Energy Change for Climate Control
RSS icon Home icon
  • JODI Oil and BP #4

    Posted on August 9th, 2016 Jo No comments

    In my seemingly futile and interminable quest to reconcile the differences between the data provided by the JODI Oil organisation and BP as revealed in part by the annual BP Statistical Review of World Energy, I have moved on to looking at production (primary supply), found a problem as regards Africa, and had some confirmation that a major adjustment in how the data is collected happened in 2009.

    First – the problem with Africa. The basket “Other Africa” for oil production is far less in the BP data than it is in the JODI Oil data – shown by negative figures in the comparison. For 2015, this is approximately 65% in scale (-3800 KBD) of the summed positive difference between the BP and JODI figures for the named countries (5884 KBD). This reminds me that there was a problem with the refined oil product consumption figures for “Other Africa” as well. Without a detailed breakdown of individual country accounts from BP it is almost impossible to know where these differences arise, it seems to me, or begin to understand why these differences are so large. Maybe I should just ask BP for a full country breakdown – if they’d ever deign to communicate this kind of information with me. Standing by my email Inbox right now… Could be here some time…

    It is fairly clear from the comparison for North America that a major shift in understanding by either BP or JODI Oil took place in 2009, as the oil production data converge significantly for that year onwards. There was similar evidence of this in the refined oil products consumption data.

    As with the consumption data, the production data for the Middle East region is strongly divergent between BP and JODI. I did read something potentially useful in the JODI Oil Manual, which I would recommend everyone interested in energy data to read. In the notes for Crude Oil, I read : “One critical issue is whether the volumes of NGL, lease or field condensates and oils extracted from bituminous minerals are included. All organisations exclude NGL from crude oil. If condensates are able to be excluded, it should be noted to the JODI organisation(s) of which the country/economy is a member. Most OPEC member countries exclude condensates.” Now, I guess, the struggle will be to find some data on condensates. Of which there are a variety of sources and nomenclature, be they light liquid hydrocarbons from oil and gas production or oil and gas refining/processing/cryoprocessing. There may be faultlines of comprehension and categorisation, such as about who considers NGPL or Natural Gas Plant Liquids from Natural Gas processing plants to be in the category of NGLs – Natural Gas Liquids, and therefore effectively in the bucket of Crude Oil.

    I’m no closer to any answers on why BP oil data doesn’t align with JODI Oil data. And it looks like I’ve just opened a whole can of condensate wormy questions.

  • JODI Oil and BP #3

    Posted on August 3rd, 2016 Jo No comments

    So after the mystery of why JODI Oil regional refinery products demand data (oil products consumption) is so different from the BP Statistical Review of World Energy for 2016, I took a look at the individual country data supplied by BP and compared it to the JODI Oil numbers.

    The first thing that struck me was that there are many items of data that are very similar between the BP and JODI Oil data; and yet there are also a good number that are significantly different – and the vast majority of these show BP reporting much higher oil consumption than JODI. This means that the definitions that BP and JODI are using for oil products consumption must correlate in many cases, when countries make their reports. But it also means that there are some understandings of oil consumption that BP has that do not have cognates in the JODI Oil reports.

    The second thing that struck me was that each region in BP apart from North America is showing a total much higher than JODI Oil. Only some of the countries are specifically named in the BP report, and other countries are lumped into the bucket of “Other” within each region. Each “Other” figure is much higher in the BP report than in the JODI Oil data. Part of the reason is clearly going to be because some countries have not been reporting to JODI Oil, or not reporting reliably. For example, for South and Central America, JODI Oil data for Bermuda, Cuba, El Salvador, Haiti and Suriname are all zeroes; and JODI Oil data for Bolivia has zeroes for NOV2015 and DEC2015 (other months average at 63 KBD). But these could all be expected to be low oil products producers; so it is unclear to me where BP thinks consumption is occurring outside of the individually-named countries.

    The “Other Africa” line is much higher in BP than in JODI, which looks dubious. I have not looked at this closely, but this might relate to countries such as Nigeria who produce and also consume a lot of oil.

    The most significant differences : countries where no JODI Oil data is available : Turkmenistan, Uzbekistan, Israel, Bangladesh, Pakistan; and also countries with medium-to-high BP oil consumption data compared to JODI : Brazil, Venezuela, Belarus, Kazakhstan, Russian Federation, all the named Middle East countries, South Africa, China, India, Indonesia, Malaysia, Singapore, Thailand, Vietnam.

    It could be that in some cases the BP data is for all oil consumption – from national refineries and imports; whereas the JODI Oil data is for consumption from a nation’s own refinery. I would need to check this in more detail, but at first glance, the BP oil consumption data for the Middle East is much more divergent from the JODI Oil data than for other regions, and this does not make sense. I know that refinery product self-consumption is increasing in Middle East countries that are in strong economic development, but not all Middle East countries are experiencing increasing national demand, and I cannot imagine that oil products imports are so high in this region as to explain these differences between BP and JODI Oil data.

    Another thing to note is that Commonwealth of Independent States (CIS) (formerly known as the “Former Soviet Union”) data divergence accounts for most of the data divergence in the “Europe & Eurasia” region; and that BP oil consumption data for the Russian Federation (which forms a part of CIS) is much higher than the data given to JODI.

    I now have too many questions about how and from whom all this data is sourced, how categories of liquid hydrocarbons are delineated, and doubts about how anybody could check the reliability of any of this data. Without more information, I cannot analyse this data further; but maybe looking at oil consumption is not that illuminating. There appears to be a small and steady increase in annual oil demand and consumption over the recent period – this is indicated by both BP and JODI Oil data. The real issues for my analysis are whether oil production is capable of sustainably satisfying this demand-with-small-annual-increases, so my next step is to move to look at liquid hydrocarbons production data.

  • JODI Oil and BP #2

    Posted on July 26th, 2016 Jo No comments

    Previously, I was comparing data from the annual BP Statistical Review of World Energy with the annual averages of JODI Oil data, and when I cast my eye over a table of differences, it was easy to spot that something happened in 2009 – the data from the two sources jumped to more closely correlate. For some countries and product types, if it didn’t happen in 2009, it happened in 2010; but since then some data lines have begun to diverge again. Either somebody was lying prior to 2009 (and by “lying”, I mean, making errors in reporting on hydrocarbon refinery), or something changed in the definitions of the sub-categories of hydrocarbon products from petrorefineries. At this stage, I cannot tell if the corrections were done by BP or by JODI Oil, but the corrections show a step change. This intrigued me, so, here follow a few diagrams and some summary notes.



    The example of North America is dominated by a correction in the data for the United States of America (whether the correction was in the JODI Oil data, or in the BP data) for the “Others” category. Since 2009, the data lines have been coming progressively closer, until it seems they are reporting from either the same sources, or using the same industry data to base their calculations on.


    Data from South and Central America as a whole is rather random when compared between BP and JODI – however there is a clear correction in the category “Others” in 2009, and perhaps a further correction to both “Light distillates” and “Others” in 2011. Since then, the trend is for BP and JODI data to diverge.




    The 2009 correction for the “Europe and Eurasia” region (an artefact) is mainly due to the big correction for the European Union in 2009 for “Light distillates” and “Others”. The data for CIS undergoes a smaller correction, and this is in 2010, for “Fuel oil” and “Others”.


    The “Others” category is also adjusted for the Middle East in 2009.


    There are minor corrections in the data for Africa in both 2009 and 2010, and recently a large divergence for “Middle distillates”.




    Asia Pacific data is corrected for “Light distillates”, “Middle distillates” and “Others” in 2009, reflecting corrections in both China and Japan data.




    Corrections in 2009 for OECD data are the main reason for the differences between BP and JODI to snap shut; whilst Non-OECD data still remains divergent.

  • JODI Oil and BP #1

    Posted on July 25th, 2016 Jo No comments

    Once a year BP plc publishes their Statistical Review of World Energy, as they have done for 65 years, now. Recent editions have been digital and anodyne, with lots of mini-analyses and charts and positive messages about the petroleum industry. Whenever energy researchers ask questions, they are invariably directed to take a look at the BP report, as it is considered trustworthy and sound. Good scientists always try to find alternative sources of data, but it can be hard comparing the BP Stat Rev with other numerical offerings, partly because of the general lack of drill-down in-depth figures. Two other reputable data sources are the US Energy Information Administration (EIA) and the JODI Oil initiative. I have already looked at EIA data and data from the National Energy Board (NEB) of Canada recently in order to check on the risks of Peak Oil. Now I’m diving into JODI.

    Two of my concerns of the week are to try to understand the status and health of the global economy – which can be seen through the lens of overall consumption of hydrocarbons; and to see if there are changes happening in relative demand levels for the different kinds of hydrocarbons – as this could indicate a transition towards a lower carbon economy. The BP Stat Rev of June 2016 offers an interesting table on Page 13 – “Oil: Regional consumption – by product group”, which breaks down hydrocarbon demand into four main categories : Light distillates, Middle distillates, Fuel oil and Other. The “Other” category for BP includes LPG – Liquefied Petroleum Gases, a blend of mostly propane and butanes (carbon chain C3 and C4), which are gaseous and not liquid at normal room temperature and pressure – so strictly speaking aren’t actually oil. They also have different sources from various process units within petroleum refinery and Natural Gas processing plants. The “Other” category also includes refinery gas – mostly methane and ethane (carbon chain C1 and C2), and hydrogen (H2); and presumably fuel additives and improvers made from otherwise unwanted gubbins at the petrorefinery.

    Not by coincidence, the JODI Oil database, in its Secondary data table, also offers a breakdown of hydrocarbon demand from refinery into categories almost analagous to the BP groupings – LPG, Gasoline, Naphtha, Kerosenes, Gas/Diesel oil, Fuel oil, and Other products; where LPG added to Other should be the same as BP’s “Other” category, Gasoline added to Naphtha should be equivalent to BP’s “Light distillates”; and Kerosenes added to Gas/Diesel oil should be analagous to BP’s “Middle distillates. So I set out to average the JODI Oil data, day-weighting the monthly data records, to see if I could replicate the BP Stat Rev Page 13.

    Very few of the data points matched BP’s report. I suspect this is partly due to averaging issues – I expect BP has access to daily demand figures, (although I can’t be sure, and I don’t know their data sources); whereas the JODI Oil data is presented as monthly averages for daily demand. However, there are a lot of figures in the BP report that are high compared to the JODI Oil database. This can only partly be due to the fact that not all countries are reporting to JODI – four countries in the Commonwealth of Indepdendent States (CIS) – formerly known as “Former Soviet Union” – are not reporting, for example. I’m wondering if this over-reporting in the BP report might be due to differences in the way that stock transfers are handled – perhaps demand for refinery products that are intended for storage purposes rather than direct consumption is included in the BP data, but not in JODI – but at the moment I don’t have any relevant information with which to confirm or deny this concept.

    Anyway, the data is very close between BP and JODI for the United States in recent years, and there are some other lines where there is some agreement (for example – Fuel oil in Japan, and Light distillates in China), so I am going to take this as an indication that I understand the JODI Oil data sufficiently well to be able to look at monthly refinery demand, refinery output and oil production for each region and hopefully reach some useful conclusions.

  • Peak Oil Redux

    Posted on July 22nd, 2016 Jo No comments

    Peak conventional crude petroleum oil production is apparently here already – the only thing that’s been growing global total liquids is North American unconventional oils : tight oil – which includes shale oil in the United States of America – and tar sands oil from bitumen in Canada – either refined into synthetic crude, or blended with other oils – both heavy and light.

    But there’s a problem with unconventional oils – or rather several – but the key one is the commodity price of oil, which has been low for many months, and has caused unconventional oil producers to rein in their operations. It’s hitting conventional producers too. A quick check of Section 3 “Oil data : upstream” in OPEC’s 2016 Annual Statistical Bulletin shows a worrying number of negative 2014 to 2015 change values – for example “Active rigs by country”, “Wells completed in OPEC Members”, and “Producing wells in OPEC Members”.

    But in the short term, it’s the loss of uneconomic unconventional oil production that will hit hardest. Besides problems with operational margins for all forms of unconventionals, exceptional air temperatures (should we mention global warming yet ?) in the northern part of North America have contributed to a seizure in Canadian tar sands oil production – because of extensive wildfires.

    Here’s two charted summaries of the most recent data from the EIA on tight oil (which includes shale oil) and dry shale gas production in the United States – which is also suffering.

    Once the drop in North American unconventionals begins to register in statistics for global total liquids production, some concern will probably be expressed. Peak Oil just might be sharper and harder and sooner than some people think.

  • Cumbria Floods : Climate Defenceless

    Posted on December 7th, 2015 Jo No comments

    I fully expect the British Prime Minister, David Cameron, will be more than modicum concerned about public opinion as the full toll of damage to property, businesses, farmland and the loss of life in Cumbria of the December 2015 floods becomes clear. The flooding in the Somerset Levels in the winter of 2013/2014 led to strong public criticism of the government’s management of and investment in flood defences.

    The flood defences that were improved in Cumbria after the rainstorm disaster of 2009 were in some cases completely ineffective against the 2015 deluge. It appears that the high water mark at some places in Cumbria was higher in the 2015 floods than ever recorded previously, but that cannot be used as David Cameron’s get-out-of-jail-free clause. These higher flood levels should have been anticipated as a possibility.

    However, the real problem is not the height of flooding, but the short recurrence time. Flood defences are designed in a way that admits to a sort of compromise calculus. Measurements from previous floods are used to calculate the likelihood of water levels breaching a particular height within a number of years – for example, a 1-in-20 year flood, or a 1-in-200 year flood. The reinforced flood defences in Cumbria were designed to hold back what was calculated to be something like a 1-in-100 year flood. It could be expected that if within that 100 years, other serious but not overwhelming flooding took place, there would be time for adaptation and restructuring of the defences. However, it has taken less than 10 years for a 1-in-100 year event to recur, and so no adaptation has been possible.

    This should suggest to us two possibilities : either the Environment Agency is going about flood defences the wrong way; or the odds for the 1-in-100 year flood should be reset at 1-in-10-or-so years – in other words, the severity profile of flooding is becoming worse – stronger flooding is more frequent – which implies acceptance of climate change.

    The anti-science wing of the Conservative Party were quick to construct a campaign against the Environment Agency in the South West of England in early 2014 – distracting people from asking the climate change question. But this time, I think people might be persuaded that they need to consider climate change as being a factor.

    Placing the blame for mismanagement of the Somerset Levels at the door of the Environment Agency saved David Cameron’s skin in 2014, but I don’t think he can use that device a second time. People in Cockermouth are apparently in disbelief about the 2015 flooding. They have barely had time to re-establish their homes and lives before Christmas has been cancelled again for another year.

    Will the Prime Minister admit to the nation that climate change is potentially a factor in this 2015 waterborne disaster ?

    I remember watching in in credulity as the BBC showed the restoration of Cockermouth back in 2010 – it was either Songs of Praise or Countryfile – I forget which. The BBC were trying to portray a town getting back to normal. I remember asking myself – but what if climate change makes this happen again ? What then ? Will the BBC still be mollifying its viewers, lulling them back into a false sense of security about the risks of severe climate change ? What if there is no “normal” to get back to any more ? Is this partly why the Meteorological Office has decided to name winter storms ?

    Can future climate-altered floods be escaped – or are the people of Britain to remain defenceless ?

  • The Great Policy Reset

    Posted on November 6th, 2015 Jo No comments

    Everything in the UK world of energy hit a kind of slow-moving nightmare when the Department of Energy and Climate Change stopped replying to emails a few months ago, claiming they were officially ordered to focus on the “Spending Review” – as known as “The Cuts” – as ordered by George Osborne, Chancellor of Her Majesty’s Treasury.

    We now know that this purdah will be terminated on 25th November 2015, when various public announcements will be made, and whatever surprises are in store, one thing is now for certain : all grapevines have been repeating this one word regarding British energy policy : “reset”.

    Some are calling it a “soft reset”. Some are predicting the demise of the entire Electricity Market Reform, and all its instruments – which would include the Capacity Auction and the Contracts for Difference – which would almost inevitably throw the new nuclear power ambition into a deep dark forgettery hole.

    A report back from a whispering colleague regarding the Energy Utilities Forum at the House of Lords on 4th November 2015 included these items of interest :-

    “…the cost of battery power has dropped to 10% of its value of a few years ago. National Grid has a tender out for micro-second response back up products – everyone assumes this is aimed at batteries but they are agnostic … There will be what is called a “soft reset” in the energy markets announced by the government in the next few weeks – no one knows what this means but obviously yet more tinkering with regulations … On the basis that diesel fuel to Afghanistan is the most expensive in the world (true), it has to be flown in, it has been seriously proposed to fly in Small Modular Nuclear reactors to generate power. What planet are these people living on I wonder ? … A lot more inter connectors are being planned to UK from Germany, Belgium Holland and Norway I think taking it up to 12 GWe … ”

    Alistair Phillips-Davies, the CEO of SSE (Scottish and Southern Energy), took part in a panel discussion at Energy Live News on 5th November 2015, in which he said that he was expecing a “reset” on the Electricity Market Reform (EMR), and that the UK Government were apparently focussing on consumers and robust carbon pricing. One view expressed was that the EMR could be moved away from market mechanisms. In other discussions, it was mentioned that the EMR Capacity Market Auction had focussed too much on energy supply, and that the second round would see a wider range of participants – including those offering demand side solutions.

    Energy efficiency, and electricity demand profile flattening, were still vital to get progress on, as the power grid is going to be more efficient if it can operate within a narrower band of demand – say 30 to 40 GW daily, rather than the currently daily swing of 20 to 50 GW. There was talk of offering changing flexible, personal tariffs to smooth out the 5pm 17:00 power demand peak, as price signalling is likely to be the only way to make this happen, and comments were made about how many computer geeks would be needed to analyse all the power consumption data.

    The question was asked whether the smart meter rollout could have the same demand smoothing effect as the Economy 7 tariff had in the past.

    The view was expressed that the capacity market had not provided enough by way of long-term price signals – particularly for investment in low carbon energy. One question raised during the day was whether it wouldn’t be better just to set a Europe-wide price on carbon and then let markets and the energy industry decide what to put in place ?

