “we wouldn’t even need to change appliances at those levels”… and then top up with biogas and other industrial gas streams, we could decarbonise the grid by around 20% without breaking into a sweat. At this point, Keith MacLean started nodding healhily, and a woman from a communications company standing near us started to zone out, so I figured this was getting really interesting. “And that would be significant”, I accented, but by this time she was almost asleep on her feet.

With such important decisions ahead of us, it seems that people could be paying a bit more attention to these questions. These are, after all, big choices.

What did Keith mean by “The District Heating movement” ? Well, Dave Andrews of Clean Power (Finning Power Systems), had offered to give a very short presentation at the event. Here was his proposed title :-

http://uk.groups.yahoo.com/group/Claverton/message/12361
“Indicative costs of decarbonizing European city heating with electrical distribution compared to district heating pipe distribution of large scale wind energy and with particular attention to transition to the above methods and energy storage costs to address intermittency and variability of wind power.”

This would have been an assessment of the relative costs of decarbonising European city heating with either :-

Strategy 1)

“Gas-fired Combined Cycle Gas Turbine (CCGT) generation plant plus domestic (residential sector) electric heat pumps as the transition solution; and in the long term, large scale wind energy replacing the CCGT – which is retained as back up for low wind situations; and with pumped hydro electrical storage to deal with intermittency /variability of wind energy and to reduce back up fuel usage.”

or

Strategy 2)

“CCGT Combined Heat and Power (CHP) plus district heat (DH) as the transition solution; and in the long term, large scale wind energy replacing the CCGT CHP heat but with the CCGT retained as back up for low wind situations and with hot water energy storage to deal with intermittency / variability and to reduce back up fuel usage.”

With “the impact of [a programme of building retrofits for] insulation on each strategy is also assessed.”

Dave’s European research background is of relevance here, as co-author of a 215-pager SETIS programme paper complete with pretty diagrams :-

http://setis.ec.europa.eu/system/files/1.DHCpotentials.pdf

Although Dave Andrews was also at the PRASEG drinks reception, he didn’t get the opportunity to address the conference. Which was a shame as his shirt was electric.




PRASEG 2013
10 July 2013
“Keeping the Lights on: At What Cost?”
Parliamentary Renewable and Sustainable Energy Group
Annual Conference

Second Panel Discussion
Chaired by Baroness Maddock
“Negawatts: Decentralising and reducing demand – essential or ephemeral ?”

[Note : The term “negawatt” denotes a negative watt hour – produced by a reduction in power or gas demand. ]

[…]

Keith MacLean, Scottish and Southern Energy

Decentralisation and Demand Reduction [should only be done where] it makes sense. Answers [to the question of negawatts] are very different if looking at Heat and Power. Heat is something far more readily stored that electricity is. Can be used to help balance [the electricity demand profile]. And heat is already very localised [therefore adding to optimising local response]. Some are going in the other direction – looking at district [scale] heating (DH) [using the more efficient system of Combined Heat and Power (CHP)]. Never forget the option to convert from electricity to heat and back to electricity to balance [the grid]. Average household uses 3 MWh (megawatt hours) of electricity [per year] and 15 MWh of heat. The real opportunity is heat. New homes reduce this to about 1 [MWh]. Those built to the new 2016 housing regulations on Zero Carbon Homes, should use around zero. The real opportunity to make a difference in our domestic [residential] energy consumption is in heat rather than power. Reducing consumption not always the right solution. With intermittents [renewable energy] want to switch ON at some times [to soak up cheap wind power in windy conditions]. [A lot of talk about National Grid having to do load] balancing [on the scale of] seconds, minutes and hours. Far more fundamental is the overall system adequacy – a bigger challenge – the long-term needs of the consumer. Keeping the lights from going out by telling people to turn off the lights is not a good way of doing it. There is justifiable demand [for a range of energy services]. […] I don’t think we’re politically brave enough to vary the [electricity] prices enough to make changes. We need to look at ways of aggregating and automating Demand Side Response. Need to be prepared to legislate and regulate if that is the right solution.

[…]

Questions from the Floor

Question from John Gibbons of the University of Edinburgh

The decarbonisation of heat. Will we be successful any time soon ?

Answer from Keith MacLean

[…] Decarbonising heat – [strategic] infrastructure decisions. For example, [we could go down the route of ditching Natural Gas central heating] boilers for heat pumps [as the UK Government and National Grid have modelled and projected]. Then the District Heating (DH) movement could take off [and you ditch your heat pump at home], until there is no spare market capacity. Then [big utilities] could start pumping biogas and hydrogen into the gas grid, and you get your boiler back ! Need to facilitate more towards ONE of those scenarios/configurations [for provision for heating at home] as mutually exclusive. Need to address in terms of infrastructure since these options are incompatible.

Answer from Dave Openshaw, Future Networks, UK Power Network

Lifestyle decision – scope for [action on] heat more than for electricity. Demand Management – managing that Demand Side Reduction and Demand Reduction when need it. Bringing forward use of electricity [in variety of new applications] when know over-supply [from renewable energy, supplied at negative cost].

[…]

James Delingpole : Worsely Wronger

I wonder to myself – how wrong can James Delingpole get ? He, and Christopher Booker and Richard North, have recently attempted to describe something very, very simple in the National Grid’s plans to keep the lights on. And have failed, in my view. Utterly. In my humble opinion, it’s a crying shame that they appear to influence others.

“Dellingpole” (sic) in the Daily Mail, claims that the STOR – the Short Term Operating Reserve (not “Operational” as “Dellingpole” writes) is “secret”, for “that significant period when the wind turbines are not working”, and that “benefits of the supposedly ‘clean’ energy produced by wind turbines are likely to be more than offset by the dirty and inefficient energy produced by their essential diesel back-up”, all of which are outrageously deliberate misinterpretations of the facts :-

http://www.dailymail.co.uk/news/article-2362762/The-dirty-secret-Britains-power-madness-Polluting-diesel-generators-built-secret-foreign-companies-kick-theres-wind-turbines–insane-true-eco-scandals.html
“The dirty secret of Britain’s power madness: Polluting diesel generators built in secret by foreign companies to kick in when there’s no wind for turbines – and other insane but true eco-scandals : By James Dellingpole : PUBLISHED: 00:27, 14 July 2013”

If “Dellingpole” and his compadre in what appear to be slurs, Richard North, were to ever do any proper research into the workings of the National Grid, they would easily uncover that the STOR is a very much transparent, publicly-declared utility :-

http://www.nationalgrid.com/uk/Electricity/Balancing/services/balanceserv/reserve_serv/stor/

STOR is not news. Neither is the need for it to be beefed up. The National Grid will lose a number of electricity generation facilities over the next few years, and because of the general state of the economy (and resistance to wind power and solar power from unhelpful folk like “Dellingpole”) investment in true renewables will not entirely cover this shortfall.

Renewable energy is intermittent and variable. If an anticyclone high pressure weather system sits over Britain, there could be little wind. And if the sky is cloudy, there could be much less sun than normal. More renewable power feeding the grid means more opportunities when these breaks in service amount to something serious.

Plus, the age of other electricity generation plants means that the risk of “unplanned outage”, from a nuclear reactor, say, is getting higher. There is a higher probability of sudden step changes in power available from any generator.

The gap between maximum power demand and guaranteed maximum power generation is narrowing. In addition, the threat of sudden changes in output supply is increasing.

With more generation being directly dependent on weather conditions and the time of day, and with fears about the reliability of ageing infrastructure, there is a need for more very short term immediate generation backup to take up the slack. This is where STOR comes in.

