Gain in Transmission

It constantly amazes and intrigues me how human individuals operate in networks to formulate, clarify and standardise ideas, tools, machines, procedures and systems. Several decades ago, Renewable Electricity from sources such as wind power was considered idealistic vapourware, esoteric, unworkable and uncertain, and now it’s a mainstream generator of reliable electricity in the UK’s National Grid. Who would have thought that invisible, odourless, tasteless gas phase chemicals would heat our homes ? It’s now just so normal, it’s impossible to imagine that Natural Gas was once considered to be so insignificant that it was vented – not even flared – from oil wells.

Judging by the sheer number of people working on aspects of Renewable Gas, I expect this too to be mainstream in the energy sector within a decade. What do others think ? I have begun the process of asking, for example, see below.

=x=x=x=x=x=x=x=x=

from: Jo Abbess
to: Richard A. Sears
date: Mon, May 2, 2011 at 11:59 PM
subject: Question from your TED talk

Dear [Professor] Sears,

I was intrigued by your TED talk that I recently viewed :-

http://www.ted.com/talks/richard_sears_planning_for_the_end_of_oil.html

Yes, I am interested in the idea of “printing” solar cells, which is what I think you might be alluding to with your reference to abalone shells.

But I am more interested in what you base your estimate of “Peak Gas” on. I recently did some very basic modelling of hydrocarbon resources and electricity, which look somewhat different from the IEA and EIA work and reports from BP and Royal Dutch Shell. My conclusion was that Peak Oil is roughly now, Peak Natural Gas will be around 2030, and Peak Electricity around 2060 :-

http://www.joabbess.com/2011/02/11/future-energy-tipping-points/

I am going to try to improve these charts before I submit my MSc Masters Thesis, so I am trying to find out what other people base their projections on. Could you help me by pointing me at the basis of your assessment of Peak Natural Gas ?

Thank you,

jo.

=x=x=x=x=x=x=

from: Richard A. Sears
to: Jo Abbess
date: Thu, Oct 24, 2013 at 5:30 PM

Jo,

I am just now finding a number of old emails that got archived (and ignored) when I moved from MIT to Stanford a few years ago. A quick answer is that I did about what Hubbert did in 1956. No detailed statistical modeling, just look at the trends, think about what’s happening in the industry, and make what seem like reasonable statements about it.

A number of interesting things have happened just in the last two years since you wrote to me. Significantly, US oil production is on the rise. When you count all hydrocarbon liquids, the US is or will soon be, the world largest producer. This just goes to one of my points from TED. Don’t expect oil and gas to go away any time soon. There are plenty of molecules out there. I first said this internally at Shell in the mid 1980’s when I was Manager of Exploration Economics and since then I’ve felt that I got it about right.

I did just look at your website and would caution you about extrapolating very recent trends into the future. The rate of growth in shale gas production has slowed, but there’s an important economic factor driving that. Gas prices in the US are very low compared to oil. With the development of fraccing technology to enable oil and liquids production from shale formations, the industry has shifted their effort to the liquids-rich plays. A few statistics. Gas is currently around $3.50/mcf. On an energy equivalent basis, this equates to an oil price of about $20/barrel. Brent currently sells for $110/barrel and the light oils produced from the shale plays in the US are getting between $90 and $100/barrel, depending on where they can be delivered. As a consequence, in the 3rd quarter of 2013, compared to one year ago, oil well completions are up 18% while natural gas well completions declined 30%.

Yes, you are right. Printing solar cells is an example of what I was talking about with Abalone shells. Similarly, what if you had paint that as it dried would self assemble into linked solar cells and your entire house is now generating electricity. I was totally amazed at the number of people that didn’t actually think about what I was saying and called me an !d!*t for imagining that I was going to transform coal itself into some magical new molecule. […]

In any case, I think it’s good that you’re thinking about these problems, and importantly it appears from your website that you’re thinking about the system and its complexity.

Best regards,
Rich Sears

Richard A. Sears
Visiting Scientist
MIT Energy Initiative
Massachusetts Institute of Technology

=x=x=x=x=x=x=x=x=x=

from: Jo Abbess
to: Richard A Sears
sent: Monday, May 02, 2011 3:59 PM

Dear [Professor] Sears,

Many thanks for your reply.

I had kinda given up of ever hearing back from you, so it’s lovely to
read your thoughts.

May I blog them ?

Regards,

jo.

=x=x=x=x=x=x=x=

from: Richard A Sears
date: Fri, Oct 25, 2013 at 5:03 PM
to: Jo Abbess

Jo,

I have personally avoided blogging because I don’t want to put up with people writing mean comments about me. But the data is worth sharing. You should also know the sources of that data otherwise you open yourself to more criticism.

The data on production comes from the International Energy Agency and a research firm PIRA. All of it was in recent press releases. The Energy Information Administration makes similar projections about future production. The data on well completions was recently released by API.

No need to reference me. The data is out there for all to see. But if you do, fair warning. You will get stupid comments about how I used to be a VP at Shell so of course these are the things I’m going to say. […]

By the way, there’s something else that’s very interesting in the world of peak oil and various peaks. I have long believed, as hinted in my TED talk that the most important aspect of peak oil is the demand driven phenomena, not the supply side. It’s worth noting in this context that US oil consumption peaked in 2005 and has declined about 10% since then. This data can be found easily in the BP Statistical Report on World Energy. This is real and is a result of economic shifts, greater efficiency, and the penetration of renewables. Future energy projections (references above) show that this trend continues. A big component of US energy consumption is gasoline, and US gasoline consumption peaked in 2007. I think that data can be found at http://www.eia.gov, although I haven’t looked for it lately. It’s a little factoid that I think I remember.

Rich

Richard A. Sears
Consulting Professor
Department of Energy Resources Engineering
Stanford University

=x=x=x=x=x=x=x=x=

from: Jo Abbess
to: Richard A Sears
date: Sun, Jan 12, 2014 at 11:47 AM

Dear Professor Sears,

HNY 2014 !

This year I am hoping to attempt the climb on my own personal K2 by writing an academic book on Renewable Gas – sustainable, low-to-zero carbon emissions gas phase fuels.

I am not a chemist, nor a chemical engineer, and so I would value any suggestions on who I should approach in the gas (and oil) industry to interview about projects that lean in this direction.

Examples would be :-

* Power-to-Gas : Using “spare” wind power to make Renewable Hydrogen – for example by electrolysis of water. Part of the German Power-to-Gas policy. Some hydrogen can be added to gas grids safely without changing regulations, pipework or end appliances.

* Methanation : Using Renewable Hydrogen and young or recycled carbon gas to make methane (using the energy from “spare” wind power, for example). Also part of the German Power-to-Gas policy.

NB “Young” carbon would be either carbon monoxide or carbon dioxide, and be sourced from biomass, Direct Air Capture, or from the ocean. “Old” carbon would come from the “deeper” geological carbon cycle, such as from fossil fuel, or industrial processes such as the manufacture of chemicals from minerals and/or rocks.

Precursors to Renewable Gas also interest me, as transitions are important – transitions from a totally fossil fuel-based gas system to a sustainable gas system. I have recently looked at some basic analysis on the chemistry of Natural Gas, and its refinery. It seems that methanation could be useful in making sour gas available as sweetened, as long as Renewable Hydrogen is developed for this purpose. It seems that there is a lot of sour gas in remaining reserves, and the kind of CCS (Carbon Capture and Storage) that would be required under emissions controls could make sour gas too expensive to use if it was just washed of acids.

I don’t think the future of energy will be completely electrified – it will take a very long time to roll out 100% Renewable Electricity and there will always be problems transitioning out of liquid fuels to electricity in vehicular transportation.

If you could suggest any names, organisations, university departments, companies, governance bodies that I should contact, or research papers that I should read, I would be highly grateful.

Many thanks,

jo.