    So, in what ways could the British Government “reset” the Electricity Market Reform instruments in order to get improved results – better for pocket, planet and energy provision ? This is what I think :-

    1. Keep the Capacity Mechanism for gas

    The Capacity Mechanism was originally designed to keep efficient gas-fired power plants (combined cycle gas turbine, or CCGT) from closing, and to make sure that new ones were built. In the current power generation portfolio, more renewable energy, and the drive to push coal-fired power plants to their limits before they need to be closed, has meant that gas-fired generation has been sidelined, kept for infrequent use. This has damaged the economics of CCGT, both to build and to operate. This phenomenon has been seen all across Europe, and the Capacity Market was supposed to fix this. However, the auction was opened to all current power generators as well as investors in new plant, so inevitably some of the cash that was meant for gas has been snaffled up by coal and nuclear.

    2. Deflate strike prices after maximum lead time to generation

    No Contracts for Difference should be agreed without specifying a maximum lead time to initial generation. There is no good reason why nuclear power plants, for example, that are anticipated to take longer than 5 years to build and start generating should be promised fixed power prices – indexed to inflation. If they take longer than that to build, the power prices should be degressed for every year they are late, which should provide an incentive to complete the projects on time. These projects with their long lead times and uncertain completion dates are hogging all the potential funds for investment, and this is leading to inflexibility in planning.

    3. Offer Negative Contracts for Difference

    To try to re-establish a proper buildings insulation programme of works, projects should be offered an incentive in the form of contracts-for-energy-savings – in other words, aggregated heat savings from any insulation project should be offered an investment reward related to the size of the savings. This will not be rewarding energy production, but energy use reduction. Any tempering of gas demand will improve the UK’s balance of payments and lead to a healthier economy.

    4. Abandon all ambition for carbon pricing

    Trends in energy prices are likely to hold surprises for some decades to come. To attempt to set a price on carbon, as an aid to incentivising low carbon energy investment is likely to fail to set an appropriate investment differential in this environment of general energy pricing volatility. That is : the carbon price would be a market signal lost in a sea of other effects. Added to which, carbon costs are likely to be passed on to energy consumers before they would affect the investment decisions of energy companies.

  • Nobel Chutzpah Prize 2015

    Posted on July 14th, 2015 Jo 2 comments

    The problem with climate change “deniers” and low carbon energy “sceptics” is that they cannot read.

    Here’s Jo Nova, claiming that the United Nations and the World Bank are demanding $89 trillion “to fix climate”.

    She writes, “The ambit claims know no bounds. Who else would ask for $89,000,000,000,000? If the evil “more developed” nations pay for their carbon sins, the bill for those 1.3 billion people works out at $70,000 per person by 2030 (babies included).”

    A simple little diagram from the actual report and a little text, shows she is entirely wrong :-

    From Section 2.1 “Infrastructure investment and global growth” :-

    “The global economy will require substantial investments in infrastructure as the population and the middle class grow. An estimated US$89 trillion of infrastructure investment will be required through 2030, based on data from the International Energy Agency (IEA), the Organisation for Economic Co-operation and Development (OECD), and analysis for the Commission (see Figure 1). This is chiefly investment in energy and cities. This estimate for the required investment is before accounting for actions to combat climate change.”

    That’s before accounting for actions to combat climate change, Ms Nova. Before. I know it’s probably clanging against your internal cognitive fences, but the fact is, the world needs to spend a heap of capital in the next 20 to 30 years reviving, replacing and renewing energy systems infrastructure. That spending has to happen regardless of whether it’s low carbon spending.

    And let’s read the note on Figure 1 more carefully :-

    “INCLUDING OPERATING EXPENDITURES WOULD MAKE A LOW-CARBON TRANSITION EVEN MORE FAVOURABLE LEADING TO A FURTHER REDUCTION OF US$5 TRILLION, FOR OVERALL POTENTIAL SAVINGS OF US$1 TRILLION”

    So, Jo Nova, the world will actually be better off if it decides to make all new energy expenditure low carbon.

    Jo Nova, when will you be updating your web post ?

  • A Partial Meeting of Engineering Minds

    Posted on July 14th, 2015 Jo No comments

    So I met somebody last week, at their invitation, to talk a little bit about my research into Renewable Gas.

    I can’t say who it was, as I didn’t get their permission to do so. I can probably (caveat emptor) safely say that they are a fairly significant player in the energy engineering sector.

    I think they were trying to assess whether my work was a bankable asset yet, but I think they quickly realised that I am nowhere near a full proposal for a Renewable Gas system.

    Although there were some technologies and options over which we had a meeting of minds, I was quite disappointed by their opinions in connection with a number of energy projects in the United Kingdom.

    Click to Read More !

  • DECC Dungeons and Dragnets

    Posted on July 14th, 2015 Jo No comments

    Out of the blue, I got an invitation to a meeting in Whitehall.

    I was to join industrial developers and academic researchers at the Department of Energy and Climate Change (DECC) in a meeting of the “Green Hydrogen Standard Working Group”.

    The date was 12th June 2015. The weather was sunny and hot and merited a fine Italian lemonade, fizzing with carbon dioxide. The venue was an air-conditioned grey bunker, but it wasn’t an unfriendly dungeon, particularly as I already knew about half the people in the room.

    The subject of the get-together was Green Hydrogen, and the work of the group is to formulate a policy for a Green Hydrogen standard, navigating a number of issues, including the intersection with other policy, and drawing in a very wide range of chemical engineers in the private sector.

    My reputation for not putting up with any piffle clearly preceded me, as somebody at the meeting said he expected I would be quite critical. I said that I would not be saying anything, but that I would be listening carefully. Having said I wouldn’t speak, I must admit I laughed at all the right places in the discussion, and wrote copious notes, and participated frequently in the way of non-verbal communication, so as usual, I was very present. At the end I was asked for my opinion about the group’s work and I was politely congratulational on progress.

    So, good. I behaved myself. And I got invited back for the next meeting. But what was it all about ?

    Most of what it is necessary to communicate is that at the current time, most hydrogen production is either accidental output from the chemical industry, or made from fossil fuels – the main two being coal and Natural Gas.

    Hydrogen is used extensively in the petroleum refinery industry, but there are bold plans to bring hydrogen to transport mobility through a variety of applications, for example, hydrogen for fuel cell vehicles.

    Clearly, the Green Hydrogen standard has to be such that it lowers the bar on carbon dioxide (CO2) emissions – and it could turn out that the consensus converges on any technologies that have a net CO2 emissions profile lower than steam methane reforming (SMR), or the steam reforming of methane (SRM), of Natural Gas.

    [ It’s at this very moment that I need to point out the “acronym conflict” in the use of “SMR” – which is confusingly being also used for “Small Modular Reactors” of the nuclear fission kind. In the context of what I am writing here, though, it is used in the context of turning methane into syngas – a product high in hydrogen content. ]

    Some numbers about Carbon Capture and Storage (CCS) used in the manufacture of hydrogen were presented in the meeting, including the impact this would have on CO2 emissions, and these were very intriguing.

    I had some good and useful conversations with people before and after the meeting, and left thinking that this process is going to be very useful to engage with – a kind of dragnet pulling key players into low carbon gas production.

    Here follow my notes from the meeting. They are, of course, not to be taken verbatim. I have permission to recount aspects of the discussion, in gist, as it was an industrial liaison group, not an internal DECC meeting. However, I should not say who said what, or which companies or organisations they are working with or for.

    Click to Read More !

  • Nuclear Power Is Not An Energy Policy

    Posted on June 23rd, 2015 Jo No comments

    The British Government do not have an energy policy. They may think they have one, and they may regularly tell us that they have one, but in reality, they don’t. There are a number of elements of regulatory work and market intervention that they are engaged with, but none of these by itself is significant enough to count as a policy for energy. Moreover, all of these elements taken together do not add up to energy security, energy efficiency, decarbonisation and affordable energy.

    What it takes to have an energy policy is a clear understanding of what is a realistic strategy for reinvestment in energy after the dry years of privatisation, and a focus on energy efficiency, and getting sufficient low carbon energy built to meet the Carbon Budget on time. Current British Government ambitions on energy are not realistic, will not attract sufficient investment, will not promote increased energy efficiency and will not achieve the right scale and speed of decarbonisation.

    I’m going to break down my critique into a series of small chunks. The first one is a quick look at the numbers and outcomes arising from the British Government’s obsessive promotion of nuclear power, a fantasy science fiction that is out of reach, not least because the industry is dog-tired and motheaten.

    Click to Read More !

  • Shell and BP : from “Delay and Deny” to “Delay and Distract”

    Posted on June 3rd, 2015 Jo No comments

    Shell, BP and some of their confederates in the European oil and gas industry have inched, or perhaps “centimetred”, forward in their narrative on climate change. Previously, the major oil and gas companies were regularly outed as deniers of climate change science; either because of their own public statements, or because of secretive support of organisations active in denying climate change science. It does seem, finally, that Shell in particular has decided to drop this counter-productive “playing of both sides”. Not that there are any “sides” to climate change science. The science on climate change is unequivocal : changes are taking place across the world, and recent global warming is unprecedented, and has almost definitely been attributed to the burning of fossil fuels and land use change.

    So Shell and BP have finally realised that they need to shed the mantle of subtle or not-so-subtle denial, although they cling to the shreds of dispute when they utter doubts about the actual numbers or impacts of global warming (for example : http://www.joabbess.com/2015/06/01/shells-public-relations-offensive/). However, we have to grant them a little leeway on that, because although petrogeologists need to understand the science of global warming in order to know where to prospect for oil and gas, their corporate superiors in the organisation may not be scientists at all, and have no understanding of the global carbon cycle and why it’s so disruptive to dig up all that oil and gas hydrocarbon and burn it into the sky. So we should cut the CEOs of Shell and BP a little slack on where they plump for in the spectrum of climate change narrative – from “utter outright doom” to “trifling perturbation”. The central point is that they have stopped denying climate change. In fact, they’re being open that climate change is happening. It’s a miracle ! They have seen the light !

    But not that much light, though. Shell and BP’s former position of “scepticism” of the gravity and actuality of global warming and climate change was deployed to great effect in delaying any major change in their business strategies. Obviously, it would have been unseemly to attempt to transmogrify into renewable energy businesses, which is why anybody in the executive branches who showed signs of becoming pro-green has been shunted. There are a number of fairly decent scalps on the fortress pikes, much to their shame. Shell and BP have a continuing duty to their shareholders – to make a profit from selling dirt – and this has shelved any intention to transition to lower carbon energy producers. Granted, both Shell and BP have attempted to reform their internal businesses by applying an actual or virtual price on carbon dioxide emissions, and in some aspects have cleaned up and tidied up their mining and chemical processing. The worsening chemistry of the cheaper fossil fuel resources they have started to use has had implications on their own internal emissions control, but you have to give them credit for trying to do better than they used to do. However, despite their internal adjustments, their external-facing position of denial of the seriousness of climate change has supported them in delaying major change.

    With these recent public admissions of accepting climate change as a fact (although CEOs without appropriate science degrees irritatingly disagree with some of the numbers on global warming), it seems possible that Shell and BP have moved from an outright “delay and deny” position, which is to be applauded.

    However, they might have moved from “delay and deny” to “delay and distract”. Since the commencement of the global climate talks, from about the 1980s, Shell and BP have said the equivalent of “if the world is serious about acting on global warming (if global warming exists, and global warming is caused by fossil fuels), then the world should agree policy for a framework, and then we will work within that framework.” This is in effect nothing more than the United Nations Framework Convention on Climate Change (UNFCCC) has put forward, so nobody has noticed that Shell and BP are avoiding taking any action themselves here, by making action somebody else’s responsibility.

    Shell and BP have known that it would take some considerable time to get unanimity between governments on the reality and severity of climate change. Shell and BP knew that it would take even longer to set up a market in carbon, or a system of carbon dioxide emissions taxation. Shell and BP knew right from the outset that if they kept pushing the ball back to the United Nations, nothing would transpire. The proof of the success of this strategy was the Copenhagen conference in 2009. The next proof of the durability of this delaying tactic will be the outcomes of the Paris 2015 conference. The most that can come out of Paris is another set of slightly improved targets from governments, but no mechanism for translating these into real change.

    Shell and BP and the other oil and gas companies have pushed the argument towards a price on carbon, and a market in carbon, and expensive Carbon Capture and Storage technologies. Not that a price on carbon is likely to be anywhere near high enough to pay for Carbon Capture and Storage. But anyway, the point is that these are all distractions. What really needs to happen is that Shell and BP and the rest need to change their products from high carbon to low carbon. They’ve delayed long enough. Now is the time for the United Nations to demand that the fossil fuel companies change their products.

    This demand is not just about protecting the survival of the human race, or indeed, the whole biome. Everybody is basically on the same page on this : the Earth should remain liveable-inable. This demand for change is about the survival of Shell and BP as energy companies. They have already started to talk about moving their businesses away from oil to gas. There are high profile companies developing gas-powered cars, trains, ships and possibly even planes. But this will only be a first step. Natural Gas needs to be a bridge to a fully zero carbon world. The oil and gas companies need to transition from oil to gas, and then they need to transition to low carbon gas.

    Renewable Gas is not merely “vapourware” – the techniques and technologies for making low carbon gas are available, and have been for decades, or in some cases, centuries. Shell and BP know they can manufacture gas instead of digging it up. They know they can do the chemistry because they already have to do much of the same chemistry in processing fossil hydrocarbons now to meet environmental and performance criteria. BP has known since the 1970s or before that it can recycle carbon in energy systems. Shell is currently producing hydrogen from biomass, and they could do more. A price on carbon is not going to make this transition to low carbon gas. While Shell and BP are delaying the low carbon transition by placing focus on the price of carbon, they could lose a lot of shareholders who shy away from the “carbon bubble” risk of hydrocarbon investment. Shell and BP need to decide for themselves that they want to survive as energy companies, and go public with their plans to transition to low carbon gas, instead of continuing to distract attention away from themselves.

  • Shell’s Public Relations Offensive #2

    Posted on June 1st, 2015 Jo No comments

    And so it has begun – Shell’s public relations offensive ahead of the 2015 Paris climate talks. The substance of their “advocacy” – and for a heavyweight corporation, it’s less lobbying than badgering – is that the rest of the world should adapt. Policymakers should set a price on carbon, according to Shell. A price on carbon might make some dirty, polluting energy projects unprofitable, and there’s some value in that. A price on carbon might also stimulate a certain amount of Carbon Capture and Storage, or CCS, the capturing and permanent underground sequestration of carbon dioxide at large mines, industrial plant and power stations. But how much CCS could be incentivised by pricing carbon is still unclear. Egging on the rest of the world to price carbon would give Shell the room to carry on digging up carbon and burning it and then capturing it and burying it – because energy prices would inevitably rise to cover this cost. Shell continues with the line that they started in the 1990s – that they should continue to dig up carbon and burn it, or sell it to other people to burn, and that the rest of the world should continue to pay for the carbon to be captured and buried – but Shell has not answered a basic problem. As any physicist could tell you, CCS is incredibly energy-inefficient, which makes it cost-inefficient. A price on carbon wouldn’t solve that. It would be far more energy-efficient, and therefore cost-efficient, to either not dig up the carbon in the first place, or, failing that, recycle carbon dioxide into new energy. Shell have the chemical prowess to recycle carbon dioxide into Renewable Gas, but they are still not planning to do it. They are continuing to offer us the worst of all possible worlds. They are absolutely right to stick to their “core capabilities” – other corporations can ramp up renewable electricity such as wind and solar farms – but Shell does chemistry, so it is appropriate for them to manufacture Renewable Gas. They are already using most of the basic process steps in their production of synthetic crude in Canada, and their processing of coal and biomass in The Netherlands. They need to join the dots and aim for Renewable Gas. This will be far less expensive, and much more efficient, than Carbon Capture and Storage. The world does not need to shoulder the expense and effort of setting a price on carbon. Shell and its fellow fossil fuel companies need to transition out to Renewable Gas.

  • Renewable Gas : A Presentation #2

    Posted on March 6th, 2015 Jo No comments

    So, this is the second slide from my presentation at Birkbeck, University of London, last week.

    When making an argument, it is best to start from consensus and well-accredited data, so I started with government analysis of the energy sector of the economy in the United Kingdom. Production of Natural Gas in the UK is declining, and imports are rising.

    I did not go into much detail about this chart, but there is a wealth of analysis out there that I would recommend people check out.

    Despite continued investment in oil and gas, North Sea production is declining, and it is generally accepted that this basin or province as a whole is depleting – that is – “running out”.

    Here, for example, is more DECC data. The Summary of UK Estimated Remaining Recoverable Hydrocarbon Resources, published in 2014, had these numbers for UK Oil and Gas Reserves :-

    billion barrels of oil equivalentLowerCentralUpper
    Oil and Gas Reserves4.58.212.1
    Potential Additional Resources1.43.46.4
    Undiscovered Resources2.16.19.2

    The summary concluded with the estimate of remaining recoverable hydrocarbons from the UK Continental Shelf (offshore) resources would be between 11.1 and 21 billion barrels of oil equivalent (bboe).

    Other data in the report showed estimates of cumuluative and annual oil production :-

    billion barrels of oil equivalentCumulative productionAnnual production
    To date to end 201241.30.6 (in 2012)
    To date to end 201241.80.5 (in 2013)
    Additional production 2013 to 20307.00.44 (average 2014 to 2030)
    Additional production 2013 to 20409.10.21 (average 2031 to 2040)
    Additional production 2013 to 205010.40.13 (average 2041 to 2050)

    Another source of estimates on remaining oil and gas resources, reserves and yet-to-find potential is from the Wood Review of 2014 :-

    billion barrels of oil equivalentLow caseMid-caseHigh case
    DECC reference122235
    Wood Review1224

    So it’s clear that British oil and gas production is in decline, and that also, reserves and resources to exploit are depleting. The Wood Review made several recommendations to pump up production, and maximise the total recoverable quantities. Some interpreted this as an indication that good times were ahead. However, increased production in the near future is only going to deplete these resources faster.

    OK, so the UK is finding the North Sea running dry, but what about other countries ? This from the BP Statistical Review of Energy, 2014 :-

    Oil – proved reserves
    Thousand million barrels

    At end 1993

    At end 2003

    At end 2012
    United Kingdom4.54.33.0
    Denmark0.71.30.7
    Norway9.610.19.2

    Natural gas – Proved Reserves
    Trillion cubic metres

    At end 1993

    At end 2003

    At end 2012
    United Kingdom0.60.90.2
    Denmark0.10.1
    Netherlands1.71.40.9
    Norway1.42.52.1
    Germany0.20.20.1

    Oil and gas chief executives may be in denial about a peak in global crude oil production, but they don’t challenge geology on the North Sea. Here’s what BP’s CEO Bob Dudley said on 17th February 2015, during a presentation of the BP Energy Outlook 2035 :-

    “The North sea is a very mature oil and gas province and it will inevitably go through a decline. It peaked in 1999 at around 2.9 millions barrels per day and our projections are that it will be half a million barrels in 2035”.

