Renewable Gas : A Presentation #1

Last week, on the invitation of Dr Paul Elsner at Birkbeck, University of London, I gave a brief address of my research so far into Renewable Gas to this year’s Energy and Climate Change class, and asked and answered lots of questions before demolishing the mythical expert/student hierarchy paradigm – another incarnation of the “information deficit model”, perhaps – and proposed everyone work in breakout groups on how a transition from fossil fuel gas to Renewable Gas could be done.

A presentation of information was important before discussing strategies, as we had to cover ground from very disparate disciplines such as chemical process engineering, the petroleum industry, energy statistics, and energy technologies, to make sure everybody had a foundational framework. I tried to condense the engineering into just a few slides, following the general concept of UML – Unified Modelling Language – keeping everything really simple – especially as processing, or work flow (workflow) concepts can be hard to describe in words, so diagrams can really help get round the inevitable terminology confusions.

But before I dropped the class right into chemical engineering, I thought a good place to start would be in numbers, and in particular the relative contributions to energy in the United Kingdom from gas and electricity. Hence the first slide.

The first key point to notice is that most heat demand in the UK in winter is still provided by Natural Gas, whether Natural Gas in home boilers, or electricity generated using Natural Gas.

The second is that heat demand in energy terms is much larger than power demand in the cold months, and much larger than both power and heat demand in the warm months.

The third is that power demand when viewed on annual basis seems pretty regular (despite the finer grain view having issues with twice-daily peaks and weekday demand being much higher than weekends).

The reflection I gave was that it would make no sense to attempt to provide all that deep winter heat demand with electricity, as the UK would need an enormous amount of extra power generation, and in addition, much of this capacity would do nothing for most of the rest of the year.

The point I didn’t make was that nuclear power currently provides – according to official figures – less than 20% of UK electricity, however, this works out as only 7.48% of total UK primary energy demand (DUKES, 2014, Table 1.1.1, Mtoe basis). The contribution to total national primary energy demand from Natural Gas by contrast is 35.31%. The generation from nuclear power plants has been falling unevenly, and the plan to replace nuclear reactors that have reached their end of life is not going smoothly. The UK Government Department of Energy and Climate Change have been pushing for new nuclear power, and project that all heating will convert to electricity, and that nuclear power will provide for much of this (75 GW by 2050). But if their plan relies on nuclear power, and nuclear power development is unreliable, it is hard to imagine that it will succeed.

Leave a Reply

Your email address will not be published. Required fields are marked *