Making The Sour Sweet

In the long view, some things are inevitable, and I don’t just mean death and taxes. Within the lifetime of children born today, there must be a complete transformation in energy. The future is renewable, and carefully deployed renewable energy systems can be reliable, sustainable and low cost, besides being low in carbon dioxide emissions to air. This climate safety response is also the answer to a degradation and decline in high quality mineral hydrocarbons – the so-called “fossil” fuels. Over the course of 2014 I shall be writing about Renewable Gas – sustainable, low emissions gas fuels made on the surface of the earth without recourse to mining for energy. Renewable Gas can store the energy from currently underused Renewable Electricity from major producers such as wind and solar farms, and help to balance out power we capture from the variable wind and sun. Key chemical players in these fuels : hydrogen, methane, carbon monoxide and carbon dioxide. Key chemistry : how to use hydrogen to recycle the carbon oxides to methane. How we get from here to there is incredibly important, and interestingly, methods and techniques for increasing the production volumes of Renewable Gas will be useful for the gradually fading fossil fuel industry. Much of the world’s remaining easily accessible Natural Gas is “sour” – laced with high concentrations of hydrogen sulfide and carbon dioxide. Hydrogen sulfide needs to be removed from the gas, but carbon dioxide can be recycled into methane, raising the quality of the gas. We can preserve the Arctic from fossil gas exploitation, and save ourselves from this economic burden and ecological risk, by employing relatively cheap ways to upgrade sour Natural Gas, from Iran, for example, while we are on the decades-long road of transitioning to Renewable Gas. The new burn is coming.

Keith MacLean : Big Choices

At last week’s 2013 Annual Conference for PRASEG, the UK parliamentary sustainable energy group, Keith MacLean from Scottish and Southern Energy outlined (see below) the major pathways for domestic (residential) energy, currently dependent on both a gas grid and a power grid.

He said that decarbonising heat requires significant, strategic infrastructure decisions on the various proposals and technology choices put forward, as “these options are incompatible”. He said that the UK “need to facilitate more towards ONE of those scenarios/configurations [for provision for heating at home] as they are mutually exclusive”.

There has been a commitment from Central Government in the UK to the concept of electrification of the energy requirements of both the transport and heat sectors, and Keith MacLean painted a scenario that could see the nation’s households ditching their gas central heating boilers for heat pumps in accord with that vision. Next, “the District Heating (DH) movement could take off, [where you stop using your heat pump and take local piped heat from a Combined Heat and Power (CHP) plant] until there is no spare market capacity. Then [big utilities] could start pumping biogas and hydrogen into the gas grid, and you get your boiler back !”

Since I view gas grid injection of Renewable Gas feedstocks as a potential way to easily decarbonise the gas supply, and as Keith MacLean said in his panel presentation, “The real opportunity to make a difference in our domestic [residential] energy consumption is in heat rather than power”, I sought him out during the drinks reception after the event, to compare notes.

I explained that I appreciate the awkward problem he posed, and that my continuing research interest is in Renewable Gas, which includes Renewable Hydrogen, BioHydrogen and BioMethane. I said I had been reading up on and speaking with some of those doing Hydrogen injection into the gas grid, and it looks like a useful way to decarbonise gas.

I said that if we could get 5% of the gas grid supply replaced with hydrogen…”Yes”, said Keith, “we wouldn’t even need to change appliances at those levels”… and then top up with biogas and other industrial gas streams, we could decarbonise the grid by around 20% without breaking into a sweat. At this point, Keith MacLean started nodding healhily, and a woman from a communications company standing near us started to zone out, so I figured this was getting really interesting. “And that would be significant”, I accented, but by this time she was almost asleep on her feet.

With such important decisions ahead of us, it seems that people could be paying a bit more attention to these questions. These are, after all, big choices.

What did Keith mean by “The District Heating movement” ? Well, Dave Andrews of Clean Power (Finning Power Systems), had offered to give a very short presentation at the event. Here was his proposed title :-

http://uk.groups.yahoo.com/group/Claverton/message/12361
“Indicative costs of decarbonizing European city heating with electrical distribution compared to district heating pipe distribution of large scale wind energy and with particular attention to transition to the above methods and energy storage costs to address intermittency and variability of wind power.”

This would have been an assessment of the relative costs of decarbonising European city heating with either :-

Strategy 1)

“Gas-fired Combined Cycle Gas Turbine (CCGT) generation plant plus domestic (residential sector) electric heat pumps as the transition solution; and in the long term, large scale wind energy replacing the CCGT – which is retained as back up for low wind situations; and with pumped hydro electrical storage to deal with intermittency /variability of wind energy and to reduce back up fuel usage.”

or

Strategy 2)

“CCGT Combined Heat and Power (CHP) plus district heat (DH) as the transition solution; and in the long term, large scale wind energy replacing the CCGT CHP heat but with the CCGT retained as back up for low wind situations and with hot water energy storage to deal with intermittency / variability and to reduce back up fuel usage.”

With “the impact of [a programme of building retrofits for] insulation on each strategy is also assessed.”

Dave’s European research background is of relevance here, as co-author of a 215-pager SETIS programme paper complete with pretty diagrams :-

http://setis.ec.europa.eu/system/files/1.DHCpotentials.pdf

Although Dave Andrews was also at the PRASEG drinks reception, he didn’t get the opportunity to address the conference. Which was a shame as his shirt was electric.




PRASEG 2013
10 July 2013
“Keeping the Lights on: At What Cost?”
Parliamentary Renewable and Sustainable Energy Group
Annual Conference

Second Panel Discussion
Chaired by Baroness Maddock
“Negawatts: Decentralising and reducing demand – essential or ephemeral ?”

[Note : The term “negawatt” denotes a negative watt hour – produced by a reduction in power or gas demand. ]

[…]

Keith MacLean, Scottish and Southern Energy

Decentralisation and Demand Reduction [should only be done where] it makes sense. Answers [to the question of negawatts] are very different if looking at Heat and Power. Heat is something far more readily stored that electricity is. Can be used to help balance [the electricity demand profile]. And heat is already very localised [therefore adding to optimising local response]. Some are going in the other direction – looking at district [scale] heating (DH) [using the more efficient system of Combined Heat and Power (CHP)]. Never forget the option to convert from electricity to heat and back to electricity to balance [the grid]. Average household uses 3 MWh (megawatt hours) of electricity [per year] and 15 MWh of heat. The real opportunity is heat. New homes reduce this to about 1 [MWh]. Those built to the new 2016 housing regulations on Zero Carbon Homes, should use around zero. The real opportunity to make a difference in our domestic [residential] energy consumption is in heat rather than power. Reducing consumption not always the right solution. With intermittents [renewable energy] want to switch ON at some times [to soak up cheap wind power in windy conditions]. [A lot of talk about National Grid having to do load] balancing [on the scale of] seconds, minutes and hours. Far more fundamental is the overall system adequacy – a bigger challenge – the long-term needs of the consumer. Keeping the lights from going out by telling people to turn off the lights is not a good way of doing it. There is justifiable demand [for a range of energy services]. […] I don’t think we’re politically brave enough to vary the [electricity] prices enough to make changes. We need to look at ways of aggregating and automating Demand Side Response. Need to be prepared to legislate and regulate if that is the right solution.

[…]

Questions from the Floor

Question from John Gibbons of the University of Edinburgh

The decarbonisation of heat. Will we be successful any time soon ?

Answer from Keith MacLean

[…] Decarbonising heat – [strategic] infrastructure decisions. For example, [we could go down the route of ditching Natural Gas central heating] boilers for heat pumps [as the UK Government and National Grid have modelled and projected]. Then the District Heating (DH) movement could take off [and you ditch your heat pump at home], until there is no spare market capacity. Then [big utilities] could start pumping biogas and hydrogen into the gas grid, and you get your boiler back ! Need to facilitate more towards ONE of those scenarios/configurations [for provision for heating at home] as mutually exclusive. Need to address in terms of infrastructure since these options are incompatible.

Answer from Dave Openshaw, Future Networks, UK Power Network

Lifestyle decision – scope for [action on] heat more than for electricity. Demand Management – managing that Demand Side Reduction and Demand Reduction when need it. Bringing forward use of electricity [in variety of new applications] when know over-supply [from renewable energy, supplied at negative cost].