    That’s “inevitably” regardless of the application of innovation and new technology. New kit might bring on production sooner, but won’t replenish the final count of reserves to exploit.

    So what are the likely dates for Peak Oil and Peak Natural Gas production in the North Sea bordering countries ?

    Norway : by 2030.

    The Netherlands : peaked already. Due to become a net importer of Natural Gas by 2025.

    Denmark : net importer of oil and gas by 2030.

  • Renewable Gas : A Presentation #1

    Posted on March 2nd, 2015 Jo No comments

    Last week, on the invitation of Dr Paul Elsner at Birkbeck, University of London, I gave a brief address of my research so far into Renewable Gas to this year’s Energy and Climate Change class, and asked and answered lots of questions before demolishing the mythical expert/student hierarchy paradigm – another incarnation of the “information deficit model”, perhaps – and proposed everyone work in breakout groups on how a transition from fossil fuel gas to Renewable Gas could be done.

    A presentation of information was important before discussing strategies, as we had to cover ground from very disparate disciplines such as chemical process engineering, the petroleum industry, energy statistics, and energy technologies, to make sure everybody had a foundational framework. I tried to condense the engineering into just a few slides, following the general concept of UML – Unified Modelling Language – keeping everything really simple – especially as processing, or work flow (workflow) concepts can be hard to describe in words, so diagrams can really help get round the inevitable terminology confusions.

    But before I dropped the class right into chemical engineering, I thought a good place to start would be in numbers, and in particular the relative contributions to energy in the United Kingdom from gas and electricity. Hence the first slide.

    The first key point to notice is that most heat demand in the UK in winter is still provided by Natural Gas, whether Natural Gas in home boilers, or electricity generated using Natural Gas.

    The second is that heat demand in energy terms is much larger than power demand in the cold months, and much larger than both power and heat demand in the warm months.

    The third is that power demand when viewed on annual basis seems pretty regular (despite the finer grain view having issues with twice-daily peaks and weekday demand being much higher than weekends).

    The reflection I gave was that it would make no sense to attempt to provide all that deep winter heat demand with electricity, as the UK would need an enormous amount of extra power generation, and in addition, much of this capacity would do nothing for most of the rest of the year.

    The point I didn’t make was that nuclear power currently provides – according to official figures – less than 20% of UK electricity, however, this works out as only 7.48% of total UK primary energy demand (DUKES, 2014, Table 1.1.1, Mtoe basis). The contribution to total national primary energy demand from Natural Gas by contrast is 35.31%. The generation from nuclear power plants has been falling unevenly, and the plan to replace nuclear reactors that have reached their end of life is not going smoothly. The UK Government Department of Energy and Climate Change have been pushing for new nuclear power, and project that all heating will convert to electricity, and that nuclear power will provide for much of this (75 GW by 2050). But if their plan relies on nuclear power, and nuclear power development is unreliable, it is hard to imagine that it will succeed.

  • Only Just Getting Started

    Posted on February 8th, 2015 Jo No comments

    In the last couple of years I have researched and written a book about the technologies and systems of Renewable Gas – gas energy fuels that are low in net carbon dioxide emissions. From what I have learned so far, it seems that another energy world is possible, and that the transition is already happening. The forces that are shaping this change are not just climate or environmental policy, or concerns about energy security. Renewable Gas is inevitable because of a range of geological, economic and industrial reasons.

    I didn’t train as a chemist or chemical process engineer, and I haven’t had a background in the fossil fuel energy industry, so I’ve had to look at a number of very basic areas of engineering, for example, the distillation and fractionation of crude petroleum oil, petroleum refinery, gas processing, and the thermodynamics of gas chemistry in industrial-scale reactors. Why did I need to look at the fossil fuel industry and the petrochemical industry when I was researching Renewable Gas ? Because that’s where a lot of the change can come from. Renewable Gas is partly about biogas, but it’s also about industrial gas processes, and a lot of them are used in the petrorefinery and chemicals sectors.

    In addition, I researched energy system technologies. Whilst assessing the potential for efficiency gains in energy systems through the use of Renewable Electricity and Renewable Gas, I rekindled an interest in fuel cells. For the first time in a long time, I began to want to build something – a solid oxide fuel cell which switches mode to an electrolysis unit that produces hydrogen from water. Whether I ever get to do that is still a question, but it shows how involved I’m feeling that I want to roll up my sleeves and get my hands dirty.

    Even though I have covered a lot of ground, I feel I’m only just getting started, as there is a lot more that I need to research and document. At the same time, I feel that I don’t have enough data, and that it will be hard to get the data I need, partly because of proprietary issues, where energy and engineering companies are protective of developments, particularly as regards actual numbers. Merely being a university researcher is probably not going to be sufficient. I would probably need to be an official within a government agency, or an industry institute, in order to be permitted to reach in to more detail about the potential for Renewable Gas. But there are problems with these possible avenues.

    You see, having done the research I have conducted so far, I am even more scornful of government energy policy than I was previously, especially because of industrial tampering. In addition, I am even more scathing about the energy industry “playing both sides” on climate change. Even though there are some smart and competent people in them, the governments do not appear to be intelligent enough to see through expensive diversions in technology or unworkable proposals for economic tweaking. These non-solutions are embraced and promoted by the energy industry, and make progress difficult. No, carbon dioxide emissions taxation or pricing, or a market in carbon, are not going to make the kind of changes we need on climate change; and in addition they are going to be extremely difficult and slow to implement. No, Carbon Capture and Storage, or CCS, is never going to become relatively affordable in any economic scenario. No, nuclear power is too cumbersome, slow and dodgy – a technical term – to ever make a genuine impact on the total of carbon emissons. No, it’s not energy users who need to reduce their consumption of energy, it’s the energy companies who need to reduce the levels of fossil fuels they utilise in the energy they sell. No, unconventional fossil fuels, such as shale gas, are not the answer to high emissions from coal. No, biofuels added to petrofuels for vehicles won’t stem total vehicle emissions without reducing fuel consumption and limiting the number of vehicles in use.

    I think that the fossil fuel companies know these proposals cannot bring about significant change, which is precisely why they lobby for them. They used to deny climate change outright, because it spelled the end of their industry. Now they promote scepticism about the risks of climate change, whilst at the same time putting their name to things that can’t work to suppress major amounts of emissions. This is a delayer’s game.

    Because I find the UK Government energy and climate policy ridiculous on many counts, I doubt they will ever want me to lead with Renewable Gas on one of their projects. And because I think the energy industry needs to accept and admit that they need to undergo a major change, and yet they spend most of their public relations euros telling the world they don’t need to, and that other people need to make change instead, I doubt the energy industry will ever invite me to consult with them on how to make the Energy Transition.

    I suppose there is an outside chance that the major engineering firms might work with me, after all, I have been an engineer, and many of these companies are already working in the Renewable Gas field, although they’re normally “third party” players for the most part – providing engineering solutions to energy companies.

    Because I’ve had to drag myself through the equivalent of a “petro degree”, learning about the geology and chemistry of oil and gas, I can see more clearly than before that the fossil fuel industry contains within it the seeds of positive change, with its use of technologies appropriate for manufacturing low carbon “surface gas”. I have learned that Renewable Gas would be a logical progression for the oil and gas industry, and also essential to rein in their own carbon emissions from processing cheaper crude oils. If they weren’t so busy telling governments how to tamper with energy markets, pushing the blame for emissions on others, and begging for subsidies for CCS projects, they could instead be planning for a future where they get to stay in business.

    The oil and gas companies, especially the vertically integrated tranche, could become producers and retailers of low carbon gas, and take part in a programme for decentralised and efficient energy provision, and maintain their valued contribution to society. At the moment, however, they’re still stuck in the 20th Century.

    I’m a positive person, so I’m not going to dwell too much on how stuck-in-the-fossilised-mud the governments and petroindustry are. What I’m aiming to do is start the conversation on how the development of Renewable Gas could displace dirty fossil fuels, and eventually replace the cleaner-but-still-fossil Natural Gas as well.

    Academic Freedom, Advertise Freely, Alchemical, Assets not Liabilities, Be Prepared, Behaviour Changeling, Big Number, Biofools, British Biogas, Burning Money, Carbon Capture, Carbon Commodities, Carbon Pricing, Carbon Taxatious, Change Management, Climate Change, Conflict of Interest, Corporate Pressure, Cost Effective, Dead End, Delay and Deny, Divest and Survive, Divide & Rule, Dreamworld Economics, Drive Train, Economic Implosion, Efficiency is King, Emissions Impossible, Energy Calculation, Energy Change, Energy Crunch, Energy Denial, Energy Insecurity, Energy Revival, Engineering Marvel, Evil Opposition, Extreme Energy, Financiers of the Apocalypse, Fossilised Fuels, Freemarketeering, Gamechanger, Geogingerneering, Global Warming, Green Gas, Green Power, Hydrocarbon Hegemony, Hydrogen Economy, Insulation, Low Carbon Life, Mad Mad World, Major Shift, Mass Propaganda, Methane Management, Money Sings, National Energy, National Power, Natural Gas, Nuclear Shambles, Oil Change, Optimistic Generation, Orwells, Paradigm Shapeshifter, Peak Coal, Peak Emissions, Policy Warfare, Political Nightmare, Price Control, Public Relations, Realistic Models, Regulatory Ultimatum, Renewable Gas, Renewable Resource, Revolving Door, Shale Game, Solution City, Stirring Stuff, The Data, The Power of Intention, The Right Chemistry, The Science of Communitagion, The War on Error, Unnatural Gas, Unutterably Useless, Utter Futility, Vain Hope, Voluntary Behaviour Change, Vote Loser, Western Hedge
  • Shell Shirks Carbon Responsibility

    Posted on November 19th, 2014 Jo No comments

    I was in a meeting today held at the Centre for European Reform in which Shell’s Chief Financial Officer, Simon Henry, made two arguments to absolve the oil and gas industry of responsibility for climate change. He painted coal as the real enemy, and reiterated the longest hand-washing argument in politics – that Shell believes that a Cap and Trade system is the best way to suppress carbon dioxide emissions. In other words, it’s not up to Shell to do anything about carbon. He argued that for transportation and trade the world is going to continue to need highly energy-dense liquid fuels for some time, essentially arguing for the continuation of his company’s current product slate. He did mention proudly in comments after the meeting that Shell are the world’s largest bioethanol producers, in Brazil, but didn’t open up the book on the transition of his whole company to providing the world with low carbon fuels. He said that Shell wants to be a part of the global climate change treaty process, but he gave no indication of what Shell could bring to the table to the negotiations, apart from pushing for carbon trading. Mark Campanale of the Carbon Tracker Initiative was sufficiently convinced by the “we’re not coal” argument to attempt to seek common cause with Simon Henry after the main meeting. It would be useful to have allies in the oil and gas companies on climate change, but it always seems to be that the rest of the world has to adopt Shell’s and BP’s view on everything from policy to energy resources before they’ll play ball.

    During the meeting, Mark Campanale pointed out in questions that Deutsche Bank and Goldman Sachs are going to bring Indian coal to trade on the London Stock Exchange and that billions of dollars of coal stocks are to be traded in London, and that this undermines all climate change action. He said he wanted to understand Shell’s position, as the same shareholders that hold coal (shares), hold Shell. I think he was trying to get Simon Henry to call for a separation in investment focus – to show that investment in oil and gas is not the same as investing in Big Bad Coal. But Simon Henry did not bite. According to the Carbon Tracker Initiative’s report of 2013, Unburnable Carbon, coal listed on the London Stock Exchange is equivalent to 49 gigatonnes of Carbon Dioxide (gtCO2), but oil and gas combined trade shares for stocks equivalent to 64 gtCO2, so there’s currently more emissions represented by oil and gas on the LSX than there is for coal. In the future, the emissions held in the coal traded in London have the potential to amount to 165 gtCO2, and oil and gas combined at 125 gtCO2. Despite the fact that the United Kingdom is only responsible for about 1.6% of direct country carbon dioxide emissions (excluding emissions embedded in traded goods and services), the London Stock Exchange is set to be perhaps the world’s third largest exchange for emissions-causing fuels.

    Here’s a rough transcript of what Simon Henry said. There are no guarantees that this is verbatim, as my handwriting is worse than a GP’s.

    [Simon Henry] I’m going to break the habit of a lifetime and use notes. Building a long-term sustainable energy system – certain forces shaping that. 7 billion people will become 9 billion people – [many] moving from off-grid to on-grid. That will be driven by economic growth. Urbanisation [could offer the possibility of] reducing demand for energy. Most economic growth will be in developing economies. New ways fo consuming energy. Our scenarios – in none do we see energy not growing materially – even with efficiencies. The current ~200 billion barrels of oil equivalent per day today of energy demand will rise to ~400 boe/d by 2050 – 50% higher than today. This will be demand-driven – nothing to do with supply…

    [At least one positive-sounding grunt from the meeting – so there are some Peak Oil deniers in the room, then.]

    [Simon Henry] …What is paramount for governments – if a threat, then it gets to the top of the agenda. I don’t think anybody seriously disputes climate change…

    [A few raised eyebrows and quizzical looks around the table, including mine]

    [Simon Henry] …in the absence of ways we change the use of energy […] Any approach to climate change has got to embrace science, policy and technology. All three levers must be pulled. Need a long-term stable policy that enables technology development. We think this is best in a market mechanism. […] Energy must be affordable at the point of use. What we call Triple A – available, acceptable and affordable. No silver bullet. Develop in a responsible way. Too much of it is soundbite – that simplifies what’s not a simple problem. It’s not gas versus coal. [Although, that appeared to be one of his chief arguments – that it is gas versus coal – and this is why we should play nice with Shell.]

    1. Economy : About $1.5 to $2 trillion of new money must be invested in the energy industry each year, and this must be sustained until 2035 and beyond. A [few percent] of the world economy. It’s going to take time to make [massive changes]. […] “Better Growth : Better Climate” a report on “The New Climate Economy” by the Global Commission on the Economy and Climate, the Calderon Report. [The world invested] $700 billion last year on oil and gas [or rather, $1 trillion] and $220 – $230 billion on wind power and solar power. The Calderon Report showed that 70% of energy is urban. $6 trillion is being spent on urban infrastructure [each year]. $90 trillion is available. [Urban settings are] more compact, more connected, there’s public transport, [can build in efficiencies] as well as reducing final energy need. Land Use is the other important area – huge impact on carbon emissions. Urbanisation enables efficiency in distributed generation [Combined Heat and Power (CHP)], [local grids]. Eye-popping costs, but the money will be spent anyway. If it’s done right it will [significantly] reduce [carbon emissions and energy demand]…

    2. Technology Development : Governments are very bad at picking winners. Better to get the right incentives in and let the market players decide [optimisation]. They can intervene, for example by [supporting] Research and Development. But don’t specify the means to an end…The best solution is a strong predictable carbon price, at $40 a tonne or more or it won’t make any difference. We prefer Cap and Trade. Taxes don’t actually decrease carbon [emissions] but fundamentally add cost to the consumer. As oil prices rose [in 2008 – 2009] North Americans went to smaller cars…Drivers [set] their behaviour from [fuel] prices…

    [An important point to note here : one of the reasons why Americans used less motor oil during the “Derivatives Bubble” recession between 2006 and 2010 was because the economy was shot, so people lost their employment, and/or their homes and there was mass migration, so of course there was less commuter driving, less salesman driving, less business driving. This wasn’t just a response to higher oil prices, because the peak in driving miles happened before the main spike in oil prices. In addition, not much of the American fleet of cars overturned in this period, so Americans didn’t go to smaller cars as an adaptation response to high oil prices. They probably turned to smaller cars when buying new cars because they were cheaper. I think Simon Henry is rather mistaken on this. ]

    [Simon Henry] …As regards the Carbon Bubble : 65% of the Unburnable fossil fuels to meet the 2 degrees [Celsius] target is coal. People would stuggle to name the top five coal companies [although they find it easy to name the top five oil and gas companies]. Bearing in mind that you have to [continue to] transport stuff [you are going to need oil for some time to come.] Dealing with coal is the best way of moving forward. Coal is used for electricity – but there are better ways to make electricity – petcoke [petroleum coke – a residue from processing heavy and unconventional crude oil] for example…

    [The climate change impact of burning (or gasifying) petroleum coke for power generation is possibly worse than burning (or gasifying) hard coal (anthracite), especially if the pet coke is sourced from tar sands, as emissions are made in the production of the pet coke before it even gets combusted.]

    [Simon Henry] …It will take us 30 years to get away entirely from coal. Even if we used all the oil and gas, the 2 degrees [Celsius] target is still possible…

    3. Policy : We tested this with the Dutch Government recently – need to create an honest dialogue for a long-term perspective. Demand for energy needs to change. It’s not about supply…

    [Again, some “hear hears” from the room from the Peak Oil and Peak Natural Gas deniers]

    [Simon Henry] …it’s about demand. Our personal wish for [private] transport. [Not good to be] pushing the cost onto the big bad energy companies and their shareholders. It’s taxes or prices. [Politicians] must start to think of their children and not the next election…

    …On targets and subsidies : India, Indonesia, Brazil […] to move on fossil fuel subsidies – can’t break the Laws of Economics forever. If our American friends drove the same cars we do, they’d reduce their oil consumption equivalent to all of the shale [Shale Gas ? Or Shale Oil ?]… Targets are an emotive issue when trying to get agreement from 190 countries. Only a few players that really matter : USA, China, EU, India – close to 70% of current emissions and maybe more in future. The EPA [Environmental Protection Agency in the United States of America] [announcement] on power emissions. China responded in 24 hours. The EU target on 27% renewables is not [country-specific, uniform across-the-board]. Last week APEC US deal with China on emissions. They switched everything off [and banned traffic] and people saw blue sky. Coal with CCS [Carbon Capture and Storage] we see as a good idea. We would hope for a multi-party commitment [from the United Nations climate talks], but [shows doubt]… To close : a couple of words on Shell – have to do that. We have only 2% [of the energy market], but we [hope we] can punch above our weight [in policy discussions]. We’re now beginning to establish gas as a transport fuel. Brazil – low carbon [bio]fuels. Three large CCS projects in Canada, EU… We need to look at our own energy use – pretty trivial, but [also] look at helping our customers look at theirs. Working with the DRC [China]. Only by including companies such as ourselves in [climate and energy policy] debate can we get the [global deal] we aspire to…

    […]

    [Question from the table, Ed Wells (?), HSBC] : Green Bonds : how can they provide some of the finance [for climate change mitigation and adaptation] ? The first Renminbi denominated Green Bond from [?]. China has committed to non-fossil fuels. The G20 has just agreed the structure on infrastructure – important – not just for jobs and growth – parallel needs on climate change. [Us at HSBC…] Are people as excited about Green Bonds as we are ?