Why does STOR need to exist ? The answer’s in the name – for short term balancing issues in the grid. Diesel generation is certainly not intended for use for long periods. Because of air quality issues. Because of climate change issues. Because of cost.

If the Meteorological Office were to forecast a period of low wind and low incident solar radiation, or a nuclear reactor started to dip in power output, then the National Grid could take an old gas plant (or even an old coal plant) out of mothballs, pull off the dust sheets and crank it into action for a couple of days. That wouldn’t happen very often, and there would be time to notify and react.

But if a windfarm suddenly went into the doldrums, or a nuclear reactor had to do an emergency shutdown, there would be few power stations on standby that could respond immediately, because it takes a lot of money to keep a power plant “spinning”, ready to use at a moment’s notice.

So, Delingpole, there’s no conspiracy. There’s engagement with generators to set up a “first responder” network of extra generation capacity for the grid. This is an entirely public process. It’s intended for short bursts of immediately-required power because you can’t seem to turn your air conditioner off. The cost and emissions will be kept to a minimum. You’re wrong. You’re just full of a lot of hot air.

Ed Davey : Polish Barbecue



This week, both Caroline Flint MP and Ed Balls MP have publicly repeated the commitment by the UK’s Labour Party to a total decarbonisation of the power sector by 2030, should they become the governing political party. At PRASEG’s Annual Conference, Caroline Flint said “In around ten years time, a quarter of our power supply will be shut down. Decisions made in the next few years […] consequences will last for decades […] keeping the lights on, and [ensuring reasonably priced] energy bills, and preventing dangerous climate change. […] Labour will have as an election [promise] a legally binding target for 2030. […] This Government has no vision.”

And when I was in an informal conversation group with Ed Davey MP and Professor Mayer Hillman of the Policy Studies Institute at a drinks reception after the event hosted by PRASEG, the Secretary of State for Energy and Climate Change seemed to me to also be clear on his personal position backing the 2030 “decarb” target.

Ed Davey showed concern about the work necessary to get a Europe-wide commitment on Energy and Climate Change. He took Professor Hillman’s point that carbon dioxide emissions from the burning of fossil fuels are already causing dangerous climate change, and that the risks are increasing. However, he doubted that immediate responses can be made. He gave the impression that he singled out Poland of all the countries in the European Union to be an annoyance, standing in the way of success. He suggested that if Professor Hillman wanted to do something helpful, he could fly to Poland…at this point Professor Hillman interjected to say he hasn’t taken a flight in 70 years and doesn’t intend to now…and Ed Davey continued that if the Professor wanted to make a valuable contribution, he could travel to Poland, taking a train, or…”I don’t care how you get there”, but go to Poland and persuade the Poles to sign up to the 2030 ambition.

Clearly, machinations are already afoot. At the PRASEG Annual Conference were a number of communications professionals, tightly linked to the debate on the progress of national energy policy. Plus, one rather exceedingly highly-networked individual, David Andrews, the key driver behind the Claverton Energy Research Group forum, of which I am an occasional participant. He had ditched the normal navy blue polyester necktie and sombre suit for a shiveringly sharp and open-necked striped shirt, and was doing his best to look dapper, yet zoned. I found him talking to a communications professional, which didn’t surprise me. He asked how I was.

JA : “I think I need to find a new job.”
DA : “MI6 ?”
JA : “Too boring !”

What I really should have said was :-

JA : “Absolutely and seriously not ! Who’d want to keep State Secrets ? Too much travel and being nice to people who are nasty. And making unbelievable compromises. The excitement of privilege and access would wear off after about six minutes. Plus there’s the risk of ending up decomposing in something like a locked sports holdall in some strange bathroom in the semblance of a hostelry in a godforsaken infested hellhole in a desolate backwater like Cheltenham or Gloucester. Plus, I’d never keep track of all the narratives. Or the sliding door parallel lives. Besides, I’m a bit of a Marmite personality – you either like me or you really don’t : I respond poorly to orders, I’m not an arch-persuader and I’m not very diplomatic or patient (except with the genuinely unfortunate), and I’m well-known for leaping into spats. Call me awkward (and some do), but I think national security and genuine Zero Carbon prosperity can be assured by other means than dark arts and high stakes threats. I like the responsibility of deciding for myself what information should be broadcast in the better interests of the common good, and which held back for some time (for the truth will invariably out). And over and above all that, I’m a technologist, which means I prefer details over giving vague impressions. And I like genuine democratic processes, and am averse to social engineering. I am entirely unsuited to the work of a secret propaganda and diplomatic unit.”

I would be prepared to work for a UK or EU Parliamentary delegation to Poland, I guess, if I could be useful in assisting with dialogue, perhaps in the technical area. I do after all have several academic degrees pertinent to the questions of Energy and Climate Change.

But in a room full of politicians and communications experts, I felt a little like a fished fish. Here, then, is a demonstration. I was talking with Rhys Williams, the Coordinator of PRASEG, and telling him I’d met the wonderful Professor Geoff Williams, of Durham Univeristy, who has put together a system of organic light emitting diode (LED) lighting and a 3-D printed control unit, and, and, and Rhys actually yawned. He couldn’t contain it, it just kind of spilled out. I told myself : “It’s not me. It’s the subject matter”, and I promptly forgave him. Proof, though, of the threshold for things technical amongst Westminster fixers and shakers.

Poland. I mean, I know James Delingpole has been to Poland, and I thought at the time he was possibly going to interfere with the political process on climate change, or drum up support for shale gas. But I’m a Zero Carbon kind of actor. I don’t need to go far to start a dialogue with Poland by going to Poland – I have Poles living in my street, and I’m invited to all their barbecues. Maybe I should invite Professor Mayer Hillman to cycle over to Waltham Forest and address my near neighbours and their extended friendship circle on the importance of renewable energy and energy efficiency targets, and ask them to communicate with the folks back home with any form of influence.

Battle of the Lords

I don’t quite know what powers Lord Deben, John Gummer, but he looks remarkably wired on it. At this week’s PRASEG Annual Conference, he positively glowed with fervour and gumption. He regaled us with tales of debate in the House of Lords, the UK’s parliamentary “senior” chamber. He is a known climate change science adherent, and in speaking to PRASEG, he was preaching to the choir, but boy, did he give a bone-rattling homily !

As Chairman of the Committee on Climate Change, he is fighting the good fight for carbon targets to be established in all areas of legislation, especially the in-progress Energy Bill. He makes the case that emissions restraint and constraint is now an international business value, and of importance to infrastructure investment :-

“The trouble with energy efficiency is that it’s not “boys’ toys” – there’s no “sex” in it. It is many small things put together to make a big thing. We won’t get to a point of decarbonisation unless we [continuously] make [the case for] [continuous] investment. […] GLOBE [of which I am a member] in a report – 33 major countries – doing so much. […] Look at what China is doing. Now a competitive world. If we want people to come here and invest, we need to have a carbon intensity target in 2030 [which will impact] [manufacturing] and the supply chain. [With the current strategy, the carbon targets are] put down in 2020 and picked up again in 2050. Too long a gap for business. They don’t know what happens in between. This is not all about climate change. It is about UK plc.”