[…]

Ed Davey : Polish Barbecue



This week, both Caroline Flint MP and Ed Balls MP have publicly repeated the commitment by the UK’s Labour Party to a total decarbonisation of the power sector by 2030, should they become the governing political party. At PRASEG’s Annual Conference, Caroline Flint said “In around ten years time, a quarter of our power supply will be shut down. Decisions made in the next few years […] consequences will last for decades […] keeping the lights on, and [ensuring reasonably priced] energy bills, and preventing dangerous climate change. […] Labour will have as an election [promise] a legally binding target for 2030. […] This Government has no vision.”

And when I was in an informal conversation group with Ed Davey MP and Professor Mayer Hillman of the Policy Studies Institute at a drinks reception after the event hosted by PRASEG, the Secretary of State for Energy and Climate Change seemed to me to also be clear on his personal position backing the 2030 “decarb” target.

Ed Davey showed concern about the work necessary to get a Europe-wide commitment on Energy and Climate Change. He took Professor Hillman’s point that carbon dioxide emissions from the burning of fossil fuels are already causing dangerous climate change, and that the risks are increasing. However, he doubted that immediate responses can be made. He gave the impression that he singled out Poland of all the countries in the European Union to be an annoyance, standing in the way of success. He suggested that if Professor Hillman wanted to do something helpful, he could fly to Poland…at this point Professor Hillman interjected to say he hasn’t taken a flight in 70 years and doesn’t intend to now…and Ed Davey continued that if the Professor wanted to make a valuable contribution, he could travel to Poland, taking a train, or…”I don’t care how you get there”, but go to Poland and persuade the Poles to sign up to the 2030 ambition.

Clearly, machinations are already afoot. At the PRASEG Annual Conference were a number of communications professionals, tightly linked to the debate on the progress of national energy policy. Plus, one rather exceedingly highly-networked individual, David Andrews, the key driver behind the Claverton Energy Research Group forum, of which I am an occasional participant. He had ditched the normal navy blue polyester necktie and sombre suit for a shiveringly sharp and open-necked striped shirt, and was doing his best to look dapper, yet zoned. I found him talking to a communications professional, which didn’t surprise me. He asked how I was.

JA : “I think I need to find a new job.”
DA : “MI6 ?”
JA : “Too boring !”

What I really should have said was :-

JA : “Absolutely and seriously not ! Who’d want to keep State Secrets ? Too much travel and being nice to people who are nasty. And making unbelievable compromises. The excitement of privilege and access would wear off after about six minutes. Plus there’s the risk of ending up decomposing in something like a locked sports holdall in some strange bathroom in the semblance of a hostelry in a godforsaken infested hellhole in a desolate backwater like Cheltenham or Gloucester. Plus, I’d never keep track of all the narratives. Or the sliding door parallel lives. Besides, I’m a bit of a Marmite personality – you either like me or you really don’t : I respond poorly to orders, I’m not an arch-persuader and I’m not very diplomatic or patient (except with the genuinely unfortunate), and I’m well-known for leaping into spats. Call me awkward (and some do), but I think national security and genuine Zero Carbon prosperity can be assured by other means than dark arts and high stakes threats. I like the responsibility of deciding for myself what information should be broadcast in the better interests of the common good, and which held back for some time (for the truth will invariably out). And over and above all that, I’m a technologist, which means I prefer details over giving vague impressions. And I like genuine democratic processes, and am averse to social engineering. I am entirely unsuited to the work of a secret propaganda and diplomatic unit.”

I would be prepared to work for a UK or EU Parliamentary delegation to Poland, I guess, if I could be useful in assisting with dialogue, perhaps in the technical area. I do after all have several academic degrees pertinent to the questions of Energy and Climate Change.

But in a room full of politicians and communications experts, I felt a little like a fished fish. Here, then, is a demonstration. I was talking with Rhys Williams, the Coordinator of PRASEG, and telling him I’d met the wonderful Professor Geoff Williams, of Durham Univeristy, who has put together a system of organic light emitting diode (LED) lighting and a 3-D printed control unit, and, and, and Rhys actually yawned. He couldn’t contain it, it just kind of spilled out. I told myself : “It’s not me. It’s the subject matter”, and I promptly forgave him. Proof, though, of the threshold for things technical amongst Westminster fixers and shakers.

Poland. I mean, I know James Delingpole has been to Poland, and I thought at the time he was possibly going to interfere with the political process on climate change, or drum up support for shale gas. But I’m a Zero Carbon kind of actor. I don’t need to go far to start a dialogue with Poland by going to Poland – I have Poles living in my street, and I’m invited to all their barbecues. Maybe I should invite Professor Mayer Hillman to cycle over to Waltham Forest and address my near neighbours and their extended friendship circle on the importance of renewable energy and energy efficiency targets, and ask them to communicate with the folks back home with any form of influence.

Battle of the Lords

I don’t quite know what powers Lord Deben, John Gummer, but he looks remarkably wired on it. At this week’s PRASEG Annual Conference, he positively glowed with fervour and gumption. He regaled us with tales of debate in the House of Lords, the UK’s parliamentary “senior” chamber. He is a known climate change science adherent, and in speaking to PRASEG, he was preaching to the choir, but boy, did he give a bone-rattling homily !

As Chairman of the Committee on Climate Change, he is fighting the good fight for carbon targets to be established in all areas of legislation, especially the in-progress Energy Bill. He makes the case that emissions restraint and constraint is now an international business value, and of importance to infrastructure investment :-

“The trouble with energy efficiency is that it’s not “boys’ toys” – there’s no “sex” in it. It is many small things put together to make a big thing. We won’t get to a point of decarbonisation unless we [continuously] make [the case for] [continuous] investment. […] GLOBE [of which I am a member] in a report – 33 major countries – doing so much. […] Look at what China is doing. Now a competitive world. If we want people to come here and invest, we need to have a carbon intensity target in 2030 [which will impact] [manufacturing] and the supply chain. [With the current strategy, the carbon targets are] put down in 2020 and picked up again in 2050. Too long a gap for business. They don’t know what happens in between. This is not all about climate change. It is about UK plc.”

To supplement this diet of upbeat encouragement, he added a good dose of scorn for fellow Lords of the House, the Lords Lawson (Nigel Lawson) and Lord Ridley (Matt Ridley) who, he seemed to be suggesting, clearly have not mastered the science of climate change, and who, I believe he imputed, have lost their marbles :-

“Apart from one or two necessary sideswipes, I agree with the previous speaker. There is no need for disagreement except for those who dismiss climate change. [I call them “dismissers” as we should not] dignify their position by calling them “sceptics”. We are the sceptics. We come to a conclusion based on science and we revisit it every time new science comes our way. They rifle through every [paper] to find every little bit that suppports their argument. I’ve listened to the interventions [in the House of Lords reading of and debate on the Energy Bill] of that group. Their line is the Earth is not [really] warming, so, it’s too expensive to do anything. This conflicts with today’s World Meteorological Organization measurements – that the last decade has been the warmest ever. I bet you that none of them [Lords] will stand up [in the House of Lords] and say “Sorry. We got it wrong.” They pick one set of statistics and ignore the rest. It is a concentrated effort to undermine by creating doubt. Our job is constantly to make it clear they we don’t need to argue the case – the very best science makes it certain [but never absolute]. You would be very foolish to ignore the consensus of view. […] In a serious grown-up world, we accept the best advice – always keeping an eye out for new information. Otherwise, [you would] make decisions on worst information – no sane person does that.”