    [Stephen Tindale] Yes.

    [Question from the table, Anthony Cary, Commonwealth Scholarship Commission] …The key seems to be pricing carbon into the economy. You said you preferred Cap and Trade. I used to but despite reform the EU Emissions Trading Scheme (EU ETS) – [failures and] gaming the system. Tax seems to be a much more solid basis.

    [Simon Henry] [The problem with the ETS] too many credits and too many exemptions. Get rid of the exemptions. Bank reserve of credits to push the price up. Degress the number of credits [traded]. Tax : if people can afford it, they pay the tax, doesn’t stop emissions. In the US, no consumption tax, they are very sensitive to the oil price going up and down – 2 to 3 million barrels a day [swing] on 16 million barrels a day. All the political impact on the US from shale could be done in the same way on efficiency [fuel standards and smaller cars]. Green Bonds are not something on top of – investment should be financed by Green Bonds, but investment is already being done today – better to get policy right and then all investment directed.

    […]

    [Question from the table, Kirsten Gogan, Energy for Humanity] The role of nuclear power. By 2050, China will have 500 gigawatts (GW) of nuclear power. Electricity is key. Particularly coal. Germany is building new coal as removing nuclear…

    [My internal response] It’s at this point that my ability to swallow myths was lost. I felt like shouting, politely, across the table : ACTUALLY KIRSTEN, YOU, AND A LOT OF OTHER PEOPLE IN THE ROOM ARE JUST PLAIN WRONG ON GERMANY AND COAL.

    “Germany coal power generation at 10-year low in August”, 9th September 2014

    And the only new coal-fired plants being built are those that were planned up to five years ago. No new coal-fired capacity is now being agreed.

    [Kirsten Gogan]…German minister saying in public that you can’t phase out nuclear and coal at the same time. Nuclear is not included in that conversation. Need to work on policy to scale up nuclear to replace coal. Would it be useful to have a clear sectoral target on decarbonising – 100% on electricity ?

    [Stephen Tindale] Electricity is the least difficult of the energy sectors to decarbonise. Therefore the focus should be on electricity. If a target would help (I’m not a fan) nuclear certainly needs to be a part of the discussions. Angela Merkel post-Fukushima has been crazy, in my opinion. If want to boost renewable energy, nuclear power will take subsidies away from that. But targets for renewable energy is the wrong objective.. If the target is keeping the climate stable then it’s worth subsidising nuclear. Subsidising is the wrong word – “risk reduction”.

    [Simon Henry] If carbon was properly priced, nuclear would become economic by definition…

    [My internal response] NO IT WOULDN’T. A LOT OF NUCLEAR CONSTRUCTION AND DECOMMISSIONING AND SPENT FUEL PROCESSING REQUIRES CARBON-BASED ENERGY.

    [Simon Henry] …Basically, all German coal is exempted (from the EU ETS). If you have a proper market-based system then the right things will happen. The EU – hypocrisy at country level. Only [a couple of percent] of global emissions. The EU would matter if it was less hypocritical. China are more rational – long-term thinking. We worked with the DRC. Six differing carbon Cap and Trade schemes in operation to find the one that works best. They are effectively supporting renewable energy – add 15 GW each of wind and solar last year. They don’t listen to NIMBYs [they also build in the desert]. NIMBYism [reserved for] coal – because coal was built close to cities. [Relationship to Russia] – gas replacing coal. Not an accident. Five year plan. They believe in all solutions. Preferably Made in China so we can export to the rest of the world. [Their plans are for a range of aims] not just climate.

    […]
    […]

    [Simon Henry] [in answer to a question about the City of London] We don’t rely on them to support our activities [my job security depends on a good relationship with them]]. We have to be successful first and develop [technological opportunities] [versus being weakened by taxes]. They can support change in technology. Financing coal may well be new money. Why should the City fund new coal investments ?

    [Question from the table, asking about the “coal is 70% of the problem” message from Simon Henry] When you talk to the City investors, do you take the same message to the City ?

    [Simon Henry] How much of 2.7 trillion tonnes of “Unburnable Carbon” is coal, oil and gas ? Two thirds of carbon reserves is coal. [For economic growth and] transport you need high density liquid fuels. Could make from coal [but the emissions impact would be high]. We need civil society to have a more serious [understanding] of the challenges.

    After the discussion, I asked Simon Henry to clarify his words about the City of London.

    [Simon Henry] We don’t use the City as a source of capital. 90% is equity finance. We don’t go to the market to raise equity. For every dollar of profit, we invest 75 cents, and pay out 25 cents as dividend to our shareholders. Reduces [problems] if we can show we can reinvest. [ $12 billion a year is dividend. ]

    I asked if E&P [Exploration and Production] is working – if there are good returns on investment securing new reserves of fossil fuels – I know that the company aims for a 10 or 11 year Reserves to Production ratio (R/P) to ensure shareholder confidence.

    Simon Henry mentioned the price of oil. I asked if the oil price was the only determinant on the return on investment in new E&P ?

    [Simon Henry] If the oil price is $90 a barrel, that’s good. At $100 a barrel or $120 a barrel [there’s a much larger profit]. Our aim is to ensure we can survive at $70 a barrel. [On exploration] we still have a lot of things in play – not known if they are working yet… Going into the Arctic [At which point I said I hope we are not going into the Arctic]… [We are getting returns] Upstream is fine [supply of gas and oil]. Deepwater is fine. Big LNG [Liquefied Natural Gas] is fine. Shale is a challenge. Heavy Oil returns could be better – profitable, but… [On new E&P] Iraq, X-stan, [work in progress]. Downstream [refinery] has challenges on return. Future focus – gas and deepwater. [On profitability of investment – ] “Gas is fine. Deepwater is fine.”

    [My summary] So, in summary, I think all of this means that Shell believes that Cap and Trade is the way to control carbon, and that the Cap and Trade cost would be borne by their customers (in the form of higher bills for energy because of the costs of buying carbon credits), so their business will not be affected. Although a Cap and Trade market could possibly cap their own market and growth as the sales envelope for carbon would be fixed, since Shell are moving into lower carbon fuels – principally Natural Gas, their own business still has room for growth. They therefore support Cap and Trade because they believe it will not affect them. WHAT THEY DON’T APPEAR TO WANT PEOPLE TO ASK IS IF A CAP AND TRADE SYSTEM WILL ACTUALLY BE EFFECTIVE IN CURBING CARBON DIOXIDE EMISSIONS. They want to be at the negotiating table. They believe that they’re not the problem – coal is. They believe that the world will continue to need high energy-dense oil for transport for some time to come. It doesn’t matter if the oil market gets constrained by natural limits to expansion because they have gas to expand with. They don’t see a problem with E&P so they believe they can keep up their R/P and stay profitable and share prices can continue to rise. As long as the oil price stays above $70 a barrel, they’re OK.

    However, there was a hint in what Simon Henry talked about that all is not completely well in Petro-land.

    a. Downstream profit warning

    Almost in passing, Simon Henry admitted that downstream is potentially a challenge for maintaining returns on investment and profits. Downstream is petrorefinery and sales of the products. He didn’t say which end of the downstream was the issue, but oil consumption has recovered from the recent Big Dip recession, so that can’t be his problem – it must be in petrorefinery. There are a number of new regulations about fuel standards that are going to be more expensive to meet in terms of petroleum refinery – and the chemistry profiles of crude oils are changing over time – so that could also impact refinery costs.

    b. Carbon disposal problem

    The changing profile of crude oils being used for petrorefinery is bound to cause an excess of carbon to appear in material flows – and Simon Henry’s brief mention of petcoke is more significant than it may first appear. In future there may be way too much carbon to dispose of (petcoke is mostly carbon rejected by thermal processes to make fuels), and if Shell’s plan is to burn petcoke to make power as a solution to dispose of this carbon, then the carbon dioxide emissions profile of refineries is going to rise significantly… where’s the carbon responsiblity in that ?

  • On Not Setting The Proper Tone

    Posted on May 28th, 2014 Jo No comments

    So, I turned up for a national Climate Change campaigning and lobbying day some years ago. I had offered to steward at the event. My attire concerned one of those close to the organising team. After all, there were Members of Parliament due to attend, and Gentlemen and Ladies of the Press. “I don’t think it’s quite setting the right tone.” she commented.

    Well, I want to know what the right tone is, exactly. And I don’t think anybody else does, either. How do we make change happen ? Really ?

    I’ve just received another email missive from The Climate Coalition asking me to Tweet tomorrow about the Carbon Budget.

    “As you may remember, back in 2011 we successfully fought for the government to deliver on its climate targets by adopting the Committee on Climate Change’s (CCC) recommendations on the 4th Carbon Budget…”

    I mean, that’s a bit of a claim to start with. I very much doubt that anything that the Climate Coalition (or Stop Climate Chaos, as they were known in 2011) did had any bearing on the UK Government’s policy- or decision-making.

    “…That decision is currently up for review and we need to make sure the government sticks to the ambition it showed 3 years ago, starting with a Twitter love in this Thursday.”

    I beg your pardon ? How can The Climate Coalition make sure the UK Government does anything ? By Tweeting ? OK, so The Climate Coalition is an umbrella organisation of over 40 organisations, ostensibly representing over 11 million people, but it doesn’t have any real political weight, or any serious influence with The Treasury, who are normally the ones resisting the development of the green economy.

    “…We’ve heard rumours that this is currently being negotiated in government, with at least some arguing for weaker targets. We don’t know yet which way it’ll go, so David Cameron and Nick Clegg might just need a bit of support from us to make the right decision and stick to our current targets…”

    So this is what it’s all about – a show of support for the UK Government !

    So, tell me, why should I join in, exactly ? I won’t be having any kind of genuine impact. It’s just a token flag-waving exercise.

    I know I’m not setting the right tone, here. I’m challenging the proposals for action from one of the country’s largest collective groups with a clear position about climate change. But that’s because it’s a washout – there is nothing to be gained by responding to this appeal to Tweet.

    I mean, if they called for the whole 11 million people to do something actually meaningful, like withdraw their labour for one hour a day, or refuse to use household appliances for 8 hours a week, or all demand a meeting with the fossil fuel producing companies asking them what their plan is to decarbonise the energy supply, then I suppose that might be something worth trying.

    But Tweeting ? In support of a Government decision that they ought to make anyway based on the existing Climate Change Law and the science ? Why would they need me to join in with them on that ?

  • Positively Against Negative Campaigning

    Posted on May 24th, 2014 Jo 4 comments

    How to organise a political campaign around Climate Change : ask a group of well-fed, well-meaning, Guardian-reading, philanthropic do-gooders into the room to adopt the lowest common denominator action plan. Now, as a well-fed, well-meaning, Guardian-reading (well, sometimes), philanthropic do-gooder myself, I can expect to be invited to attend such meetings on a regular basis. And always, I find myself frustrated by the outcomes : the same insipid (but with well-designed artwork) calls to our publics and networks to support something with an email registration, a signed postcard, a fistful of dollars, a visit to a public meeting of no consequence, or a letter to our democratic representative. No output except maybe some numbers. Numbers to support a government decision, perhaps, or numbers to indicate what kind of messaging people need in future.

    I mean, with the Fair Trade campaign, at least there was some kind of real outcome. Trade Justice advocates manned stall tables at churches, local venues, public events, and got money flowing to the international co-operatives, building up the trade, making the projects happen, providing schooling and health and aspirations in the target countries. But compare that to the Make Poverty History campaign which was largely run to support a vain top-level political attempt to garner international funding promises for social, health and economic development. Too big to succeed. No direct line between supporting the campaign and actually supporting the targets. Passing round the hat to developed, industrialised countries for a fund to support change in developing, over-exploited countries just isn’t going to work. Lord Nicholas Stern tried to ask for $100 billion a year by 2020 for Climate Change adaptation. This has skidded to a halt, as far as I know. The economic upheavals, don’t you know ?

    And here we are again. The United Nations Framework Convention on Climate Change (UNFCCC), which launched the Intergovernmental Panel on Climate Change (IPCC) reports on climate change, oh, so, long, ago, through the person of its most charismatic and approachable Executive Secretary, Christiana Figueres, is calling for support for a global Climate Change treaty in 2015. Elements of this treaty, being drafted this year, will, no doubt, use the policy memes of the past – passing round the titfer begging for a couple of billion squid for poor, hungry people suffering from floods and droughts; proposing some kind of carbon pricing/taxing/trading scheme to conjure accounting bean solutions; trying to implement an agreement around parts per million by volume of atmospheric carbon dioxide; trying to divide the carbon cake between the rich and the poor.

    Somehow, we believe, that being united around this proposed treaty, few of which have any control over the contents of, will bring us progress.

    What can any of us do to really have input into the building of a viable future ? Christiana – for she is now known frequently only by her first name – has called for numbers – a measure of support for the United Nations process. She has also let it be known that if there is a substantial number of people who, with their organisations, take their investments out of fossil fuels, then this could contribute to the mood of the moment. Those who are advocating divestment are yet small in number, and I fear that they will continue to be marginal, partly because of the language that is being used.

    First of all, there are the Carbon Disclosers. Their approach is to conjure a spectre of the “Carbon Bubble” – making a case that investments in carbon dioxide-rich enterprises could well end up being stranded by their assets, either because of wrong assumptions about viable remaining resources of fossil fuels, or because of wrong assumptions about the inability of governments to institute carbon pricing. Well, obviously, governments will find it hard to implement effective carbon pricing, because governments are in bed with the energy industry. Politically, governments need to keep big industry sweet. No surprise there. And it’s in everybody’s interests if Emperor Oil and Prince Regent Natural Gas are still wearing clothes. In the minds of the energy industry, we still have a good four decades of healthy fossil fuel assets. Royal Dutch Shell’s CEO can therefore confidently say at a public AGM that There Is No Carbon Bubble. The Carbon Discloser language is not working, it seems, as any kind of convincer, except to a small core of the concerned.

    And then there are the Carbon Voices. These are the people reached by email campaigns who have no real idea how to do anything practical to affect change on carbon dioxide emissions, but they have been touched by the message of the risks of climate change and they want to be seen to be supporting action, although it’s not clear what action will, or indeed can, be taken. Well-designed brochures printed on stiff recycled paper with non-toxic inks will pour through their doors and Inboxes. Tick it. Send it back. Sign it. Send it on. Maybe even send some cash to support the campaign. This language is not achieving anything except guilt.

    And then there are the Carbon Divestors. These are extremely small marginal voices who are taking a firm stand on where their organisations invest their capital. The language is utterly dated. The fossil fuel industry are evil, apparently, and investing in fossil fuels is immoral. It is negative campaigning, and I don’t think it stands a chance of making real change. It will not achieve its goal of being prophetic in nature – bearing witness to the future – because of the non-inclusive language. Carbon Voices reached by Carbon Divestor messages will in the main refuse to respond, I feel.

    Political action on Climate Change, and by that I mean real action based on solid decisions, often taken by individuals or small groups, has so far been under-the-radar, under-the-counter, much like the Fair Trade campaign was until it burst forth into the glorious day of social acceptability and supermarket supply chains. You have the cyclists, the Transition Towners, the solar power enthusiasts. Yet to get real, significant, economic-scale transition, you need Energy Change – that is, a total transformation of the energy supply and use systems. It’s all very well for a small group of Methodist churches to pull their pension funds from investments in BP and Shell, but it’s another thing entirely to engage BP and Shell in an action plan to diversify out of petroleum oil and Natural Gas.

    Here below are my email words in my feeble attempt to challenge the brain of Britain’s charitable campaigns on what exactly is intended for the rallying cry leading up to Paris 2015. I can pretty much guarantee you won’t like it – but you have to remember – I’m not breaking ranks, I’m trying to get beyond the Climate Change campaigning and lobbying that is currently in play, which I regard as ineffective. I don’t expect a miraculous breakthrough in communication, the least I can do is sow the seed of an alternative. I expect I could be dis-invited from the NGO party, but it doesn’t appear to be a really open forum, merely a token consultation to build up energy for a plan already decided. If so, there are probably more important things I could be doing with my time than wasting hours and hours and so much effort on somebody else’s insipid and vapid agenda.

    I expect people might find that attitude upsetting. If so, you know, I still love you all, but you need to do better.


    […]

    A lot of campaigning over the last 30 years has been very negative and divisive, and frequently ends in psychological stalemate. Those who are cast as the Bad Guys cannot respond to the campaigning because they cannot admit to their supporters/employees/shareholders that the campaigners are “right”. Joe Average cannot support a negative campaign as there is no apparent way to make change happen by being so oppositional, and because the ask is too difficult, impractical, insupportable. [Or there is simply too much confusion or cognitive dissonance.]

    One of the things that was brought back from the […] working group breakout on […] to the plenary feedback session was that there should be some positive things about this campaign on future-appropriate investment. I think […] mentioned the obvious one of saying effectively “we are backing out of these investments in order to invest in things that are more in line with our values” – with the implicit encouragement for fossil fuel companies to demonstrate that they can be in line with our values and that they are moving towards that. There was some discussion that there are no bulk Good Guy investment funds, that people couldn’t move investments in bulk, although some said there are. […] mentioned Ethex.

    Clearly fossil fuel production companies are going to find it hard to switch from oil and gas to renewable electricity, so that’s not a doable we can ask them for. Several large fossil fuel companies, such as BP, have tried doing wind and solar power, but they have either shuttered those business units, or not let them replace their fossil fuel activities.

    […] asked if the [divestment] campaign included a call for CCS – Carbon Capture and Storage – and […] referred to […] which showed where CCS is listed in a box on indicators of a “good” fossil fuel energy company.