To supplement this diet of upbeat encouragement, he added a good dose of scorn for fellow Lords of the House, the Lords Lawson (Nigel Lawson) and Lord Ridley (Matt Ridley) who, he seemed to be suggesting, clearly have not mastered the science of climate change, and who, I believe he imputed, have lost their marbles :-

“Apart from one or two necessary sideswipes, I agree with the previous speaker. There is no need for disagreement except for those who dismiss climate change. [I call them “dismissers” as we should not] dignify their position by calling them “sceptics”. We are the sceptics. We come to a conclusion based on science and we revisit it every time new science comes our way. They rifle through every [paper] to find every little bit that suppports their argument. I’ve listened to the interventions [in the House of Lords reading of and debate on the Energy Bill] of that group. Their line is the Earth is not [really] warming, so, it’s too expensive to do anything. This conflicts with today’s World Meteorological Organization measurements – that the last decade has been the warmest ever. I bet you that none of them [Lords] will stand up [in the House of Lords] and say “Sorry. We got it wrong.” They pick one set of statistics and ignore the rest. It is a concentrated effort to undermine by creating doubt. Our job is constantly to make it clear they we don’t need to argue the case – the very best science makes it certain [but never absolute]. You would be very foolish to ignore the consensus of view. […] In a serious grown-up world, we accept the best advice – always keeping an eye out for new information. Otherwise, [you would] make decisions on worst information – no sane person does that.”

He encouraged us to encourage the dissenters on climate change science to view the green economy as an insurance policy :-

“Is there a householder here who does not insure their houses against fire ? You have a 98% change of not having a fire. Yet you spend on average £140 a year on insurance. Because of the size of the disaster – the enormity of the [potential] loss. Basic life-supporting insurance. I’m asking for half of that. If only Lord Lawson would listen to the facts instead of that Doctor of Sports Science, Benny Peiser. Or Matt Ridley – an expert in the sexual habits of pheasants. If I want to know about pheasants, I will first ask Lord Ridley. Can he understand why I go to a climatologist first ? [To accept his view of the] risks effects of climate change means relying on the infallibility of Lord Lawson […]”

He spoke of cross-party unity over the signing into law of the Climate Change Act, and the strength of purpose within Parliament to do the right thing on carbon. He admitted that there were elements of the media and establishment who were belligerently or obfuscatingly opposing the right thing to do :-

“[We] can only win if the world outside has certainty about institutional government. This is a battle we have taken on and won’t stop till we win it. [The Lord Lawson and Lord Ridley and their position is] contrary to science, contrary to sense and contrary to the principle of insurance. They will not be listened to, not now, until UK has reduced level of carbon emissions, and we have [promised] our grandchildren they they are safe from climate change.”

Phew ! That was a war cry, if ever there was one ! We are clearly in the Salvation Army ! I noted the attendance list, that showed several Gentlemen and Ladies of the Press should have been present, and hope to read good reports, but know that in some parts of the Gutter, anti-science faecal detritus still swirls. We in One Birdcage Walk were the assembly of believers, but the general public conversation on carbon is poisoned with sulphurous intent.

Birdcage Walk : Cheesestick Rationing


Yesterday…no, it’s later than I think…two days ago, I attended the 2013 Conference of PRASEG, the Parliamentary Renewable and Sustainable Energy Group, at the invitation of Rhys Williams, the long-suffering Coordinator. “…Sorry…Are you upset ?” “No, look at my face. Is there any emotion displayed there ?” “No, you look rather dead fish, actually”, etc.

At the prestigious seat of the Institute of Mechanical Engineers (IMechE), One Birdcage Walk, we were invited down into the basement for a “drinks reception”, after hearing some stirring speeches and intriguing panel discussions. Despite being promised “refreshments” on the invitation, there had only been beverages and a couple of bikkies up until now, and I think several of the people in the room were starting to get quite hypoglycemic, so were grateful to see actual food being offered.

A market economy immediately sprang up, as there was a definite scarcity in the resources of cheesesticks, and people jostled amiably, but intentionally, so they could cluster closest to the long, crispy cow-based snacks. The trading medium of exchange was conversation. “Jo, meet Mat Hope from Carbon Brief, no Maf Smith from Renewable UK. You’ve both been eviscerated by Delingpole online”, and so on.

“Welcome to our own private pedestal”, I said to somebody, who it turned out had built, probably in the capacity of developer, a sugarcane bagasse Combined Heat and Power plant. The little table in the corner had only got room around it for three or at most four people, and yet had a full complement of snack bowls. Bonus. I didn’t insist on memorising what this fellow told me his name was. OK, I didn’t actually hear it above the hubbub. And he was wearing no discernible badge, apart from what appeared to be the tinge of wealth. He had what looked like a trailing truculent teenager with him, but that could have been a figment of my imagination, because the dark ghost child spoke not one word. But that sullenness, and general anonymity, and the talkative gentleman’s lack of a necktie, and his slightly artificial, orange skin tone, didn’t prevent us from engaging wholeheartedly in a discussion about energy futures – in particular the default options for the UK, since there is a capacity crunch coming very soon in electricity generation, and new nuclear power reactors won’t be ready in time, and neither will Carbon Capture and Storage-fitted coal-fired power plants.

Of course, the default options are basically Natural Gas and wind power, because large amounts can be made functional within a five year timeframe. My correspondent moaned that gas plants are closing down in the UK. We agreed that we thought that new Combined Cycle Gas Turbine plant urgently needs to be built as soon as possible – but he despaired of seeing it happen. He seemed to think it was essential that the Energy Bill should be completed as soon as possible, with built-in incentives to make Gas Futures a reality.

I said, “Don’t wait for the Energy Bill”. I said, “Intelligent people have forecast what could happen to Natural Gas prices within a few years from high European demand and UK dependence, and are going to build gas plant for themselves. We simply cannot have extensions on coal-fired power plants…” He agreed that the Large Combustion Plant Directive would be closing the coal. I said that there was still something like 20 gigawatts of permissioned gas plant ready to build – and with conditions shaping up like they are, they could easily get financed.

Earlier, Nigel Cornwall, of Cornwall Energy had put it like this :-

“Deliverability and the trilemma [meeting all three of climate change, energy security and end-consumer affordability concerns] [are key]. Needs to be some joined-up thinking. […] There is clearly a deteriorating capacity in output – 2% to 5% reduction. As long as I’ve worked in the sector it’s been five minutes to midnight, [only assuaged by] creative thinking from National Grid.”

However, the current situation is far from bog standard. As Paul Dickson of Glennmont Partners said :-

“£110 billion [is needed] to meet the [electricity generation] gap. We are looking for new sources of capital. Some of the strategic institutional capital – pension funds [for example] – that’s who policy needs to be directed towards. We need to look at sources of capital.”

Alistair Buchanan, formerly of Ofgem, the power sector regulator, and now going to KPMG, spent the last year or so of his Ofgem tenure presenting the “Crunch Winter” problem to as many people as he could find. His projections were based on a number of factors, including Natural Gas supply questions, and his conclusion was that in the winter of 2015/2016 (or 2016/2017) power supply could get thin in terms of expansion capacity – for moments of peak demand. Could spell crisis.

The Government might be cutting it all a bit fine. As Jenny Holland of the Association for the Conservation of Energy said :-

“[Having Demand Reduction in the Capacity Mechanism] Not our tip-top favourite policy outcome […] No point to wait for “capacity crunch” to start [Energy Demand Reduction] market.”

It does seem that people are bypassing the policy waiting queue and getting on with drawing capital into the frame. And it is becoming more and more clear the scale of what is required. Earlier in the afternoon, Caroline Flint MP had said :-

“In around ten years time, a quarter of our power supply will be shut down. Decisions made in the next few years. Consequences will last for decades. Keeping the lights on, and [ensuring reasonably priced] energy bills, and preventing dangerous climate change.”

It could come to pass that scarcity, not only in cheesesticks, but in electricity generation capacity, becomes a reality. What would policy achieve then ? And how should Government react ? Even though Lord Deben (John Gummer) decried in the early afternoon a suggestion implying carbon rationing, proposed to him by Professor Mayer Hillman of the Policy Studies Institute, it could yet turn out that electricity demand reduction becomes a measure that is imposed in a crisis of scarcity.