He encouraged us to encourage the dissenters on climate change science to view the green economy as an insurance policy :-

“Is there a householder here who does not insure their houses against fire ? You have a 98% change of not having a fire. Yet you spend on average £140 a year on insurance. Because of the size of the disaster – the enormity of the [potential] loss. Basic life-supporting insurance. I’m asking for half of that. If only Lord Lawson would listen to the facts instead of that Doctor of Sports Science, Benny Peiser. Or Matt Ridley – an expert in the sexual habits of pheasants. If I want to know about pheasants, I will first ask Lord Ridley. Can he understand why I go to a climatologist first ? [To accept his view of the] risks effects of climate change means relying on the infallibility of Lord Lawson […]”

He spoke of cross-party unity over the signing into law of the Climate Change Act, and the strength of purpose within Parliament to do the right thing on carbon. He admitted that there were elements of the media and establishment who were belligerently or obfuscatingly opposing the right thing to do :-

“[We] can only win if the world outside has certainty about institutional government. This is a battle we have taken on and won’t stop till we win it. [The Lord Lawson and Lord Ridley and their position is] contrary to science, contrary to sense and contrary to the principle of insurance. They will not be listened to, not now, until UK has reduced level of carbon emissions, and we have [promised] our grandchildren they they are safe from climate change.”

Phew ! That was a war cry, if ever there was one ! We are clearly in the Salvation Army ! I noted the attendance list, that showed several Gentlemen and Ladies of the Press should have been present, and hope to read good reports, but know that in some parts of the Gutter, anti-science faecal detritus still swirls. We in One Birdcage Walk were the assembly of believers, but the general public conversation on carbon is poisoned with sulphurous intent.

Hadeo- and Archaeo-Geobiology

What can deep time teach us ?

Whilst doing a little background research into biological routes to hydrogen production, I came across a scientific journal paper, I can’t recall which, that suggested that the geological evidence indicates that Earth’s second atmosphere not only had a high concentration of methane, but also high levels of hydrogen gas.

Previously, my understanding was that the development of microbiological life included a good number of methanogens (micro-life that produces methane as a waste product) and methanotrophs (those that “trough” on methane), but that hydrogenogen (“respiring” hydrogen gas) and hydrogenotroph (metabolising hydrogen) species were a minority, and that this was reflected in modern-day decomposition, such as the cultures used in biogas plants for anaerobic digestion.

If there were high densities of hydrogen cycle lifeforms in the early Earth, maybe there are remnants, descendants of this branch of the tree of life, optimal at producing hydrogen gas as a by-product, which could be employed for biohydrogen production, but which haven’t yet been scoped.

After all, it has only been very recently that psychrophiles have been added to the range of microorganisms that have been found useful in biogas production – cold-loving, permafrost-living bugs to complement the thermophile and mesophile species.

Since hydrogen and methane are both ideal gas fuels, for a variety of reasons, including gas storage, combustion profiles and simple chemistry, I decided I needed to learn a little more.

I have now read a plethora of new theories and several books about the formation of the Earth (and the Moon) in the Hadean Eon, the development of Earth’s atmosphere, the development of life in the Archaean Eon, and the evolution of life caused by climate change, and these developments in living beings causing climate change in their turn.

Most of this knowledge is mediated to us by geology, and geobiology. But right at its heart is catalytic chemistry, once again. Here’s Robert Hazen (Robert M. Hazen) from page 138 of “The Story of Earth” :-

“Amino acids, sugars, and the components of DNA and RNA adsorb onto all of Earth’s most common rock-forming minerals […] We concluded that wherever the prebiotic ocean contacted minerals, highly concentrated arrangements of life’s molecules are likely to have emerged from the formless broth […] Many other researchers have also settled on such a conclusion – indeed, more than a few prominent biologists have also gravitated to minerals, because origins-of-life scenarios that involve only oceans and atmosphere face insurmountable problems in accounting for efficient mechanisms of molecular selection and concentration. Solid minerals have an unmatched potential to select, concentrate, and organize molecules. So minerals much have played a central role in life’s origins. Biochemistry is complex, with interwoven cycles and networks of molecular reactions. For those intricately layered processes to work, molecules have to have just the right sizes and shapes. Molecular selection is the task of finding the best molecule for each biochemical job, and template-directed selection on mineral surfaces is now the leading candidate for how nature did it […] left- and right-handed molecules […] It turns out that life is incredibly picky : cells almost exclusively employ left-handed amino acids and right-handed sugars. Chirality matters […] Our recent experiments have explored the possibility that chiral mineral surfaces played the starring role in selecting handed molecules, and perhaps the origins of life as well. […] Our experiments showed that certain left-handed molecules can aggregate on one set of crystal surfaces, while the mirror image […] on other sets […] As handed molecules are separated and concentrated, each surface becomes a tiny experiment in molecular selection and organization. On its own, no such natural experiment with minerals and molecules is likely to have generated life. But take countless trillions of trillions of trillions of mineral surfaces, each bathed in molecule-rich organic broth […] The tiny fraction of all those molecular combinations that wound up displaying easier self-assembly, or developed a stronger binding to mineral surfaces […] survived […] possibly to learn new tricks.”

The Trouble With Tar





The bother with bitumen is that it’s as far from being a liquid as it is possible for a mixed bag of hydrocarbons to get without it being solid, flaky coal. If crude petroleum oil is a cup of tea with a tablespoonful of sugar syrup stirred into it, heavy oil can be like burnt toffee charred and stuck to the bottom of the pan, making the whole place stink of fence weatherisation paint.

A couple of decades ago, thick oil deposits were ruled out as uneconomic to mine, but as petroleum oil prices have risen, tar and bitumen are now back on the driller’s menu. The oil and gas industry claim that advances in technology have made these resources viable to exploit, and to some extent this must be right. However the rising prices for liquid transport fuels over the last decade is probably the main motivation for going after these dirty “unconventional” fossil fuels. It certainly seems to be the key stimulus for a new flurry of activity in this area.


[ Image Credit : Amjad Ali Shah ]

The world’s dense oil resources finally rose above controversy to make it into BP’s annual energy review in the BP’s 2010 Statistical Review (the data for 2009). Note the difference with the previous year :-


[ Image Credit : BP ]


[ Image Credit : BP ]

This difference in the Reserves to Production ratio (R/P) between the years is noted as being “due to an increase in Venezuelan official reserves”, and the data taken from the OPEC Annual Statistical Bulletin, which includes “proven reserves of the Magna Reserve Project in the Orinoco Belt” :-

http://www.expertguides.com/default.asp?Page=9&GuideID=238&Ed=132

At a meeting held by the Institute of Chemical Engineers (IChemE) held at the Institute of Physics (IoP) two days ago in London, called “Catalysis and Chemical Engineering 2013”, I chatted with a research scientist about the methods for extracting oil from seams of “tar”. Our conversation had its focus on a poster on the boards, summarising a paper that I think is this :-

Optimization of the CAPRI Process for Heavy Oil Upgrading: Effect of Hydrogen and Guard Bed
by Abarasi Hart, Amjad Shah, Gary Leeke, Malcolm Greaves and Joseph Wood, of the Universities of Birmingham and Bath, published in the journal Industrial and Engineering Chemical Research, 24 April 2013, DOI: 10.1021/ie400661x

( Other work previously : http://opus.bath.ac.uk/24298/, http://opus.bath.ac.uk/27784/,http://opus.bath.ac.uk/1063/, http://www.onepetro.org/mslib/servlet/onepetropreview?id=SPE-136870-PA, http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/E057977/1, http://www.greencarcongress.com/2013/03/hashemi-20130325.html )

The basic idea is to lay a pipe at the bottom of the seam of oil, then burn the edge of the seam, causing the oil to melt somewhat, pass into the pipe and get catalysed into a lighter oil, and then pumped out :-

Of course, burning oil underground has potential issues. Nothing is ever as neat as the scholarly diagrams.