    I questioned whether the fossil fuel companies really want to do CCS – and that they have simply been waiting for government subsidies or demonstration funds to do it. (And anyway, you can’t do CCS on a car.)

    I think I said in the meeting that fossil fuel producer companies can save themselves and save the planet by adopting Renewable Gas – so methods for Carbon Capture and Utilisation (CCU) or “carbon recycling”. Plus, they could be making low carbon gas by using biomass inputs. Most of the kit they need is already widely installed at petrorefineries. So – they get to keep producing gas and oil, but it’s renewably and sustainably sourced with low net carbon dioxide emissions. That could be turned into a positive, collaborative ask, I reckon, because we could all invest in that, the fossil fuel companies and their shareholders.

    Anyway, I hope you did record something urging a call to positive action and positive engagement, because we need the co-operation of the fossil fuel companies to make appropriate levels of change to the energy system. Either that, or they go out of business and we face social turmoil.

    If you don’t understand why this is relevant, that’s OK. If you don’t understand why a straight negative campaign is a turn-off to many people (including those in the fossil fuel industry), well, I could role play that with you. If you don’t understand what I’m talking about when I talk about Renewable Gas, come and talk to me about it again in 5 years, when it should be common knowledge. If you don’t understand why I am encouraging positive collaboration, when negative campaigning is so popular and marketable to your core segments, then I will resort to the definition of insanity – which is to keep doing the same things, expecting a different result.

    I’m sick and tired of negative campaigning. Isn’t there a more productive thing to be doing ?

    There are no enemies. There are no enemies. There are no enemies.

    ——-

    As far as I understand the situation, both the […] and […] campaigns are negative. They don’t appear to offer any positive routes out of the problem that could engage the fossil fuel companies in taking up the baton of Energy Change. If that is indeed the main focus of […] and […] efforts, then I fear they will fail. Their work will simply be a repeat of the negative campaigning of the last 30 years – a small niche group will take up now-digital placards and deploy righteous, holy social media anger, and that will be all.

    Since you understand this problem, then I would suggest you could spend more time and trouble helping them to see a new way. You are, after all, a communications expert. And so you know that even Adolf Hitler used positive, convening, gathering techniques of propaganda to create power – and reserved the negative campaigning for easily-marginalised vulnerable groups to pile the bile and blame on.

    Have a nicer day,

    —–

    The important thing as far as I understand it is that the “campaigning” organisations need to offer well-researched alternatives, instead of just complaining about the way things are. And these well-researched alternatives should not just be the token sops flung at the NGOs and UN by the fossil fuel companies. What do I mean ?

    Well, let’s take Carbon Capture and Storage (CCS). The injection of carbon dioxide into old oil and gas caverns was originally proposed for Enhanced Oil Recovery (EOR) – that is – getting more oil and gas out the ground by pumping gas down there – a bit like fracking, but with gas instead of liquid. The idea was that the expense of CCS would be compensated for by the new production of oil and gas – however, the CCS EOR effect has shown to be only temporary. So now the major oil and gas companies say they support carbon pricing (either by taxation or trading), to make CCS move forward. States and federations have given them money to do it. I think the evidence shows that carbon pricing cannot be implemented at a sufficiently high level to incentivise CCS, therefore CCS is a non-answer. Why has […] not investigated this ? CCS is a meme, but not necessarily part of the carbon dioxide solution. Not even the UNFCCC IPCC reports reckon that much CCS can be done before 2040. So, why does CCS appear in the […] criteria for a “good” fossil fuel company ? Because it’s sufficiently weak as a proposal, and sufficiently far enough ahead that the fossil fuel companies can claim they are “capture ready”, and in the Good Book, but in reality are doing nothing.

    Non-starters don’t just appear from fossil fuel companies. From my point of view, another example of running at and latching on to things that cannot help was the support of the GDR – Greenhouse Development Rights, of which there has been severe critique in policy circles, but the NGOs just wrote it into their policy proposals without thinking about it. There is no way that the emissions budgets set out in the GDR policy could ever get put into practice. For a start, there is no real economic reason to divide the world into developing and developed nations (Kyoto [Protocol]’s Annex I and Annex II).

    If you give me some links, I’m going to look over your […] and think about it.

    I think that if a campaign really wants to get anywhere with fossil fuel companies, instead of being shunted into a siding, it needs to know properly what the zero carbon transition pathways really are. Unequal partners do not make for a productive engagement, I reckon.

    —–

    I’m sorry to say that this still appears to be negative campaigning – fossil fuel companies are “bad”; and we need to pull our money out of fossil fuel companies and put it in other “good” companies. Where’s the collective, co-operative effort undertaken with the fossil fuel companies ? What’s your proposal for helping to support them in evolving ? Do you know how they can technologically transition from using fossil fuels to non-fossil fuels ? And how are you communicating that with them ?

    ——

    They call me the “Paradigm Buster”. I’m not sure if “the group” is open to even just peeking into that kind of approach, let alone “exploring” it. The action points on the corporate agenda could so easily slip back into the methods and styles of the past. Identify a suffering group. Build a theory of justice. Demand reparation. Make Poverty History clearly had its victims and its saviours. Climate change, in my view, requires a far different treatment. Polar bears cannot substitute for starving African children. And not even when climate change makes African children starve, can they inspire the kind of action that climate change demands. A boycott campaign without a genuine alternative will only touch a small demographic. Whatever “the group” agrees to do, I want it to succeed, but by rehashing the campaigning strategies and psychology of the past, I fear it will fail. Even by adopting the most recent thinking on change, such as Common Cause, [it] is not going to surmount the difficulties of trying to base calls to action on the basis of us-and-them thinking – polar thinking – the good guys versus the bad guys – the body politic David versus the fossil fuel company Goliath. By challenging this, I risk alienation, but I am bound to adhere to what I see as the truth. Climate change is not like any other disaster, aid or emergency campaign. You can’t just put your money in the [collecting tin] and pray the problem will go away with the help of the right agencies. Complaining about the “Carbon Bubble” and pulling your savings from fossil fuels is not going to re-orient the oil and gas companies. The routes to effective change require a much more comprehensive structure of actions. And far more engagement that agreeing to be a flag waver for whichever Government policy is on the table. I suppose it’s too much to ask to see some representation from the energy industry in “the group”, or at least […] leaders who still believe in the fossil fuel narratives, to take into account their agenda and their perspective, and a readiness to try positive collaborative change with all the relevant stakeholders ?


    Academic Freedom, Advancing Africa, Alchemical, Artistic Licence, Assets not Liabilities, Bait & Switch, Be Prepared, Behaviour Changeling, Big Number, Big Picture, Big Society, Carbon Army, Carbon Capture, Carbon Commodities, Carbon Pricing, Carbon Rationing, Carbon Recycling, Carbon Taxatious, Change Management, Climate Change, Climate Chaos, Climate Damages, Conflict of Interest, Contraction & Convergence, Corporate Pressure, Dead End, Dead Zone, Deal Breakers, Demoticratica, Design Matters, Direction of Travel, Disturbing Trends, Divide & Rule, Dreamworld Economics, Droughtbowl, Earthquake, Eating & Drinking, Economic Implosion, Electrificandum, Energy Autonomy, Energy Calculation, Energy Change, Energy Crunch, Energy Denial, Energy Insecurity, Energy Revival, Energy Socialism, Engineering Marvel, Evil Opposition, Extreme Energy, Feed the World, Feel Gooder, Financiers of the Apocalypse, Floodstorm, Food Insecurity, Foreign Interference, Foreign Investment, Fossilised Fuels, Fuel Poverty, Gamechanger, Global Warming, Green Gas, Green Investment, Green Power, Growth Paradigm, Human Nurture, Hydrocarbon Hegemony, Incalculable Disaster, Insulation, Libertarian Liberalism, Low Carbon Life, Mad Mad World, Major Shift, Marvellous Wonderful, Mass Propaganda, Media, Meltdown, Money Sings, National Energy, National Power, Near-Natural Disaster, Neverending Disaster, Not In My Name, Nudge & Budge, Optimistic Generation, Orwells, Paradigm Shapeshifter, Peace not War, Peak Coal, Peak Emissions, Peak Energy, Peak Natural Gas, Peak Oil, Pet Peeves, Petrolheads, Policy Warfare, Political Nightmare, Protest & Survive, Public Relations, Pure Hollywood, Realistic Models, Regulatory Ultimatum, Renewable Gas, Renewable Resource, Revolving Door, Social Capital, Social Change, Social Chaos, Social Democracy, Solar Sunrise, Solution City, Stirring Stuff, Sustainable Deferment, Technofix, Technological Sideshow, The Myth of Innovation, The Power of Intention, The Price of Gas, The Price of Oil, The Right Chemistry, The Science of Communitagion, The War on Error, Toxic Hazard, Tree Family, Unconventional Foul, Unqualified Opinion, Unsolicited Advice & Guidance, Unutterably Useless, Utter Futility, Vain Hope, Vote Loser, Western Hedge, Wind of Fortune, Zero Net
  • Nigel Lawson : Unreferenced & Ill-Informed ?

    Posted on May 8th, 2014 Jo No comments

    An appeal was issued by David Andrews of the Claverton Energy Research Group, to respond to the Bath Lecture given by Nigel Lawson :-

    “Dear All, this group is not meant to be a mere venting of frustration and opinion at what is perceived to be poor policy. So what would be really useful is to have the Lawson spiel with the countering fact interspersed. I can then publish this on the Claverton web site which does get a lot of hits and appears to be quite influential. Can I therefore first thank Ed Sears for making a good effort, but ask him to copy his bits into the Lawson article at the appropriate point. Then circulate it and get others to add in bits. Otherwise these good thoughts will simply be lost in the wind. Dave”

    My reply of today :-

    “Dear Dave, I don’t have time at the moment to answer all of Nigel Lawson’s layman ruminations, but I have written a few comments here (see below) which begin to give vent to frustration typical of that which his tactics cause in the minds of people who have some acquaintance with the actual science. The sheer volume of his output suggests an attempt to filibuster proper debate rather than foster it. To make life more complicated to those who wish to answer his what I think are absurd notions, he gives no accurate references to his supposed facts or cites any accredited, peer-reviewed documentation that could back up his various emotive generalisations and what appear to be aspersions. Regards, jo.”


    http://www.thegwpf.org/nigel-lawson-the-bath-lecture/

    Nigel Lawson: The Bath Lecture

    Climate Alarmism Is A Belief System And Needs To Be Evaluated As Such

    Nigel Lawson: Cool It

    Standpoint, May 2014

    This essay is based on the text of a speech given to the Institute for Sustainable Energy and the Environment at the University of Bath.

    There is something odd about the global warming debate — or the climate change debate, as we are now expected to call it, since global warming has for the time being come to a halt.

    [ joabbess.com : Contrary to what Nigel Lawson is claiming, there is no pause – global warming continues unabated. Of this there can be no doubt. All of the data that has been assessed – and there is a lot of it – confirms the theoretical framework – so it is odd that Nigel Lawson states otherwise, seemingly without any evidence to substantiate his assertion. Nigel Lawson appears to be taking advantage of fluctuations, or short-term wrinkles, in the records of air temperatures close to the Earth, to claim that up is down, dark is light and that truth is in error. Why are temperatures in the atmosphere close to the Earth’s surface, or “surface temperatures”, subject to variability ? Because heat can flow through matter, is the short answer. The longer answer is the interplay between the atmosphere and the oceans, where heat is being transfered between parts of the Earth system under conditions of flows such as the movement of air and water – what we call winds and ocean currents. There are detectable patterns in the flows of air and water – and some are oscillatory, so the temperature (taken at any one time) may appear to wriggle up and down (when viewed over a period of time). Despite these wobbles, the overall trend of temperature over several decades has been reliably detected. Despite Nigel Lawson’s attention to air temperatures, they are probably the least significant in detecting global warming, even though the data shows that baseline air temperatures, averaged over time, are rising. The vast proportion of heat being added to the Earth system is ending up in the oceans :-
    http://www.skepticalscience.com/global-cooling-intermediate.htm
    and the rise in ocean temperatures is consistent :-
    https://www.skepticalscience.com/cherrypicking-deny-continued-ocean-global-warming.html
    which indicates that circulatory patterns of heat exchange in the oceans have less effect on making temperatures fluctuate than the movement of masses of air in the atmosphere. This is exactly what you would expect from the study of basic physics. If you give only a cursory glance at the recent air temperatures at the surface of the Earth, you could think that temperatures have levelled off in the last decade or so, but taking a longer term view easily shows that global warming continues to be significant :-
    http://data.giss.nasa.gov/gistemp/graphs_v3/
    What is truly astonishing about this data is that the signal shows through the noise – that the trend in global warming is easily evident by eye, despite the wavy shakes from natural variability. For Nigel Lawson’s information, the reason why we refer to climate change is to attempt to encompass other evidence in this term besides purely temperature measurements. As the climate changes, rainfall patterns are altering, for example, which is not something that can be expressed in the term global warming. ]

    I have never shied away from controversy, nor — for example, as Chancellor — worried about being unpopular if I believed that what I was saying and doing was in the public interest.

    But I have never in my life experienced the extremes of personal hostility, vituperation and vilification which I — along with other dissenters, of course — have received for my views on global warming and global warming policies.

    For example, according to the Climate Change Secretary, Ed Davey, the global warming dissenters are, without exception, “wilfully ignorant” and in the view of the Prince of Wales we are “headless chickens”. Not that “dissenter” is a term they use. We are regularly referred to as “climate change deniers”, a phrase deliberately designed to echo “Holocaust denier” — as if questioning present policies and forecasts of the future is equivalent to casting malign doubt about a historical fact.

    [ joabbess.com : Climate change science is built on observations : all historical facts. Then, as in any valid science, a theoretical framework is applied to the data to check the theory – to make predictions of future change, and to validate them. It is an historical fact that the theoretical framework for global warming has not been falsified. The Earth system is warming – this cannot be denied. It seems to me that Nigel Lawwon usurps the truth with myth and unsubstantiated rumour, casting himself in the role of doubting dissenter, yet denying the evidence of the data. He therefore self-categorises as a denier, by the stance of denial that he takes. His denial is also an historical fact, but calling him a denier is not a value judgement. It is for each person to ascribe for themselves a moral value to the kind of denial he expresses. ]

    The heir to the throne and the minister are senior public figures, who watch their language. The abuse I received after appearing on the BBC’s Today programme last February was far less restrained. Both the BBC and I received an orchestrated barrage of complaints to the effect that it was an outrage that I was allowed to discuss the issue on the programme at all. And even the Science and Technology Committee of the House of Commons shamefully joined the chorus of those who seek to suppress debate.

    [ joabbess.com : Considering the general apathy of most television viewers, it is therefore quite refreshingly positive that so many people decided to complain about Nigel Lawson being given a platform to express his views about climate change, a subject about which it seems he is unqualified to speak with authority of learning. He may consider the complaints an “orchestrated barrage”. Another interpretation could be that the general mood of the audience ran counter to his contributions, and disagreed with the BBC’s decisiont to permit him to air his contrarian position, to the point of vexation. A parallel example could be the kind of outrage that could be expressed if Nigel Lawson were to deny that the Earth is approximately spherical, that gravity means that things actually move out to space rather than towards the ground, or that water is generally warmer than ice. He should expect opposition to his opinions if he is denying science. ]

    In fact, despite having written a thoroughly documented book about global warming more than five years ago, which happily became something of a bestseller, and having founded a think tank on the subject — the Global Warming Policy Foundation — the following year, and despite frequently being invited on Today to discuss economic issues, this was the first time I had ever been asked to discuss climate change. I strongly suspect it will also be the last time.

    The BBC received a well-organised deluge of complaints — some of them, inevitably, from those with a vested interest in renewable energy — accusing me, among other things, of being a geriatric retired politician and not a climate scientist, and so wholly unqualified to discuss the issue.

    [ joabbess.com : It is a mark of integrity to put you money where your mouth is, not an indicator on insincerity. It is natural to expect people who accept climate change science to be taking action on carbon dioxide emissions, which includes investment in renewable energy. ]

    Perhaps, in passing, I should address the frequent accusation from those who violently object to any challenge to any aspect of the prevailing climate change doctrine, that the Global Warming Policy Foundation’s non-disclosure of the names of our donors is proof that we are a thoroughly sinister organisation and a front for the fossil fuel industry.

    As I have pointed out on a number of occasions, the Foundation’s Board of Trustees decided, from the outset, that it would neither solicit nor accept any money from the energy industry or from anyone with a significant interest in the energy industry. And to those who are not-regrettably-prepared to accept my word, I would point out that among our trustees are a bishop of the Church of England, a former private secretary to the Queen, and a former head of the Civil Service. Anyone who imagines that we are all engaged in a conspiracy to lie is clearly in an advanced stage of paranoia.

    The reason why we do not reveal the names of our donors, who are private citizens of a philanthropic disposition, is in fact pretty obvious. Were we to do so, they, too, would be likely to be subject to the vilification and abuse I mentioned earlier. And that is something which, understandably, they can do without.

    That said, I must admit I am strongly tempted to agree that, since I am not a climate scientist, I should from now on remain silent on the subject — on the clear understanding, of course, that everyone else plays by the same rules. No more statements by Ed Davey, or indeed any other politician, including Ed Milliband, Lord Deben and Al Gore. Nothing more from the Prince of Wales, or from Lord Stern. What bliss!

    But of course this is not going to happen. Nor should it; for at bottom this is not a scientific issue. That is to say, the issue is not climate change but climate change alarmism, and the hugely damaging policies that are advocated, and in some cases put in place, in its name. And alarmism is a feature not of the physical world, which is what climate scientists study, but of human behaviour; the province, in other words, of economists, historians, sociologists, psychologists and — dare I say it — politicians.