As I put it to my sugarcane fellow discussionee, people could get their gas for heating cut off at home in order to guarantee the lights and banks and industry stay on, because UK generation is so dependent on Natural Gas-fired power.

Think about it – the uptake of hyper-efficient home appliances has turned down owing to the contracting economy, and people are continuing to buy and use electronics, computers, TVs and other power-sucking gadgets. Despite all sizes of business having made inroads into energy management, electricity consumption is not shifting downwards significantly overall.

We could beef up the interconnectors between the UK and mainland Europe, but who can say that in a Crunch Winter, the French and Germans will have any spare juice for us ?

If new, efficient gas-fired power plants are not built starting now, and wind farms roll out is not accelerated, the Generation Gap could mean top-down Energy Demand Reduction measures.

It would certainly be a great social equaliser – Fuel Poverty for all !

They Think It’s Not All Over



[ Image Credit : Lakeview Gusher : TotallyTopTen.com ]

So, the EIA say that the world has 10 years of shale oil resources which are technically recoverable. Woo hoo. We’ll pass over the question of why the American Department of Energy are guiding global energy policy, and why this glowing pronouncement looks just like the mass propaganda exercise for shale gas assessments that kicked off a few years ago, and move swiftly on to the numbers.

No, actually, not straight on to the numbers. It shouldn’t take a genius to work out the public relations strategy for promoting increasingly dirtier fossil fuels. First, they got us accustomed to the idea of shale gas, and claimed without much evidence, that it was as “clean” as Natural Gas, and far, far cleaner than coal. Data that challenges this myth continues to be collected. Meanwhile, now we are habituated to accepting without reason the risks of subsurface and ground water reservoir destruction by hydraulic fracturing, we should be pliable enough to accept the next step up – oil shale oil fracking. And then the sales team can move on to warm us up to cruddier unconventionals, like bitumen exhumed from tar sands, and mining unstable sub-sea clathrates.

Why do the oil and gas companies of the world and their trusted allies in the government energy departments so desperately want us to believe in the saving power of shale oil and gas ? Why is it necessary for them to pursue such an environmentally threatening course of product development ? Can it be that the leaders of the developed world and their industry experts recognise, but don’t want to admit to, Peak Oil, and its twin wraith, Peak Natural Gas, that will shadow it by about 10 to 15 years ?

A little local context – UK oil production is falling like a stoneover the whole North Sea area. Various efforts have been made to stimulate new investment in exploration and discovery. The overall plan for the UK Continental Shelf has included opening up prospects via licence to smaller players in the hope of getting them to bet the farm, and if they come up trumps, permitted the larger oil and gas companies to snaffle up the small fry.

But really, the flow of Brent crude oil is getting more expensive to guarantee. And it’s not just the North Sea – the inverse pyramid of the global oil futures market is teeteringly wobbly, even though Natural Gas Liquids (NGL) are now included in petroleum oil production figures. Cue panic stations at the Coalition (Oilition) Government offices – frantic rustling of review papers ahoy.

To help them believe it’s not all over, riding into view from the stables of Propaganda Central, come the Six Horsemen of Unconventional Fossil Fuels : Tar Sands, Shale Gas, Shale Oil (Oil Shale Oil), Underground Coal Gasification, Coalbed Methane and Methane Hydrates.

Shiny, happy projections of technically recoverable unconventional (night)mares are always lumped together, like we are able to suddenly open up the ground and it starts pouring out hydrocarbon goodies at industrial scale volumes. But no. All fossil fuel development is gradual – especially at the start of going after a particular resource. In the past, sometimes things started gushing or venting, but those days are gone. And any kind of natural pump out of the lithosphere is entirely absent for unconventional fossil fuels – it all takes energy and equipment to extract.

And so we can expect trickles, not floods. So, will this prevent field depletion in any region ? No. It’s not going to put off Peak Oil and Peak Natural Gas – it literally cannot be mined fast enough. Even if there are 10 years of current oil production volumes that can be exploited via mining oil shale, it will come in dribs and drabs, maybe over the course of 50 to 100 years. It might prolong the Peak Oil plateau by a year or so – that’s barely a ripple. Unconventional gas might be more useful, but even this cannot delay the inevitable. For example, despite the USA shale gas “miracle”, as the country continues to pour resources and effort into industrialising public lands, American Peak Natural Gas is still likely to be only 5 years, or possibly scraping 10 years, behind Global Peak Natural Gas which will bite at approximately 2030 or 2035-ish. I suspect this is why EIA charts of future gas production never go out beyond 2045 or so :-

Ask a mathematician to model growth in unconventional fossil fuels compared to the anticipated and actual decline in “traditional” fossil fuels, and ask if unconventionals will compensate. They will not.

The practice for oil and gas companies is to try to maintain shareholder confidence by making sure they have a minimum of 10 years of what is known as Reserves-to-Production ratio or R/P. By showing they have at least a decade of discovered resources, they can sell their business as a viable investment. Announcing that the world has 10 years of shale oil it can exploit sounds like a healthy R/P, but in actual fact, there is no way this can be recovered in that time window. The very way that this story has been packaged suggests that we are being encouraged to believe that the fossil fuel industry are a healthy economic sector. Yet it is so facile to debunk that perspective.

People, it’s time to divest your portfolios of oil and gas concerns. If they have to start selling us the wonders of bitumen and kerogen, the closing curtain cannot be far away from dropping.

They think it’s not all over, but it so clearly must be.

Carbon Bubble : Unburnable Assets



[ Image Credit : anonymous ]


Yet again, the fossil fuel companies think they can get away with uncommented public relations in my London neighbourhood. Previously, it was BP, touting its green credentials in selling biofuels, at the train station, ahead of the Olympic Games. For some reason, after I made some scathing remarks about it, the advertisement disappeared, and there was a white blank board there for weeks.

This time, it’s Esso, and they probably think they have more spine, as they’ve taken multiple billboard spots. In fact, the place is saturated with this advertisement. And my answer is – yes, fuel economy is important to me – that’s why I don’t have a car.

And if this district is anything to go by, Esso must be pouring money into this advertising campaign, and so my question is : why ? Why aren’t they pouring this money into biofuels research ? Answer : because that’s not working. So, why aren’t they putting this public relations money into renewable gas fuels instead, sustainable above-surface gas fuels that can be used in compressed gas cars or fuel cell vehicles ?

Are Esso retreating into their “core business” like BP, and Shell, concentrating on petroleum oil and Natural Gas, and thereby exposing all their shareholders to the risk of an implosion of the Carbon Bubble ? Or another Deepwater Horizon, Macondo-style blowout ?

Meanwhile, the movement for portfolio investors to divest from fossil fuel assets continues apace…

Renewable Gas : Research Parameters

“So what do you do ?” is a question I quite frequently have to answer, as I meet a lot of new people, in a lot of new audiences and settings, on a regular basis, as an integral part of my personal process of discovery.

My internal autocue answer has modified, evolved, over the years, but currently sounds a lot like this, “I have a couple of part-time jobs, office administration, really. I do a spot of weblogging in my spare time. But I’m also doing some research into the potential for Renewable Gas.” I then pause for roughly two seconds. “Renewable Gas ?” comes back the question.

“Yes,” I affirm in the positive, “Industrial-scale chemistry to produce gas fuels not dug up out of the ground. It is useful to plug the gaps in Renewable Electricity when the sun isn’t shining and the wind isn’t blowing.”

It’s not exactly an elevator pitch – I’m not really selling anything except a slight shift in the paradigm here. Renewable Energy. Renewable Electricity. Renewable Gas. Power and gas. Gas and power. It’s logical to want both to be as renewable and sustainable and as low carbon as possible.