The idea of packing the pipe with catalyst, rather than trying to run the catalyst through with the oil, shows some potential. It might be cheaper and more energy efficient to do this, rather than using electricity to heat the oil to make it flow. I mean, if you are going to use electricity to deliver liquid transport fuels, you might as well have electric drive transport vehicles instead.

http://www.intecsea.com/publications/technical-publications/148-direct-electrical-heating-of-flowlines-guide-to-uses-and-benefits

“Direct Electrical Heating of Flowlines – Guide to Uses and Benefits : Publish Date: 1/24/2012 : Author: Rebecca Fisher Roth : Conference: OTC Brazil (OTC-22631-PP) : Abstract: Direct Electrical Heating (DEH) of flowlines is a flow assurance technology that enables development of fields with heavy oil and fields in arctic regions, fields with long subsea tiebacks, and marginally profitable offshore fields. By allowing for operation in conditions outside of the hydrate region and/or above the wax appearance temperature, DEH opens up areas of development not otherwise considered viable by production companies and can significantly reduce CAPEX and OPEX for already-viable fields.”

http://www.wartsila.com/file/Wartsila/en/1278532493326a1267106724867-Wartsila-O-V-DEH.pdf

I wonder about the energy balance of the mining of heavy oils – how much energy needs to be used to mine these hydrocarbons ? And what of the risks – such as permanent underground fires, toxic surface “tailing ponds” from further refining, or major strata collapse ? Wouldn’t it just be easier, cleaner and cheaper to make energy on the surface of the Earth from realtime sunshine, instead of underground fossil sunshine ?


[ Image Credit : BP ]

http://www.controlrisks.com/Oversized%20assets/LATAM_oil_and_gas_whitepaper_2013_10.pdf

Renewable Gas : Heterogeneous Catalysis

I had a most interesting afternoon, today, Tuesday 4th June 2013 at the Institute of Physics (IoP), attending a meeting organised by the Institute of Chemical Engineers (IChemE).

Entitled “Catalysis and Chemical Engineering“, it was a series of research briefings from a wide range of academic and corporate scientists, outlining the contributions that chemical reaction catalysts make to industry and the energy sector.

Catalysts are what I call “Nature’s little helpers”, substances that aid and abet chemical reactions, without being used up themselves completely in the process. The perfect catalyst is one that doesn’t degrade over time, either by taking part in chemical reactions, or getting damaged or changed by assisting chemical reactions.

The perfect catalyst is also something that can be easily mixed with the substances used for the chemical reaction (the reactants or reagents), and also easily separated from the substances that are produced by the chemical reaction (the products).

Matter is found in four main phases, or states : solid, liquid, gas and plasma. Catalysts that are a different phase from the substances used in the chemical reaction are usually easier to separate. This is called heterogeneous catalysis, for example, where the reactants/reagents are gases or liquids, and the catalyst is a solid.

What has this got to do with Renewable Gas ? Well, several examples from the research presentations today make this point. There were several posters on the boards, outlining pieces of research. One of these caught my eye – on the photocatalysis of water, basically using sunlight and a catalyst to produce energy gas fuels from water. When tiny amounts of silver was added to the catalyst, the experimental reactor was producing more carbon monoxide gas than other gases, and without silver doping, it was producing more hydrogen gas than other gases. I asked K. Li of the University College London (UCL) Chemical Engineering group if he could send me a copy of the paper when it gets published. (Note: my apologies for not noting the spelling of his first name.)

Producing Renewable Hydrogen in industrial volumes is a very important part of the Renewable Gas story. The hydrogen is a valuable gas fuel in its own right, and it will also assist in carbon-rich gas recycling, and improving the energy density of mixed gas fuel feedstocks used in combustion for electricity generation, such as those gas resources with low levels of methane. Renewable Hydrogen production is also going to be very valuable for Renewable Refinery – making transport vehicle fuel oils (“Renewable Diesel”) and hydrocarbons (“Renewable Gasoline”) and other substances that are now made from petrochemicals, which could therefore be scarce in future.

A presentation by Adam Lee, soon to be of the University of Warwick, but still technically with the University of Cardiff was another green energy insight. He spoke about “Green Chemistry“, refining a wide range of industrial and energy chemicals using biomass as the feedstock.

I spoke with Panagiota Pimenidou at the University of Ulster about the simplicity and thermally balanced operation of chemical looping reformation of biomass – basically a neat trick to produce useful gas fuels from bioenergy feedstocks without using high temperature gasification.

During one of the tea breaks, an industry professional, who shall remain nameless, theorised that BP, Shell and ExxonMobil have probably already worked out how to run a Renewable Gas economy, but are keeping it all under their hats until we stop believing in the exploitation of fossil fuels, especially since fossil fuels these days are deeper and dirtier than ever.

Renewable Gas : Research Parameters

“So what do you do ?” is a question I quite frequently have to answer, as I meet a lot of new people, in a lot of new audiences and settings, on a regular basis, as an integral part of my personal process of discovery.

My internal autocue answer has modified, evolved, over the years, but currently sounds a lot like this, “I have a couple of part-time jobs, office administration, really. I do a spot of weblogging in my spare time. But I’m also doing some research into the potential for Renewable Gas.” I then pause for roughly two seconds. “Renewable Gas ?” comes back the question.

“Yes,” I affirm in the positive, “Industrial-scale chemistry to produce gas fuels not dug up out of the ground. It is useful to plug the gaps in Renewable Electricity when the sun isn’t shining and the wind isn’t blowing.”

It’s not exactly an elevator pitch – I’m not really selling anything except a slight shift in the paradigm here. Renewable Energy. Renewable Electricity. Renewable Gas. Power and gas. Gas and power. It’s logical to want both to be as renewable and sustainable and as low carbon as possible.

Wait another two seconds. “…What, you mean, like Biogas ?” comes the question. “Well, yes, and also high volumes of non-biological gas that’s produced above the ground instead of from fossil fuels.”

The introductory chat normally fades after this exchange, as my respondent usually doesn’t have the necessary knowledge architecture to be able to make any sense of what my words represent. I think it’s fair to say I don’t win many chummy friends paradigm-bumping in this way, and some probably think I’m off the deep end psychologically, but hey, evolutionaries don’t ever have it easy.

And I also find that it’s not easy to find a place in the hierarchy of established learning for my particular “research problem”. Which school could I possibly join ? Which research council would adopt me ?

The first barrier to academic inclusion is that my research interest is clearly motivated by my concern about the risks of Climate Change – the degradation in the Earth’s life support systems from pumping unnaturally high volumes of carbon dioxide into the air – and Peak Fossil Fuels – the risks to humanity from a failure to grow subsurface energy production.

My research is therefore “applied” research, according to the OECD definition (OECD, 2002). It’s not motivated simply by the desire to know new things – it is not “pure” research – it has an end game in mind. My research is being done in order to answer a practical problem – how to decarbonise gaseous, gas phase, energy fuel production.

The second barrier to the ivory tower world that I have is that I do not have a technological contribution to make with this research. I am not inventing a chemical process that can “revolutionise” low carbon energy production. (I don’t believe in “revolutions” anyway. Nothing good ever happens by violent overthrow.) My research is not at the workbench end of engineering, so I am not going to work amongst a team of industrial technicians, so I am not going to produce a patent for clean energy that could save the world (or the economy).

My research is more about observing and reporting the advances of others, and how these pieces add up to a journey of significant change in the energy sector. I want to join the dots from studies at the leading edge of research, showing how this demonstrates widespread aspiration for clean energy, and document instances of new energy technology, systems and infrastructure. I want to witness to the internal motivation of thousands of people working with the goal of clean energy across a very wide range of disciplines.

This is positively positive; positivity, but it’s not positivism – it’s not pure, basic research. This piece of research could well influence people and events – it’s certainly already influencing me. It’s not hands-off neutral science. It interacts with its subjects. It intentionally intervenes.

Since I don’t have an actual physical contribution or product to offer, and since I fully expect it to “interfere” with current dogma and political realities, what I am doing will be hard to acknowledge.

This is not a PhD. But it is still a piece of philosophy, the love of wisdom that comes from the acquisition of knowledge.

I have been clear for some time about what I should be studying. Call it “internal drive” if you like. The aim is to support the development of universal renewable energy as a response to the risks of climate change and peak fossil fuel energy production. That makes me automatically biased. I view my research subject through the prism of hope. But I would contend that this is a perfectly valid belief, as I already know some of what is possible. I’m not starting from a foundational blank slate – many Renewable Gas processes are already in use throughout industry and the energy sector. The fascinating part is watching these functions coalesce into a coherent alternative to the mining of fossil fuels. For the internal industry energy production conversation is changing its track, its tune.