    [ joabbess.com : Au contraire, I would say to Nigel Lawson. At root, climate change is very much a scientific issue. Science defines it, describes it and provides evidence for it. Climate change is an epistemological concern, and an ontological challenge. How we know what we know about climate change is by study of a very large number of results from data collection and other kinds of research. The evidence base is massive. The knowledge expressed in climate change science is empirical – based on observations – which is how we are sure that what we know is assured. There is still scope for uncertainty – will the surface temperatures rise by X plus or minus some Y, owing to the dynamic between the atmosphere, the oceans, the ice cover and the land masses ? The results of the IPCC assessments are that we pretty much know what X is, and we have an improved clarity on a range of values for Y. The more science is done, the clearer these numbers emerge. Knowledge increases as more science is done, which is why the IPCC assessments are making firmer conclusions as time passes. Climate change science does not make value judgements on its results. It concludes that sea levels are rising and will continue to rise; that rainfall patterns are changing and will continue to change; that temperatures are rising and will continue to rise under current economic conditions and the levels of fossil fuel use and land use. Science describes the outcomes of these and other climate changes. It is for us as human beings, with humanity in our hearts, to place a meaning on predicted outcomes such as crop and harvest failures, displacement of peoples, unliveable habitats, loss of plant and animal species, extreme weather. You cannot take the human out of the scientist. Of course scientists will experience alarm at the thought of these outcomes, just as the rest of society will do. The people should not be denied the right to feeling alarm. ]

    And en passant, the problem for dissenting politicians, and indeed for dissenting climate scientists for that matter, who certainly exist, is that dissent can be career-threatening. The advantage of being geriatric is that my career is behind me: there is nothing left to threaten.

    [ joabbess.com : Climate change science is not something you can “dissent” from if you are at all versed in it. For those who question any part of climate change science from inside the community of those who have appropriate knowledge and learning, their position is not one of dissent, but of being unable to assent completely to the conclusions of their peers. They lack a capacity to fully assent to the results of other people’s research because their own research indicates otherwise. As responsible members of the science community, they would then put their research conclusions and the research conclusions of others to the test. There is an integrity in this kind of questioning. It is a valid position, as long as the questions are posed in the language of scientific enquiry, and answered with scientific methods. For example, the Berkeley BEST team had questions about the evidence of global warming and set out to verify or falsify the results of others. Their own research led them to become convinced that their peers had been correct in the their conclusions. This is how science comes to consensus. Nigel Lawson should fund research in the field if he wishes to be taken seriously in denying the current consensus in climate change science. Instead of which, he invests in the publication of what appears to be uncorroborated hearsay and emotive politicking. ]

    But to return: the climate changes all the time, in different and unpredictable (certainly unpredicted) ways, and indeed often in different ways in different parts of the world. It always has done and no doubt it always will. The issue is whether that is a cause for alarm — and not just moderate alarm. According to the alarmists it is the greatest threat facing humankind today: far worse than any of the manifold evils we see around the globe which stem from what Pope called “man’s inhumanity to man”.

    [ joabbess.com : Nigel Lawson doesn’t need to tell anyone that weather is changeable and that climate changes. They can see it for themselves if they care to study the data. Climate change science has discovered that the current changes in the climate are unprecedented within at least the last 800,000 years. No previous period of rapid climate change in that era has been entirely similar to the changes we are experiencing today. This is definite cause for alarm, high level alarm, and not moderate. If there is a fire, it is natural to sound the alarm. If there is a pandemic, people spread the news. If there is a risk, as human beings, we take collective measures to avoid the threat. This is normal human precautionary behaviour. It is unreasonable for Nigel Lawson to insist that alarm is not an appropriate response to what is patently in the process of happening. ]

    Climate change alarmism is a belief system, and needs to be evaluated as such.

    [ joabbess.com : Belief in gravity, or thinking that protein is good to eat are also belief systems. Everything we accept as normal and true is part of our own belief system. For example, I believe that Nigel Lawson is misguided and has come to the wrong conclusions. The evidence lies before me. Is my opinion to be disregarded because I have a belief that Nigel Lawson is incorrect ? ]

    There is, indeed, an accepted scientific theory which I do not dispute and which, the alarmists claim, justifies their belief and their alarm.

    This is the so-called greenhouse effect: the fact that the earth’s atmosphere contains so-called greenhouse gases (of which water vapour is overwhelmingly the most important, but carbon dioxide is another) which, in effect, trap some of the heat we receive from the sun and prevent it from bouncing back into space.

    Without the greenhouse effect, the planet would be so cold as to be uninhabitable. But, by burning fossil fuels — coal, oil and gas — we are increasing the amount of carbon dioxide in the atmosphere and thus, other things being equal, increasing the earth’s temperature.

    But four questions immediately arise, all of which need to be addressed, coolly and rationally.

    First, other things being equal, how much can increased atmospheric CO2 be expected to warm the earth? (This is known to scientists as climate sensitivity, or sometimes the climate sensitivity of carbon.) This is highly uncertain, not least because clouds have an important role to play, and the science of clouds is little understood. Until recently, the majority opinion among climate scientists had been that clouds greatly amplify the basic greenhouse effect. But there is a significant minority, including some of the most eminent climate scientists, who strongly dispute this.

    [ joabbess.com : Simple gas chemistry and physics that is at least a century old is evidence that carbon dioxide allows sunlight to pass right through to warm the Earth, which then emits infrared light because it has warmed up. When the infrared radiation is emitted, the Earth cools down. Infrared is partially blocked by carbon dioxide, which absorbs it, then re-radiates it, partially back to the Earth, which warms up again. Eventually, the warming radiation will escape the carbon dioxide blanket, but because of this trapping effect, the net result is for more heat to remain in the atmosphere close to the Earth’s surface than you would expect. This is the main reason why the temperature of the Earth’s surface is warmer than space. As carbon dioxide accumulates in the atmosphere, the warming effect will be enhanced. This is global warming and it is undisputed by the overwhelming majority of scientists. Climate sensitivity, or Equilibrium Climate Sensitivity (ECS) is a calculated measure of the total temperature change that would be experienced (after some time) at the surface of the Earth for a doubling of atmospheric carbon dioxide concentrations compare to the pre-industrial age. The Transient Climate Response (TCR) is a measure of the temperature change that would be experienced in the shorter-term for a doubling of atmospheric carbon dioxide concentrations. The TCR can be easily calculated from basic physics. The shorter-term warming will cause climate change. Some of the changes will act to cool the Earth down from the TCR (negative feedbacks). Some of the changes will act to heat the Earth up from the TCR (positive feedbacks). These are some disagreements about the ECS, such as the net effects from the fertilisation effect of carbon dioxide on plant growth, the net effects of changes in weather and cloud systems, and the net effects of changes in ocean and atmospheric circulation. However, evidence from the deep past (paleoclimatology) is helping to determine the range of temperatures that ECS could be. ]

    Second, are other things equal, anyway? We know that, over millennia, the temperature of the earth has varied a great deal, long before the arrival of fossil fuels. To take only the past thousand years, a thousand years ago we were benefiting from the so-called medieval warm period, when temperatures are thought to have been at least as warm, if not warmer, than they are today. And during the Baroque era we were grimly suffering the cold of the so-called Little Ice Age, when the Thames frequently froze in winter and substantial ice fairs were held on it, which have been immortalised in contemporary prints.

    [ joabbess.com : The Medieval Warming Period (or Medieval Warm Period) was just a blip compared to the current global warming of the last 150 years. And the Little Ice Age was also a minor anomaly, being pretty much confined to the region of Europe, and some expect could have become the Rather Much Longer Icy Period had it not been for the use of fossil fuels, which warmed Europe up again. Burning coal and other fossil fuels releases carbon that would have originally been in the atmosphere in the form of carbon dioxide millions of years ago, that trees and other plants used to grow. Geological evidence shows that surface temperatures at those times were warmer than today. ]

    Third, even if the earth were to warm, so far from this necessarily being a cause for alarm, does it matter? It would, after all, be surprising if the planet were on a happy but precarious temperature knife-edge, from which any change in either direction would be a major disaster. In fact, we know that, if there were to be any future warming (and for the reasons already given, “if” is correct) there would be both benefits and what the economists call disbenefits. I shall discuss later where the balance might lie.

    [ joabbess.com : The evidence from the global warming that we have experienced so far since around 1880 is almost universally limiting in terms of the ability of species of animals and plants to survive. There are tiny gems of positive outcomes, compared to a sand pit of negatives. Yes, of course it matters. The mathematics of chaos with strong perturbations to any system do not permit it to coast on a precarious knife-edge for very long. Sooner or later there will be a major alteration, and the potential for some milder probable outcomes will collapse. ]

    And fourth, to the extent that there is a problem, what should we, calmly and rationally, do about it?

    [ joabbess.com : The most calm and rational thing to do is to compile all the evidence and report on it. Oh yes, we’ve already done that. It’s called the Intergovernmental Panel on Climate Change or IPCC. The concluisons of the compilation of over 100 years of science is that global warming is real, and it’s happening now, and that there is a wide range of evidence for climate change, and indicators that it is a major problem, and that we have caused it, through using fossil fuels and changing how we use land. ]

    It is probably best to take the first two questions together.

    According to the temperature records kept by the UK Met Office (and other series are much the same), over the past 150 years (that is, from the very beginnings of the Industrial Revolution), mean global temperature has increased by a little under a degree centigrade — according to the Met Office, 0.8ºC. This has happened in fits and starts, which are not fully understood. To begin with, to the extent that anyone noticed it, it was seen as a welcome and natural recovery from the rigours of the Little Ice Age. But the great bulk of it — 0.5ºC out of the 0.8ºC — occurred during the last quarter of the 20th century. It was then that global warming alarmism was born.

    [ joabbess.com : Nigel Lawson calls it “alarmism”. I call it empirical science. And there are many scientific explanations for what he calls “fits and starts”, it’s just that they’re written in research papers, so he will probably never read them, going on his lack of attention to research publications in the past. ]

    But since then, and wholly contrary to the expectations of the overwhelming majority of climate scientists, who confidently predicted that global warming would not merely continue but would accelerate, given the unprecedented growth of global carbon emissions, as China’s coal-based economy has grown by leaps and bounds, there has been no further warming at all. To be precise, the latest report of the Intergovernmental Panel on Climate Change (IPCC), a deeply flawed body whose non-scientist chairman is a committed climate alarmist, reckons that global warming has latterly been occurring at the rate of — wait for it — 0.05ºC per decade, plus or minus 0.1ºC. Their figures, not mine. In other words, the observed rate of warming is less than the margin of error.

    [ joabbess.com : It is not valid for Nigel Lawson to claim that there has been “no further warming at all”. Heat accumulation continues to be documented. Where is Nigel Lawson’s evidence to support his claim that the IPCC is a “deeply flawed body” ? Or is that another one of his entirely unsubstantiated dismissals of science ? Does he just fudge the facts, gloss over the details, pour scorn on scientists, impugn the academies of science, play with semantics, stir up antipathy, wave his hands and the whole history of science suddenly vanishes in a puff of dismissive smoke ? I doubt it ! Nigel Lawson says “the observed rate of warming is less than the margin of error.” This is ridiculous, because temperature is not something that you can add or subtract, like bags of sugar, or baskets of apples, or Pounds Sterling to the Global Warming Policy Foundation’s public relations fund. Two degrees Celsius, or Centigrade, is not twice as warm as one degree Celsius. 30 degrees C doesn’t indicate twice as much heat as 15 degrees C, or require twice as much heating. The range of figures that Nigel Lawson is quoting, minus 0.05 degrees C plus or minus 0.1 degrees C, that is, somewhere between a cooling of 0.05 degrees C and a warming of 0.15 degrees C, is a calculation of temperature trends averaged over the whole Earth’s surface for the last 15 years :-
    http://www.climatechange2013.org/images/uploads/WGIAR5_WGI-12Doc2b_FinalDraft_Chapter09.pdf (Box 9.2)
    It is not surprising that over such a short timescale it might appear that the Earth as experienced a mild cooling effect. In the last 15 years there have been a couple of years far hotter than average, and these spike the calculated trend. For example, 1998 was much hotter than the years before or after it, so if you were just to compare 1998 with 2008, it would look like the Earth is cooling down. But who would be foolish enough to look at just two calendar years of the data record on which to base their argument ? The last 15 years have to be taken in context. In “Climate Change 2013 : The Physical Science Basis”, the IPCC report from Working Group 1, in the Summary for Policymakers, page 5, Section B1, the IPCC write :-
    http://www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf
    “In addition to robust multi-decadal warming, global mean surface temperature exhibits substantial decadal and interannual variability […] Due to natural variability, trends based on short records are very sensitive to the beginning and end dates and do not in general reflect long-term climate trends. As one example, the rate of warming over the past 15 years (1998–2012; 0.05 [–0.05 to 0.15] °C per decade), which begins with a strong El Niño, is smaller than the rate calculated since 1951 (1951–2012; 0.12 [0.08 to 0.14] °C per decade).” (El Niño is a prominent pattern of winds and ocean currents in the Pacific Ocean with two main states – one that tends to produce a warming effect on the Earth’s surface temperatures, and the other, La Niña, which has a general cooling effect.) ] In other words, in the last fifteen years, the range of rate of change of temperature is calculated to be somewhere between the surface of the planet cooling by 0.05 degrees Centigrade, up to warming by 0.15 degrees Centigrade :-
    http://data.giss.nasa.gov/gistemp/graphs_v3/Fig.C.gif
    http://www.climate4you.com/GlobalTemperatures.htm#Recent%20global%20satellite%20temperature
    However, this calculation of a trend line does not take account of three things. First, in the last decade or so, the variability of individual years could mask a trend, but relative to the last 50 years, everything is clearly hotter on average. Secondly, temperature is not a “discrete” quantity, it is a continuous field of effect, and it is going to have different values depending on location and time. The temperature for any January to December is only going to be an average of averages. If you were to measure the year from March to February instead, the average of averages could look different, because of the natural variability. Thirdly, there are lots of causes for local and regional temperature variability, all concurrent, so it is not until some time after a set of measurements has been taken, and other sets of measurements have been done, that it is possible to determine that a substantial change has taken place. ]

    And that margin of error, it must be said, is implausibly small. After all, calculating mean global temperature from the records of weather stations and maritime observations around the world, of varying quality, is a pretty heroic task in the first place. Not to mention the fact that there is a considerable difference between daytime and night-time temperatures. In any event, to produce a figure accurate to hundredths of a degree is palpably absurd.

    [ joabbess.com : Nigel Lawson could be said to mislead in his explanation of what “a figure accurate to hundredths of a degree” implies. Temperature is measured on an arbitrarily decided scale. To raise the whole of the Earth surface temperatures by 1 degree Celsius requires a lot of extra trapped energy. The surface temperature of the Earth is increasing by the absorption of energy that amounts roughly to 2 trillion Hiroshima atombic bombs since 1998, or 4 Hiroshimas a second. That is not a small number, although it has to be seen in the full context of the energy flows in and out of the Earth system :-
    http://www.skepticalscience.com/4-Hiroshima-bombs-per-second-widget-raise-awareness-global-warming.html
    http://blogs.discovermagazine.com/imageo/2013/12/03/climate-bomb-redux/#.U2tlfaI-hrQ
    Nigel Lawson credits the global temperature monitoring exercise as “heroic”, but then berates its quality. However, climate change scientists do already appreciate that there are differences between daytime and nighttime temperatures – it is called the diurnal range. Besides differences between years, it is known that there are also differences between seasons, and latitudes, and climatic zones. Scientists are not claiming an absolute single value for the temperature of the Earth, accurate to within hundredths of a degree – that’s why they always give a margin of error. What is astonishing from reviews of the data is something that Nigel Lawson has completely missed. Global warming appears to have fractal resolution – that is – at whatever geographical scale you resolve the data, the trend in most cases appears to be similar. If you take a look at some of the websites offering graphs, for example :-
    http://www.rimfrost.no/
    http://data.giss.nasa.gov/gistemp/station_data/
    the global warming trend is seen to be generally similar when averaged locally, regionally or at the global scale. This is an indicator that the global warming signal is properly being detected, as these trend lines are more or less what you would expect from basic physics and chemistry – the more carbon dioxide in the air, the more heat gets trapped, and the rate of carbon dioxide accumulation in the atmosphere has seen similar trendlines :-
    http://cdiac.esd.ornl.gov/trends/co2/recent_mauna_loa_co2.html ]

    The lessons of the unpredicted 15-year global temperature standstill (or hiatus as the IPCC calls it) are clear. In the first place, the so-called Integrated Assessment Models which the climate science community uses to predict the global temperature increase which is likely to occur over the next 100 years are almost certainly mistaken, in that climate sensitivity is almost certainly significantly less than they once thought, and thus the models exaggerate the likely temperature rise over the next hundred years.

    [ joabbess.com : I repeat : there is no pause. The IPCC are not claiming that global warming has stopped, only that there is an apparent “hiatus” in global surface temperature averages. Some scientists have concluded from their work that Climate Sensitivity is less than once feared. However, Climate Sensitivity is calculated for an immediate, once-only doubling of carbon dioxide in the atmosphere, whereas the reality is that carbon dioxide is continuing to build up in the atmosphere, and if emissions continue unabated, there could be a tripling or quadrupling of carbon dioxide concentrations in the atmosphere, which would mean that you would need to multiply the Climate Sensitivity by 1.5 or 2 to arrive at the final top temperature – higher than previously calculated, regardless of whether the expected Climate Sensitivity were to be less than previously calculated. It is therefore illogical for Nigel Lawson to extrapolate from his understanding that Climate Sensitivity is lower than previously calculated to his conclusion that the final level of global warming will be lower than previously calculated. The more carbon dioxide we emit, the worse it will be. ]

    But the need for a rethink does not stop there. As the noted climate scientist Professor Judith Curry, chair of the School of Earth and Atmospheric Sciences at the Georgia Institute of Technology, recently observed in written testimony to the US Senate:
    “Anthropogenic global warming is a proposed theory whose basic mechnism is well understood, but whose magnitude is highly uncertain. The growing evidence that climate models are too sensitive to CO2 has implications for the attribution of late-20th-century warming and projections of 21st-century climate. If the recent warming hiatus is caused by natural variability, then this raises the question as to what extent the warming between 1975 and 2000 can also be explained by natural climate variability.”

    [ joabbess.com : The IPCC reports constitute the world’s best attempts to “rethink” Climate Change. Professor Judith Curry, in the quotation given by Nigel Lawson, undervalues a great deal of her colleagues’ work by dismissing their valid attribution of Climate Change to the burning of fossil fuels and the change in land use. ]

    It is true that most members of the climate science establishment are reluctant to accept this, and argue that the missing heat has for the time being gone into the (very cold) ocean depths, only to be released later. This is, however, highly conjectural. Assessing the mean global temperature of the ocean depths is — unsurprisingly — even less reliable, by a long way, than the surface temperature record. And in any event most scientists reckon that it will take thousands of years for this “missing heat” to be released to the surface.