Wait another two seconds. “…What, you mean, like Biogas ?” comes the question. “Well, yes, and also high volumes of non-biological gas that’s produced above the ground instead of from fossil fuels.”

The introductory chat normally fades after this exchange, as my respondent usually doesn’t have the necessary knowledge architecture to be able to make any sense of what my words represent. I think it’s fair to say I don’t win many chummy friends paradigm-bumping in this way, and some probably think I’m off the deep end psychologically, but hey, evolutionaries don’t ever have it easy.

And I also find that it’s not easy to find a place in the hierarchy of established learning for my particular “research problem”. Which school could I possibly join ? Which research council would adopt me ?

The first barrier to academic inclusion is that my research interest is clearly motivated by my concern about the risks of Climate Change – the degradation in the Earth’s life support systems from pumping unnaturally high volumes of carbon dioxide into the air – and Peak Fossil Fuels – the risks to humanity from a failure to grow subsurface energy production.

My research is therefore “applied” research, according to the OECD definition (OECD, 2002). It’s not motivated simply by the desire to know new things – it is not “pure” research – it has an end game in mind. My research is being done in order to answer a practical problem – how to decarbonise gaseous, gas phase, energy fuel production.

The second barrier to the ivory tower world that I have is that I do not have a technological contribution to make with this research. I am not inventing a chemical process that can “revolutionise” low carbon energy production. (I don’t believe in “revolutions” anyway. Nothing good ever happens by violent overthrow.) My research is not at the workbench end of engineering, so I am not going to work amongst a team of industrial technicians, so I am not going to produce a patent for clean energy that could save the world (or the economy).

My research is more about observing and reporting the advances of others, and how these pieces add up to a journey of significant change in the energy sector. I want to join the dots from studies at the leading edge of research, showing how this demonstrates widespread aspiration for clean energy, and document instances of new energy technology, systems and infrastructure. I want to witness to the internal motivation of thousands of people working with the goal of clean energy across a very wide range of disciplines.

This is positively positive; positivity, but it’s not positivism – it’s not pure, basic research. This piece of research could well influence people and events – it’s certainly already influencing me. It’s not hands-off neutral science. It interacts with its subjects. It intentionally intervenes.

Since I don’t have an actual physical contribution or product to offer, and since I fully expect it to “interfere” with current dogma and political realities, what I am doing will be hard to acknowledge.

This is not a PhD. But it is still a piece of philosophy, the love of wisdom that comes from the acquisition of knowledge.

I have been clear for some time about what I should be studying. Call it “internal drive” if you like. The aim is to support the development of universal renewable energy as a response to the risks of climate change and peak fossil fuel energy production. That makes me automatically biased. I view my research subject through the prism of hope. But I would contend that this is a perfectly valid belief, as I already know some of what is possible. I’m not starting from a foundational blank slate – many Renewable Gas processes are already in use throughout industry and the energy sector. The fascinating part is watching these functions coalesce into a coherent alternative to the mining of fossil fuels. For the internal industry energy production conversation is changing its track, its tune.

For a while now, “alternative” energy has been a minor vibration, a harmonic, accentuating the fossil fuel melody. As soon as the mid-noughties economic difficulties began to bite, greenwash activities were ditched, as oil and gas companies resorted to their core business. But the “green shoots” of green energy are still there, and every now and then, it is possible to see them poking up above the oilspill-desecrated soil. My role is to count blades and project bushes. Therefore my research is interpretivist or constructivist, although it is documenting positivist engineering progress. That’s quite hard for me to agree with, even though I reasoned it myself. I can still resist being labelled “post-positivist”, though, because I’m still interpreting reality not relativisms.

So now, on from research paradigm to research methodologies. I was trained to be an experimentalist scientist, so this is a departure for me. In this case, I am not going to seek to make a physical contribution to the field by being actively involved as an engineer in a research programme, partly because from what I’ve read so far, most of the potential is already documented and scoped.

I am going to use sociological methods, combining observation and rapportage, to and from various organisations through various media. Since I am involved in the narrative through my interactions with others, and I influence the outcomes of my research, this is partly auto-narrative, autoethnographic, ethnographic. An apt form for the research documentation is a weblog, as it is a longitudinal study, so discrete reports at time intervals are appropriate. Social media will be useful for joining the research to a potential audience, and Twitter has the kind of immediacy I prefer.

My observation will therefore be akin to journalism – engineering journalism, where the term “engineering” covers both technological and sociological aspects of change. A kind of energy futures “travelogue”, an observer of an emerging reality.

My research methods will include reading the science and interacting with engineers. I hope to do a study trip (or two) as a way of embedding myself into the new energy sector, with the explicit intention of ensuring I am not purely a commentator-observer. My research documentation will include a slow collation of my sources and references – a literature review that evolves over time.

My personal contribution will be slight, but hopefully set archaic and inefficient proposals for energy development based on “traditional” answers (such as nuclear power, “unconventional” fossil fuel production and Carbon Capture and Storage for coal) in high relief.

My research choices as they currently stand :-

1. I do not think I want to join an academic group.

2. I do not think I want to work for an energy engineering company.

3. I do not want to claim a discovery in an experimental sense. Indeed, I do not need to, as I am documenting discoveries and experiments.

4. I want to be clear about my bias towards promoting 100% renewable energy, as a desirable ambition, in response to the risks posed by climate change and peak fossil fuel production.

5. I need to admit that my research may influence outcomes, and so is applied rather than basic (Roll-Hansen, 2009).

References

OECD, 2002. “Proposed Standard Practice for Surveys on Research and Experimental Development”, Frascati Manual :-
http://browse.oecdbookshop.org/oecd/pdfs/free/9202081e.pdf

Roll-Hansen, 2009. “Why the distinction between basic (theoretical) and applied (practical) research is important in the politics of science”, Nils Roll-Hansen, Centre for the Philosophy of Natural and Social Science Contingency and Dissent in Science, Technical Report 04/09 :-
http://www2.lse.ac.uk/CPNSS/projects/CoreResearchProjects/ContingencyDissentInScience/DP/DPRoll-HansenOnline0409.pdf

New Nuclear : Credibility Strained

As rumours and genuine information leak from central sources about the policy instruments and fiscal measures that will be signed into the United Kingdom’s Energy Bill, the subsidy support likely to be made available to new nuclear power is really straining credibility from my point of view. I am even more on the “incredulous” end of the spectrum of faith in the UK Government’s Energy Policy than I ever was before.

The national demand for electrical power is pretty constant, with annual variations of only a few percent. It was therefore easy to project that there could be a “power cliff” when supply would be curtailed from coal-fired generation under European legislation :-

https://www.gov.uk/government/organisations/department-of-energy-climate-change/series/energy-trends

http://www.bbc.co.uk/news/business-21501878
http://www.guardian.co.uk/money/2013/feb/19/ofgem-higher-household-energy-bills
http://www.telegraph.co.uk/finance/newsbysector/energy/9878281/Ofgem-boss-warns-of-higher-energy-prices-in-supply-roller-coaster.html
http://www.telegraph.co.uk/finance/newsbysector/energy/9878281/Ofgem-boss-warns-of-higher-energy-prices-in-supply-roller-coaster.html
http://metro.co.uk/2013/02/19/consumers-face-higher-energy-bills-as-the-uk-becomes-more-reliant-on-gas-imports-3503130/
https://www.gov.uk/government/news/decc-statement-on-alistair-buchanan-s-comments-on-energy-security-and-rising-gas-prices

The pat answer to how we should “Keep the Lights On” has been to wave the new nuclear fission reactor card. Look ! Shiny new toys. Keep us in power for yonks ! And hidden a little behind this fan of aces and jokers, a get-out-of-jail free card from the Coal monopoly – Carbon Capture and Storage or CCS. Buy into this, and we could have hundreds more years of clean power from coal, by pumping nasty carbon dioxide under the sea bed.