For a while now, “alternative” energy has been a minor vibration, a harmonic, accentuating the fossil fuel melody. As soon as the mid-noughties economic difficulties began to bite, greenwash activities were ditched, as oil and gas companies resorted to their core business. But the “green shoots” of green energy are still there, and every now and then, it is possible to see them poking up above the oilspill-desecrated soil. My role is to count blades and project bushes. Therefore my research is interpretivist or constructivist, although it is documenting positivist engineering progress. That’s quite hard for me to agree with, even though I reasoned it myself. I can still resist being labelled “post-positivist”, though, because I’m still interpreting reality not relativisms.

So now, on from research paradigm to research methodologies. I was trained to be an experimentalist scientist, so this is a departure for me. In this case, I am not going to seek to make a physical contribution to the field by being actively involved as an engineer in a research programme, partly because from what I’ve read so far, most of the potential is already documented and scoped.

I am going to use sociological methods, combining observation and rapportage, to and from various organisations through various media. Since I am involved in the narrative through my interactions with others, and I influence the outcomes of my research, this is partly auto-narrative, autoethnographic, ethnographic. An apt form for the research documentation is a weblog, as it is a longitudinal study, so discrete reports at time intervals are appropriate. Social media will be useful for joining the research to a potential audience, and Twitter has the kind of immediacy I prefer.

My observation will therefore be akin to journalism – engineering journalism, where the term “engineering” covers both technological and sociological aspects of change. A kind of energy futures “travelogue”, an observer of an emerging reality.

My research methods will include reading the science and interacting with engineers. I hope to do a study trip (or two) as a way of embedding myself into the new energy sector, with the explicit intention of ensuring I am not purely a commentator-observer. My research documentation will include a slow collation of my sources and references – a literature review that evolves over time.

My personal contribution will be slight, but hopefully set archaic and inefficient proposals for energy development based on “traditional” answers (such as nuclear power, “unconventional” fossil fuel production and Carbon Capture and Storage for coal) in high relief.

My research choices as they currently stand :-

1. I do not think I want to join an academic group.

2. I do not think I want to work for an energy engineering company.

3. I do not want to claim a discovery in an experimental sense. Indeed, I do not need to, as I am documenting discoveries and experiments.

4. I want to be clear about my bias towards promoting 100% renewable energy, as a desirable ambition, in response to the risks posed by climate change and peak fossil fuel production.

5. I need to admit that my research may influence outcomes, and so is applied rather than basic (Roll-Hansen, 2009).

References

OECD, 2002. “Proposed Standard Practice for Surveys on Research and Experimental Development”, Frascati Manual :-
http://browse.oecdbookshop.org/oecd/pdfs/free/9202081e.pdf

Roll-Hansen, 2009. “Why the distinction between basic (theoretical) and applied (practical) research is important in the politics of science”, Nils Roll-Hansen, Centre for the Philosophy of Natural and Social Science Contingency and Dissent in Science, Technical Report 04/09 :-
http://www2.lse.ac.uk/CPNSS/projects/CoreResearchProjects/ContingencyDissentInScience/DP/DPRoll-HansenOnline0409.pdf

Gas in the UK (2)

…Continued from http://www.joabbess.com/2012/06/12/gas-in-the-uk/

Questions from the floor

[Tony Glover]

…increasing electricification of heat and transport. I was interested in what Doug said about heat. [If energy conservation measures are significant and there is] a significant reduction in gas use for heat…interested in the Minister’s response.

[Terry ? (Member of PRASEG)]

I’m interested in gas that would need CCS [Carbon Capture and Storage] [in future] …[since there would be no restriction there would be an] incentive to build new gas in next few years away from CCS-usable infrastructure. Maybe encouraging gas stations over next few years to be built in view of CCS.

[ ? ]

[There have been mentions of the] Gas [generation] Strategy and gas storage. Is it your intention to have both in the Energy Bill ? [Need to improve investor confidence.]

[Charles Hendry MP] I’m more confident than Doug on CHP…[in respect of energy conservation we will begin to increase our use of] CHP [Combined Heat and Power], geothermal energy, don’t need District Heating. I think we’ll see more people switch to electric heating. The likely pricing on gas will mean people have to look at other sources – such as localised heat storage, intelligent ways to produce hot water and heat in their homes […for example, a technology to store heat for several days…] The first [new gas power] plants will be where they are already consented – where originally coal plants – need to have identified in advance – no new plant is consented unless…We’ve asked Ofgem to ask re securing gas supplies. If we can stretch out the tail of North Sea gas – can stretch it out 30 – 40 years […] technology […] Centrica / Norway […] develop contracts […] Is there a role for strategic storage [Centrica asking] […] Buying and selling at the wrong price (like the gold) [widespread chuckling in the room]. Some of it may not need legislation. Gas Strategy will be published before the Energy Bill.

[David Cox] Get very nervous about gas storage. Don’t think there’s a need to put financial incentives in place to increase gas storage. We think the hybrid gas market is successful – a market and regulatory framework – [gas storage incentives] could damage.

[Doug Parr] I’m not downbeat because I want to be downbeat on heat. [Of all the solutions proposed none of them show] scaleability, deliverability. I’d love that to come true – but will it ? […] Heat pumps ? Biogas is great but is it really going to replace all that gas ? If we’re going to be using gas we need to make the best use of it […] Issues around new plant / replacement – all about reducing risks no exposing ourselves to [it] – security of supply, climate risks, issues about placement [siting of new plant]. If CCS can really be made to work – it’s a no-brainer – do we want all that carbon dioxide in the atmosphere or … ? Our entire policy becomes dependent on a technology that hasn’t even been demonstrated. Other technologies that people thought were great – years later they still haven’t arrived [for example, rooftop wind turbines]. If we say CCS is the only way it’s going to work – what’s Plan B ? We are going to use [fossil fuels] – should not become wholly dependent on technology not yet demonstrated.

[Alan Whitehead] Perhaps people should be asked – which would you prefer – a CHP / DH [Combined Heat and Power / District Heating] plant in the valley here, or a couple of wind turbines on that hill ? That would [shake things up].

Questions from the floor

[ X ? ] See […] as the ultimate destination. Most important – gas can be made zero carbon – not pie in the sky. 1. Start contributions of carbon-neutral gas and 2. will need far less if [we act] like Japan – force installation of microCHP. Their aim is to do same as for washing machines [bring prices down – make widely available for the home]. MicroCHP [with] heat pumps – reduction as good as decarbonising gas or electricity. But can also decarbonise gas.

[ X ? ] The Minister mentioned the importance of CHP but recently dropped […] mandate. If CHP so important what measures is the Government taking to ensure its installation ?

[ X ? ] Electricity is a rubbish fuel for heating buildings – very peaky load – need something cheap to store, cheap to […]. Fits very well with forcing down demand. Where we’re getting our gas from. At the moment our waste is being incinerated. For a cheap additional cost, where currently incinerating we can do anaerobic digestion [AD], producing a fungible asset – the gas – can gradually decarbonise our grid.

[ Thomas Grier ? ] …a decision [?] of London – CHP in London over the next few years. If we want to use electricity for heat, we need to reinforce the electricity grid [by 60% to 90% ?] In rural situations – use electrical heating. In urban, use decarbonised energy. [This model projection] shows the gas grid disappearing – it will collapse at some point if all we have on the gas grid is cooking.

[ X ? ] …[encouraged CHP then a few days later] stood up then said all support [removed ?] for CHP next year. A Heat Strategy that said there is enormous [scope / potential] for CHP. We want to see gas, we want to see efficiency. Are we moving towards […] without it they won’t build it.

[David Cox] Microgeneration – couldn’t get it down economically. Reliability [issues]. Full supporter of biogas – AD got a contribution to make – but never more than 5% – no matter how much [we crack it]. Electricity is not very good for heating – but how to we decarbonise the heat sector ? Always been an advocate of CHP. Government need to do more incentivising of that.