    [ joabbess.com : That the oceans are warming is not conjecture – it is a statement based on data. The oceans have a far greater capacity for heat retention than the atmosphere, so yes, it will take a long time for heat in the oceans to re-emerge into the atmosphere. However, the processes that directed heat into the oceans rather than the atmosphere in recent years could easily reverse, and in a short space of time the atmosphere could heat up considerably. In making his arguments, Nigel Lawson omits to consider this eventuality, which lowers considerably the value of his conclusions. ]

    In short, the CO2 effect on the earth’s temperature is probably less than was previously thought, and other things — that is, natural variability and possibly solar influences — are relatively more significant than has hitherto been assumed.

    [ joabbess.com : Nothing about science has changed. The Earth system continues to accumulate heat and respond to that. Carbon dioxide still contributes to the Greenhouse Effect, and extra carbon dioxide in the air will cause further global warming. The Transient Climate Response to carbon dioxide is still apparently linear. The Equilibrium Climate Sensitivity is still calculated to be roughly what it always has been – but that’s only for a doubling of atmospheric carbon dioxide. If more methane is emitted as a result of Arctic warming, for example, or the rate of fossil fuel use increases, then the temperature increase of the Earth’s surface could be more than previously thought. Natural variability and solar changes are all considered in the IPCC reports, and all calculations and models take account of them. However, the obvious possibility presents itself – that the patterns of natural variability as experienced by the Earth during the last 800,000 years are themseles being changed. If Climate Change is happening so quickly as to affect natural variability, then the outcomes could be much more serious than anticipated. ]

    But let us assume that the global temperature hiatus does, at some point, come to an end, and a modest degree of global warming resumes. How much does this matter?

    The answer must be that it matters very little. There are plainly both advantages and disadvantages from a warmer temperature, and these will vary from region to region depending to some extent on the existing temperature in the region concerned. And it is helpful in this context that the climate scientists believe that the global warming they expect from increased atmospheric CO2 will be greatest in the cold polar regions and least in the warm tropical regions, and will be greater at night than in the day, and greater in winter than in summer. Be that as it may, studies have clearly shown that, overall, the warming that the climate models are now predicting for most of this century (I referred to these models earlier, and will come back to them later) is likely to do more good than harm.

    [ joabbess.com : The claim that warming will “overall […] do more good than harm” is erroneous, according to Climate Change Science. ]

    Global warming orthodoxy is not merely irrational. It is wicked.

    [ joabbess.com : My conclusions upon reading this lecture are that the evidence suggests that Nigel Lawson’s position is ill-informed. He should read the IPCC reports and re-consider. ]

  • Christiana Figueres : Love Bug

    Posted on May 7th, 2014 Jo No comments

    It was probably a side-effect of the flu’, but as I was listening to Christiana Figueres speaking at St Paul’s Cathedral, London, this evening, I started to have tunnel vision, and the rest of the “hallowed halls” just melted away, and I felt she was speaking to me individually, woman to woman.

    She talked a lot about investments, injustices and inertia, but I felt like she was personally calling me, nagging me, bugging me to show more love. She said she didn’t want us to leave thinking “That was interesting”, or even “That was inspiring”, but that we would leave resolved to do one more concrete thing to show our love for our world, and our fellow human beings.

    I was a little defensive inside – I’m already trying to get some big stuff done – how could I do anything else that could be effective ? She said that we couldn’t ask people to do more if we weren’t prepared to do more ourselves. I wasn’t sure that any of the things she suggested I could try would have any impact, but I suppose I could try again to write to my MP Iain Duncan Smith – after all, Private Eye tells me he’s just hired a communications consultant, so he might be willing to communicate with me about climate change, perhaps.

    Of her other suggestions, I have already selected investments that are low carbon, so there would be little point in writing to them about carbon-based “stranded assets”. My diet is very largely vegetarian; I buy food and provisions from co-operatives where I can; I don’t own a car; I’ve given up flying; I’ve installed solar electricity; my energy consumption is much lower than average; I buy secondhand; I reuse, repair, reclaim, recycle.

    I don’t want to “campaign” on climate change – I don’t think that would be very loving. This should not be a public relations mission, it needs to be authentic and inclusive, so I don’t know what the best way is to engage more people in “the struggle”. I’ve sent enough email in my life. People already know about climate change, I don’t need to evangelise them. They already know some of the things they could do to mitigate their fossil fuel energy consumption, I don’t need to educate them. The organisations that are still pushing fossil fuels to society have more to do to get with the transition than everyday energy consumers, surely ?

    So, how is it that this “love bug” bites me ? What do I feel bugged to be getting on with ? Researching low carbon gas energy systems is my main action at the moment, but what could I do that would be an answer to Christiana’s call for me to do something extra ? Join in the monthly fast and prayer that’s due to start on 1st November ? Well, sure I will, as part of my work duties. Network for Our Voices that will funnel the energy of the monthly call to prayer into a Civil Society “tornado” in support of the UNFCCC Paris Treaty ? Yes, of course. Comes with the territory. But more… ?

    I noticed that Christiana Figueres had collegiate competition from the bells of St Paul’s, and it sounded like the whole cathedral was ringing. Then my cough started getting bad and I started to feel quite unwell, so I had to leave before the main debate took place, to medicate myself with some fresh orange juice from a company I chose because it tracks its carbon, and has a proper plan for climate sustainability, so I never answered my question – what do I need to do, to do more about climate change ?

  • Man Who Eats Data

    Posted on May 6th, 2014 Jo No comments

    A key thing to know about Professor David MacKay is that he likes data. Lots of data. He said so in a public meeting last week, and I watched him draw a careful draft diagram on paper, specifying for a project engineer the kind of data he would like to see on Combined Heat and Power (CHP) with District Heating (DH). There have been a number of complaints about communal heating projects in the UK, but accurate information is often commercially sensitive, so urging the collection and publication of data is the way forward.

    MacKay has been working on very large data indeed – with his 2050 Pathways Calculator. Although people may complain, in fact, they do complain, that the baseline assumptions about nuclear power seem designed to give the recommended outcome of more nuclear power, other parts of The Calculator are more realistic, showing that a high level of new, quick-to-build largescale wind power is practically non-negotiable for guaranteeing energy security.

    Last year, there were some rumours circulating that MacKay’s work on biomass for The Calculator showed that biomass combustion for electricity generation was a non-starter for lowering net greenhouse gas emissions to the atmosphere. We were told to wait for these results. And wait again. And now it appears (according to Private Eye, see below), that these were suppressed by DECC, engaged as they were with rubberstamping biomass conversions of coal-fired power plants – including Drax.

    “Old Sparky” at Private Eye thinks that Professor MacKay will not be permitted to publish this biomass data – but as MacKay said last week, The Calculator is open source, and all volunteers are welcome to take part in its design and development…


    Private Eye, Number 1365, 2 May 2014 – 15 May 2014

    Keeping the Lights On
    by “Old Sparky”

    The company that owns the gigantic Drax power station in Yorkshire is cheekily suing the government for not giving it quite as much subsidy as it would like. But it should be careful : the government is suppressing a publication that would question its right to any subsidy at all.

    Drax, built as a coalf-fired plant, is converting its six generating units to burn 15m tonnes of wood a year (see Eye 1325). Amazingly, electricity generated from “biomass” like this qualifies as “renewable energy”. It is thus in line for hefty subsidies and Treasury guarantees – several hundred million pounds a year of electricit billpayers’ money once all six units have been converted.

    Having seen the even greater bungs proposed for EDF’s two new nuclear power plants, however, Drax thinks it deserves a similar deal and is suing for precisely that (which is what happens when firms subsidy-farming as their main line of business).

    Drax’s greed is unlikely to be rewarded. In the Energy Act passed last year, ministers gave themselves remarkable powers to intervene in the electricity industry, project by project, and to do pretty much whatever takes their fancy.

    Meanwhile, the chief scientific adviser [sic] at the Department of Energy and Climate Change (DECC), the upright Professor David MacKay, is coming to the end of his five-year term. For more than a year he has been agitating for DECC to publish his “biomass calculator” which proves it is (in his words) “fantastically easy” to show that burning trees on the scale planned by Drax and other converted coal plants is likely to INCREASE CO2 emissions in the timeframe that matters.

    Knowing the rumpus this will cause, DECC suppressed it last summer (Eye, 1348) and continues to do so while several large biomass projects get off the ground. Will the scrupulous professor simply return to academia and publish it anyway ? Perhaps : but don’t bank on it : it is usual for employment contracts to stipulate that the EMPLOYER retains intellectual property rights in ideas developed while “on the job”. Although MacKay did some work on the impact of biomass-burning before becoming chief adviser [sic], the “calculator” dates from his time at DECC.

    This is just as well for Drax. But perhaps its owners should take the hint and wind in their necks.

  • David MacKay : Heating London

    Posted on May 2nd, 2014 Jo No comments

    I took some notes from remarks made by Professor David MacKay, the UK Government’s Chief Scientific Advisor, yesterday, 1st May 2014, at an event entitled “How Will We Heat London ?”, held by Max Fordhams as part of the Green Sky Thinking, Open City week. I don’t claim to have recorded his words perfectly, but I hope I’ve captured the gist.


    [David MacKay] : [Agreeing with others on the panel – energy] demand reduction is really important. [We have to compensate for the] “rebound effect”, though [where people start spending money on new energy services if they reduce their demand for their current energy services].

    SAP is an inaccurate tool and not suitable for the uses we put it too :-
    http://www.eden.gov.uk/planning-and-development/building-control/building-control-guidance-notes/sap-calculations-explained/
    http://www.dimplex.co.uk/products/renewable_solutions/building_regulations_part_l.htm

    Things seem to be under-performing [for example, Combined Heat and Power and District Heating schemes]. It would be great to have data. A need for engineering expertise to get in.

    I’m not a Chartered Engineer, but I’m able to talk to engineers. I know a kilowatt from a kilowatt hour [ (Laughter from the room) ]. We’ve [squeezed] a number of engineers into DECC [the Department of Energy and Climate Change].

    I’m an advocate of Heat Pumps, but the data [we have received from demonstration projects] didn’t look very good. We hired two engineers and asked them to do the forensic analysis. The heat pumps were fine, but the systems were being wrongly installed or used.

    Now we have a Heat Network team in DECC – led by an engineer. We’ve published a Heat Strategy. I got to write the first three pages and included an exergy graph.

    [I say to colleagues] please don’t confuse electricity with energy – heat is different. We need not just a green fluffy solution, not just roll out CHP [Combined Heat and Power] [without guidance on design and operation].

    Sources of optimism ? Hopefully some of the examples will be available – but they’re not in the shop at the moment.

    For example, the SunUp Heat Battery – works by having a series of chambers of Phase Change Materials, about the size of a fridge that you would use to store heat, made by electricity during the day, for use at night, and meet the demand of one home. [Comment from Paul Clegg, Senior Partner at Feilden Clegg Bradley Studios : I first heard about Phase Change Materials back in the 1940s ? 1950s ? And nothing’s come of it yet. ] Why is that a good idea ? Well, if you have a heat pump and a good control system, you can use electricity when it’s cheapest… This is being trialled in 10 homes.

    Micro-CHP – [of those already trialled] definitely some are hopeless, with low temperature and low electricity production they are just glorified boilers with a figleaf of power.

    Maybe Fuel Cells are going to deliver – power at 50% efficiency [of conversion] – maybe we’ll see a Fuel Cell Micro-Combined Heat and Power unit ?

    Maybe there will be hybrid systems – like the combination of a heat pump and a gas boiler – with suitable controls could lop off peaks of demand (both in power and gas).

    We have designed the 2050 Pathways Calculator as a tool in DECC. It was to see how to meet the Carbon Budget. You can use it as an energy security calculator if you want. We have helped China, Korea and others to write their own calculators.

    A lot of people think CHP is green and fluffy as it is decentralised, but if you’re using Natural Gas, that’s still a Fossil Fuel. If you want to run CHP on biomass, you will need laaaaaarge amounts of land. You can’t make it all add up with CHP. You would need many Wales’-worth of bioenergy or similar ways to make it work.

    Maybe we should carry on using boilers and power with low carbon gas – perhaps with electrolysis [A “yay !” from the audience. Well, me, actually]. Hydrogen – the the 2050 Calculator there is no way to put it back into the beginning of the diagram – but it could provide low carbon heat, industry and transport. At the moment we can only put Hydrogen into Transport [in the 2050 Calculator. If we had staff in DECC to do that… It’s Open Source, so if any of you would like to volunteer…

    Plan A of DECC was to convert the UK to using lots of electricity [from nuclear power and other low carbon technologies, to move to a low carbon economy], using heat pumps at the consumer end, but there’s a problem in winter [Bill Watts of Max Fordham had already shown a National Grid or Ofgem chart of electricity demand and gas demand over the year, day by day. Electricity demand (in blue) fluctuates a little, but it pretty regular over the year. Gas demand (in red) however, fluctuates a lot, and is perhaps 6 to 10 times larger in winter than in summer.]

    If [you abandon Plan A – “electrification of everything”] and do it the other way, you will need a large amount of Hydrogen, and a large Hydrogen store. Electrolysers are expensive, but we are doing/have done a feasibility study with ITM Power – to show the cost of electrolysers versus the cost of your wind turbines [My comment : but you’re going to need your wind turbines to run your electrolysers with their “spare” or “curtailed” kilowatt hours.]

    [David Mackay, in questions from the floor] We can glue together [some elements]. Maybe the coming smart controls will help…can help save a load of energy. PassivSystems – control such things as your return temperature [in your Communal or District Heating]…instead of suing your heat provider [a reference to James Gallagher who has problems with his communal heating system at Parkside SE10], maybe you could use smart controls…

    [Question] Isn’t using smart controls like putting a Pirelli tyre on a Ford Cortina ? Legacy of poor CHP/DH systems…

    [David MacKay in response to the question of insulation] If insulation were enormously expensve, we wouldn’t have to be so enthusastic about it…We need a well-targeted research programme looking at deep retrofitting, instead of letting it all [heat] out.

    [Adrian Gault, Committee on Climate Change] We need an effective Government programme to deliver that. Don’t have it in the Green Deal. We did have it [in the previous programmes of CERT and CESP], but since they were cancelled in favour of the Green Deal, it’s gone off a cliff [levels of insulation installations]. We would like to see an initiative on low cost insulation expanded. The Green Deal is not producing a response.

    [Bill Watts, Max Fordham] Agree that energy efficiency won’t run on its own. But it’s difficult to do. Not talking about automatons/automation. Need a lot of pressure on this.

    [Adrian Gault] Maybe a street-by-street approach…

    [Michael Trousdell, Arup] Maybe a rule like you can’t sell a house unless you’ve had the insulation done…

    [Peter Clegg] … We can do heat recovery – scavenging the heat from power stations, but we must also de-carbonise the energy supply – this is a key part of the jigsaw.

  • Fiefdom of Information

    Posted on April 27th, 2014 Jo 1 comment

    Sigh. I think I’m going to need to start sending out Freedom of Information requests… Several cups of tea later…


    To: Information Rights Unit, Department for Business, Innovation & Skills, 5th Floor, Victoria 3, 1 Victoria Street, London SW1H OET

    28th April 2014

    Request to the Department of Energy and Climate Change

    Re: Policy and Strategy for North Sea Natural Gas Fields Depletion

    Dear Madam / Sir,

    I researching the history of the development of the gas industry in the United Kingdom, and some of the parallel evolution of the industry in the United States of America and mainland Europe.

    In looking at the period of the mid- to late- 1960s, and the British decision to transition from manufactured gas to Natural Gas supplies, I have been able to answer some of my questions, but not all of them, so far.

    From a variety of sources, I have been able to determine that there were contingency plans to provide substitutes for Natural Gas, either to solve technical problems in the grid conversion away from town gas, or to compensate should North Sea Natural Gas production growth be sluggish, or demand growth higher than anticipated.

    Technologies included the enriching of “lean” hydrogen-rich synthesis gas (reformed from a range of light hydrocarbons, by-products of the petroleum refining industry); Synthetic Natural Gas (SNG) and methane-“rich” gas making processes; and simple mixtures of light hydrocarbons with air.

    In the National Archives Cmd/Cmnd/Command document 3438 “Fuel Policy. Presented to Parliament by the Minister of Power Nov 1967”, I found discussion on how North Sea gas fields could best be exploited, and about expected depletion rates, and that this could promote further exploration and discovery.

    In a range of books and papers of the time, I have found some discussion about options to increase imports of Natural Gas, either by the shipping of Liquified Natural Gas (LNG) or by pipeline from The Netherlands.

    Current British policy in respect of Natural Gas supplies appears to rest on “pipeline diplomacy”, ensuring imports through continued co-operation with partner supplier countries and international organisations.

    I remain unclear about what official technological or structural strategy may exist to bridge the gap between depleting North Sea Natural Gas supplies and continued strong demand, in the event of failure of this policy.

    It is clear from my research into early gas field development that depletion is inevitable, and that although some production can be restored with various techniques, that eventually wells become uneconomic, no matter what the size of the original gas field.

    To my mind, it seems unthinkable that the depletion of the North Sea gas fields was unanticipated, and yet I have yet to find comprehensive policy statements that cover this eventuality and answer its needs.

    Under the Freedom of Information Act (2000), I am requesting information to answer the following questions :-

    1.   At the time of European exploration for Natural Gas in the period 1948 to 1965, and the British conversion from manufactured gas to Natural Gas, in the period 1966 to 1977, what was HM Government’s policy to compensate for the eventual depletion of the North Sea gas fields ?

    2.   What negotiations and agreements were made between HM Government and the nationalised gas industry between 1948 and 1986; and between HM Government and the privatised gas industry between 1986 and today regarding the projections of decline in gas production from the UK Continental Shelf, and any compensating strategy, such as the development of unconventional gas resources, such as shale gas ?

    3.   Is there any policy or strategy to restore the SNG (Synthetic Natural Gas) production capacity of the UK in the event of a longstanding crisis emerging, for example from a sharp rise in imported Natural Gas costs or geopolitical upheaval ?

    4.   Has HM Government any plan to acquire the Intellectual Property rights to SNG production technology, whether from British Gas/Centrica or any other private enterprise, especially for the slagging version of the Lurgi gasifier technology ?

    5.   Has HM Government any stated policy intention to launch new research and development into, or pilot demonstrations of, SNG ?