Now, here’s where the answers are just plain wrong : new nuclear power cannot be brought into the National Grid before the early 2020s at the very earliest. And options for CCS are still in the balance, being weighed and vetted, and very unlikely to clean up much of the black stuff until well past 2025.

When put through my best onboard guesstimiser, I came up with the above little graph in answer to the question : how soon can the UK build new power generation ? Since our “energy cliff” is likely to be in one of the winters of 2015 or 2016, and we’re not sure other countries we import from will have spare capacity, we have little option but to increase Natural Gas-fired power generation and go hell-for-leather with the wind and solar power deployment.

So no – it’s of no use promising to pay the new nuclear reactor bearer the sum of 40 or more years of subsidy in the form of guaranteed price for power under the scheme known as Contracts for Difference – they still won’t be delivering anything to cope with the “power drain” of the next few years. If this is written into the Electricity Market Reform, we could justifiably say this would destroy competition, and destroy any market, too, and be “central planning” by any other name – this level of subsidy is not exactly “technology-neutral” !

http://www.guardian.co.uk/business/2013/feb/19/edf-40-year-contract-nuclear-plant
http://www.telegraph.co.uk/news/uknews/9879257/Government-drawing-up-ludicrous-40-year-contracts-to-persuade-power-companies-to-go-nuclear.html

And offering the so-called Capacity Mechanism – a kind of top-up payment to keep old nuclear reactors running, warts and all – when really they should be decommissioned as they are reaching the end of their safe lives, is not a good option, in my book.

Offering the Capacity Mechanism to those who build new gas-fired power plant does make sense, however. If offshore wind power continues with its current trajectory and hits the big time in the next few years, and people want the cheap wind power instead of the gas, and the gas stations will be feeling they can’t run all the time, then the Capacity Mechanism will be vital to make sure the gas plant does get built to back up the wind power, and stays available to use on cold, still nights in February.

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/66039/7103-energy-bill-capacity-market-impact-assessment.pdf
http://gastopowerjournal.com/regulationapolicy/item/1405-eurelectric-discards-eu-wide-capacity-mechanism-as-premature
http://www.eaem.co.uk/news/doubts-gas-strategy-will-lead-new-plants

Oh, people may complain about the idea of new “unabated” gas power plants, and insist they should be fitted with carbon capture, but new gas plants won’t run all the time in future, because renewable electricity generation will be cheaper, so forcing gas plant owners to pay for CCS seems like overkill to me. And, anyway, we will be decarbonising the gas supply, as we develop supplies of Renewable Gas.

I say forget the nuclear option – build the gas !

Gas Strategy “Dangerous Gamble”

I had a most refreshing evening at Portcullis House in Westminster this evening – apart from the fact that the Macmillan Room was overheated, so you couldn’t possibly deduce that energy conservation is intended to be part of the UK Government’s strategy, making an example with the public sector.

Tonight was the launch of the Greenpeace and WWF-UK report “A Study into the Economics of Gas and Offshore Wind“, which was commissioned from Cambridge Econometrics.

Professor Paul Ekins got up to speak and actually had the gall to declare the Government’s “Gas Strategy” to be a “dangerous gamble”. It was at this point that I took heart again – there are still some sane, rational people in the “national energy conversation”, even though Ekins did admit that he wasn’t sure that the “Gas Strategy” was an actual thing. Oh, but it is. All eighty pages of it.

Today was not the first time Professor Paul Ekins called out the Government on this, apparently, although I didn’t have a recollection of seeing the the mention in New Scientist before today.

Other highlights of the evening were provided by Laura Sandys MP naming her political opposition Alan Whitehead MP as the leader of a “parliamentary roadshow” on Energy and Climate Change, and questioning the use of the term “energy efficiency”. “It’s energy waste, guys”, she corrected and said we should be using that term instead of the “effete word efficiency”, and encouraged the energy waste prevention industry to get the rest of us engaged with their products.

A chap from Scottish and Southern Energy (SSE) – I think it might have been Kevin MacLean – got up during questions from the floor, and almost begged for a long-term framework – a plan for renewable energy – a “binding framework” to encourage investment and “get costs down”.

It was pointed out during the evening, that, logically enough, that policy is important to energy futures, “if you have more certainty, you get more investment”. And there was encouragement to get Government Departments to think about this more. Yes, some subsidies and other forms of support are going to be needed to get the renewable energy revolution kickstarted, but “if [we] get benefits – isn’t that a price worth paying ?” The benefits outlined included potential for some small growth in the economy, around about 0.8% GDP, but good prospects for high value employment in depressed coastal towns where much of the offshore wind industry will host engineers, both for construction and ongoing operations and maintenance.

Laura Sandys MP was ashamed to say that she may no longer be able to claim she has the two largest offshore wind farms in her constituency – as progress is being made elsewhere.

Sarah Merrick from Vestas, the wind power engineering firm, emphasised that the economics of wind power stacks up and that it’s important to communicate this – despite the current dismissive media agenda – where she said it is important to defend the industry against certain media claims.

Lord Alan Haworth brought up the inevitable question of renewable energy intermittency – “days of dead calm and dark nights”. He raised the statistic that weather systems in Europe can cover 1,500 kilometres, so if wind power is down in the UK, it’s going to be down elsewhere in the EU electricity networks – the countries we have interconnectors with. What he didn’t elaborate on was this – just as the UK is beefing (and I don’t mean “up to 100% horsing about”) up its connections with the European electricity networks, so too, Europe as a whole is beginning to reach out with its networks to satellite countries. What that could mean is that even if wind-powered electrons in the UK take a dive, electrons could still appear in the power network from very far afield, and shunt power to the UK.

The speaker from the Crown Estate said that it was “sensible” to push for a good quantity of wind power – and that the report was a compelling argument. He regretted that it could not be guaranteed that the wind power-ed economy would necessarily have more of its supply chain in the UK – as various bodies have to comply with EU trade rules – but that there was a commitment in one part of the industry to 50% indigenous resourcing and employment (if I noted that down correctly).

Long-term policy clarity was espoused. Disappointment was expressed in the Coalition Government’s flip-flop about gas – emphasising the development of gas-powered electricity generation at the expense of projecting high levels of renewables (65%, says the report, is perfectly feasible) – and that it gave mixed messages – which weren’t helping investment decisions. Sarah Merrick repeated the E.On line that UK electricity should be “balanced by gas, not based on gas”, although she didn’t explain that they weren’t necessarily talking about wind power being the mainstay of new generation capacity.

It was generally agreed that David Cameron should lead and adopt the EU 2030 renewable energy targets – to enable billions of new confidence in the UK energy sector.

Not having a strong lead on renewable energy and energy waste reduction would be an “abdication of responsibility on the part of the policy-creating machine”. And, “even if shale gas does materialise”, it would not provide much stimulus.

A Referendum for Energy

As I dodged the perfunctory little spots of snow yesterday, on my way down to Highbury and Islington underground train station, I passed a man who appeared to have jerky muscle control attempting to punch numbers on the keypad of a cash machine in the wall. He was missing, but he was grinning. A personal joke, perhaps. The only way he could get his money out of the bank to buy a pint of milk and a sliced loaf for his tea was to accurately tap his PIN number. But he wasn’t certain his body would let him. I threw him an enquiring glance, but he seemed too involved in trying to get control of his arms and legs to think of accepting help.