[Charles Hendry MP] Innovation and invention […] Government can’t support all emerging technologies. Best brains around the world [are working on] how we move fundamentally in a low carbon direction. On the waste hierarchy – burning of waste should be the final stage – finding a better use for it. [I visited] the biggest AD plant in Europe in Manchester – biogas and electricity generation. We are seeing Local Authorities taking a more constructive long-term view on how to manage waste. CHP – we all want to see more of it – to what extent does it need support ? That depends on whether new build – building a community around it. [By comparison, urban retrofitting is probably too expensive] Iceland [took the decision and] retrofitted almost every home – I’m now more convinced than before. What is the right level of subsidy and what makes good economic case ?

[Doug] We do keep missing opportunities. [For example in Wales, Milford Haven, the new Combined Cycle Gas Turbine at the Liquified Natural Gas (LNG) refinery to process the gas] should have been CHP. I am enthusiastic about lots of heat technologies [but the same questions/issues apply] scaleability and deliverability. District heating [DH] – an infrastructure asset ! [Can change priorities about what gets built – for example in Denmark (?)] they’re building large-scale solar farms to top up the DH. In the Treasury’s infrastructure plan [see DH could be…] Heat is the poor relation in energy debate. Other networks have been identified in the National Policy Statements (NPS) – but not heat.

[ Leonie Green, Renewable Energy Association ] [I must] defend heat pumps. In Sweden 90% of new builds [hav e heat pumps ?] – heat pump efficiency is a function of the energy-efficiency of the building […] Just on AD – National Grid report said it could provide 50% [of the nation’s supply. Our members think] that’s a bit too high – we think 25%. My question is really about the benefits. We are hearing anxiety about costs, but it’s piecemeal on benefits. We’ve been strong on jobs, balance of trade, exports [all benefits of renewable energy investment and deployment]. Pleased to see DECC put out [report from] Oxford Economics [on the] wider economic benefits. How can we get more and more balance in reports. [An example] Deutsche Bank renewable generation opportunities.

[ ? ] We would also support more than 5% from renewable gas – also about hydrogen – we used to do it when it was town gas – why not again ? As regards injecting biomethane/biogas from AD into the National Grid [last year ? to this year ?] 130 enquiries to connect AD to our network – none have progressed. Please sort these [registrations] out.

[ ? ] Minister, we’re not expecting you to fund all technologies – we need some logic – especially with transport. The Government doesn’t recognise the difference between Renewable Natural Gas if used in transport and fossil fuels. Would be simple – a tax on gas if used in a vehicle. What’s the problem over […] ?

[Colin Snape, University of Nottingham] We are looking at reducing the costs of carbon capture – we have a section of PhDs… One other gas source not mentioned – gas from underground gasification of coal [UCG]. In UK […] 2 billion tonners of coal – slightly offshore – on the energy coast of the UK – where all the action is on CCS – obviously UCG needs to be coupled with CCS to be carbon neutral. Would [be operational] in a very short time period […incentives…]. Significant proportion of UK needs.

[ ? ] What is the purpose of the Gas Strategy ? Shale gas isn’t a miracle. The “Golden Age of Gas” [report by the International Energy Agency (IEA)] doesn’t mean cheap gas, because [it will be put to] lots of uses. Renewable electricity and nuclear are not going to come until the 2020s. How do we avoid building loads of gas generation that is not necessary after that time ? What’s the role of mothballing (relatively cheap to bring CCGT out of mothballs comparing to build new). No sign of reduction in electricity demand reduction – therefore there will be high gas use.

[ Doug Parr ] On UCG, the IEA had two scenarios in the “Golden Age of Gas” – both took us over 3.5 degrees Celsius [in additional global warming]. Even if there is unconventional gas sources, still a huge danger of going down the road of unrestrained gas use. What is the alternative ? We should not end up becoming dependent on gas. Should not build gas to fill a short-term hole – they will lobby for their own interests – to keep open.

[ David Cox ] CCGTs won’t be built without guarantees greater than 20 years. Also renewable energy might not provide in the way that we hope. The CCC report – what caused the rise in energy prices ? The wholesale gas price – not renewable energy, green policies. However, that was slightly dishonest – the counter-factual was […] renewable energy significantly still more expensive than fossil fuel there. Until we can get costs of renewable energy down to the prices of fossil fuels… [The industry] don’t give the impression [they will build] on the basis of short-term need. Gas isn’t clean, I admit that […] CCS – that will work.

[Charles Hendry MP] A lot comes back to a need for a balanced approach – carbon targets and security of supply. If you haven’t sorted out security of supply, the electorate will not give permission to go low carbon. Gas is a hedging fuel currently but don’t know where costs going over time. As a politician, I like pipelines – know where it’s going (not like LNG, where there was limited use of new LNG import plant). If we want Scandinavian gas, we need security of demand to build the new pipeline. How we deal with issues of biomethane – in 2 years – need to make more progress. Some of these [techologies] will be gamechangers – some, look back in a couple of years… [Need a] permissive framework to allow a lot of ideas and technologies. There is no source of energy that hasn’t required subsidy in early days. Fanciful to suggest new forms of energy can come through without support. The letters we get [from the public, from constituents] are on vehicle fuel costs, not how much their gas bill went up last winter…

Official end of meeting

A gaggle of people gathered in the hallway to discuss some items further.

The Electricity Market Reform (EMR) was generally criticised – as it contains measures likely to specifically benefit nuclear power. Electricite de France was identified as very involved. The Government had said “no nuclear subsidy”, but the EMR measures are equivalent to hidden subsidies.

The Levy Cap was criticised as it would disturb investor confidence – if several nuclear reactors came on-stream in 10 years time, in the same year, they would eat up the whole subsidy budget for that year – and other technologies would lose out. If was felt that a number of the EMR proposals were “blunt instruments”, not overcoming shortcomings of former levies and subsidies.

Although the EMR was designed to addressed economic fears, it wasn’t assisting with financing risks – if anything it was adding to them. Rates of return have to be guaranteed for loans to be made – chopping and changing subsidies doesn’t allow for that.

Leonie Green said that the REA members don’t like the Premium Feed-in-Tariff (FiT). She also said later that they were not pleased about the cuts in support for AD.

Since my personal interest is in using Renewable Gas of various sources (including Biomethane / Biogas) to displace Natural Gas from the gas grid, I spoke with various people about this informally (including a woman I met on the train on my way home – who really got the argument about decarbonising gas by developing Renewable Gas, and using that to store excess renewable electricity, and use it as backup for renewable electricity. Although she did say “it won’t be done if it won’t confer benefits”.). One of the key elements for developing Renewable Gas is to create a stream of Renewable Hydrogen, produced in a range of ways. Somebody asked me what the driver would be for progress in Renewable Hydrogen production ? I said the “pull” was supposed to be the fabled “Hydrogen Economy” for transport, but that this isn’t really happening. I said the need for increased sources of renewably-sourced gas will become progressively clear – perhaps within a decade.

One of the persons present talked about how they think the Government is now coming out of the nuclear dream world – how only a few of the proposed new reactors will get built in the next decade – and how the Government now need to come up with a more realistic scenario.

It was mentioned that is appears that the Biogas technologies are going to have the same treatment as solar photovoltaics – some sort of subsidies at the start – which get cut away far too early – before it can stand on its own two feet. This was said to be the result of an underlying theory that only a fixed amount of money should be used on launching each new technology – with no thought to continuity problems – especially as regards investment and loan structures.

From Gridlock to Robojelly

Panic buying of vehicle fuel in the United Kingdom before a possible Easter weekend tanker driver strike has commenced.

The Coalition Government appears to be fanning the flames of anxiety, perhaps glad to deflect media attention from sliding-overturned-tanker type Hollywood crash scenes from their special version of crony capitalism.