    6.   Does HM Government have any clearly-defined policy on the production and use of manufactured gas of any type ? If so, please can I know references for the documents ?

    7.   Does HM Government anticipate that manufactured gas production could need to increase in order to support the production of synthetic liquid vehicle fuels; and if so, which technologies are to be considered ?

    Thank you for your attention to my request for information.

    Regards,

    jo.

  • But Uh-Oh – Those Summer Nights

    Posted on January 20th, 2014 Jo No comments

    A normal, everyday Monday morning at Energy Geek Central. Yes, this is a normal conversation for me to take part in on a Monday morning. Energy geekery at breakfast. Perfect.

    Nuclear Flower Power

    This whole UK Government nuclear power programme plan is ridiculous ! 75 gigawatts (GW) of Generation III nuclear fission reactors ? What are they thinking ? Britain would need to rapidly ramp up its construction capabilities, and that’s not going to happen, even with the help of the Chinese. (And the Americans are not going to take too kindly to the idea of China getting strongly involved with British energy). And then, we’d need to secure almost a quarter of the world’s remaining reserves of uranium, which hasn’t actually been dug up yet. And to cap it all, we’d need to have 10 more geological disposal repositories for the resulting radioactive spent fuel, and we haven’t even managed to negotiate one yet. That is, unless we can burn a good part of that spent fuel in Generation IV nuclear fission reactors – which haven’t even been properly demonstrated yet ! Talk about unconscionable risk !

    Baseload Should Be History By Now, But…

    Whatever the technological capability for nuclear power plants to “load follow” and reduce their output in response to a chance in electricity demand, Generation III reactors would not be run as anything except “baseload” – constantly on, and constantly producing a constant amount of power – although they might turn them off in summer for maintenance. You see, the cost of a Generation III reactor and generation kit is in the initial build – so their investors are not going to permit them to run them at low load factors – even if they could.

    There are risks to running a nuclear power plant at partial load – mostly to do with potential damage to the actual electricity generation equipment. But what are the technology risks that Hinkley Point C gets built, and all that capital is committed, and then it only runs for a couple of years until all that high burn up fuel crumbles and the reactors start leaking plutonium and they have to shut it down permanently ? Who can guarantee it’s a sound bet ?

    If they actually work, running Generation III reactors at constant output as “baseload” will also completely mess with the power market. In all of the scenarios, high nuclear, high non-nuclear, or high fossil fuels with Carbon Capture and Storage (CCS), there will always need to be some renewables in the mix. In all probability this will be rapidly deployed, highly technologically advanced solar power photovoltaics (PV). The amount of solar power that will be generated will be high in summer, but since you have a significant change in energy demand between summer and winter, you’re going to have a massive excess of electricity generation in summer if you add nuclear baseload to solar. Relative to the demand for energy, you’re going to get more Renewable Energy excess in summer and under-supply in winter (even though you get more offshore wind in winter), so it’s critical how you mix those two into your scenario.

    The UK Government’s maximum 75 GW nuclear scenario comprises 55 GW Generation III and 20 GW Generation IV. They could have said 40 GW Gen III to feed Gen IV – the spent fuel from Gen III is needed to kick off Gen IV. Although, if LFTR took off, if they had enough fluoride materials there could be a Thorium way into Gen IV… but this is all so technical, no MP [ Member of Parliament ] is going to get their head round this before 2050.

    The UK Government are saying that 16 GW of nuclear by 2030 should be seen as a first tranche, and that it could double or triple by 2040 – that’s one heck of a deployment rate ! If they think they can get 16 GW by 2030 – then triple that by 10 years later ? It’s not going to happen. And even 30 GW would be horrific. But it’s probably more plausible – if they can get 16 GW by 2030, they can arguably get double that by 2040.

    As a rule of thumb, you would need around 10 tonnes of fissionable fuel to kickstart a Gen IV reactor. They’ve got 106 tonnes of Plutonium, plus 3 or 4 tonnes they recently acquired – from France or Germany (I forget which). So they could start 11 GW of Gen IV – possibly the PRISM – the Hitachi thing – sodium-cooled. They’ve been trying them since the Year Dot – these Fast Reactors – the Breeders – Dounreay. People are expressing more confidence in them now – “Pandora’s Promise” hangs around the narrative that the Clinton administration stopped research into Fast Reactors – Oak Ridge couldn’t be commercial. Throwing sodium around a core 80 times hotter than current core heats – you can’t throw water at it easily. You need something that can carry more heat out. It’s a high technological risk. But then get some French notable nuclear person saying Gen IV technologies – “they’re on the way and they can be done”.

    Radioactive Waste Disposal Woes

    The point being is – if you’re commissioning 30 GW of Gen III in the belief that Gen IV will be developed – then you are setting yourself up to be a hostage to technological fortune. That is a real ethical consideration. Because if you can’t burn the waste fuel from Gen III, you’re left with up to 10 radioactive waste repositories required when you can’t even get one at the moment. The default position is that radioactive spent nuclear fuel will be left at the power stations where they’re created. Typically, nuclear power plants are built on the coast as they need a lot of cooling water. If you are going for 30 GW you will need a load of new sites – possibly somewhere round the South East of England. This is where climate change comes in – rising sea levels, increased storm surge, dissolving, sinking, washed-away beaches, more extreme storms […] The default spent fuel scenario with numerous coastal decommissioned sites with radioactive interim stores which contain nearly half the current legacy radioactive waste […]

    Based on the figures from the new Greenpeace report, I calculate that the added radioactive waste and radioactive spent fuel arisings from a programme of 16 GW of nuclear new build would be 244 million Terabequerel (TBq), compared to the legacy level of 87 million TBq.

    The Nuclear Decommissioning Authority (NDA) are due to publish their Radioactive Waste Inventory and their Report on Radioactive Materials not in the Waste Inventory at the end of January 2014. We need to keep a watch out for that, because they may have adapted their anticipated Minimum and Maxmium Derived Inventory.

    Politics Is Living In The Past

    What you hear from politicians is they’re still talking about “baseload”, as if they’ve just found the Holy Grail of Energy Policy. And failed nuclear power. Then tidal. And barrages. This is all in the past. Stuff they’ve either read – in an article in a magazine at the dentist’s surgery waiting room, and they think, alright I’ll use that in a TV programme I’ve been invited to speak on, like Question Time. I think that perhaps, to change the direction of the argument, we might need to rubbish their contribution. A technological society needs to be talking about gasification, catalysis. If you regard yourselves as educated, and have a technological society – your way of living in the future is not only in manufacturing but also ideas – you need to be talking about this not that : low carbon gas fuels, not nuclear power. Ministers and senior civil servants probably suffer from poor briefing – or no briefing. They are relying on what is literally hearsay – informal discussions, or journalists effectively representing industrial interests. Newspapers are full of rubbish and it circulates, like gyres in the oceans. Just circulates around and around – full of rubbish.

    I think part of the problem is that the politicians and chief civil servants and ministers are briefed by the “Old Guard” – very often the ex-nuclear power industry guard. They still believe in big construction projects, with long lead times and massive capital investment, whereas Renewable Electricity is racing ahead, piecemeal, and private investors are desperate to get their money into wind power and solar power because the returns are almost immediate and risk-free.

    Together in Electric Dreams

    Question : Why are the UK Government ploughing on with plans for so much nuclear power ?

    1. They believe that a lot of transport and heat can be made to go electric.
    2. They think they can use spent nuclear fuel in new reactors.
    3. They think it will be cheaper than everything else.
    4. They say it’s vital for UK Energy Security – for emissions reductions, for cost, and for baseload. The big three – always the stated aim of energy policy, and they think nuclear ticks all those three boxes. But it doesn’t.

    What they’ll say is, yes, you have to import uranium, but you’ve got a 4 year stock. Any war you’re going to get yourselves involved in you can probably resolve in 4 days, or 4 weeks. If you go for a very high nuclear scenario, you would be taking quite a big share of the global resource of uranium. There’s 2,600 TWh of nuclear being produced globally. And global final energy demand is around 100,000 TWh – so nuclear power currently produces around 2.6% of global energy supply. At current rates of nuclear generation, according to the World Nuclear Association, you’ve got around 80 years of proven reserves and probably a bit more. Let’s say you double nuclear output by 2050 or 2040 – but in the same time you might just have enough uranium – and then find a bit more. But global energy demand rises significantly as well – so nuclear will still only provide around 3% of global energy demand. That’s not a climate solution – it’s just an energy distraction. All this guff about fusion. Well.

    Cornering The Market In Undug Uranium

    A 75 GW programme would produce at baseload 590 TWh a year – divide by 2,600 – is about 23% of proven global uranium reserves. You’re having to import, regardless of what other countries are doing, you’re trying to corner the market – roughly a quarter. Not even a quarter of the market – a quarter of all known reserves – it’s not all been produced yet. It’s still in the ground. So could you be sure that you could actually run these power stations if you build them ? Without global domination of the New British Empire […]. The security issues alone – defending coastal targets from a tweeb with a desire to blow them up. 50 years down the line they’re full of radioactive spent fuel that won’t have a repository to go to – we don’t want one here – and how much is it going to cost ?

    My view is that offshore wind will be a major contributor in a high or 100% Renewable Electricity scenario by 2050 or 2060. Maybe 180 GW, that will also be around 600 TWh a year – comparable to that maximum nuclear programme. DECC’s final energy demand 2050 – several scenarios – final energy demand from 6 scenarios came out as between roughly 1,500 TWh a year and the maximum 2,500 TWh. Broadly speaking, if you’re trying to do that just with Renewable Electricity, you begin to struggle quite honestly, unless you’re doing over 600 TWh of offshore wind, and even then you need a fair amount of heat pump stuff which I’m not sure will come through. The good news is that solar might – because of the cost and technology breakthroughs. That brings with it a problem – because you’re delivering a lot of that energy in summer. The other point – David MacKay would say – in his book his estimate was 150 TWh from solar by 2050, on the grounds that that’s where you south-facing roofs are – you need to use higher efficiency triple junction cells with more than 40% efficiency and this would be too expensive for a rollout which would double or triple that 150 TWh – that would be too costly – because those cells are too costly. But with this new stuff, you might get that. Not only the cost goes down, but the coverage goes down. Not doing solar across swathes of countryside. There have always been two issues with solar power – cost and where it’s being deployed.

    Uh-Oh, Summer Days. Uh-Oh, Summer Nights

    With the solar-wind headline, summer days and summer nights are an issue.

    With the nuclear headline, 2040 – they would have up to 50 GW, and that would need to run at somewhere between 75% and 95% capacity – to protect the investment and electric generation turbines.

    It will be interesting to provide some figures – this is how much over-capacity you’re likely to get with this amount of offshore wind. But if you have this amount of nuclear power, you’ll get this amount […]

    Energy demand is strongly variable with season. We have to consider not just power, but heat – you need to get that energy out in winter – up to 4 times as much during peak in winter evenings. How are you going to do that ? You need gas – or you need extensive Combined Heat and Power (CHP) (which needs gas). Or you need an unimaginable deployment of domestic heat pumps. Air source heat pumps won’t work at the time you need them most. Ground source heat pumps would require the digging up of Britain – and you can’t do that in most urban settings.

    District Heat Fields

    The other way to get heat out to everyone in a low carbon world – apart from low carbon gas – is having a field-based ground source heat pump scheme – just dig up a field next to a city – and just put in pipes and boreholes in a field. You’re not disturbing anybody. You could even grow crops on it next season. Low cost and large scale – but would need a District Heating (DH) network. There are one or two heat pump schemes around the world. Not sure if they are used for cooling in summer or heat extraction in the winter. The other thing is hot water underground. Put in an extra pipe in the normal channels to domestic dwellings. Any excess heat from power generation or electrolysis or whatever is put down this loop and heats the sub-ground. Because heat travels about 1 metre a month in soil, that heat should be retained for winter. A ground source heat sink. Geothermal energy could come through – they’re doing a scheme in Manchester. If there’s a nearby heat district network – it makes it easier. Just want to tee it into the nearest DH system. The urban heat demand is 150 TWh a year. You might be able to put DH out to suburban areas as well. There are 9 million gas-connected suburban homes – another about 150 TWh there as well – or a bit more maybe. Might get to dispose of 300 TWh in heat through DH. The Green Deal insulation gains might not be what is claimed – and condensing gas boiler efficiencies are not that great – which feeds into the argument that in terms of energy efficiency, you not only want to do insulation, but also DH – or low carbon gas. Which is the most cost-effective ? Could argue reasonable energy efficiency measures are cheapest – but DH might be a better bet. That involves a lot of digging.

    Gas Is The Logical Answer

    But everything’s already laid for gas. (…but from the greatest efficiency first perspective, if you’re not doing DH, you’re not using a lot of Renewable Heat you could otherwise use […] )

    The best package would be the use of low carbon gases and sufficient DH to use Renewable Heat where it is available – such as desalination, electrolysis or other energy plant. It depends where the electrolysis is being done.

    The Age of Your Carbon

    It also depends on which carbon atoms you’re using. If you are recycling carbon from the combustion of fossil fuels into Renewable Gas, that’s OK. But you can’t easily recapture carbon emissions from the built environment (although you could effectively do that with heat storage). You can’t do carbon capture from transport either. So your low carbon gas has to come from biogenic molecules. Your Renewable Gas has to be synthesised using biogenic carbon molecules rather than fossil ones.

    […] I’m using the phrase “Young Carbon”. Young Carbon doesn’t have to be from plants – biological things that grow.

    Well, there’s Direct Air Capture (DAC). It’s simple. David Sevier, London-based, is working on this. He’s using heat to capture carbon dioxide. You could do it from exhaust in a chimney or a gasification process – or force a load of air through a space. He would use heat and cooling to create an updraft. It would enable the “beyond capture” problem to be circumvented. Cost is non-competitive. Can be done technically. Using reject heat from power stations for the energy to do it. People don’t realise you can use a lot of heat to capture carbon, not electricity.

    Young Carbon from Seawater

    If you’re playing around with large amounts of seawater anyway – that is, for desalination for irrigation, why not also do Renewable Hydrogen, and pluck the Carbon Dioxide out of there too to react with the Renewable Hydrogen to make Renewable Methane ? I’m talking about very large amounts of seawater. Not “Seawater Greenhouses” – condensation designs mainly for growing exotic food. If you want large amounts of desalinated water – and you’re using Concentrated Solar Power – for irrigating deserts – you would want to grow things like cacti for biological carbon.

    Say you had 40 GW of wind power on Dogger Bank, spinning at 40% load factor a year. You’ve also got electrolysers there. Any time you’re not powering the grid, you’re making gas – so capturing carbon dioxide from seawater, splitting water for hydrogen, making methane gas. Wouldn’t you want to use flash desalination first to get cleaner water for electrolysis ? Straight seawater electrolysis is also being done.

    It depends on the relative quantities of gas concentrated in the seawater. If you’ve got oxygen, hydrogen and carbon dioxide, that would be nice. You might get loads of oxygen and hydrogen, and only poor quantities of carbon dioxide ?

    But if you could get hydrogen production going from spare wind power. And even if you had to pipe the carbon dioxide from conventional thermal power plants, you’re starting to look at a sea-based solution for gas production. Using seawater, though, chlorine is the problem […]

    Look at the relative density of molecules – that sort of calculation that will show if this is going to fly. Carbon dioxide is a very fixed, stable molecule – it’s at about the bottom of the energy potential well – you have to get that reaction energy from somewhere.

    How Much Spare Power Will There Be ?

    If you’ve got an offshore wind and solar system. At night, obviously, the solar’s not working (unless new cells are built that can run on infrared night-time Earthshine). But you could still have 100 GWh of wind power at night not used for the power grid. The anticipated new nuclear 40 GW nuclear by 2030 will produce about 140 GWh – this would just complicate problems – adding baseload nuclear to a renewables-inclusive scenario. 40 GW is arguably a reasonable deployment of wind power by 2030 – low if anything.

    You get less wind in a nuclear-inclusive scenario, but the upshot is you’ve definitely got a lot of power to deal with on a summer night with nuclear power. You do have with Renewable Electricity as well, but it varies more. Whichever route we take we’re likely to end up with excess electricity generation on summer nights.

    In a 70 GW wind power deployment (50 GW offshore, 20 GW onshore – 160 TWh a year), you might have something like 50 to 100 GWh per night of excess (might get up to 150 GWh to store on a windy night). But if you have a 16 GW nuclear deployment by 2030 (125 TWh a year), you are definitely going to have 140 GWh of excess per night (that’s 16 GW for 10 hours less a bit). Night time by the way is roughly between 9pm and 7am between peak demands.

    We could be making a lot of Renewable Gas !

    Can you build enough Renewable Gas or whatever to soak up this excess nuclear or wind power ?

    The energy mix is likely to be in reality somewhere in between these two extremes of high nuclear or high wind.

    But if you develop a lot of solar – so that it knocks out nuclear power – it will be the summer day excess that’s most significant. And that’s what Germany is experiencing now.

    Choices, choices, choices

    There is a big choice in fossil fuels which isn’t really talked about very often – whether the oil and gas industry should go for unconventional fossil fuels, or attempt to make use of the remaining conventional resources that have a lower quality. The unconventionals narrative – shale gas, coalbed methane, methane hydrates, deepwater gas, Arctic oil and gas, heavy oil, is running out of steam as it becomes clear that some of these choices are expensive, and environmentally damaging (besides their climate change impact). So the option will be making use of gas with high acid gas composition. And the technological solutions for this will be the same as needed to start major production of Renewable Gas.

    Capacity Payments

    But you still need to answer the balancing question. If you have a high nuclear power scenario, you need maybe 50 TWh a year of gas-fired power generation. If high Renewable Electricity, you will need something like 100 TWh of gas, so you need Carbon Capture and Storage – or low carbon gas.

    Even then, the gas power plants could be running only 30% of the year, and so you will need capacity payments to make sure new flexible plants get built and stay available for use.

    If you have a high nuclear scenario, coupled with gas, you can meet the carbon budget – but it will squeeze out Renewable Electricity. If high in renewables, you need Carbon Capture and Storage (CCS) or Carbon Capture and Recycling into Renewable Gas, but this would rule out nuclear power. It depends which sector joins up with which.

    Carbon Capture, Carbon Budget

    Can the Drax power plant – with maybe one pipeline 24 inches in diameter, carrying away 20 megatonnes of carbon dioxide per year – can it meet the UK’s Carbon Budget target ?