This, I felt, was a metaphor for the state of energy policy and planning in the United Kingdom – everybody in the industry and public sector has focus, but nobody appears to have much in the way of overall control – or even, sometimes, direction. I attended two meetings today setting out to address very different parts of the energy agenda : the social provision of energy services to the fuel-poor, and the impact that administrative devolution may have on reaching Britain’s Renewable Energy targets.

At St Luke’s Centre in Central Street in Islington, I heard from the SHINE team on the progress they are making in providing integrated social interventions to improve the quality of life for those who suffer fuel poverty in winter, where they need to spend more than 10% of their income on energy, and are vulnerable to extreme temperatures in both summer heatwaves and winter cold snaps. The Seasonal Health Interventions Network was winning a Community Footprint award from the National Energy Action charity for success in their ability to reach at-risk people through referrals for a basket of social needs, including fuel poverty. It was pointed out that people who struggle to pay energy bills are more likely to suffer a range of poverty problems, and that by linking up the social services and other agencies, one referral could lead to multiple problem-solving.

In an economy that is suffering signs of contraction, and with austerity measures being imposed, and increasing unemployment, it is clear that social services are being stretched, and yet need is still great, and statutory responsibility for handling poverty is still mostly a publicly-funded matter. By offering a “one-stop shop”, SHINE is able to offer people a range of energy conservation and efficiency services alongside fire safety and benefits checks and other help to make sure those in need are protected at home and get what they are entitled to. With 1 in 5 households meeting the fuel poverty criteria, there is clearly a lot of work to do. Hackney and Islington feel that the SHINE model could be useful to other London Boroughs, particularly as the Local Authority borders are porous.

We had a presentation on the Cold Weather Plan from Carl Petrokovsky working for the Department of Health, explaining how national action on cold weather planning is being organised, using Met Office weather forecasts to generate appropriate alert levels, in a similar way to heatwave alerts in summer – warnings that I understand could become much more important in future owing to the possible range of outcomes from climate change.

By way of some explanation – more global warming could mean significant warming for the UK. More UK warming could mean longer and, or, more frequent heated periods in summer weather, perhaps with higher temperatures. More UK warming could also mean more disturbances in an effect known as “blocking” where weather systems lock into place, in any season, potentially pinning the UK under a very hot or very cold mass of air for weeks on end. In addition, more UK warming could mean more precipitation – which would mean more rain in summer and more snow in winter.

Essentially, extremes in weather are public health issues, and particularly in winter, more people are likely to suffer hospitalisation from the extreme cold, or falls, or poor air quality from boiler fumes – and maybe end up in residential care. Much of this expensive change of life is preventable, as are many of the excess winter deaths due to cold. The risks of increasing severity in adverse conditions due to climate change are appropriately dealt with by addressing the waste of energy at home – targeting social goals can in effect contribute to meeting wider adaptational goals in overall energy consumption.

If the UK were to be treated as a single system, and the exports and imports of the most significant value analysed, the increasing net import of energy – the yawning gap in the balance of trade – would be seen in its true light – the country is becoming impoverished. Domestic, indigenously produced sources of energy urgently need to be developed. Policy instruments and measured designed to reinvigorate oil and gas exploration in the North Sea and over the whole UKCS – UK Continental Shelf – are not showing signs of improving production significantly. European-level policy on biofuels did not revolutionise European agriculture as regards energy cropping – although it did contribute to decimating Indonesian and Malaysian rainforest. The obvious logical end point of this kind of thought process is that we need vast amounts of new Renewable Energy to retain a functioning economy, given global financial, and therefore, trade capacity, weakness.

Many groups, both with the remit for public service and private enterprise oppose the deployment of wind and solar power, and even energy conservation measures such as building wall cladding. Commentators with access to major media platforms spread disinformation about the ability of Renewable Energy technologies to add value. In England, in particular, debates rage, and many hurdles are encountered. Yet within the United Kingdom as a whole, there are real indicators of progressive change, particularly in Scotland and Wales.

I picked up the threads of some of these advances by attending a PRASEG meeting on “Delivering Renewable Energy Under Devolution”, held at the Institution of Mechanical Engineers in Westminster, London; a tour to back up the launch of a new academic report that analyses performance of the devolved administrations and their counterpart in the English Government in Westminster. The conclusions pointed to something that I think could be very useful – if Scotland takes the referendum decision for independence, and continues to show strong leadership and business and community engagement in Renewable Energy deployment, the original UK Renewable Energy targets could be surpassed.

I ended the afternoon exchanging some perceptions with an academic from Northern Ireland. We shared that Eire and Northern Ireland could become virtually energy-independent – what with the Renewable Electricity it is possible to generate on the West Coast, and the Renewable Gas it is possible to produce from the island’s grass (amongst other things). We also discussed the tendency of England to suck energy out of its neighbour territories. I suggested that England had appropriated Scottish hydrocarbon resources, literally draining the Scottish North Sea dry of fossil fuels in exchange for token payments to the Western Isles, and suchlike. If Scotland leads on Renewable Energy and becomes independent, I suggested, the country could finally make back the wealth it lost to England. We also shared our views about the Republic of Ireland and Northern Ireland being asked to wire all their new Renewable Electricity to England, an announcement that has been waiting to happen for some time. England could also bleed Wales of green power with the same lines being installed to import green juice from across the Irish Sea.

I doubt that politics will completely nix progress on Renewable Energy deployment – the economics are rapidly becoming clear that clean, green power and gas are essential for the future. However, I would suggest we could expect some turbulence in the political sphere, as the English have to learn the hard way that they have a responsibility to rapidly increase their production of low carbon energy.

Asking the English if they want to break ties with the European Union, as David Cameron has suggested with this week’s news on a Referendum, is the most unworkable idea, I think. England, and in fact, all the individual countries of the United Kingdom, need close participation in Europe, to join in with the development of new European energy networks, in order to overcome the risks of economic collapse. It may happen that Scotland, and perhaps Wales, even, separate themselves from any increasing English isolation and join the great pan-Europe energy projects in their own right. Their economies may stabilise and improve, while the fortunes of England may tumble, as those with decision-making powers, crony influence and web logs in the Daily Telegraph and Daily Mail, resist the net benefits of the low carbon energy revolution.

[ Many thanks to Simon and all at the Unity Kitchen at St Luke’s Centre, and the handsomely reviving Unity Latte, and a big hi to all the lunching ladies and gents with whom I shared opinions on the chunkiness of the soup of the day and the correct identification of the vegetables in it. ]

Other Snapshots of Yesterday #1 : Approached by short woman with a notebook in Parliament Square, pointing out to me a handwritten list that included the line “Big Ben”. I pointed at the clock tower and started to explain. The titchy tourist apologised for non-comprehension by saying, “French”, so then I explained the feature attraction to her in French, which I think quite surprised her. We are all European.

Other Snapshots of Yesterday #2 : Spoke with an Austrian academic by the fire for coffee at IMechE, One Birdcage Walk, about the odd attitudes as regards gun ownership in the United States, and the American tendency to collective, cohort behaviour. I suggested that this tendency could be useful, as the levels of progressive political thinking, for instance about drone warfare, could put an end to the practice. When aerial bombardment was first conducted, it should have been challenged in law at that point. We are all Europeans.

Other Snapshots of Yesterday #3 : Met a very creative Belgian from Gent, living in London. We are all European.