“You mean to say that business people can pay money to have dinner with the leaders of the Conservative Party ?Well, strike a light !”

http://www.scotsman.com/news/tanker-drivers-strike-plan-for-fuel-shortages-downing-street-says-1-2198355
“…Asked whether motorists would be well-advised to rush to the petrol stations and fill up their tanks in the wake of last night’s vote for industrial action, a Number 10 spokeswoman said: “I think people should draw their own conclusions.”…She added: “Businesses and those who rely on vehicles for their work should ensure contingency plans are in place. It is always prudent.” …”

For me, the fuel strike of 2000 was spectator sport, as I was Working In Mainland Europe at the time. I was told it was Apocalyptic, in the nicest, visionary sense of the word – a reminder of how quiet roadways used to be and could be again, but also, how scary it was for the house-bound who rely on social services.

Supermarkets, naturally, became emptied. We were three meals from anarchy.

I would have thought it would be in everybody’s best interest to calm things down, sort out a deal with the people threatening strike action, but no, the Government appear to be bowling blindly on, perhaps incompetently provoking a massive traffic crisis by giving advice about stockpiling petrol and diesel.

Continue reading From Gridlock to Robojelly

Carbon Captured #2 : Socialising Cost, Privatising Profits


Image Credit : Michael Sterner

Carbon dioxide is a fuel. And I don’t mean plant food.

As petroleum oil and Natural Gas production hit peaks that cannot be surpassed, and the world begins to realise that depletion is inevitable, the world’s energy producers will turn to alternatives, including various forms of fuel and gas made from carbon dioxide, chemically adjusted with hydrogen derived from renewable resources.

It seems to me hypocritical for the large oil and gas companies to pitch for public funds to support their investment in Carbon Capture and Storage. Why ? Because this public funding will get converted into private profits the day they start to pump the carbon dioxide back out of storage to make Renewable Gas.

From a personal perspective, I find the argument for public financing of Carbon Capture and Storage particularly toxic when it is proposed to raise the revenue by placing an artificial price or tax on carbon. This would mean that the taxpaper-consumer pays for the emissions burden of hydrocarbon fossil fuel energy, and then gets to pay again for alternative energy, produced using the stored waste gases that they already paid for.

Charge energy customers twice. What a great bailout for fossil fuels !

I suspect that the only reason that Royal Dutch Shell and BP admit to climate change is so they can push their Carbon Capture and Storage schemes – bid tendering for public subsidy.

Forget the subsidies currently in place around the world for wind and solar power. Global carbon finance pushed at Carbon Capture and Storage will be of a much higher order of expenditure.

If the oil and gas companies want to build Carbon Capture and Storage facilities – let them pay for them themselves. After all, in many cases, they have been able to economically justify them by using carbon dioxide pumping to increase oil production – what’s known as Enhanced Oil Recovery.

Or if they insist on public finance for geo-sequestration of carbon dioxide in Carbon Capture and Storage projects, let them give us the carbon dioxide back for free when we need it for Renewable Gas production in the coming decades.

Living Life and LOAFing It

CHRISTIAN ECOLOGY LINK
PRESS RELEASE

Living Life and LOAFing It – Green Christians ask churches to “Use your LOAF !” on sourcing sustainable food

In the run up to Easter, Christian Ecology Link is asking supporters to think and act on how they source food for their church communities, with the aim of reducing the impact of unsustainable agriculture on their local area, and the wider world.

CEL have launched a new colour leaflet on the LOAF programme principles in time for Shrove Tuesday (Mardi Gras), or Pancake Day, on 21st February 2012.

Continue reading Living Life and LOAFing It

Feet in first

My lovely friends.

I received a wonderful gift over Christmas – bamboo socks.

The gift of socks is a massive present cliche – often a “faux pas”.

Describing a gift of foot socks as a “faux pas” is highly amusing, because that expression is French for “false step(s)”.

But this particular present of footwear was not embarrassing or laughable in the slightest.

It was extremely well thought out – inspiring, Zeitgeistian, educational, novel and fun – it even came in a bright orange pouch.

In Summer, by chance I was at an event where I heard the outlines and some conclusions of Lucy Siegle’s research into clothing fabrics.

Essentially, cotton is under threat worldwide – if you buy anything made from cotton, you should perhaps consider it an investment and hold onto it as long as you can. It could become quite irreplaceable.

There are solutions, even in a climate changed world – bamboo and hemp being two avenues for sourcing sustainable clothing fibres.

Fabric made from bamboo is soft and comforting, and in this particular case, quite, quite funky.

I have the obvious criticism of the use of retail – that we cannot expect to green up our lives purely through shopping – because consumerism is part of the climate change and energy crisis.

But I think that something functional like organic and recycled clothing can come into the category of truly green spending – after all, we do need to replace our clothes from time to time.

To cap it all, the socks had green stripes !

So top marks to my clever friend for cracking a superb seasonal joke and demonstrating the future of fabrics at the same time.

Raising a toast to a Sustainable 2012.

Alchemic for the people

I was less than a metre above current sea level, rooting about in the holy bookshelves of my Evangelical host, searching for a suitable title.

I pulled out “Who Made God ?” from underneath a pile of books on their sides, letting the column slump downwards, alerting my companions to the fact that I had definitively made my choice for the evening’s reading.

We were treated to gentle Christmassy music for an hour or so as we all gave up talking to read by candlelight and compact fluorescent.

I didn’t read fast, as at first I didn’t have my newly-necessary reading glasses, and when I was encouraged to fetch them, the light was too dim to make reading easy. Those fashionable uplighters.

I read into the second part, and I had already formed in my mind several disagreements with the author, Professor Edgar Andrews, despite him having taken several good lines of reasoning and made some humourous points which I had duly responded to with a slight audible giggle.

I instinctively didn’t like his pitch about the impossibility of organic chemistry and I froze a little : personally I see no need for God’s personal, literal, physical intervention to make the ladders and spirals of genes – the DNA and RNA forming from the appropriate nucleotide bases – A, T, G, C.

And then the book’s author blew away his credibility, for me, at least, by getting bogged down in the absolutes of Physics, and ignoring Chemistry. He quoted the Laws of Thermodynamics, and claimed Entropy as proof that God doesn’t play dice because he’s in the garage playing mechanic. The direction of the universe, the arrow of time, plays towards randomness, the author of the book proclaimed. Order cannot come from inorganic matter – Life is the organising force.

At this, I took several forms of dispute, and immediately found in my mind the perfect counter-example – the formation of crystals from saturated solution – the building of the stalgamite and stalagtite from the sedimentary filtering of rainwater. Another example, I think, is chiral forms of molecular compounds – some chemicals behave in different ways if formed lefthandedly or righthandedly. The different forms behave predictably and consistently and this is an ordered behaviour that I believe – without the necessary university instruction in Chemistry – is an imposed denial of chaos.

In fact, the whole of Chemistry, its world of wonder in alchemy, I think points to a kind of natural negation of the Laws of Physics. There is the Micro World, where Newton, and more introspectively, Einstein, are correct in their theoretical pragmas. But in the Macro World, there is Chemistry, and there are precursor compounds to organic essentials. Life forms itself from dead stone. For a Physicist this is “just not cricket”, it is a whole new universe.

Why can Aluminium be used for containers in microwave ovens, but steel cannot ? And why is Aluminium so light ? Why does water expand when it freezes ? Here the Physicists can help out. But they cannot, when it comes to explaining, or even accurately predicting, all the chemical properties of alloys and compounds.

I have been pondering, in a crude, uneducated way, about industrial chemistry for the last couple of months. How large volume reactions are encouraged, catalysed. How fluids work. How gases breathe. My conclusion is that most chemical engineering is a bit brutish, like the workings of the internal combustion engine. Things are a tad forced. It is probably not possible for chemical engineers to replicate photosynthesis entirely – it’s too dainty for them. But that is the kind of chemistry we need to overcome our climate and energy problems.

We may not be able to match the leaves on the trees, but we can do gas chemistry and electricity and semiconductor physics, and it is gas chemistry and electricity and semiconductor physics that will save the planet. Electricity to replace much fuel. Semiconductor physics to bypass photosynthesis. And Renewable Gas chemistry – engineering the chemical building blocks of the future and providing backup to the other green energies.