Other Snapshots of Yesterday #4 : We Europeans, we are all so civilised. We think that we need to heat venues for meetings, so that people feel comfortable. Levels of comfort are different for different people, but the lack of informed agreement means that the default setting for temperature always ends up being too high. The St Luke’s Centre meeting room was at roughly 23.5 degrees C when I arrived, and roughly 25 degrees C with all the visitors in the room. I shared with a co-attendee that my personal maximum operating temperature is around 19 degrees C. She thought that was fine for night-time. The IMechE venue on the 2nd floor was roughly 19 – 20 degrees C, but the basement was roughly 24 degrees C. Since one degree Celsius of temperature reduction can knock about 10% of the winter heating bill, why are public meetings about energy not more conscious of adjusting their surroundings ?

Herşeyi Yak : Burn Everything

There’s good renewable energy and poorly-choiced renewable energy. Converting coal-burning power stations to burn wood is Double Plus Bad – it’s genuiunely unsustainable in the long-term to plan to combust the Earth’s boreal forests just to generate electricity. This idea definitely needs incinerating.

Gaynor Hartnell, chief executive of the Renewable Energy Association recently said, “Right now the government seems to have an institutional bias against new biomass power projects.” And do you know, from my point of view, that’s a very fine thing.

Exactly how locally-sourced would the fuel be ? The now seemingly abandoned plan to put in place a number of new biomass burning plants would rely on wood chip from across the Atlantic Ocean. That’s a plan that has a number of holes in it from the point of view of the ability to sustain this operation into the future. Plus, it’s not very efficient to transport biomass halfway across the world.

And there’s more to the efficiency question. We shouldn’t be burning premium wood biomass. Trees should be left standing if at all possible – or used in permanent construction – or buried so that they don’t decompose – if new trees need to be grown. Rather than burning good wood that could have been used for carbon sequestration, it would be much better, if we have to resort to using wood as fuel, to gasify wood waste and other wood by-products in combination with other fuels, such as excavated landfill, food waste and old rubber tyres.

Co-gasifying of mixed fuels and waste would allow cheap Carbon Capture and Storage (CCS) or Carbon Capture and (Re)Utilisation (CCU) options – and so if we have to top up the gasifiers with coal sometimes, at least it wouldn’t be leaking greenhouse gas to the atmosphere.

No, we shouldn’t swap out burning coal for incinerating wood, either completely or co-firing with coal. We should build up different ways to produce Renewable Gas, including the gasification of mixed fuels and waste, if we need fuels to store for later combustion. Which we will, to back up Renewable Electricity from wind, solar, geothermal, hydropower and marine resources – and Renewable Gas will be exceptionally useful for making renewable vehicle fuels.

Bioenergy with Carbon Capture and Storage : the wrong way :-
http://www.biofuelwatch.org.uk/wp-content/uploads/BECCS-report.pdf

Bioenergy with Carbon Capture and Storage : the right way :-
http://www.ecolateral.org/Technology/gaseifcation/gasificationnnfc090609.pdf
“The potential ability of gasifiers to accept a wider range of biomass feedstocks than biological routes. Thermochemical routes can use lignocellulosic (woody) feedstocks, and wastes, which cannot be converted by current biofuel production technologies. The resource availability of these feedstocks is very large compared with potential resource for current biofuels feedstocks. Many of these feedstocks are also lower cost than current biofuel feedstocks, with some even having negative costs (gate fees) for their use…”
http://www.uhde.eu/fileadmin/documents/brochures/gasification_technologies.pdf
http://www.gl-group.com/pdf/BGL_Gasifier_DS.pdf
http://www.energy.siemens.com/fi/en/power-generation/power-plants/carbon-capture-solutions/pre-combustion-carbon-capture/pre-combustion-carbon-capture.htm

The Art of Non-Persuasion

I could never be in sales and marketing. I have a strong negative reaction to public relations, propaganda and the sticky, inauthentic charm of personal persuasion.

Lead a horse to water, show them how lovely and sparkling it is, talk them through their appreciation of water, how it could benefit their lives, make them thirsty, stand by and observe as they start to lap it up.

One of the mnemonics of marketing is AIDA, which stands for Attention, Interest, Desire, Action, leading a “client” through the process, guiding a sale. Seize Attention. Create Interest. Inspire Desire. Precipitate Action. Some mindbenders insert the letter C for Commitment – hoping to be sure that Desire has turned into certain decision before permitting, allowing, enabling, contracting or encouraging the Action stage.

You won’t get that kind of psychological plasticity nonsense from me. Right is right, and wrong is wrong, and ethics should be applied to every conversion of intent. In fact, the architect of a change of mind should be the mind who is changing – the marketeer or sales person should not proselytise, evangelise, lie, cheat, sneak, creep and massage until they have control.

I refuse to do “Suggestive Sell”. I only do “Show and Tell”.

I am quite observant, and so in interpersonal interactions I am very sensitive to rejection, the “no” forming in the mind of the other. I can sense when somebody is turned off by an idea or a proposal, sometimes even before they know it clearly themselves. I am habituated to detecting disinclination, and I am resigned to it. There is no bridge over the chasm of “no”. I know that marketing people are trained to not accept negative reactions they perceive – to keep pursuing the sale. But I don’t want to. I want to admit, permit, allow my correspondent to say “no” and mean “no”, and not be harrassed, deceived or cajoled to change it to a “yes”.

I have been accused of being on the dark side – in my attempts to show and tell on climate change and renewable energy. Some assume that because I am part of the “communications team”, I am conducting a sales job. I’m not. My discovery becomes your discovery, but it’s not a constructed irreality. For many, it’s true that they believe they need to follow the path of public relations – deploying the “information deficit model” of communication – hierarchically patronising. Me, expert. You, poor unknowing punter. Me, inform you. You, believe, repent, be cleaned and change your ways. In this sense, communications experts have made climate change a religious cult.

In energy futures, I meet so many who are wild-eyed, desperate to make a sale – those who have genuine knowledge of their subject – and who realise that their pitch is not strong enough in the eyes of others. It’s not just a question of money or funding. The engineers, often in large corporations, trying to make an impression on politicians. The consultants who are trying to influence companies and civil servants. The independent professionals trying to exert the wisdom of pragmatism and negotiated co-operation. The establishment trying to sell technical services. Those organisations and institutions playing with people – playing with belonging, with reputation, marketing outdated narratives. People who are in. People who are hands-off. People who are tipped and ditched. Those with connections who give the disconnected a small rocky platform. The awkwardness of invested power contending with radical outsiders. Denial of changing realities. The dearth of ready alternatives. Are you ready to be captured, used and discarded ? Chase government research and development grants. Steal your way into consultations. Play the game. Sell yourself. Dissociate and sell your soul.

I have to face the fact that I do need to sell myself. I have to do it in a way which remains open and honest. To sell myself and my conceptual framework, my proposals for ways forward on energy and climate change, I need a product. My person is often not enough of a product to sell – I am neuro-atypical. My Curriculum Vitae CV in resume is not enough of a product to sell me. My performance in interviews and meetings is often not enough of a product. My weblog has never been a vehicle for sales. I didn’t want it to be – or to be seen as that – as I try to avoid deceit in communications.

Change requires facilitation. You can’t just walk away when the non-persuasional communications dialogue challenge gets speared with distrust and dismissal. Somehow there has to be a way to present direction and decisions in a way that doesn’t have a shadow of evil hovering in the wings.

“A moment to change it all, is all it takes to start anew.
To the other side.”


Why do I need to “sell” myself ? Why do I need to develop a product – a vehicle with which to sell myself ?

1. In order to be recognised, in order to be welcomed, invited to make a contribution to the development of low carbon energy, the optimisation of the use of energy, and effective climate change policy.

2. In order to put my internal motivations and drive to some practical use. To employ my human energy in the service of the future of energy engineering and energy systems.